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BECOME BETA USER bit.ly/testdeeplite

WE USE AI TO MAKE OTHER AI FASTER, SMALLER 
AND MORE POWER EFFICIENT

Automatically compress SOTA models like MobileNet to <200KB with 

little to no drop in accuracy for inference on resource-limited MCUs

Reduce model optimization trial & error from weeks to days using 

Deeplite's design space exploration

Deploy more models to your device without sacrificing performance or 

battery life with our easy-to-use software
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TinyML for all developers

Get your free account at http://edgeimpulse.com

Test

Edge Device Impulse

Dataset

Embedded and 

edge compute 

deployment options

Acquire valuable 

training data securely

Test impulse 

with real-time 

device data 

flows

Enrich data and train 

ML algorithms

Real sensors in real 

time

Open source SDK

http://edgeimpulse.com/




▪ Wide range of ML methods: GBM, XGBoost, Random 

Forest, Logistic Regression, Decision Tree, SVM, CNN, 

RNN, CRNN, ANN, Local Outlier Factor, and Isolation 

Forest

▪ Easy-to-use interface for labeling, recording, validating, 

and visualizing time-series sensor data

▪ On-device inference optimized for low latency, low 

power consumption, and a small memory footprint

▪ Supports Arm® Cortex™- M0 to M4 class MCUs

▪ Automates complex and labor-intensive processes of a 

typical ML workflow – no coding or ML expertise 

required!

▪ Industrial Predictive Maintenance

▪ Smart Home

▪ Wearables

Qeexo AutoML for Embedded AI
Automated Machine Learning Platform that builds tinyML solutions for the Edge using sensor data

▪ Automotive

▪ Mobile

▪ IoT

QEEXO AUTOML: END-TO-END MACHINE LEARNING PLATFORM

Key Features Target Markets/Applications

For a limited time, sign up to use Qeexo AutoML at automl.qeexo.com 
for FREE to bring intelligence to your devices!

https://automl.qeexo.com/


is for

building products

Automated Feature 
Exploration and 

Model Generation

Bill-of-Materials 
Optimization

Automated Data 
Assessment

Edge AI / TinyML
code for the smallest 

MCUs

Reality AI Tools® software

Reality AI solutions

Automotive sound recognition & localization

Indoor/outdoor sound event recognition

RealityCheck™ voice anti-spoofing

info@reality.ai @SensorAI Reality AIhttps://reality.ai

mailto:info@reality.ai
https://reality.ai


SynSense builds ultra-low-power (sub-mW) sensing and 

inference hardware for embedded, mobile and edge

devices. We design systems for real-time always-on 

smart sensing, for audio, vision, IMUs, bio-signals and 

more.

https://SynSense.ai



Next tinyML Talks

Date Presenter Topic / Title

Tuesday,
March 2

Eben Upton
founder of the Raspberry Pi 
Foundation

Inference with Raspberry Pi Pico and RP2040

Webcast start time is 8 am Pacific time

Please contact talks@tinyml.org if you are interested in presenting

mailto:talks@tinyml.org


Local Committee in Seattle

Karl Fezer

Contact: karl@tinyml.org

mailto:karl@tinyml.org


Announcement

Highlights:

www.tinyML.org/summit2021

- Keywords: Premier Quality, Interactive, LIVE … and FREE
- 5 days, 50+ presentations
- 4 Tutorials
- 2 Panel discussions: (i) VC and (ii) tinyML toolchains
- tinyML Research Symposium 
- Late Breaking News 
- 3 Best tinyML Awards (Paper, Product, Innovation)
- 10+ Breakout sessions on various topics
- tinyML Partner sessions
- tinyAI for (Good) Life
- LIVE coverage, starting at 8am Pacific time

What should I do about it:
- Check out the program – you will be impressed
- Register on-line (takes 5 min)

- If interested: Submit nominations for Best Awards 
and/or Late News – February 28 deadline 

- Block out your calendar: March 22-26
- Become a sponsor (sponsorships@tinyML.org)
- Actively participate at the Summit
- Provide your feedback – we listen !
- Don’t worry about missing some talks – all videos 

will be posted on YouTube.com/tinyML



tinyML is growing fast 
2019 Summit 
(March 2019) 

2020 Summit
(Feb 2020)

2021 Summit
(March 2021), 
expected

Attendees 160 400+ 3000+

Companies 90 172 300+ (?)

