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CHAPTER 1

Differentiable Manifolds

This chapter introduces the basic notions of differential geometry.
The first section studies topological manifolds of dimension n, which

is the rigorous mathematical concept corresponding to the intuitive notion
of “continuous n-dimensional spaces”. Several examples are studied, partic-
ularly in dimension 2 (surfaces).

Section 2 specializes to differentiable manifolds, on which one can
define differentiable functions (Section 3) and tangent vectors (Section
4). Important examples of differentiable maps, namely immersions and
embeddings, are examined in Section 5.

Vector fields and their flows are the main topic of Section 6. It is
shown that there is a natural differential operation between vector fields,
called the Lie bracket, which produces a new vector field.

Section 7 is devoted to the important class of differentiable manifolds
which are also groups, the so-called Lie groups. It is shown that to each
Lie group one can associate a Lie algebra, i.e. a vector space equipped with
a Lie bracket, and the exponential map, which maps the Lie algebra to
the Lie group.

The notion of orientability of a manifold (which generalizes the intu-
itive notion of “having two sides”) is discussed in Section 8.

Finally, manifolds with boundary are studied in Section 9.

1. Topological Manifolds

We will begin this section by studying spaces that are locally like Rn,
meaning that there exists a neighborhood around each point which is home-
omorphic to an open subset of Rn.

Definition 1.1. A topological manifold M of dimension n is a topo-
logical space with the following properties:

(i) M is Hausdorff, that is, for each pair p1, p2 of distinct points of
M , there exist neighborhoods V1, V2 of p1 and p2 such that V1∩V2 =
∅.

(ii) Each point p ∈ M possesses a neighborhood V homeomorphic to an
open subset U of Rn.

(iii) M satisfies the second countability axiom, that is, M has a
countable basis for its topology.
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4 1. DIFFERENTIABLE MANIFOLDS

Conditions (i) and (iii) are included in the definition to prevent the
topology of these spaces from being too strange. In particular, the Hausdorff
axiom ensures that the limit of a convergent sequence is unique. This, along
with the second countability axiom, guarantees the existence of partitions of
unity (cf. Section 7.2 of Chapter 2), which, as we will see, are a fundamental
tool in differential geometry.

Remark 1.2. If the dimension of M is zero, then M is a countable set
equipped with the discrete topology (every subset of M is an open set).
If dim M = 1, then M is locally homeomorphic to an open interval; if
dimM = 2, then it is locally homeomorphic to an open disk, etc.

(a)

(b)

(c)

Figure 1. (a) S1, (b) S2, (c) Torus of revolution.

Example 1.3.

(1) Every open subset M of Rn with the subspace topology (that is,
U ⊂ M is an open set if and only if U = M ∩ V with V an open
set of Rn) is a topological manifold.

(2) (The circle S1) The circle

S1 = {(x, y) ∈ R2 : x2 + y2 = 1}
with the subspace topology is a topological manifold of dimension
1. Conditions (i) and (iii) are inherited from the ambient space.
Moreover, for each point p ∈ S1 there is at least one coordinate axis
which is not parallel to the vector np normal to S1 at p. The projec-
tion on this axis is then a homeomorphism between a (sufficiently
small) neighborhood V of p and an interval in R.

(3) (The 2-sphere S2) The previous example can be easily generalized
to show that the 2-sphere

S2 = {(x, y, z) ∈ R3 : x2 + y2 + z2 = 1}
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with the subspace topology is a topological manifold of dimension
2.

(4) (The torus of revolution) Again as in the previous examples,
we can show that the surface of revolution obtained by revolving
a circle around an axis that does not intersect it is a topological
manifold of dimension 2.

(5) The surface of a cube is a topological manifold (homeomorphic to
S2).

Example 1.4. We can also obtain topological manifolds by identifying
edges of certain polygons by means of homeomorphisms. The edges of a
square, for instance, can be identified in several ways (see Figure 2):

(1) The torus T 2 is the quotient of the unit square Q = [0, 1]2 ⊂ R2

by the equivalence relation

(x, y) ∼ (x + 1, y) ∼ (x, y + 1),

equipped with the quotient topology (cf. Section 10.1).
(2) The Klein bottle K2 is the quotient of the unit square Q =

[0, 1]2 ⊂ R2 by the equivalence relation

(x, y) ∼ (x + 1, y) ∼ (x, 1− y).

(3) The projective plane RP 2 is the quotient of the unit square Q =
[0, 1]2 ⊂ R2 by the equivalence relation

(x, y) ∼ (1− x, y) ∼ (x, 1− y).

(a)

(b)

(c)

a

a

a
a

a

a

a

a

a

a

b

b

b
b

bb

bb

bb

∼=∼=∼=

∼=

∼=

Figure 2. (a) Torus (T 2), (b) Klein bottle (K2), (c) Real
projective plane (RP 2).
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Remark 1.5.

