

## An Introduction to Proportional-Integral-Derivative (PID) Controllers

#### Stan Żak

School of Electrical and Computer Engineering

ECE 382

Fall 2018

### Motivation

- Growing gap between "real world" control problems and the theory for analysis and design of linear control systems
- Design techniques based on linear system theory have difficulties with accommodating nonlinear effects and modeling uncertainties
- Increasing complexity of industrial process as well as household appliances



Effective control strategies are required to achieve high performance for uncertain dynamic systems

#### Usefulness of PID Controls

- Most useful when a mathematical model of the plant is not available
- Many different PID tuning rules available
- Our sources
  - K. Ogata, Modern Control Engineering, Fifth Edition, Prentice Hall, 2010, Chapter 8
  - *IEEE Control Systems Magazine*, Feb. 2006, Special issue on PID control



**Proportional-integral-derivative (PID)** control framework is a method to control uncertain systems

### Type A PID Control

Transfer function of the type A PID controller

$$G_{PID}(s) = \frac{U(s)}{E(s)} = K_p \left( 1 + \frac{1}{T_i s} + T_d s \right)$$

The three term control signal,

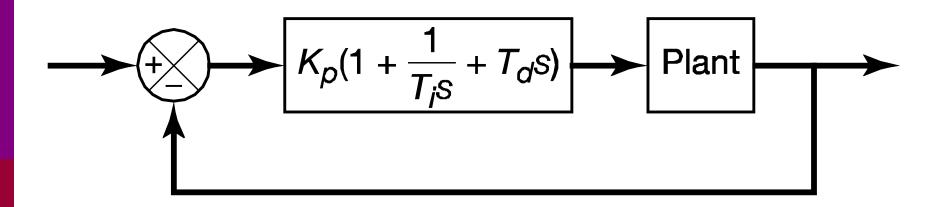
$$U(s) = K_p E(s) + K_i \frac{1}{s} E(s) + K_d s E(s)$$

In the time domain,

$$u(t) = K_p e(t) + \frac{K_p}{T_i} \int_0^t e(\tau) d\tau + K_p T_d \frac{de(t)}{dt}$$

### PID-Controlled System

PID controller in forward path

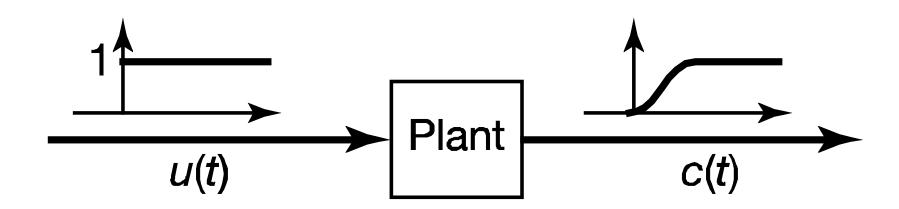


### PID Tuning

- Controller tuning---the process of selecting the controller parameters to meet given performance specifications
- PID tuning rules---selecting controller parameter values based on experimental step responses of the controlled plant
- The first PID tuning rules proposed by Ziegler and Nichols in 1942
- The Ziegler-Nichols tuning rules provide a starting point for fine tuning
- Our exposition is based on K. Ogata, *Modern Control Engineering*, Prentice Hall, Fifth Edition, 2010, Chapter 8

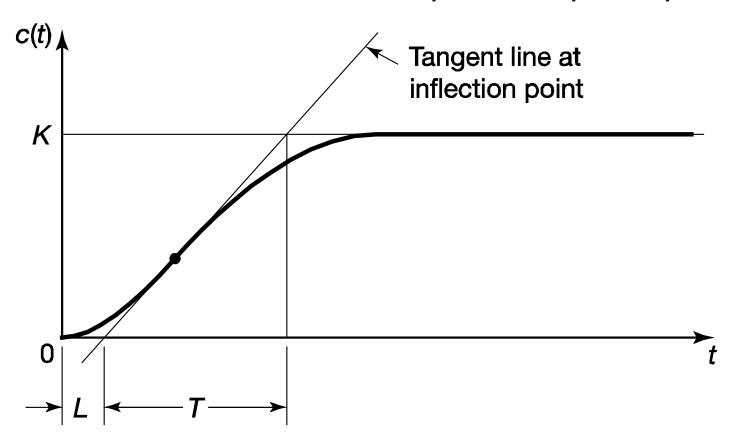
## PID Tuning---First method (open-loop method)