Linkedin 
members

0 798 ~ 2000

Meetups 
members

0 1140 ~ 5000

YouTube
subscribers

0 0 ~ 3000

201
8

201
9

2020

also started in Asia: tinyML WeChat and BiliBili

2021



Summit Sponsors 
(as of Feb 15, 2021)

Contact: sponsorships@tinyML.org

multiple levels and benefits available
(also check www.tinyML.org)

mailto:sponsorships@tinyML.org


Reminders

youtube.com/tinyml

Slides & Videos will be posted 
tomorrow

tinyml.org/forums

Please use the Q&A window for your 
questions



Chris Hoge

Chris has more than 10 years of 
experience in helping build open source 
communities, including strategic program 
management for the OpenStack 
Foundation and as a SIG co-founder in 
the Kubernetes community. He has a 
background in Applied Mathematics, and 
lives in the PNW.



Chris Hoge, Developer Advocate for Apache TVM

choge@octoml.ai

An Introduction to Apache TVM and TVMC



Why should you use TVM?

How does TVM work?

How do you install TVM?

How do you use TVMC?
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Why should you use TVM?

How does TVM work?

How do you install TVM?

How do you use TVMC?
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A Simple Image Classification Example

20

Phase I:  Train the Classifier (training)

Phase II: Deploy the Classifier (inference)
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Phase I: Train the Classifier (we are not concerned with this…)



Phase 2: Deploy the Classifier (what we are interested in with this 

talk...)

22



Let the Deployment Challenge Begin!
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Let the Deployment Challenge Begin!
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Let the Deployment Challenge Begin!
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Introducing TVM

26



Introducing TVM

● TVM is an open source optimizing 

compiler framework for machine 

learning.

● An official Apache project.

● Community owned.

● Active discussion forums.

● Regular meetups and conferences.

27



Problems

TVM Addresses

● Portability: When there are limited 

hardware options to deploy your 

model to.

● Efficiency: When you need to make 

your model run effectively on a 

target platform.

● Software Support: When you need 

to build a new software stack for 

your hardware system.

28



Why should you use TVM?

How does TVM work?

How do you install TVM?

How do you use TVMC?

29



A Quick Overview of TVM

30

Runtime

IR

Target TIR

AutoTVM TOPI

arith

TE

Relay frontends

node



A Quick Overview of TVM - Runtime
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Runtime

IR

Target TIR

AutoTVM TOPI

arith

TE

Relay frontends

node

The Runtime is the 

foundation of the TVM 

stack. It provides the 

foundation to load and run 

compiled TVM artifacts.



A Quick Overview of TVM - IR
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Runtime

IR

Target TIR

AutoTVM TOPI

arith

TE

Relay frontends

node

The IR layer of TVM is the 

low level compiled 

Intermediate 

Representation of a 

computation, with unified 

data structures and 

interfaces for all function 

variants.



A Quick Overview of TVM - TIR
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Runtime

IR

Target TIR

AutoTVM TOPI

arith

TE

Relay frontends

node

The TIR module has low 

level language invariants 

that represent functions 

which can be transformed 

to equivalent functions by 

multiple passes.



A Quick Overview of TVM - Target
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Runtime

IR

Target TIR

AutoTVM TOPI

arith

TE

Relay frontends

node

The Target module 

contains the code that 

allows an IR function to be 

transformed into a runtime 

object. It allows for TVM to 

target different 

architectures.



A Quick Overview of TVM - TE
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Runtime

IR

Target TIR

AutoTVM TOPI

arith

TE

Relay frontends

node

The Tensor Expression 

(TE) module is a domain 

specific functional language 

that allows for the 

templated expression of 

tensor computation, which 

can be transformed in TIR 

passes using schedule 

operators.



An Example Operator: Matrix Multiplication
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Basic Matrix Multiplication in TE and TIR
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Tiling and Reordering of MatMul in TE and TIR
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Vectorization of Matrix Multiplication in TE and TIR
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Optimized Matrix Multiplication in TE and TIR

40



Optimized Matrix Multiplication Summary

41

● With 13 lines of scheduling code, we can increase performance by about 200x

● Tiling, loop permutations lead to better cache hit rates

● Array packing to turn non-continuous access patterns into continuous 

pattern

● Vectorizations takes advantage of special hardware instructions

● Thread-level parallelization makes use of all of the cores



A Quick Overview of TVM - TOPI
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Runtime

IR

Target TIR

AutoTVM TOPI

arith

TE

Relay frontends

node

The Tensor Operator 

Inventory (TOPI) is a 

collection of predefined TE 

templates covering a range 

of common operators for a 

range of platforms.



