
“An Introduction to Optimizing ML Models
with TVMC”

Chris Hoge - OctoML

Seattle Area Group – February 18, 2021

tinyML Talks Sponsors

Additional Sponsorships available – contact sponsorships@tinyML.org for info

tinyML Strategic Partner

mailto:sponsorships@tinyML.org

3 © 2020 Arm Limited (or its affiliates)3 © 2020 Arm Limited (or its affiliates)

Optimized models for embedded

Application

Runtime
(e.g. TensorFlow Lite Micro)

Optimized low-level NN libraries
(i.e. CMSIS-NN)

Arm Cortex-M CPUs and microNPUs

Profiling and
debugging

tooling such as
Arm Keil MDK

Connect to
high-level

frameworks

1

Supported by
end-to-end tooling

2

2

RTOS such as Mbed OS

Connect to
Runtime

3

3

Arm: The Software and Hardware Foundation for tinyML

1

AI Ecosystem
Partners

Resources: developer.arm.com/solutions/machine-learning-on-arm

Stay Connected

@ArmSoftwareDevelopers

@ArmSoftwareDev

PAGE 4| Confidential Presentation ©2020 Deeplite, All Rights Reserved

BECOME BETA USER bit.ly/testdeeplite

WE USE AI TO MAKE OTHER AI FASTER, SMALLER
AND MORE POWER EFFICIENT

Automatically compress SOTA models like MobileNet to <200KB with

little to no drop in accuracy for inference on resource-limited MCUs

Reduce model optimization trial & error from weeks to days using

Deeplite's design space exploration

Deploy more models to your device without sacrificing performance or

battery life with our easy-to-use software

Copyright © EdgeImpulse Inc.

TinyML for all developers

Get your free account at http://edgeimpulse.com

Test

Edge Device Impulse

Dataset

Embedded and

edge compute

deployment options

Acquire valuable

training data securely

Test impulse

with real-time

device data

flows

Enrich data and train

ML algorithms

Real sensors in real

time

Open source SDK

http://edgeimpulse.com/

▪ Wide range of ML methods: GBM, XGBoost, Random

Forest, Logistic Regression, Decision Tree, SVM, CNN,

RNN, CRNN, ANN, Local Outlier Factor, and Isolation

Forest

▪ Easy-to-use interface for labeling, recording, validating,

and visualizing time-series sensor data

▪ On-device inference optimized for low latency, low

power consumption, and a small memory footprint

▪ Supports Arm® Cortex™- M0 to M4 class MCUs

▪ Automates complex and labor-intensive processes of a

typical ML workflow – no coding or ML expertise

required!

▪ Industrial Predictive Maintenance

▪ Smart Home

▪ Wearables

Qeexo AutoML for Embedded AI
Automated Machine Learning Platform that builds tinyML solutions for the Edge using sensor data

▪ Automotive

▪ Mobile

▪ IoT

QEEXO AUTOML: END-TO-END MACHINE LEARNING PLATFORM

Key Features Target Markets/Applications

For a limited time, sign up to use Qeexo AutoML at automl.qeexo.com
for FREE to bring intelligence to your devices!

https://automl.qeexo.com/

is for

building products

Automated Feature
Exploration and

Model Generation

Bill-of-Materials
Optimization

Automated Data
Assessment

Edge AI / TinyML
code for the smallest

MCUs

Reality AI Tools® software

Reality AI solutions

Automotive sound recognition & localization

Indoor/outdoor sound event recognition

RealityCheck™ voice anti-spoofing

info@reality.ai @SensorAI Reality AIhttps://reality.ai

mailto:info@reality.ai
https://reality.ai

SynSense builds ultra-low-power (sub-mW) sensing and

inference hardware for embedded, mobile and edge

devices. We design systems for real-time always-on

smart sensing, for audio, vision, IMUs, bio-signals and

more.