Start with obtaining the step response



## The S-shaped Step Response

Parameters of the S-shaped step response



# Transfer Function of System With S-Shaped Step Response

- The S-shaped curve may be characterized by two parameters: lag (delay) time L, and time constant T
- The transfer function of such a plant may be approximated by a first-order system with a transport delay

$$\frac{C(s)}{U(s)} = \frac{Ke^{-Ls}}{Ts+1}$$

# PID Tuning---First method (open-loop method)

Table 10-1 Ziegler-Nichols Tuning Rule Based on Step Response of Plant (First Method)

| Type of<br>Controller | $K_p$             | $T_i$           | $T_d$ |
|-----------------------|-------------------|-----------------|-------|
| Р                     | $\frac{T}{L}$     | ∞               | 0     |
| PI                    | $0.9 \frac{T}{L}$ | $\frac{L}{0.3}$ | 0     |
| PID                   | $1.2\frac{T}{L}$  | 2L              | 0.5L  |

## Transfer Function of PID Controller Tuned Using the First Method

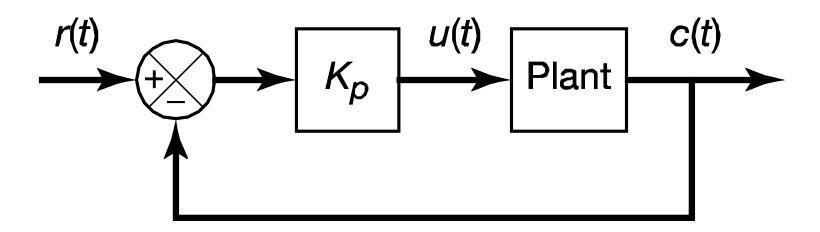
$$G_c(s) = K_p \left( 1 + \frac{1}{T_l s} + T_d s \right)$$

$$= 1.2 \frac{T}{L} \left( 1 + \frac{1}{2Ls} + 0.5 Ls \right)$$

$$= 0.6T \frac{\left( s + \frac{1}{L} \right)^2}{s}$$

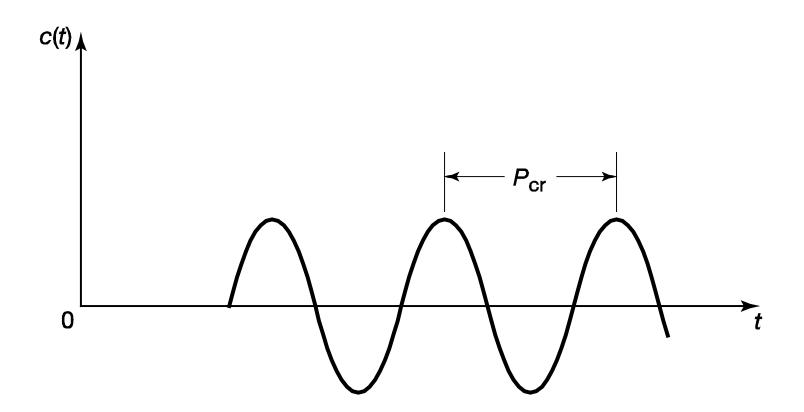
## Ziegler-Nichols PID Tuning---Second method (closed-loop method)

Use the proportional controller to force sustained oscillations



## PID Tuning---Second method (closed-loop method)

Measure the period of sustained oscillation



## PID Tuning Rules---Second method (closed-loop method)

**Table 10–2** Ziegler–Nichols Tuning Rule Based on Critical Gain  $K_{cr}$  and Critical Period  $P_{cr}$  (Second Method)

| Type of<br>Controller | $K_{p}$               | $T_i$                      | $T_d$             |
|-----------------------|-----------------------|----------------------------|-------------------|
| P                     | $0.5K_{\rm cr}$       | · ∞                        | 0                 |
| PI                    | $0.45K_{\mathrm{cr}}$ | $\frac{1}{1.2} P_{\rm cr}$ | 0                 |
| PID                   | $0.6K_{\rm cr}$       | $0.5P_{\mathrm{cr}}$       | $0.125P_{\rm cr}$ |