A Quick Overview of TVM - AutoTVM
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Runtime

IR

Target TIR

AutoTVM TOPI

arith

TE

Relay frontends

node

AutoTVM and 

AutoScheduler are both 

components that automate 

the search for an optimized 

schedule. Includes tuning 

records, cost models, 

feature extraction, and 

search policies.



AutoTVM for Finding Optimal Schedules
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AutoTVM for Finding Optimal Schedules with ML
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A Quick Overview of TVM - Relay
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Runtime

IR

Target TIR

AutoTVM TOPI

arith

TE

Relay frontends

node

Relay is a high level 

functional intermediate 

representation that is used 

to represent full models. It 

supports different ‘dialects’ 

for different types of 

optimizations (quantization, 

memory, dynamic vms).



Graph Level Optimization with Relay
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Graph Level Optimization with Relay - Fusion
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Results with TVM
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A Quick Overview of TVM - frontends
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Runtime

IR

Target TIR

AutoTVM TOPI

arith

TE

Relay frontends

node

TVM includes a number of 

different frontends to ingest 

models from different 

frameworks.



Results on RPi with TVM
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Why should you use TVM?

How does TVM work?

How do you install TVM?

How do you use TVMC?
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Install TVM the Easy Way - tlcpack.ai
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Why should you use TVM?

How does TVM work?

How do you install TVM?

How do you use TVMC?
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Model: ONNX representation of ResNet-50v2

55

class='n02123045 tabby, tabby cat'

with probability=0.610552

class='n02123159 tiger cat' 

with probability=0.367179

class='n02124075 Egyptian cat' 

with probability=0.019365

class='n02129604 tiger, Panthera tigris' 

with probability=0.001273

class='n04040759 radiator' 

with probability=0.000261



TVMC Demo Roadmap

56

● Download the ResNet-50v2 Model in ONNX format.

● Download a test image.

● Compile the ONNX model to TVM (Relay).

● Create a tuning record of the model with TVM.

● Compile an optimized model with TVM and compare timings.

● Cross compile the model to run on RPi.

● Remotely tune with RPi.



Download the the ONNX ResNet-50v2 Model
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resnet50-v2-7.onnx:

$(info ---===*** Downloading resnet50-v2-7.onnx ***===---)

curl -L \

https://github.com/onnx/models/raw/master/vision/classification/resnet/model/resnet50-v2-7.onnx \

-o resnet50-v2-7.onnx

synset.txt:

$(info ---===*** Downloading additional onnx model file synset.txt ***===---)

curl -L https://s3.amazonaws.com/onnx-model-zoo/synset.txt -o synset.txt

imagenet-simple-labels.json:

$(info ---===*** Downloading additional labels for onnx model ***===---)

curl -L \

https://raw.githubusercontent.com/anishathalye/imagenet-simple-labels/master/imagenet-simple-labels.json \

-o imagenet-simple-labels.json



Download and Process the Test Input
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kitten.jpg:

$(info ---===*** Downloading kitten.jpg ***===---)

curl -L https://s3.amazonaws.com/model-server/inputs/kitten.jpg -o kitten.jpg

kitten.npz: kitten.jpg

$(info ---===*** Converting kitten.jpg to kitten.npz ***===---)

python3 process_input.py



Compile and Benchmark the TVM Model
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resnet50-v2-7.tvm: resnet50-v2-7.onnx

$(info ---===*** Compiling unoptimized TVM model for resnet50-v2-7 ***===---)

tvmc compile \

--target "llvm -mcpu=skylake" \

--output resnet50-v2-7.tvm \

resnet50-v2-7.onnx 2> /dev/null

tvm.txt: kitten.npz synset.txt resnet50-v2-7.tvm

$(info ---===*** Benchmarking unoptimized TVM model for resnet50-v2-7 ***===---)

echo "=== Begin tvm benchmark results ===" > tvm.txt

tvmc run \

--inputs kitten.npz \

--output predictions.npz \

--print-time \

--repeat 5 \

resnet50-v2-7.tvm > tvm.txt

python3 process_output.py >> tvm.txt

echo "=== End tvm benchmark results ===" >> tvm.txt

echo tvm.txt



Unoptimized TVM Runtime Results
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Execution time summary:

mean (s)   max (s)    min (s)    std (s)  