https://SynSense.ai

Next tinyML Talks

Date Presenter Topic / Title

Tuesday,
March 2

Eben Upton
founder of the Raspberry Pi
Foundation

Inference with Raspberry Pi Pico and RP2040

Webcast start time is 8 am Pacific time

Please contact talks@tinyml.org if you are interested in presenting

mailto:talks@tinyml.org

Local Committee in Seattle

Karl Fezer

Contact: karl@tinyml.org

mailto:karl@tinyml.org

Announcement

Highlights:

www.tinyML.org/summit2021

- Keywords: Premier Quality, Interactive, LIVE … and FREE
- 5 days, 50+ presentations
- 4 Tutorials
- 2 Panel discussions: (i) VC and (ii) tinyML toolchains
- tinyML Research Symposium
- Late Breaking News
- 3 Best tinyML Awards (Paper, Product, Innovation)
- 10+ Breakout sessions on various topics
- tinyML Partner sessions
- tinyAI for (Good) Life
- LIVE coverage, starting at 8am Pacific time

What should I do about it:
- Check out the program – you will be impressed
- Register on-line (takes 5 min)

- If interested: Submit nominations for Best Awards
and/or Late News – February 28 deadline

- Block out your calendar: March 22-26
- Become a sponsor (sponsorships@tinyML.org)
- Actively participate at the Summit
- Provide your feedback – we listen !
- Don’t worry about missing some talks – all videos

will be posted on YouTube.com/tinyML

tinyML is growing fast
2019 Summit
(March 2019)

2020 Summit
(Feb 2020)

2021 Summit
(March 2021),
expected

Attendees 160 400+ 3000+

Companies 90 172 300+ (?)

Linkedin
members

0 798 ~ 2000

Meetups
members

0 1140 ~ 5000

YouTube
subscribers

0 0 ~ 3000

201
8

201
9

2020

also started in Asia: tinyML WeChat and BiliBili

2021

Summit Sponsors
(as of Feb 15, 2021)

Contact: sponsorships@tinyML.org

multiple levels and benefits available
(also check www.tinyML.org)

mailto:sponsorships@tinyML.org

Reminders

youtube.com/tinyml

Slides & Videos will be posted
tomorrow

tinyml.org/forums

Please use the Q&A window for your
questions

Chris Hoge

Chris has more than 10 years of
experience in helping build open source
communities, including strategic program
management for the OpenStack
Foundation and as a SIG co-founder in
the Kubernetes community. He has a
background in Applied Mathematics, and
lives in the PNW.

Chris Hoge, Developer Advocate for Apache TVM

choge@octoml.ai

An Introduction to Apache TVM and TVMC

Why should you use TVM?

How does TVM work?

How do you install TVM?

How do you use TVMC?

18

Why should you use TVM?

How does TVM work?

How do you install TVM?

How do you use TVMC?

19

A Simple Image Classification Example

20

Phase I: Train the Classifier (training)

Phase II: Deploy the Classifier (inference)

21

Phase I: Train the Classifier (we are not concerned with this…)

Phase 2: Deploy the Classifier (what we are interested in with this

talk...)

22

Let the Deployment Challenge Begin!

23

? ?? ? ?? ? ? ??

? ?? ? ?? ? ? ??

? ?? ? ?? ? ? ??

? ?? ? ?? ? ? ??

? ?? ? ?? ? ? ??

? ?? ? ?? ? ? ??

Let the Deployment Challenge Begin!

24

? ?? ? ?? ? ? ??

? ?? ? ?? ? ? ??

? ?? ? ?? ? ? ??

? ?? ? ?? ? ? ??

? ?? ? ?? ? ? ??

? ?? ?? ? ? ??✅

Let the Deployment Challenge Begin!

25

? ?? ? ?? ? ? ??

? ?

?

? ?? ? ? ??

? ?? ? ?? ? ? ??

? ?? ? ?? ? ? ??

? ?? ? ?? ? ? ??

? ?? ?? ? ? ??

⛔

️

Introducing TVM

26

Introducing TVM

● TVM is an open source optimizing

compiler framework for machine

learning.

● An official Apache project.

● Community owned.

● Active discussion forums.

● Regular meetups and conferences.

27

Problems

TVM Addresses

● Portability: When there are limited

hardware options to deploy your

model to.