(1) The only compact connected 1-dimensional topological manifold is
the circle S1 (see [Mil97]).

(2) The connected sum of two topological manifolds M and N is
the topological manifold M#N obtained by deleting an open set
homeomorphic to a ball on each manifold and gluing the boundaries
by an homeomorphism (cf. Figure 3). It can be shown that any
compact connected 2-dimensional topological manifold is homeo-
morphic either to S2 or to connected sums of manifolds from Ex-
ample 1.4 (see [Blo96, Mun00]).

# ∼=

Figure 3. Connected sum of two tori.

If we do not identify all the edges of the square, we obtain a cylinder
or a Möbius band (cf. Figure 4). These topological spaces are examples of
manifolds with boundary.

(a)

(b)

a

a

a

a

∼=

∼=

Figure 4. (a) Cylinder, (b) Möbius band.

Definition 1.6. Consider the closed half space

Hn = {(x1, . . . , xn) ∈ Rn : xn ≥ 0}.
A topological manifold with boundary is a Hausdorff space M , with a
countable basis of open sets, such that each point p ∈ M possesses a neigh-
borhood V which is homeomorphic either to an open subset U of Hn\∂Hn,
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or to an open subset U of Hn, with the point p identified to a point in ∂Hn.
The points of the first type are called interior points, and the remaining
ones are called boundary points.

The set of boundary points ∂M is called boundary of M and is a
manifold of dimension (n− 1).

Remark 1.7.

1. Making a paper model of the Möbius band, we can easily verify
that its boundary is homeomorphic to a circle (not to two disjoint
circles), and that it has only one side (cf. Figure 4).

2. Both the Klein bottle and the real projective plane contain Möbius
bands (cf. Figure 5). Deleting this band on the projective plane, we
obtain a disk (cf. Figure 6). In other words, we can glue a Möbius
band to a disk along their boundaries and obtain RP 2.

(a) (b)

a

a

a

a

bb bb

Figure 5. (a) Klein bottle, (b) Real projective plane.

b bb
a1

a1

a1a1a1

a2

a2

a2

a2 a2

∼=∼=

Figure 6. Disk inside the real projective plane.

Two topological manifolds are considered the same if they are homeo-
morphic. For example, spheres of different radii in R3 are homeomorphic,
and so are the two surfaces in Figure 7. Indeed, the knotted torus can be
obtained by cutting the torus along a circle, knotting it and gluing it back
again. An obvious homeomorphism is then the one which takes each point
on the initial torus to its final position after cutting and gluing.

Exercises 1.8.
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∼=

Figure 7. Two homeomorphic topological manifolds.

(1) Which of the following sets (with the subspace topology) are topo-
logical manifolds?
(a) D2 = {(x, y) ∈ R2 | x2 + y2 < 1};
(b) S2 \ {p} (p ∈ S2);
(c) S2 \ {p, q} (p, q ∈ S2, p '= q);
(d) {(x, y, z) ∈ R3 | x2 + y2 = 1};
(e) {(x, y, z) ∈ R3 | x2 + y2 = z2};

(2) Which of the manifolds above are homeomorphic?
(3) Show that the Klein bottle K2 can be obtained by gluing two

Möbius bands together through a homeomorphism of the boundary.
(4) Show that

(a) M#S2 = M for any 2-dimensional topological manifold M ;
(b) RP 2#RP 2 = K2;
(c) RP 2#T 2 = RP 2#K2.

(5) A triangulation of a 2-dimensional topological manifold M is a
decomposition of M in a finite number of triangles (i.e. images of
Euclidean triangles by homeomorphisms) such that the intersection
of any two triangles is either empty or composed of common edges
or common vertices (it is possible to prove that such a triangulation
always exists). The Euler characteristic of M is

χ(M) := V − E + F,

where V , E and F are the number of vertices, edges and faces of a
given triangulation. Show that:
(a) χ(M) is well defined, i.e., does not depend on the choice of

triangulation;
(b) χ(S2) = 2;
(c) χ(T 2) = 0;
(d) χ(K2) = 0;
(e) χ(RP 2) = 1;
(f) χ(M#N) = χ(M) + χ(N)− 2.



2. DIFFERENTIABLE MANIFOLDS 9

2. Differentiable Manifolds

Recall that an n-dimensional topological manifold is a Hausdorff space
with a countable basis of open sets such that each point possesses a neigh-
borhood homeomorphic to an open subset of Rn. Each pair (U,ϕ), where
U is an open subset of Rn and ϕ : U → ϕ(U) ⊂ M is a homeomorphism of
U to an open subset of M , is called a parametrization. The inverse ϕ−1

is called a coordinate system or chart, and the set ϕ(U) ⊂ M is called a
coordinate neighborhood. When two coordinate neighborhoods overlap,
we have formulas for the associated coordinate change (cf. Figure 8). The
idea to obtain differentiable manifolds will be to choose a sub-collection of
parametrizations so that the coordinate changes are differentiable maps.