0.10221    0.08514    0.06656    0.00680  

class='n02123045 tabby, tabby cat' with probability=0.610552

class='n02123159 tiger cat' with probability=0.367179

class='n02124075 Egyptian cat' with probability=0.019365

class='n02129604 tiger, Panthera tigris' with probability=0.001273

class='n04040759 radiator' with probability=0.000261

=== End tvm benchmark results ===



Tune the Model
autotuner_records.json: resnet50-v2-7.onnx

$(info ---===*** TVM autotuning model for resnet50-v2-7 ***===---)

tvmc tune \

--target "llvm -mcpu=skylake" \

--output autotuner_records.json \

resnet50-v2-7.onnx 2> /dev/null

[Task  1/24]  Current/Best:    7.34/  22.55 GFLOPS | Progress: (192/1000) | 346.60 s Done.

[Task  2/24]  Current/Best:   35.23/ 327.39 GFLOPS | Progress: (960/1000) | 919.97 s Done.

[Task  3/24]  Current/Best:   21.31/ 257.22 GFLOPS | Progress: (800/1000) | 626.21 s Done.

[Task  4/24]  Current/Best:   21.06/ 262.27 GFLOPS | Progress: (960/1000) | 524.24 s Done.

[Task  5/24]  Current/Best:   40.97/ 225.42 GFLOPS | Progress: (800/1000) | 626.83 s Done.

[Task  6/24]  Current/Best:   54.34/ 332.29 GFLOPS | Progress: (1000/1000) | 547.70 s Done.

[Task  7/24]  Current/Best:   36.05/ 368.79 GFLOPS | Progress: (1000/1000) | 681.76 s Done.

[Task  8/24]  Current/Best:   25.19/ 326.91 GFLOPS | Progress: (972/1000) | 488.87 s Done.

[Task  9/24]  Current/Best:   14.40/ 334.40 GFLOPS | Progress: (1000/1000) | 443.79 s Done.

[Task 10/24]  Current/Best:   82.75/ 294.44 GFLOPS | Progress: (972/1000) | 538.51 s Done.

[Task 11/24]  Current/Best:   28.24/ 302.67 GFLOPS | Progress: (1000/1000) | 509.88 s Done.

[Task 12/24]  Current/Best:   63.72/ 390.99 GFLOPS | Progress: (1000/1000) | 608.81 s Done.

[Task 13/24]  Current/Best:   49.65/ 355.64 GFLOPS | Progress: (1000/1000) | 445.91 s Done.

[Task 14/24]  Current/Best:   84.85/ 380.20 GFLOPS | Progress: (1000/1000) | 464.45 s Done.

[Task 15/24]  Current/Best:   32.42/ 330.44 GFLOPS | Progress: (1000/1000) | 502.79 s Done.

[Task 16/24]  Current/Best:   60.96/ 345.70 GFLOPS | Progress: (1000/1000) | 629.26 s Done.

[Task 17/24]  Current/Best:   59.07/ 343.07 GFLOPS | Progress: (1000/1000) | 606.57 s Done.

[Task 18/24]  Current/Best:   51.77/ 366.14 GFLOPS | Progress: (980/1000) | 461.96 s Done.

[Task 19/24]  Current/Best:   25.12/ 320.29 GFLOPS | Progress: (1000/1000) | 536.89 s Done.

[Task 20/24]  Current/Best:   33.15/ 398.32 GFLOPS | Progress: (980/1000) | 439.43 s Done.

[Task 21/24]  Current/Best:   47.83/ 394.72 GFLOPS | Progress: (308/1000) | 202.34 s Done.

[Task 22/24]  Current/Best:    9.60/ 331.94 GFLOPS | Progress: (1000/1000) | 696.29 s Done.

[Task 23/24]  Current/Best:   40.74/ 305.27 GFLOPS | Progress: (1000/1000) | 743.44 s Done.

[Task 24/24]  Current/Best:   43.27/ 244.60 GFLOPS | Progress: (1000/1000) | 1053.60 s Done.