● Efficiency: When you need to make

your model run effectively on a

target platform.

● Software Support: When you need

to build a new software stack for

your hardware system.

28

Why should you use TVM?

How does TVM work?

How do you install TVM?

How do you use TVMC?

29

A Quick Overview of TVM

30

Runtime

IR

Target TIR

AutoTVM TOPI

arith

TE

Relay frontends

node

A Quick Overview of TVM - Runtime

31

Runtime

IR

Target TIR

AutoTVM TOPI

arith

TE

Relay frontends

node

The Runtime is the

foundation of the TVM

stack. It provides the

foundation to load and run

compiled TVM artifacts.

A Quick Overview of TVM - IR

32

Runtime

IR

Target TIR

AutoTVM TOPI

arith

TE

Relay frontends

node

The IR layer of TVM is the

low level compiled

Intermediate

Representation of a

computation, with unified

data structures and

interfaces for all function

variants.

A Quick Overview of TVM - TIR

33

Runtime

IR

Target TIR

AutoTVM TOPI

arith

TE

Relay frontends

node

The TIR module has low

level language invariants

that represent functions

which can be transformed

to equivalent functions by

multiple passes.

A Quick Overview of TVM - Target

34

Runtime

IR

Target TIR

AutoTVM TOPI

arith

TE

Relay frontends

node

The Target module

contains the code that

allows an IR function to be

transformed into a runtime

object. It allows for TVM to

target different

architectures.

A Quick Overview of TVM - TE

35

Runtime

IR

Target TIR

AutoTVM TOPI

arith

TE

Relay frontends

node

The Tensor Expression

(TE) module is a domain

specific functional language

that allows for the

templated expression of

tensor computation, which

can be transformed in TIR

passes using schedule

operators.

An Example Operator: Matrix Multiplication

36

Basic Matrix Multiplication in TE and TIR

37

Tiling and Reordering of MatMul in TE and TIR

38

Vectorization of Matrix Multiplication in TE and TIR

39

Optimized Matrix Multiplication in TE and TIR

40

Optimized Matrix Multiplication Summary

41

● With 13 lines of scheduling code, we can increase performance by about 200x

● Tiling, loop permutations lead to better cache hit rates

● Array packing to turn non-continuous access patterns into continuous

pattern

● Vectorizations takes advantage of special hardware instructions

● Thread-level parallelization makes use of all of the cores

A Quick Overview of TVM - TOPI

42

Runtime

IR

Target TIR

AutoTVM TOPI

arith

TE

Relay frontends

node

The Tensor Operator

Inventory (TOPI) is a

collection of predefined TE

templates covering a range

of common operators for a

range of platforms.

A Quick Overview of TVM - AutoTVM

43

Runtime

IR

Target TIR

AutoTVM TOPI

arith

TE

Relay frontends

node

AutoTVM and

AutoScheduler are both

components that automate

the search for an optimized

schedule. Includes tuning

records, cost models,

feature extraction, and

search policies.

AutoTVM for Finding Optimal Schedules

44

AutoTVM for Finding Optimal Schedules with ML

45

A Quick Overview of TVM - Relay

46

Runtime

IR

Target TIR

AutoTVM TOPI

arith

TE

Relay frontends

node

Relay is a high level

functional intermediate

representation that is used

to represent full models. It

supports different ‘dialects’

for different types of

optimizations (quantization,

memory, dynamic vms).

Graph Level Optimization with Relay

47

Graph Level Optimization with Relay - Fusion

48

Results with TVM

49

A Quick Overview of TVM - frontends

50

Runtime

IR

Target TIR

AutoTVM TOPI

arith

TE

Relay frontends

node

TVM includes a number of

different frontends to ingest

models from different

frameworks.

Results on RPi with TVM

51

Why should you use TVM?

How does TVM work?

How do you install TVM?

How do you use TVMC?

52

Install TVM the Easy Way - tlcpack.ai

53

Why should you use TVM?

How does TVM work?

How do you install TVM?

How do you use TVMC?