M

W

Uα Uβ

ϕα ϕβ

Rn Rn

ϕ−1
β ◦ ϕα

ϕ−1
α ◦ ϕβ

Figure 8. Parametrizations and overlap maps.

Definition 2.1. An n-dimensional differentiable or smooth mani-
fold is a topological manifold of dimension n and a family of parametriza-
tions ϕα : Uα → M defined on open sets Uα ⊂ Rn, such that:

(i) the coordinate neighborhoods cover M , that is,
⋃
α ϕα(Uα) = M ;

(ii) for each pair of indices α,β such that

W := ϕα(Uα) ∩ ϕβ(Uβ) '= ∅,

the overlap maps

ϕ−1
β ◦ ϕα : ϕ−1

α (W ) → ϕ−1
β (W )

ϕ−1
α ◦ ϕβ : ϕ−1

β (W ) → ϕ−1
α (W )

are C∞;
(iii) the family A = {(Uα,ϕα)} is maximal with respect to (i) and (ii),

meaning that if ϕ0 : U0 → M is a parametrization such that ϕ−1
0 ◦ϕ

and ϕ−1 ◦ ϕ0 are C∞ for all ϕ in A, then (U0,ϕ0) is in A.

Remark 2.2.
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(1) Any family A = {(Uα,ϕα)} that satisfies (i) and (ii) is called a
C∞-atlas for M . If A also satisfies (iii) it is called a maximal
atlas or a differentiable structure.

(2) Condition (iii) is purely technical. Given any atlas A = {(Uα,ϕα)}
on M , there is a unique maximal atlas Ã containing it. In fact, we
can take the set Ã of all parametrizations that satisfy (ii) with
every parametrization on A. Clearly A ⊂ Ã, and one can easily
check that Ã satisfies (i) and (ii). Also, by construction, Ã is
maximal with respect to (i) and (ii). Two atlases are said to be
equivalent if they define the same differentiable structure.

(3) We could also have defined Ck-manifolds by requiring the coordi-
nate changes to be Ck-maps (a C0-manifold would then denote a
topological manifold).

Example 2.3.

(1) The space Rn with the usual topology defined by the Euclidean
metric is a Hausdorff space and has a countable basis of open sets.
If, for instance, we consider a single parametrization (Rn, id), condi-
tions (i) and (ii) of Definition 2.1 are trivially satisfied and we have
an atlas for Rn. The maximal atlas that contains this parametriza-
tion is usually called the standard differentiable structure on
Rn. We can of course consider other atlases. Take, for instance,
the atlas defined by the parametrization (Rn,ϕ) with ϕ(x) = Ax
for a non-singular (n× n)-matrix A. It is an easy exercise to show
that these two atlases are equivalent.

(2) It is possible for a manifold to possess non-equivalent atlases: con-
sider the two atlases {(R,ϕ1)} and {(R,ϕ2)} on R, where ϕ1(x) = x
and ϕ2(x) = x3. As the map ϕ−1

2 ◦ ϕ1 is not differentiable at the
origin, these two atlases define different (though, as we shall see, dif-
feomorphic) differentiable structures (cf. Exercises 2.5.4 and 3.2.6).

(3) Every open subset V of a smooth manifold is a manifold of the same
dimension. Indeed, as V is a subset of M , its subspace topology
is Hausdorff and admits a countable basis of open sets. Moreover,
if A = {(Uα,ϕα)} is an atlas for M and we take the Uα’s for
which ϕα(Uα) ∩ V '= ∅, it is easy to check that the family of
parametrizations Ã = {(Ũα,ϕα|eUα

)}, where Ũα = ϕ−1
α (V ), is an

atlas for V .
(4) Let Mn×n be the set of n × n matrices with real coefficients. Re-

arranging the entries along one line, we see that this space is
just Rn2

, and so it is a manifold. By Example 3, we have that
GL(n) = {A ∈ Mn×n|det A '= 0} is also a manifold of dimension
n2. In fact, the determinant is a continuous map from Mn×n to R,
and GL(n) is the preimage of the open set R\{0}.
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(5) Let us consider the n-sphere

Sn = {(x1, . . . , xn+1) ∈ Rn+1| (x1)2 + · · · + (xn+1)2 = 1}
and the maps

ϕ+
i : U ⊂ Rn → Sn

(x1, . . . , xn) +→ (x1, . . . , xi−1, g(x1, . . . , xn), xi, . . . , xn),

ϕ−
i : U ⊂ Rn → Sn

(x1, . . . , xn) +→ (x1, . . . , xi−1,−g(x1, . . . , xn), xi, . . . , xn),

where

U = {(x1, . . . , xn) ∈ Rn | (x1)2 + · · · + (xn)2 < 1}
and

g(x1, . . . , xn) = (1− (x1)2 − · · ·− (xn)2)
1
2 .

