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Motivation
 Growing gap between “real world” control 

problems and the theory for analysis and 
design of linear control systems

 Design techniques based on linear system 
theory have difficulties with accommodating 
nonlinear effects and modeling uncertainties

 Increasing complexity of industrial process as 
well as household appliances

Effective control strategies are required to 
achieve high performance for uncertain 
dynamic systems


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Usefulness of PID Controls

 Most useful when a mathematical model of 
the plant is not available

 Many different PID tuning rules available
 Our sources
 K. Ogata, Modern Control Engineering, Fifth 

Edition, Prentice Hall, 2010, Chapter 8
 IEEE Control Systems Magazine, Feb. 2006, 

Special issue on PID control 

Proportional-integral-derivative (PID) 
control framework is a method to control 
uncertain systems


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Type A PID Control
 Transfer function of the type A PID controller

 The three term control signal,

 In the time domain,
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PID-Controlled System
PID controller in forward path
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PID Tuning
 Controller tuning---the process of selecting the 

controller parameters to meet given performance 
specifications

 PID tuning rules---selecting controller parameter 
values based on experimental step responses of 
the controlled plant

 The first PID tuning rules proposed by Ziegler 
and Nichols in 1942

 The Ziegler-Nichols tuning rules provide a 
starting point for fine tuning

 Our exposition is based on K. Ogata, Modern 
Control Engineering, Prentice Hall, Fifth Edition, 
2010, Chapter 8
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PID Tuning---First method (open-loop 
method)

Start with obtaining the step response
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The S-shaped Step Response
Parameters of the S-shaped step response
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Transfer Function of System With
S-Shaped Step Response

 The S-shaped curve may be characterized 
by two parameters: lag (delay) time L, and 
time constant T

 The transfer function of such a plant may 
be approximated by a first-order system 
with a transport delay
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PID Tuning---First method (open-loop 
method)
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Transfer Function of PID Controller 
Tuned Using the First Method
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Ziegler-Nichols PID Tuning---Second 
method (closed-loop method)

Use the proportional controller to force 
sustained oscillations
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PID Tuning---Second method (closed-loop 
method)

Measure the period of sustained oscillation
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PID Tuning Rules---Second method (closed-loop 
method)
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Transfer Function of PID Controller 
Tuned Using the Second Method
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Example 1---PID Controller for DC Motor

 Plant---Armature-controlled DC motor; 
MOTOMATIC system produced by Electro-
Craft Corporation

 Design a Type A PID controller and 
simulate the behavior of the closed-loop 
system; plot the closed-loop system step 
response

 Fine tune the controller parameters so that 
the max overshoot is 25% or less
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Armature-Controlled DC Motor Modeling
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Physics---The Magnetic Field
Oersted (1820): A current in a wire can produce 
magnetic effects; it can change the orientation of 
a compass needle
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Force Acting on a Moving Charge in a 
Magnetic Field

 Force

 Magnitude

 The unit of B (flux density)---1Tesla, where
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Torque on a Current Loop
The force         has the same magnitude as          
but points in the opposite direction

4F 2F
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An End View of the Current Loop
The common magnitude of       and       is1F

3F iaB
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Building a Motor From a Current Loop
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DC Motor Construction
 To keep the torque in the same direction 

as the loop rotates, change the direction 
of the current in the loop---do this using 
slip rings at 0 and π (pi) or - π

 The brushes are fixed and the slip rings 
are connected to the current loop with 
electrical contact made by the loop’s slip 
rings sliding against the brushes
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Modeling Equations
 Kirchhoff’s Voltage Law to the armature circuit

 Back-emf (equivalent to an ”electrical friction”)

 Torque developed by the motor

 Electromechanical coupling

( ) ( ) ( ) ( )a a a bU s L s R I s E s= + +

( ) ( ) ( )2
m m m mT s J s B s s= + Θ

( ) ( )sKsE mbb Ω=

( ) ( )sIKsT atm =



25

Relationship between       and 
 Mechanical power developed in the motor 

armature (in watts)

 Mechanical power can also be expressed as

 Combine

tK bK
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In SI Units  
 The back-emf and the motor torque constants are 

equal in the SI unit system
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Transfer Function of the DC Motor 
System

 Transfer function of the DC motor

where Y(s) is the angular displacement of the 
motor shaft and U(s) is the armature voltage
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Tuning the Controller Using the Second 
Method of Ziegler and Nichols