# Transfer Function of PID Controller Tuned Using the Second Method

$$G_{c}(s) = K_{p} \left( 1 + \frac{1}{T_{i}s} + T_{d}s \right)$$

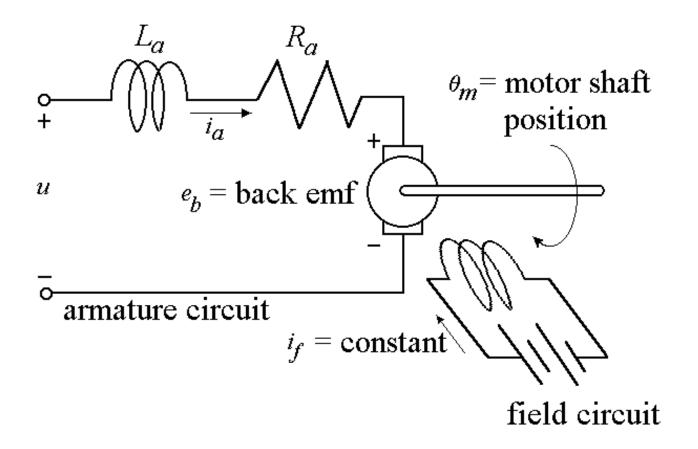
$$= 0.6K_{cr} \left( 1 + \frac{1}{0.5P_{cr}s} + 0.125P_{cr}s \right)$$

$$= 0.075K_{cr}P_{cr} \frac{\left( s + \frac{4}{P_{cr}} \right)^{2}}{s}$$

### Example 1---PID Controller for DC Motor

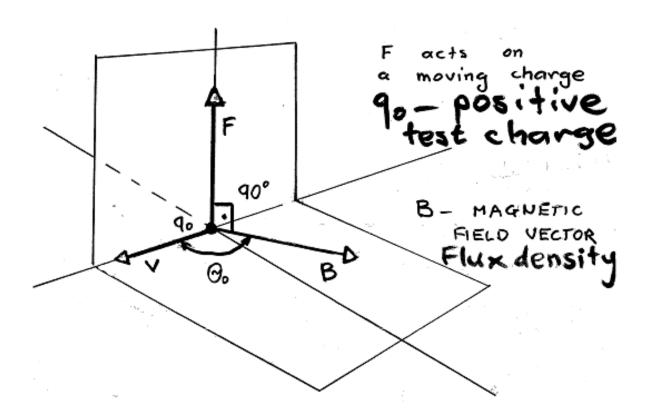
- Plant---Armature-controlled DC motor; MOTOMATIC system produced by Electro-Craft Corporation
- Design a Type A PID controller and simulate the behavior of the closed-loop system; plot the closed-loop system step response
- Fine tune the controller parameters so that the max overshoot is 25% or less

#### Armature-Controlled DC Motor Modeling



## Physics---The Magnetic Field

Oersted (1820): A current in a wire can produce magnetic effects; it can change the orientation of a compass needle