Being a subset of Rn+1, the sphere (equipped with the subspace
topology) is a Hausdorff space and admits a countable basis of open
sets. It is also easy to check that the family {(U,ϕ+

i ), (U,ϕ−
i )}n+1

i=1 is
an atlas for Sn, and so this space is a manifold of dimension n (the
corresponding charts are just the projections on the hyperplanes
xi = 0).

(6) We can define an atlas for the surface of a cube Q ⊂ R3 making
it a smooth manifold: Suppose the cube is centered at the origin
and consider the map f : Q→ S2 defined by f(x) = x/‖x‖. Then,
considering an atlas {(Uα,ϕα)} for S2, the family {(Uα, f−1 ◦ϕα)}
defines an atlas for Q.

Remark 2.4. There exist topological manifolds which admit no differ-
entiable structures at all. Indeed, Kervaire presented the first example (a
10-dimensional manifold) in 1960 [Ker60], and Smale constructed another
one (of dimension 12) soon after [Sma60]. In 1956 Milnor [Mil56b] had
already given an example of a 8-manifold which he believed not to admit a
differentiable structure, but that was not proved until 1965 (see [Nov65]).

Exercises 2.5.

(1) Show that two atlases A1 and A2 for a smooth manifold are equiv-
alent if and only if A1 ∪A2 is an atlas.

(2) Let M be a differentiable manifold. Show that a set V ⊂ M is open
if and only if ϕ−1

α (V ) is an open subset of Rn for every parametriza-
tion (Uα,ϕα) of a C∞ atlas.

(3) Show that the two atlases on Rn from Example 2.3.1 are equivalent.
(4) Consider the two atlases on R from Example 2.3.2, {(R,ϕ1)} and

{(R,ϕ2)}, where ϕ1(x) = x and ϕ2(x) = x3. Show that ϕ−1
2 ◦ϕ1 is

not differentiable at the origin. Conclude that the two atlases are
not equivalent.
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(5) Recall from elementary vector calculus that a surface S ⊂ R3 is a
set such that, for each p ∈ M , there is a neighborhood Vp of p in
R3 and a C∞ map fp : Up → R (where Up is an open subset of R2)
such that S ∩ Vp is the graph of z = fp(x, y), or x = fp(y, z), or
y = fp(x, z). Show that S is a smooth manifold of dimension 2.

(6) (Product manifold) Let {(Uα,ϕα)}, {(Vβ ,ψβ)} be two atlases for
two smooth manifolds M and N . Show that the family {(Uα ×
Vβ,ϕα × ψβ)} is an atlas for the product M × N . With the dif-
ferentiable structure generated by this atlas, M × N is called the
product manifold of M and N .

(7) (Stereographic projection) Consider the n-sphere Sn with the sub-
space topology and let N = (0, . . . , 0, 1) and S = (0, . . . , 0,−1) be
the north and south poles. The stereographic projection from
N is the map πN : Sn\{N}→ Rn which takes a point p ∈ Sn\{N}
to the intersection point of the line through N and p with the
hyperplane xn+1 = 0 (cf. Figure 9). Similarly, the stereographic
projection from S is the map πS : Sn\{S} → Rn which takes a
point p on Sn\{S} to the intersection point of the line through S
and p with the same hyperplane. Check that {(Rn,π−1

N ), (Rn,π−1
S )}

is an atlas for Sn. Show that this atlas is equivalent to the atlas
on Example 2.3.5. The maximal atlas obtained from these is called
the standard differentiable structure on Sn.

N

p

Sn

πN (p)

Figure 9. Stereographic projection.

(8) (Real projective space) The real projective space RPn is the set
of lines through the origin in Rn+1. This space can be defined as
the quotient space of Sn by the equivalence relation x ∼ −x that
identifies a point to its antipodal point.
(a) Show that the quotient space RPn = Sn/∼ with the quotient

topology is a Hausdorff space and admits a countable basis of
open sets (Hint: Use Proposition 10.2);
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(b) Considering the atlas on Sn defined in Example 2.3.5 and the
canonical projection π : Sn → RPn given by π(x) = [x], define
an atlas for RPn.

(9) We can define an atlas on RPn in a different way by identify-
ing it with the quotient space of Rn+1\{0} by the equivalence
relation x ∼ λx, with λ ∈ R\{0}. For that, consider the sets
Vi = {[x1, . . . , xn+1]|xi '= 0} (corresponding to the set of lines
through the origin in Rn+1 that are not contained on the hyper-
plane xi = 0) and the maps ϕi : Rn → Vi defined by

ϕi(x
1, . . . , xn) = [x1, . . . , xi−1, 1, xi, . . . , xn].