 Use the Routh-Hurwitz stability test;
see page 212 of the Text

 Determine

 Determine

 Compute the controller parameters 

crK

crP
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Generating the Step Response
t=0:0.00005:.017;
K_cr=12.28; P_cr=135;
K=0.075*K_cr*P_cr; a=4/P_cr;
num1=K*[1 2*a a^2]; den1=[0 1 0];
tf1=tf(num1,den1);
num2=[0 0 0 0.1464];
den2=[7.89e-007 8.25e-004 0.00172 0];
tf2=tf(num2,den2);
tf3=tf1*tf2;
sys=feedback(tf3,1);
y=step(sys,t); m=max(y);



30

Closed-Loop System Performance
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Example 2 (Based on Ex. 10-3 in Ogata, 2002)

 Use a computational approach to 
generate an optimal set of the DC motor 
PID controller’s parameters

 Generate the step response of the closed-
loop system
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Optimizing PID Parameters
t=0:0.0002:0.02;
font=14;
for K=5:-0.2:2%Outer loop to vary the values of 

%the gain K
for a=1:-0.01:0.01;%Outer loop to vary the 
%values of the parameter a

num1=K*[1 2*a a^2]; den1=[0 1 0];
tf1=tf(num1,den1);
num2=[0 0 0 0.1464];
den2=[7.89e-007 8.25e-004 0.00172 0];
tf2=tf(num2,den2);
tf3=tf1*tf2;
sys=feedback(tf3,1);
y=step(sys,t); m=max(y);
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Finishing the Optimizing Program
if m<1.1 & m>1.05;

plot(t,y);grid;set(gca,'Fontsize',font)
sol=[K;a;m]

break % Breaks the inner loop
end

end
if m<1.1 & m>1.05;

break; %Breaks the outer loop
end

end
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Closed-Loop System Performance
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Modified PID Control Schemes
 If the reference input is a step, then 

because of the presence of the derivative 
term, the controller output will involve an 
impulse function

 The derivative term also amplifies higher 
frequency sensor noise

 Replace the pure derivative term with a 
derivative filter---PIDF controller

 Set-Point Kick---for step reference the 
PIDF output will involve a sharp pulse 
function rather than an impulse function
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The Derivative Term
 Derivative action is useful for providing a 

phase lead, to offset phase lag caused by 
integration term

 Differentiation increases the high-
frequency gain

 Pure differentiator is not proper or causal
 80% of PID controllers in use have the 

derivative part switched off
 Proper use of the derivative action can 

increase stability and help maximize the 
integral gain for better performance
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Remedies for Derivative Action---PIDF 
Controller

 Pure differentiator approximation

where        is a small parameter, for 
example, 0.1

 Pure differentiator cascaded with a first-
order low-pass filter

1
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The Set-Point Kick Phenomenon
 If the reference input is a step function, 

the derivative term will produce an 
impulse (delta) function in the controller 
action

 Possible remedy---operate the derivative 
action only in the feedback path; thus 
differentiation occurs only on the feedback 
signal and not on the reference signal
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Eliminating the Set-Point Kick
PID controller revisited
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Eliminating the Set-Point Kick---Finding the 
source of trouble

More detailed view of the PID controller
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Eliminating the Set-Point Kick---PI-D 
Control or Type B PID

Operate derivative action only in the 
feedback
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I-PD---Moving Proportional and 
Derivative Action to the Feedback

I-PD control or Type C PID
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I-PD Equivalent to PID With Input 
Filter (No Noise)

Closed-loop transfer function Y(s)/R(s) of the I-
PD-controlled system
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PID-Controlled System
 Closed-loop transfer function Y(s)/R(s) of the PID-

controlled system with input filter

 After manipulations it is the same as the transfer 
function of the I-PD-controlled closed-loop system
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PID, PI-D and I-PD Closed-Loop 
Transfer Function---No Ref or Noise
In the absence of the reference input and 
noise signals, the closed-loop transfer 
function between the disturbance input and 
the system output is the same for the three 
types of PID control
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The Three Terms of Proportional-
Integral-Derivative (PID) Control

 Proportional term responds immediately to the 
current tracking error; it cannot achieve the 
desired setpoint accuracy without an 
unacceptably large gain. Needs the other terms

 Derivative action reduces transient errors
 Integral term yields zero steady-state error in 

tracking a constant setpoint. It also rejects 
constant disturbances

Proportional-Integral-Derivative (PID) 
control provides an efficient solution to 
many real-world control problems


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Summary
 PID control---most widely used control 

strategy today
 Over 90% of control loops employ PID 

control, often the derivative gain set to 
zero (PI control)

 The three terms are intuitive---a non-
specialist can grasp the essentials of the 
PID controller’s action. It does not require 
the operator to be familiar with advanced 
math to use PID controllers

 Engineers prefer PID controls over 
untested solutions
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