# Force Acting on a Moving Charge in a Magnetic Field

Force

$$\vec{F} = q_0 \vec{v} \times \vec{B}$$

Magnitude

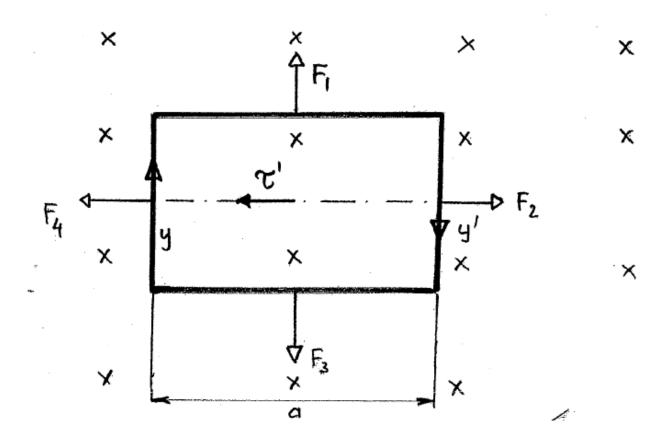
$$F = q_0 v B \sin \theta$$

■ The unit of B (flux density)---1Tesla, where

$$1 \text{ Tesla} = \frac{1 \text{ Weber}}{1 \text{ m}^2} = 10^4 \text{ Gauss}$$

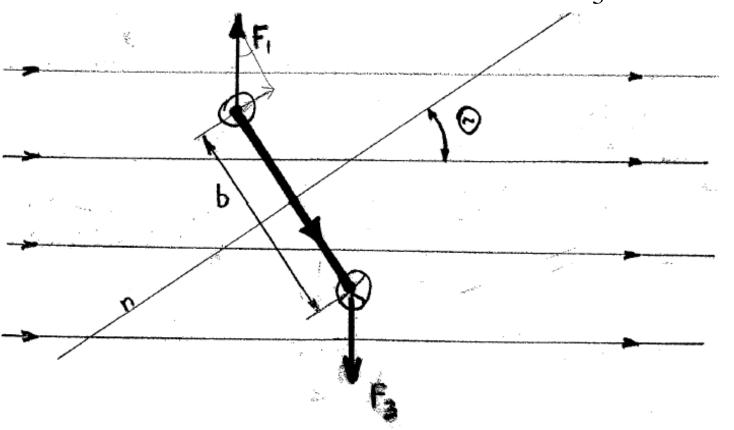
## Torque on a Current Loop

The force  $\,F_4\,$  has the same magnitude as  $\,F_2\,$  but points in the opposite direction

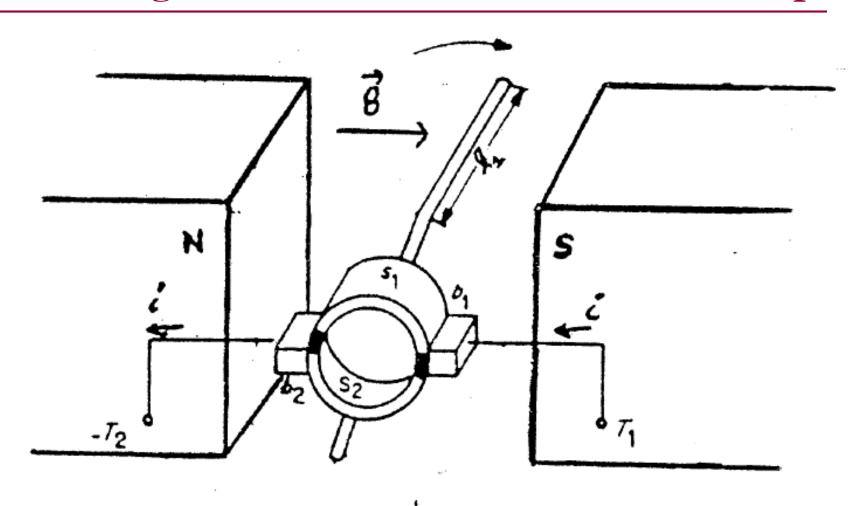


### An End View of the Current Loop

The common magnitude of  $F_1$  and  $F_3$  is iaB



### Building a Motor From a Current Loop



#### DC Motor Construction

- To keep the torque in the same direction as the loop rotates, change the direction of the current in the loop---do this using slip rings at 0 and π (pi) or π
- The brushes are fixed and the slip rings are connected to the current loop with electrical contact made by the loop's slip rings sliding against the brushes

### Modeling Equations

Kirchhoff's Voltage Law to the armature circuit

$$U(s) = (L_a s + R_a) I_a(s) + E_b(s)$$

Back-emf (equivalent to an "electrical friction")

$$E_b(s) = K_b \Omega_m(s)$$

Torque developed by the motor

$$T_{m}(s) = (J_{m}s^{2} + B_{m}s)\Theta_{m}(s)$$

Electromechanical coupling

$$T_m(s) = K_t I_a(s)$$

### Relationship between $K_t$ and $K_b$

Mechanical power developed in the motor armature (in watts)

$$p = e_b(t)i_a(t)$$

Mechanical power can also be expressed as

$$p = T_m(t)\omega_m(t)$$

Combine

$$p = T_m \omega_m = e_b i_a = K_b \omega_m \frac{T_m}{K_t}$$

In SI Units 
$$K_t = K_b$$

The back-emf and the motor torque constants are equal in the SI unit system

$$K_t \left( \frac{V}{\text{rad/sec}} \right) = K_b \left( N \cdot m / A \right)$$

# Transfer Function of the DC Motor System

Transfer function of the DC motor

$$G_p(s) = \frac{Y(s)}{U(s)} = \frac{0.1464}{7.89 \times 10^{-7} s^3 + 8.25 \times 10^{-4} s^2 + 0.00172s}$$

where Y(s) is the angular displacement of the motor shaft and U(s) is the armature voltage