Show that:
(a) the family {(Rn,ϕi)} is an atlas for RPn;
(b) this atlas defines the same differentiable structure as the atlas

on Exercise 2.5.8.
(10) (A non-Hausdorff manifold) Let M be the disjoint union of R with

a point p and consider the maps fi : R → M (i = 1, 2) defined by
fi(x) = x if x ∈ R\{0}, f1(0) = 0 and f2(0) = p. Show that:
(a) the maps f−1

i ◦ fj are differentiable on their domains;
(b) if we consider an atlas formed by {(R, f1), (R, f2)}, the corre-

sponding topology will not satisfy the Hausdorff axiom.

3. Differentiable Maps

In this book the words differentiable and smooth will be used to mean
infinitely differentiable (C∞).

Definition 3.1. Let M and N be two differentiable manifolds of dimen-
sion m and n, respectively. A map f : M → N is said to be differentiable
(or smooth, or C∞) at a point p ∈ M if there exist parametrizations (U,ϕ)
of M at p (i.e. p ∈ ϕ(U)) and (V,ψ) of N at f(p), with f(ϕ(U)) ⊂ ψ(V ),
such that the map

f̂ := ψ−1 ◦ f ◦ ϕ : U ⊂ Rm → Rn

is differentiable at ϕ−1(p).
The map f is said to be differentiable on a subset of M if it is differen-

tiable at every point of this set.

As coordinate changes are smooth, this definition is independent of the
parametrizations chosen at f(p) and p. The map f̂ := ψ−1 ◦ f ◦ ϕ : U ⊂
Rm → Rn is called a local representation of f and is the expression of f
on the local coordinates defined by ϕ and ψ. The set of all smooth functions
f : M → N is denoted C∞(M,N), and we will simply write C∞(M) for
C∞(M, R).

A differentiable map f : M → N between two manifolds is continuous
(cf. Exercise 3.2.2). Moreover, it is called a diffeomorphism if it is bijective
and its inverse f−1 : N → M is also differentiable. The differentiable
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M N

U V

f

f̂

Rm Rn

ϕ ψ

Figure 10. Local representation of a map between manifolds.

manifolds M and N will be considered the same if they are diffeomorphic,
i.e. if there exists a diffeomorphism f : M → N . A map f is called a local
diffeomorphism at a point p ∈ M if there are neighborhoods V of p and
W of f(p) such that f |V : V →W is a diffeomorphism.

For a long time it was thought that, up to a diffeomorphism, there was
only one differentiable structure for each topological manifold (the two differ-
ent differentiable structures in Exercises 2.5.4 and 3.2.6 are diffeomorphic –
cf. Exercise 3.26). However, in 1956, Milnor [Mil56a] presented examples of
manifolds that were homeomorphic but not diffeomorphic to S7. Later, Mil-
nor and Kervaire [Mil59, KM63] showed that more spheres of dimension
greater than 7 admitted several differentiable structures. For instance, S19

has 73 distinct smooth structures and S31 has 16, 931, 177. More recently,
in 1982 and 1983, Freedman [Fre82] and Gompf [Gom83] constructed ex-
amples of non-standard differentiable structures on R4.

Exercises 3.2.

(1) Prove that Definition 3.1 does not depend on the choice of parametriza-
tions.

(2) Show that a differentiable map f : M → N between two smooth
manifolds is continuous.

(3) Show that if f : M1 →M2 and g : M2 →M3 are differentiable maps
between smooth manifolds M1,M2 and M3, then g ◦ f : M1 →M3

is also differentiable.
(4) Show that the antipodal map f : Sn → Sn, defined by f(x) = −x,

is differentiable.
(5) Using the stereographic projection from the north pole πN : S2 \

{N} → R2 and identifying R2 with the complex plane C, we can
identify S2 with C∪{∞}, where∞ is the so-called point at infin-
ity. A Möbius transformation is a map f : C∪{∞}→ C∪{∞}
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of the form

f(z) =
az + b

cz + d
,

where a, b, c, d ∈ C satisfy ad− bc '= 0 and ∞ satisfies
α

∞
= 0,

α

0
= ∞

for any α ∈ C \ {0}. Show that any Möbius transformation f , seen
as a map f : S2 → S2, is a diffeomorphism. (Hint: Start by showing that

any Möbius transformation is a composition of transformations of the form g(z) = 1
z

and h(z) = az + b).
(6) Consider again the two atlases on R from Example 2.3.2 and Exer-

cise 2.5.4, {(R,ϕ1)} and {(R,ϕ2)}, where ϕ1(x) = x and ϕ2(x) =
x3. Show that:
(a) the identity map i : (R,ϕ1) → (R,ϕ2) is not a diffeomorphism;
(b) the map f : (R,ϕ1) → (R,ϕ2) defined by f(x) = x3 is a dif-

feomorphism (implying that although these two atlases define
different differentiable structures, they are diffeomorphic).