54

Model: ONNX representation of ResNet-50v2

55

class='n02123045 tabby, tabby cat'

with probability=0.610552

class='n02123159 tiger cat'

with probability=0.367179

class='n02124075 Egyptian cat'

with probability=0.019365

class='n02129604 tiger, Panthera tigris'

with probability=0.001273

class='n04040759 radiator'

with probability=0.000261

TVMC Demo Roadmap

56

● Download the ResNet-50v2 Model in ONNX format.

● Download a test image.

● Compile the ONNX model to TVM (Relay).

● Create a tuning record of the model with TVM.

● Compile an optimized model with TVM and compare timings.

● Cross compile the model to run on RPi.

● Remotely tune with RPi.

Download the the ONNX ResNet-50v2 Model

57

resnet50-v2-7.onnx:

$(info ---===*** Downloading resnet50-v2-7.onnx ***===---)

curl -L \

https://github.com/onnx/models/raw/master/vision/classification/resnet/model/resnet50-v2-7.onnx \

-o resnet50-v2-7.onnx

synset.txt:

$(info ---===*** Downloading additional onnx model file synset.txt ***===---)

curl -L https://s3.amazonaws.com/onnx-model-zoo/synset.txt -o synset.txt

imagenet-simple-labels.json:

$(info ---===*** Downloading additional labels for onnx model ***===---)

curl -L \

https://raw.githubusercontent.com/anishathalye/imagenet-simple-labels/master/imagenet-simple-labels.json \

-o imagenet-simple-labels.json

Download and Process the Test Input

58

kitten.jpg:

$(info ---===*** Downloading kitten.jpg ***===---)

curl -L https://s3.amazonaws.com/model-server/inputs/kitten.jpg -o kitten.jpg

kitten.npz: kitten.jpg

$(info ---===*** Converting kitten.jpg to kitten.npz ***===---)

python3 process_input.py

Compile and Benchmark the TVM Model

59

resnet50-v2-7.tvm: resnet50-v2-7.onnx

$(info ---===*** Compiling unoptimized TVM model for resnet50-v2-7 ***===---)

tvmc compile \

--target "llvm -mcpu=skylake" \

--output resnet50-v2-7.tvm \

resnet50-v2-7.onnx 2> /dev/null

tvm.txt: kitten.npz synset.txt resnet50-v2-7.tvm

$(info ---===*** Benchmarking unoptimized TVM model for resnet50-v2-7 ***===---)

echo "=== Begin tvm benchmark results ===" > tvm.txt

tvmc run \

--inputs kitten.npz \

--output predictions.npz \

--print-time \

--repeat 5 \

resnet50-v2-7.tvm > tvm.txt

python3 process_output.py >> tvm.txt

echo "=== End tvm benchmark results ===" >> tvm.txt

echo tvm.txt

Unoptimized TVM Runtime Results

60

Execution time summary:

mean (s) max (s) min (s) std (s)

0.10221 0.08514 0.06656 0.00680

class='n02123045 tabby, tabby cat' with probability=0.610552

class='n02123159 tiger cat' with probability=0.367179

class='n02124075 Egyptian cat' with probability=0.019365

class='n02129604 tiger, Panthera tigris' with probability=0.001273

class='n04040759 radiator' with probability=0.000261

=== End tvm benchmark results ===

Tune the Model
autotuner_records.json: resnet50-v2-7.onnx

$(info ---===*** TVM autotuning model for resnet50-v2-7 ***===---)

tvmc tune \

--target "llvm -mcpu=skylake" \

--output autotuner_records.json \

resnet50-v2-7.onnx 2> /dev/null

[Task 1/24] Current/Best: 7.34/ 22.55 GFLOPS | Progress: (192/1000) | 346.60 s Done.

[Task 2/24] Current/Best: 35.23/ 327.39 GFLOPS | Progress: (960/1000) | 919.97 s Done.

[Task 3/24] Current/Best: 21.31/ 257.22 GFLOPS | Progress: (800/1000) | 626.21 s Done.

[Task 4/24] Current/Best: 21.06/ 262.27 GFLOPS | Progress: (960/1000) | 524.24 s Done.