# Tuning the Controller Using the Second Method of Ziegler and Nichols

■ Use the Routh-Hurwitz stability test; see page 212 of the Text

lacktriangle Determine  $K_{cr}$ 

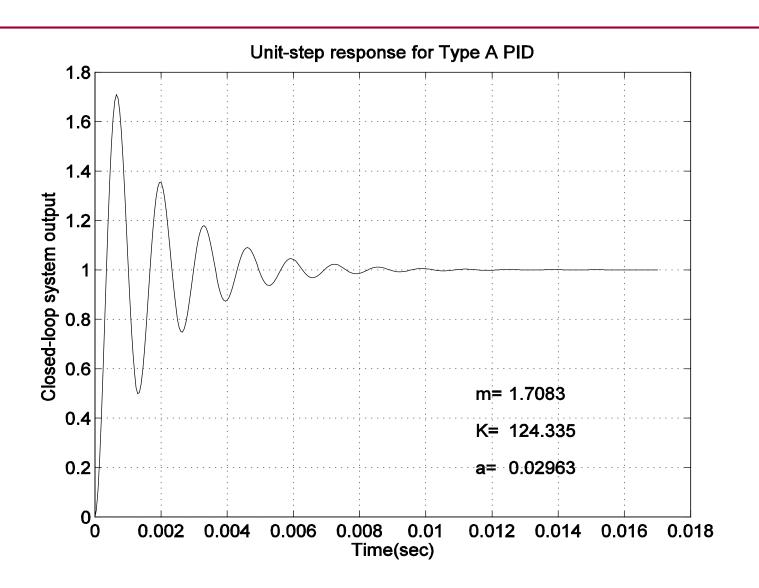
lacktriangle Determine  $P_{cr}$ 

Compute the controller parameters

## Generating the Step Response

```
t = 0:0.00005:.017
K_cr = 12.28; P_cr = 135;
K = 0.075 * K_cr * P_cr; a = 4/P_cr;
num1=K*[1 2*a a^2]; den1=[0 1 0];
tf1 = tf(num1, den1);
num2 = [0 \ 0 \ 0 \ 0.1464];
den2=[7.89e-007 8.25e-004 0.00172 0];
tf2=tf(num2,den2);
tf3=tf1*tf2;
sys=feedback(tf3,1);
y=step(sys,t); m=max(y);
```

### Closed-Loop System Performance



#### Example 2 (Based on Ex. 10-3 in Ogata, 2002)

Use a computational approach to generate an optimal set of the DC motor PID controller's parameters

$$G_c(s) = K \frac{(s+a)^2}{s}$$

Generate the step response of the closedloop system

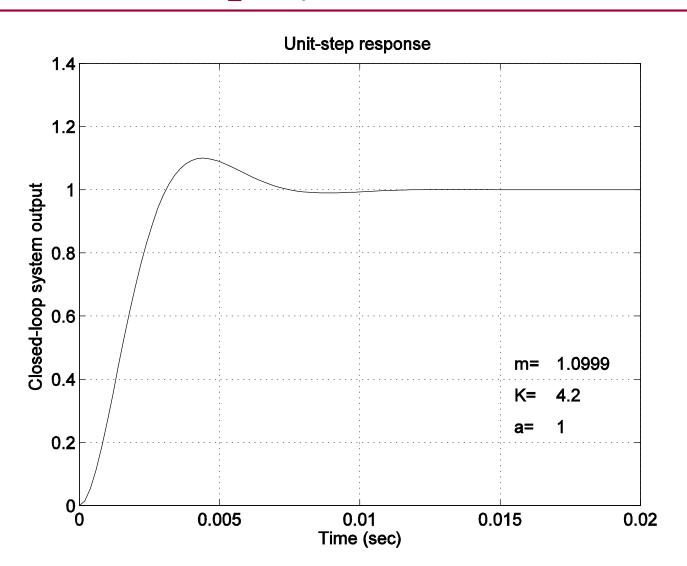
### Optimizing PID Parameters

```
t = 0:0.0002:0.02;
font = 14;
for K=5:-0.2:2%Outer loop to vary the values of
  %the gain K
  for a = 1: -0.01: 0.01; \%Outer loop to vary the
  %values of the parameter a
     num1=K*[1 2*a a^2]; den1=[0 1 0];
     tf1 = tf(num1, den1);
     num2=[0 0 0 0.1464];
     den2=[7.89e-007 8.25e-004 0.00172 0];
     tf2=tf(num2,den2);
     tf3=tf1*tf2;
     sys=feedback(tf3,1);
     y=step(sys,t); m=max(y);
```