4. Tangent Space

Recall from elementary vector calculus that a vector v ∈ R3 is said
to be tangent to a surface S ⊂ R3 at a point p ∈ S if there exists a
differentiable curve c : (−ε, ε) → S ⊂ R3 such that c(0) = p and ċ(0) = v
(cf. Exercise 2.5.5). The set TpS of all these vectors is a 2-dimensional vector
space, called the tangent space to S at p, and can be identified with the
plane in R3 wich is tangent to S at p.

To generalize this to an abstract n-dimensional manifold we need to find
a description of v which does not involve the ambient Euclidean space R3.
To do so, we notice that the components of v are

vi =
d(xi ◦ c)

dt
(0),

where xi : R3 → R is the i-th coordinate function. If we ignore the ambient
space, xi : S → R is just a differentiable function, and

vi = v(xi),

where, for any differentiable function f : S → R, we define

v(f) :=
d(f ◦ c)

dt
(0).

This allows us to see v as an operator v : C∞(S) → R, and it is clear
that this operator completely determines v. It is this new interpretation of
tangent vector that will be used to define tangent spaces for manifolds.

Definition 4.1. Let c : (−ε, ε) → M be a differentiable curve on a
smooth manifold M . Consider the set C∞(p) of all functions f : M → R

that are differentiable at c(0) = p (i.e., C∞ on a neighborhood of p). The
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S

v
p

TpS

Figure 11. Tangent vector to a surface.

tangent vector to the curve c at p is the operator ċ(0) : C∞(p) → R
given by

ċ(0)(f) =
d(f ◦ c)

dt
(0).

A tangent vector to M at p is a tangent vector to some differentiable curve
c : (−ε, ε) → M with c(0) = p. The tangent space at p is the space TpM
of all tangent vectors at p.

Choosing a parametrization ϕ : U ⊂ Rn → M around p, the curve c is
given in local coordinates by the curve in U

ĉ(t) :=
(
ϕ−1 ◦ c

)
(t) = (x1(t), . . . , xn(t)),

and

ċ(0)(f) =
d(f ◦ c)

dt
(0) =

d

dt



(

f̂︷ ︸︸ ︷
f ◦ ϕ) ◦ (

ĉ︷ ︸︸ ︷
ϕ−1 ◦ c)





|t=0

=

=
d

dt

(
f̂(x1(t), . . . , xn(t))

)

|t=0

=
n∑

i=1

∂f̂

∂xi
(ĉ(0))

dxi

dt
(0) =

=

(
n∑

i=1

ẋi(0)

(
∂

∂xi

)

ϕ−1(p)

)

(f̂).
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Hence we can write

ċ(0) =
n∑

i=1

ẋi(0)

(
∂

∂xi

)

p

,

where
(

∂
∂xi

)
p

denotes the operator defined by the vector tangent to the curve

ci at p given in local coordinates by

ĉi(t) = (x1, . . . , xi−1, xi + t, xi+1, . . . , xn),

with (x1, . . . , xn) = ϕ−1(p).

Example 4.2. The map ψ : (0,π) × (−π,π) → S2 given by

ψ(θ,ϕ) = (sin θ cos ϕ, sin θ sinϕ, cos θ)

parametrizes a neighborhood of the point (1, 0, 0) = ψ
(
π
2 , 0

)
. Consequently,

(
∂
∂θ

)
(1,0,0)

= ċθ(0) and
(

∂
∂ϕ

)

(1,0,0)
= ċϕ(0), where

cθ(t) = ψ
(π

2
+ t, 0

)
= (cos t, 0,− sin t);

cϕ(t) = ψ
(π

2
, t
)

= (cos t, sin t, 0).

Note that, in the notation above,

ĉθ(t) =
(π

2
+ t, 0

)
and ĉϕ(t) =

(π

2
, t
)

.

Moreover, since cθ and cϕ are curves in R3,
(
∂
∂θ

)
(1,0,0)

and
(

∂
∂ϕ

)

(1,0,0)
can

be identified with the vectors (0, 0,−1) and (0, 1, 0).

Proposition 4.3. The tangent space to M at p is an n-dimensional
vector space.

Proof. Consider a parametrization ϕ : U ⊂ Rn → M around p and
take the vector space generated by the operators

(
∂
∂xi

)
p
,

Dp := span

{(
∂

∂x1

)

p

, . . . ,

(
∂

∂xn

)

p

}

.