[Task 5/24] Current/Best: 40.97/ 225.42 GFLOPS | Progress: (800/1000) | 626.83 s Done.

[Task 6/24] Current/Best: 54.34/ 332.29 GFLOPS | Progress: (1000/1000) | 547.70 s Done.

[Task 7/24] Current/Best: 36.05/ 368.79 GFLOPS | Progress: (1000/1000) | 681.76 s Done.

[Task 8/24] Current/Best: 25.19/ 326.91 GFLOPS | Progress: (972/1000) | 488.87 s Done.

[Task 9/24] Current/Best: 14.40/ 334.40 GFLOPS | Progress: (1000/1000) | 443.79 s Done.

[Task 10/24] Current/Best: 82.75/ 294.44 GFLOPS | Progress: (972/1000) | 538.51 s Done.

[Task 11/24] Current/Best: 28.24/ 302.67 GFLOPS | Progress: (1000/1000) | 509.88 s Done.

[Task 12/24] Current/Best: 63.72/ 390.99 GFLOPS | Progress: (1000/1000) | 608.81 s Done.

[Task 13/24] Current/Best: 49.65/ 355.64 GFLOPS | Progress: (1000/1000) | 445.91 s Done.

[Task 14/24] Current/Best: 84.85/ 380.20 GFLOPS | Progress: (1000/1000) | 464.45 s Done.

[Task 15/24] Current/Best: 32.42/ 330.44 GFLOPS | Progress: (1000/1000) | 502.79 s Done.

[Task 16/24] Current/Best: 60.96/ 345.70 GFLOPS | Progress: (1000/1000) | 629.26 s Done.

[Task 17/24] Current/Best: 59.07/ 343.07 GFLOPS | Progress: (1000/1000) | 606.57 s Done.

[Task 18/24] Current/Best: 51.77/ 366.14 GFLOPS | Progress: (980/1000) | 461.96 s Done.

[Task 19/24] Current/Best: 25.12/ 320.29 GFLOPS | Progress: (1000/1000) | 536.89 s Done.

[Task 20/24] Current/Best: 33.15/ 398.32 GFLOPS | Progress: (980/1000) | 439.43 s Done.

[Task 21/24] Current/Best: 47.83/ 394.72 GFLOPS | Progress: (308/1000) | 202.34 s Done.

[Task 22/24] Current/Best: 9.60/ 331.94 GFLOPS | Progress: (1000/1000) | 696.29 s Done.

[Task 23/24] Current/Best: 40.74/ 305.27 GFLOPS | Progress: (1000/1000) | 743.44 s Done.

[Task 24/24] Current/Best: 43.27/ 244.60 GFLOPS | Progress: (1000/1000) | 1053.60 s Done.

61

Compile and Benchmark the Optimized TVM Model

62

resnet50-v2-7-autotuned.tvm: resnet50-v2-7.onnx

$(info ---===*** Compiling optimized TVM model for resnet50-v2-7 from cache ***===---)

tvmc compile \

--target "llvm -mcpu=skylake" \

--tuning-records autotuner_records.json \

--output resnet50-v2-7-autotuned.tvm \

resnet50-v2-7.onnx 2> /dev/null

tvm-autotuned.txt: kitten.npz synset.txt resnet50-v2-7-autotuned.tvm

$(info ---===*** Benchmarking optimized TVM model for resnet50-v2-7 ***===---)

echo "=== Begin tvm-autotuned benchmark results ===" >> tvm-autotuned.txt

tvmc run \

--inputs kitten.npz \

--output predictions.npz \

--print-time \

--repeat 5 \

resnet50-v2-7-autotuned.tvm > tvm-autotuned.txt

python3 process_output.py >> tvm-autotuned.txt

echo "=== End tvm benchmark results ===" >> tvm-autotuned.txt

echo tvm-autotuned.txt

Optimized TVM Runtime Results

63

=== Begin tvm-autotuned benchmark results ===

Execution time summary:

mean (s) max (s) min (s) std (s)

