An Introduction to Nonstationary Time Series Analysis

Ting $Zhang^1$

tingz@bu.edu

Department of Mathematics and Statistics Boston University

August 15, 2016

Boston University/Keio University Workshop 2016 A Presentation Friendly for Graduate Students

¹I am grateful for the support of NSF Grant DMS-1461796. Some of the figures used in this presentation are from Wikipedia or other websites **B** + **C B** + **C**

Welcome to Boston ボストンへようこそ

イロト イポト イヨト イヨト

Introduction

- A time series is a sequence of of measurements collected over time, and examples include
 - electroencephalogram (EEG);

The first human EEG recording obtained by Hans Berger in 1924. Upper: EEG. Lower: timing signal.

- An important feature of time series is the temporal dependence.
 - Observations collected at different time points depend on each other.
 - ► The common assumption of independence no longer holds.
- Example: Let X_1, \ldots, X_n be random variables, sharing common marginal distribution $N(\mu, \sigma^2)$.

If independent, then

$$\bar{X}_n = \frac{X_1 + \dots + X_n}{n} \sim N\left(\mu, \frac{\sigma^2}{n}\right),$$

and a $(1-\alpha)\text{-th}$ confidence interval for μ is given by

$$\left[\bar{X}_n \pm q_{1-\alpha/2} \frac{\sigma}{\sqrt{n}}\right].$$

Under dependence, the above constructed confidence interval may no longer preserve the desired nominal size, as the distribution of X
_n can be different.

イロト イポト イヨト イヨト

- Example (Continued): We shall here consider an illustrative dependence case. Let $\epsilon_0, \ldots, \epsilon_n$ be independent standard normal random variables, and set $X_i = \mu + \sigma(\epsilon_i + \epsilon_{i-1})/\sqrt{2}$, then
 - ► $X_i \sim N(\mu, \sigma^2)$ has the same marginal distribution, but not independent. In fact, $cor(X_i, X_{i-1}) = 0.5$.
 - ▶ In this case, it can be shown that (exercise?)

$$\bar{X}_n = \frac{X_1 + \dots + X_n}{n} \sim N\left\{\mu, \frac{\sigma^2(2n-1)}{n^2}\right\},\,$$

and a $(1-\alpha)\text{-th}$ (asymptotic) confidence interval for μ is given by

$$\left[\bar{X}_n \pm q_{1-\alpha/2} \frac{\sigma}{\sqrt{n}} \times \sqrt{2}\right].$$

Dependence makes a difference!

イロト イポト イヨト イヨト

► Will the "magic" √2 adjustment work for other dependent data? Generally not!

- To incorporate the dependence, parametric models have been widely used, and popular ones are:
 - Autoregressive (AR) models:

$$X_i = a_1 X_{i-1} + \dots + a_p X_{i-p} + \epsilon_i;$$

Moving average (MA) models:

$$X_i = \epsilon_i + a_1 \epsilon_{i-1} + \dots + a_q \epsilon_{i-q};$$

Threshold AR models:

$$X_i = \rho |X_{i-1}| + \epsilon_i;$$

▶ and many others.

- When using parametric models, the dependence structure is fully described except for a few unknown parameters, which makes the inference procedure easier and likelihood-based methods are often used.
- Model misspecification issues!

Introduction	
0000000	

Stationarity: Another Common Assumption

- A process is said to be stationary when its joint probability distribution does not change when shifted in time.
 - Implying weak stationarity where

$$E(X_i) = E(X_0), \quad i = 1, ..., n;$$

$$cov(X_i, X_i + k) = cov(X_0, X_k), \quad i = 1, ..., n.$$

- Under (weak) stationarity, it makes sense to estimate the mean as a single parameter. The same holds for the marginal variance and autocorrelation.
- However, stationarity is a strong assumption and can be violated in practice.

The first human EEG recording obtained by Hans Berger in 1924.

Upper: EEG. Lower: timing signal.

Introduction	١
0000000	

Analysis of Nonstationary Time Series

- Nonstationary time series analysis has been a challenging but active area of research.
- When the assumption of stationarity fails, parameters of interest may no longer be a constant. In this case, they are naturally modeled as functions of time, which are infinite dimensional objects.

• Questions of interests:

- ▶ How to estimate those functions?
- Can parametric models be used to describe the time-varying pattern?
- ► How to make statistical inference, including hypothesis testing and constructing simultaneous confidence bands?
- Is it possible to provide a rigorous theoretical justification for those methods?
- Can we use the developed results to better address some real life problems?

Testing Parametric Assumptions on Trends of Nonstationary Time Series

A Sample Problem

イロト イポト イヨト イヨト

A Sample Problem

Other Interesting Problems

Motivating Examples (Tropical Cyclone Data)

Figure: Satellite-derived lifetime-maximum wind speeds of tropical cyclones during 1981–2006

- In atmospheric science (constancy or not?):
 - Global warming has an impact on tropical cyclones (Emanuel, 1991, Holland, 1997 and Bengtsson et al., 2007);
 - ▶ Linear trends for quantiles (Elsner, Kossin and Jagger, 2008, Nature).
- Is the mean really a constant?

A Sample Problem

Other Interesting Problems

Motivating Examples (The CET Data)

Figure: Annual central England temperature series from 1659 to 2009

- In climate science (various models proposed):
 - Linear (Jones and Hulme, 1997);
 - Quadratic (Benner, 1999, Int. J. Climatol.);
 - Local polynomial (Harvey and Mills, 2003).
- Which model should we use?