It is easy to show (cf. Exercise 4.9.1) that these operators are linearly inde-
pendent. Moreover, each tangent vector to M at p can be represented by a
linear combination of these operators, so the tangent space TpM is a subset
of Dp. We will now see that Dp ⊂ TpM . Let v ∈ Dp; then v can be written
as

v =
n∑

i=1

vi

(
∂

∂xi

)

p

.

If we consider the curve c : (−ε, ε) →M , defined by

c(t) = ϕ(x1 + v1t, . . . , xn + vnt)
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(where (x1, . . . , xn) = ϕ−1(p)), then

ĉ(t) = (x1 + v1t, . . . , xn + vnt)

and so ẋi(0) = vi, implying that ċ(0) = v. Therefore v ∈ TpM . !

Remark 4.4.

(1) The basis
{(

∂
∂xi

)
p

}n

i=1
determined by the chosen parametrization

around p is called the associated basis to that parametrization.
(2) Note that the definition of tangent space at p only uses functions

that are differentiable on a neighborhood of p. Hence, if U is an
open set of M containing p, the tangent space TpU is naturally
identified with TpM .

If we consider the disjoint union of all tangent spaces TpM at all points
of M , we obtain the space

TM =
⋃

p∈M

TpM = {v ∈ TpM | p ∈ M},

which admits a differentiable structure naturally determined by the one on
M (cf. Exercise 4.9.8). With this differentiable structure, this space is called
the tangent bundle. Note that there is a natural projection π : TM →M
which takes v ∈ TpM to p (cf. Section 10.3).

Now that we have defined tangent space, we can define the derivative
at a point p of a differentiable map f : M → N between smooth manifolds.
We want this derivative to be a linear transformation

(df)p : TpM → Tf(p)N

of the corresponding tangent spaces, to be the usual derivative (Jacobian)
of f when M and N are Euclidean spaces, and to satisfy the chain rule.

Definition 4.5. Let f : M → N be a differentiable map between smooth
manifolds. For p ∈ M , the derivative of f at p is the map

(df)p : TpM → Tf(p)N

v +→
d (f ◦ c)

dt
(0),

where c : (−ε, ε) →M is a curve satisfying c(0) = p and ċ(0) = v.

Proposition 4.6. The map (df)p : TpM → Tf(p)N defined above is a
linear transformation that does not depend on the choice of the curve c.

Proof. Let (U,ϕ) and (V,ψ) be two parametrizations around p and
f(p) such that f(ϕ(U)) ⊂ ψ(V ) (cf. Figure 12). Consider a vector v ∈ TpM
and a curve c : (−ε, ε) → M such that c(0) = p and ċ(0) = v. If, in local
coordinates, the curve c is given by

ĉ(t) := (ϕ−1 ◦ c)(t) = (x1(t), . . . , xm(t)),
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M N

U V

f

f̂

Rm Rn

ϕ ψ

c

ĉ

γ

γ̂

p
v

(df)p(v)

Figure 12. Derivative of a differentiable map.

and the curve γ := f ◦ c : (−ε, ε) → N is given by

γ̂(t) :=
(
ψ−1 ◦ γ

)
(t) =

(
ψ−1 ◦ f ◦ ϕ

)
(x1(t), . . . , xm(t))

= (y1(x(t)), . . . , yn(x(t))),

then γ̇(0) is the tangent vector in Tf(p)N given by

γ̇(0) =
n∑

i=1

d

dt

(
yi(x1(t), . . . , xm(t))

)
|t=0

(
∂

∂yi

)

f(p)

=
n∑

i=1

{
m∑

k=1

ẋk(0)

(
∂yi

∂xk

)
(x(0))

}(
∂

∂yi

)

f(p)

=
n∑

i=1

{
m∑

k=1

vk

(
∂yi

∂xk

)
(x(0))

}(
∂

∂yi

)

f(p)

,

where the vk are the components of v in the basis associated to (U,ϕ). Hence
γ̇(0) does not depend on the choice of c, as long as ċ(0) = v. Moreover, the
components of w = (df)p(v) in the basis associated to (V,ψ) are

wi =
n∑

j=1

∂yi

∂xj
vj ,

where
(
∂yi

∂xj

)
is an n × m matrix (the Jacobian matrix of the local repre-

sentation of f at ϕ−1(p)). Therefore, (df)p : TpM → Tf(p)N is the linear
transformation which, on the basis associated to the parametrizations ϕ and
ψ, is represented by this matrix. !

Remark 4.7. The derivative (df)p is sometimes called differential of
f at p. Several other notations are often used for df , as for example f∗,Df
and f ′.
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Example 4.8. Let ϕ : U ⊂ Rn → M be a parametrization around a
point p ∈ M . We can view ϕ as a differentiable map between two smooth
manifolds and we can compute its derivative at x = ϕ−1(p)

(dϕ)x : TxU → TpM.