0.03243 0.03655 0.03059 0.00106

class='n02123045 tabby, tabby cat' with probability=0.610552

class='n02123159 tiger cat' with probability=0.367179

class='n02124075 Egyptian cat' with probability=0.019365

class='n02129604 tiger, Panthera tigris' with probability=0.001273

class='n04040759 radiator' with probability=0.000261

Remote Execution with TVMC and RPC

64

RPC Tracker
$HOSTNAME:$PORT

TVM Client

Target 4

Target 3

Target 2

Target 1

Cross Compile and the Model for RPi

65

resnet50-v2-7-arm.tvm: resnet50-v2-7.onnx

$(info ---===*** Compiling unoptimized TVM model for ARM ***===---)

tvmc compile \

--target "llvm -device=arm_cpu -mtriple=aarch64-linux-gnu" \

--cross-compiler aarch64-linux-gnu-gcc \

--output resnet50-v2-7-arm.tvm \

resnet50-v2-7.onnx

Run the Model on RPi using Remote Execution

66

tvm-arm.txt: kitten.npz synset.txt resnet50-v2-7-arm.tvm

$(info ---===*** Benchmarking unoptimized TVM model for resnet50-v2-7 ***===---)

echo "=== Begin tvm benchmark results ===" > tvm.txt

tvmc run \

--inputs kitten.npz \

--output predictions.npz \

--print-time \

--repeat 5 \

--rpc-tracker $(TRACKER):$(TRACKER_PORT) \

--rpc-key raspberry \

resnet50-v2-7-arm.tvm > tvm-arm.txt

python3 process_output.py >> tvm-arm.txt

echo "=== End tvm arm benchmark results ===" >> tvm-arm.txt

echo tvm-arm.txt

Tune Model for RPi using Remote Execution

67

autotuner_records-arm.json: resnet50-v2-7-arm.tvm

$(info ---===*** TVM autotuning model for resnet50-v2-7-arm ***===---) \

tvmc tune \

--target "llvm -device=arm_cpu -mtriple=aarch64-linux-gnu" \

--cross-compiler aarch64-linux-gnu-gcc \

--output autotuner_records-arm.json \

--rpc-tracker $(TRACKER):$(TRACKER_PORT) \

--rpc-key raspberry \

resnet50-v2-7.onnx 2> /dev/null

Want to learn more?

68

● Discuss Forum: https://discuss.tvm.apache.org

● Docs: https://tvm.apache.org/docs

● Source: https://github.com/apache/tvm

● Demo Code: https://github.com/hogepodge/tvm-demo

● Monthly Community Meetings

○ Third Thursday at 9:00 AM PT

● Twitter: @ApacheTVM

● TinyML Tokyo talk, Introduction to uTVM:

https://www.youtube.com/watch?v=R1ZSF5X3JOE

Contact me: choge@octoml.ai or @hogepodge on Twitter

https://discuss.tvm.apache.org
https://tvm.apache.org/docs
https://github.com/apache/tvm
https://github.com/hogepodge/tvm-demo
https://www.youtube.com/watch?v=R1ZSF5X3JOE
mailto:choge@octoml.ai

TVM Literature

69

● TVM: An Automated End-to-End Optimizing

Compiler for Deep Learning

● Learning to Optimize Tensor Programs

● Ansor : Generating High-Performance Tensor

Programs for Deep Learning

● Nimble: Efficiently Compiling Dynamic Neural

Networks for Model Inference

https://arxiv.org/abs/1802.04799
https://arxiv.org/pdf/1805.08166.pdf
https://arxiv.org/abs/2006.06762
https://arxiv.org/abs/2006.03031

Copyright Notice

This presentation in this publication was presented as a tinyML® Talks webcast. The content reflects the
opinion of the author(s) and their respective companies. The inclusion of presentations in this
publication does not constitute an endorsement by tinyML Foundation or the sponsors.

There is no copyright protection claimed by this publication. However, each presentation is the work of
the authors and their respective companies and may contain copyrighted material. As such, it is strongly
encouraged that any use reflect proper acknowledgement to the appropriate source. Any questions
regarding the use of any materials presented should be directed to the author(s) or their companies.

tinyML is a registered trademark of the tinyML Foundation.

www.tinyML.org