• Suppose we observe:

$$y_i = \mu(i/n) + e_i, \quad i = 1, \dots, n,$$

▶ $\mu(t)$, $t \in [0, 1]$, is an unknown smooth trend function; ▶ (e_i) is the error process (dependent and nonstationary).

• Motivated by the CET data, we want to test:

$$H_0: \mu(t) = f(\boldsymbol{\theta}, t).$$

Examples: $f(\boldsymbol{\theta}, t) = \theta_0$ or $f(\boldsymbol{\theta}, t) = \theta_0 + \theta_1 t$.

• A natural strategy:

Nonparametric : $\hat{\mu}_n(t)$ **v.s** Parametric : $f(\hat{\theta}_n, t)$.

• We form the \mathcal{L}^2 -distance

$$\Delta = \int_0^1 \{\hat{\boldsymbol{\mu}}_n(t) - f(\hat{\boldsymbol{\theta}}_n, t)\}^2 dt,$$

and reject H_0 if Δ is large. Ref: Fan and Gijbels (1996)

(4 同) 4 ヨ) 4 ヨ)

- "Locally fits a linear line": $\hat{\mu}_n(t) = \sum_{i=1}^n y_i w_i(t)$.
 - Bias: $O(b_n^2)$;
 - ► Variance: $O(1/\sqrt{nb_n})$.
- The window size b_n satisfies $b_n \to 0$ and $nb_n \to \infty$;

Ref: Fan and Gijbels (1996)

• Recall the test statistic

$$\Delta = \int_0^1 \{\hat{\mu}_n(t) - f(\hat{\boldsymbol{\theta}}_n, t)\}^2 dt.$$

In order to develop a rigorous statistical test, we need an asymptotic theory on the closely related *integrated squared error*:

ISE =
$$\int_0^1 {\{\hat{\mu}_n(t) - \mu(t)\}}^2 dt.$$

Reason: the error of $\hat{\mu}_n(t)$ dominates that of $f(\hat{\theta}_n, t)$.

- In the literature:
 - Independent errors:
 - Bickel and Rosenblatt (1973, Ann. Statist.);
 - Hall (1984, Ann. Statist.);
 - Härdle and Mammen (1993, Ann. Statist.).
 - Stationary linear error processes:
 - González-Manteiga and Vilar Fernández (1995);
 - Biedermann and Dette (2000).
 - Nonstationary nonlinear error processes: ??? Need a good framewor Reserved

Time-Varying Causal Representation The Framework

イロト イポト イヨト イヨト

• We assume that the error process has the causal representation:

$$e_i = H(i/n; \mathcal{F}_i), \quad \mathcal{F}_i = (\dots, \epsilon_{i-1}, \epsilon_i),$$

for some measurable function $H : [0,1] \times \mathbb{R}^{\infty} \to \mathbb{R}$. "A time-varying function of past innovations"

- Examples:
 - Stationary causal processes: $e_i = H(\mathcal{F}_i) = H(\dots, \epsilon_{i-1}, \epsilon_i);$

"Include popular linear and nonlinear time series as special cases"

• Nonstationary linear processes: $e_i = \epsilon_i + a_1(i/n)\epsilon_{i-1} + \cdots$.

"Nonstationary generalization by allowing time-varying parameters"

- Easy to work with, and makes developing asymptotic theory of complicated statistics possible.
- Under this framework, an asymptotic theory was developed in Zhang and Wu (2011, *Biometrika*) for the test statistic, and the cut-off value can then be obtained.

Introduction 0000000 A Sample Problem

Other Interesting Problems

Tropical Cyclone Data

Figure: Satellite-derived lifetime-maximum wind speeds of tropical cyclones during 1981–2006

- In the literature:
 - Linear trends for quantiles (Elsner et al., 2008, Nature);
 - ▶ L[∞]-based test: accept the mean constancy at the 5% level (Zhou, 2010, Ann. Statist.).
- Our procedure:
 - ▶ Reject the mean constancy at the 5% level. "L²-based tests can be more powerful than L[∞]-based ones"

A Sample Problem

Other Interesting Problems

Central England Temperature Data

Figure: Annual central England temperature series from 1659 to 2009 with dashed curve representing the global cubic trend

- In climate science:
 - Linear trend (Jones and Hulme, 1997);
 - Quadratic trend (Benner, 1999, Int. J. Climatol.);
 - Local polynomial trend (Harvey and Mills, 2003).
- Our procedure:
 - Quadratic trend (*Reject* with *p*-value 0.00);
 - Cubic trend (Accept with p-value 0.47).

Ref: Jones and Bradley (1992)

Other Interesting Problems

イロト イヨト イヨト イヨト

Introduction 0000000

A Sample Problem

Regression Setting

Figure: Daily hospital admissions (top) and measurements of pollutants in Hong Kong between January 1, 1994 and December 31, 1995.

Ref: Zhang and Wu (2012, Ann. Statist.) and Zhang (2015, J. Econometrics)

Introduction 0000000 A Sample Problem

Other Interesting Problems

Multivariate Setting

Figure: Air temperature measurements at 15 measurement facilities in the Southern Great Plains region of the United States from 10/06/2005 to 10/30/2005.

Ref: Degras et al. (2012, IEEE), Zhang (2013, JASA) and Zhang (2016, Sinica)

Introduction 0000000 A Sample Problem

Other Interesting Problems

Potential Jump Setting

Questions?

A Sample Problem

Other Interesting Problems

Thank You!

NAME: TING ZHANG Address: Department of Mathematics and Statistics Boston University Boston, MA 02215, U.S.A.

イロト イポト イヨト イヨト

E-MAIL: tingz@bu.edu