## Finishing the Optimizing Program

```
if m < 1.1 \& m > 1.05;
         plot(t,y); grid; set(gca, 'Fontsize', font)
sol = [K; a; m]
         break % Breaks the inner loop
      end
   end
  if m < 1.1 \& m > 1.05;
      break; %Breaks the outer loop
   end
end
```

### Closed-Loop System Performance



### Modified PID Control Schemes

- If the reference input is a step, then because of the presence of the derivative term, the controller output will involve an impulse function
- The derivative term also amplifies higher frequency sensor noise
- Replace the pure derivative term with a derivative filter---PIDF controller
- Set-Point Kick---for step reference the PIDF output will involve a sharp pulse function rather than an impulse function

#### The Derivative Term

- Derivative action is useful for providing a phase lead, to offset phase lag caused by integration term
- Differentiation increases the highfrequency gain
- Pure differentiator is not proper or causal
- 80% of PID controllers in use have the derivative part switched off
- Proper use of the derivative action can increase stability and help maximize the integral gain for better performance

## Remedies for Derivative Action---PIDF Controller

Pure differentiator approximation

$$\frac{T_d s}{\gamma T_d s + 1}$$

where  $\gamma$  is a small parameter, for example, 0.1

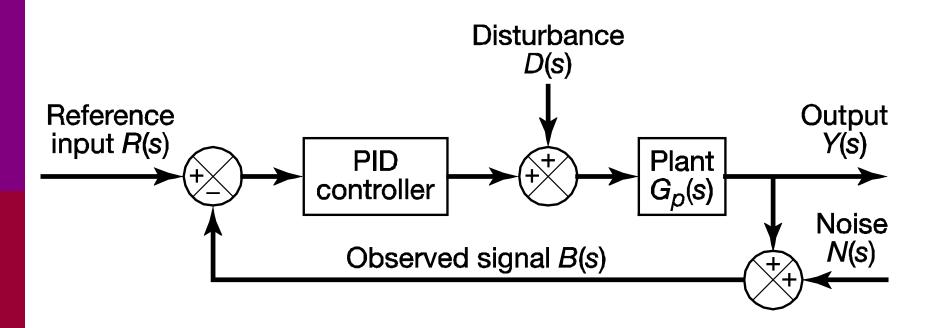
Pure differentiator cascaded with a firstorder low-pass filter

#### The Set-Point Kick Phenomenon

- If the reference input is a step function, the derivative term will produce an impulse (delta) function in the controller action
- Possible remedy---operate the derivative action only in the feedback path; thus differentiation occurs only on the feedback signal and not on the reference signal