61



Compile and Benchmark the Optimized TVM Model
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resnet50-v2-7-autotuned.tvm: resnet50-v2-7.onnx

$(info ---===*** Compiling optimized TVM model for resnet50-v2-7 from cache ***===---)

tvmc compile \

--target "llvm -mcpu=skylake" \

--tuning-records autotuner_records.json  \

--output resnet50-v2-7-autotuned.tvm \

resnet50-v2-7.onnx 2> /dev/null

tvm-autotuned.txt: kitten.npz synset.txt resnet50-v2-7-autotuned.tvm

$(info ---===*** Benchmarking optimized TVM model for resnet50-v2-7 ***===---)

echo "=== Begin tvm-autotuned benchmark results ===" >> tvm-autotuned.txt

tvmc run \

--inputs kitten.npz \

--output predictions.npz \

--print-time \

--repeat 5 \

resnet50-v2-7-autotuned.tvm > tvm-autotuned.txt

python3 process_output.py >> tvm-autotuned.txt

echo "=== End tvm benchmark results ===" >> tvm-autotuned.txt

echo tvm-autotuned.txt



Optimized TVM Runtime Results
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=== Begin tvm-autotuned benchmark results ===

Execution time summary:

mean (s)   max (s)    min (s)    std (s)  

0.03243    0.03655    0.03059    0.00106  

class='n02123045 tabby, tabby cat' with probability=0.610552

class='n02123159 tiger cat' with probability=0.367179

class='n02124075 Egyptian cat' with probability=0.019365

class='n02129604 tiger, Panthera tigris' with probability=0.001273

class='n04040759 radiator' with probability=0.000261



Remote Execution with TVMC and RPC
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RPC Tracker
$HOSTNAME:$PORT

TVM Client

Target 4

Target 3

Target 2

Target 1



Cross Compile and the Model for RPi
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resnet50-v2-7-arm.tvm: resnet50-v2-7.onnx

$(info ---===*** Compiling unoptimized TVM model for ARM ***===---)

tvmc compile \

--target "llvm -device=arm_cpu -mtriple=aarch64-linux-gnu" \

--cross-compiler aarch64-linux-gnu-gcc \

--output resnet50-v2-7-arm.tvm \

resnet50-v2-7.onnx



Run the Model on RPi using Remote Execution

66

tvm-arm.txt: kitten.npz synset.txt resnet50-v2-7-arm.tvm

$(info ---===*** Benchmarking unoptimized TVM model for resnet50-v2-7 ***===---)

echo "=== Begin tvm benchmark results ===" > tvm.txt

tvmc run \

--inputs kitten.npz \

--output predictions.npz \

--print-time \

--repeat 5 \

--rpc-tracker $(TRACKER):$(TRACKER_PORT) \

--rpc-key raspberry \

resnet50-v2-7-arm.tvm > tvm-arm.txt

python3 process_output.py >> tvm-arm.txt

echo "=== End tvm arm benchmark results ===" >> tvm-arm.txt

echo tvm-arm.txt



Tune Model for RPi using Remote Execution
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autotuner_records-arm.json: resnet50-v2-7-arm.tvm

$(info ---===*** TVM autotuning model for resnet50-v2-7-arm ***===---) \

tvmc tune \

--target "llvm -device=arm_cpu -mtriple=aarch64-linux-gnu" \

--cross-compiler aarch64-linux-gnu-gcc \

--output autotuner_records-arm.json \

--rpc-tracker $(TRACKER):$(TRACKER_PORT) \

--rpc-key raspberry \

resnet50-v2-7.onnx 2> /dev/null



Want to learn more?
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● Discuss Forum: https://discuss.tvm.apache.org

● Docs: https://tvm.apache.org/docs

● Source: https://github.com/apache/tvm

● Demo Code: https://github.com/hogepodge/tvm-demo

● Monthly Community Meetings

○ Third Thursday at 9:00 AM PT

● Twitter: @ApacheTVM

● TinyML Tokyo talk, Introduction to uTVM:

https://www.youtube.com/watch?v=R1ZSF5X3JOE

Contact me: choge@octoml.ai or @hogepodge on Twitter

https://discuss.tvm.apache.org
https://tvm.apache.org/docs
https://github.com/apache/tvm
https://github.com/hogepodge/tvm-demo
https://www.youtube.com/watch?v=R1ZSF5X3JOE
mailto:choge@octoml.ai


TVM Literature
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● TVM: An Automated End-to-End Optimizing 

Compiler for Deep Learning

● Learning to Optimize Tensor Programs

● Ansor : Generating High-Performance Tensor 

Programs for Deep Learning

● Nimble: Efficiently Compiling Dynamic Neural 

Networks for Model Inference

https://arxiv.org/abs/1802.04799
https://arxiv.org/pdf/1805.08166.pdf
https://arxiv.org/abs/2006.06762
https://arxiv.org/abs/2006.03031
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