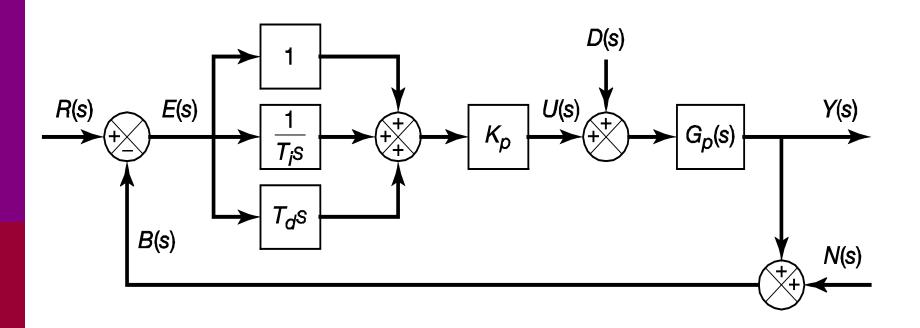
### Eliminating the Set-Point Kick

#### PID controller revisited



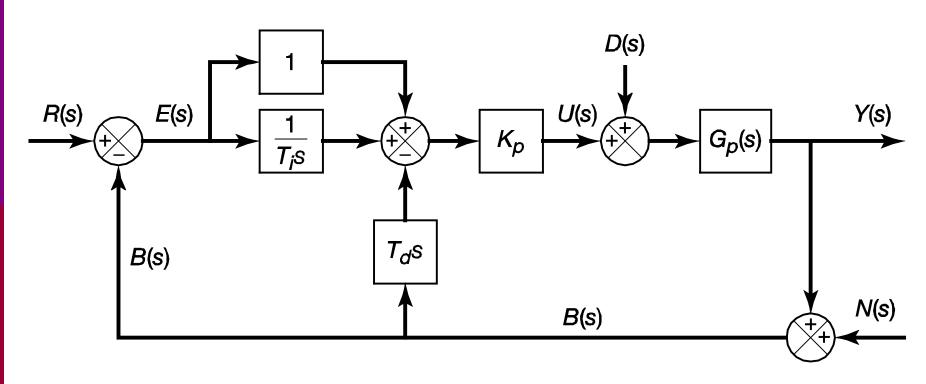
## Eliminating the Set-Point Kick---Finding the source of trouble

More detailed view of the PID controller



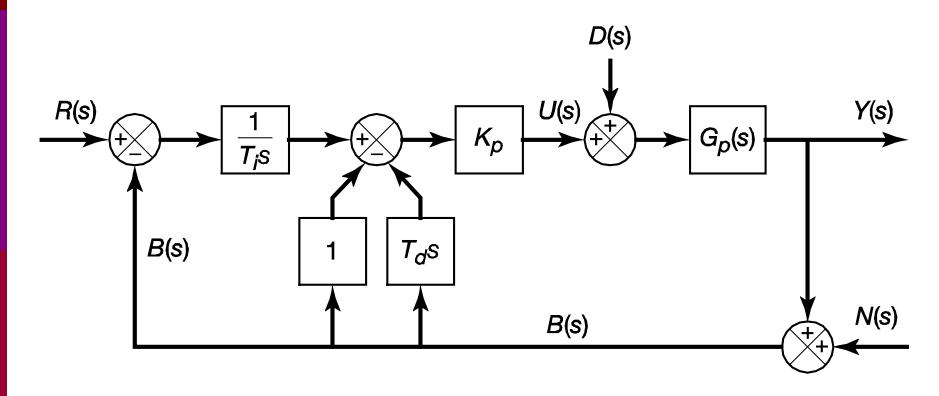
# Eliminating the Set-Point Kick---PI-D Control or Type B PID

Operate derivative action only in the feedback



## I-PD----Moving Proportional and Derivative Action to the Feedback

I-PD control or Type C PID



# I-PD Equivalent to PID With Input Filter (No Noise)

Closed-loop transfer function Y(s)/R(s) of the I-PD-controlled system

$$\frac{Y(s)}{R(s)} = \frac{\frac{K_p}{T_i s} G_p(s)}{1 + K_p \left(1 + \frac{1}{T_i s} + T_d s\right) G_p(s)}$$

### PID-Controlled System

□ Closed-loop transfer function Y(s)/R(s) of the PID-controlled system with input filter

$$\frac{Y(s)}{R(s)} = \frac{1}{1 + T_i s + T_i T_d s^2} \frac{K_p \left(1 + \frac{1}{T_i s} + T_d s\right) G_p(s)}{1 + K_p \left(1 + \frac{1}{T_i s} + T_d s\right) G_p(s)}$$

After manipulations it is the same as the transfer function of the I-PD-controlled closed-loop system

### PID, PI-D and I-PD Closed-Loop Transfer Function---No Ref or Noise

In the absence of the reference input and noise signals, the closed-loop transfer function between the disturbance input and the system output is the same for the three types of PID control

$$\frac{Y(s)}{D(s)} = \frac{G_p(s)}{1 + K_p G_p(s) \left(1 + \frac{1}{T_i s} + T_d s\right)}$$

## The Three Terms of Proportional-Integral-Derivative (PID) Control

- Proportional term responds immediately to the current tracking error; it cannot achieve the desired setpoint accuracy without an unacceptably large gain. Needs the other terms
- Derivative action reduces transient errors
- Integral term yields zero steady-state error in tracking a constant setpoint. It also rejects constant disturbances



**Proportional-Integral-Derivative (PID)** control provides an efficient solution to many real-world control problems

### Summary

- PID control---most widely used control strategy today
- Over 90% of control loops employ PID control, often the derivative gain set to zero (PI control)
- The three terms are intuitive---a nonspecialist can grasp the essentials of the PID controller's action. It does not require the operator to be familiar with advanced math to use PID controllers
- Engineers prefer PID controls over untested solutions