For v ∈ TxU ∼= Rn, the i-th component of (dϕ)x(v) is

n∑

j=1

∂xi

∂xj
vj = vi

(where
(
∂xi

∂xj

)
is the identity matrix). Hence, (dϕ)x(v) is the vector in TpM

which, in the basis
{(

∂
∂xi

)
p

}
associated to the parametrization ϕ, is repre-

sented by v.

Given a differentiable map f : M → N we can also define a global
derivative df (also called push-forward and denoted f∗) between the cor-
responding tangent bundles:

df : TM → TN

TpM / v +→ (df)p(v) ∈ Tf(p)N.

Exercises 4.9.

(1) Show that the operators
(

∂
∂xi

)
p

are linearly independent.

(2) Let M be a smooth manifold, p a point in M and v a vector tangent
to M at p. If, for two basis associated to different parametriza-
tions around p, v can be written as v =

∑n
i=1 ai( ∂

∂xi )p and v =∑n
i=1 bi( ∂

∂yi )p, show that

b j =
n∑

i=1

∂yj

∂xi
ai.

(3) Let M be an n-dimensional differentiable manifold and p ∈ M .
Show that the following sets can be canonically identified with
TpM (and therefore constitute alternative definitions of the tan-
gent space):
(a) Cp/ ∼, where Cp is the set of differentiable curves c : I ⊂ R→

M such that c(0) = p and ∼ is the equivalence relation defined
by

c 1 ∼ c 2 ⇔
d

dt
(ϕ−1 ◦ c1)(0) =

d

dt
(ϕ−1 ◦ c2)(0)

for some parametrization ϕ : U ⊂ Rn →M of a neighborhood
of p.

(b) {(α, vα) : p ∈ ϕα(Uα) and vα ∈ Rn}/ ∼, where A = {(Uα,ϕα)}
is the differentiable structure and ∼ is the equivalence relation
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defined by

(α, vα) ∼ (β, vβ)⇔ vβ = d(ϕ−1
β ◦ ϕα)ϕ−1

α (p)(vα).

(4) (Chain Rule) Let f : M → N and g : N → P be two differentiable
maps. Then g◦f : M → P is also differentiable (cf. Exercise 3.2.3).
Show that for p ∈ M ,

(d(g ◦ f))p = (dg)f(p) ◦ (df)p.

(5) Let φ : (0,+∞) × (0,π) × (0, 2π) → R3 be the parametrization of
U = R3 \ {(x, 0, z) | x ≥ 0 and z ∈ R} by spherical coordinates,

φ(r, θ,ϕ) = (r sin θ cos ϕ, r sin θ sinϕ, r cos θ).

Determine the Cartesian components of ∂
∂r , ∂

∂θ and ∂
∂ϕ at each point

of U .
(6) Compute the derivative (df)N of the antipodal map f : Sn → Sn

at the north pole N .
(7) Let W be a coordinate neighborhood on M , let x : W → Rn be a

coordinate chart and consider a smooth function f : M → R. Show
that for p ∈ W , the derivative (df)p is given by

(df)p =
∂f̂

∂x1
(x(p))(dx1)p + · · · +

∂f̂

∂xn
(x(p))(dxn)p,

where f̂ := f ◦ x−1.
(8) (Tangent bundle) Let {(Uα,ϕα)} be a differentiable structure on

M and consider the maps

Φα : Uα × Rn → TM

(x, v) +→ (dϕα)x(v) ∈ Tϕα(x)M.

Show that the family {(Uα×Rn,Φα)} defines a differentiable struc-
ture for TM . Conclude that, with this differentiable structure, TM
is a smooth manifold of dimension 2× dimM .

(9) Let f : M → N be a differentiable map between smooth manifolds.
Show that:
(a) df : TM → TN is also differentiable;
(b) if f : M → M is the identity map then df : TM → TM is also

the identity;
(c) if f is a diffeomorphism then df : TM → TN is also a diffeo-

morphism and (df)−1 = df−1.
(10) Let M1,M2 be two differentiable manifolds and

π1 : M1 ×M2 → M1

π2 : M1 ×M2 → M2

the corresponding canonical projections.
(a) Show that dπ1× dπ2 is a diffeomorphism between the tangent

bundle T (M1 ×M2) and the product manifold TM1 × TM2.
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(b) Show that if N is a smooth manifold and fi : N →Mi (i = 1, 2)
are differentiable maps, then d(f1 × f2) = df1 × df2.

5. Immersions and Embeddings

In this section we will study the local behavior of differentiable maps
f : M → N between smooth manifolds. We have already seen that f is
said to be a local diffeomorphism at a point p ∈ M if dimM = dim N and
f transforms a neighborhood of p diffeomorphically onto a neighborhood of
f(p). In this case, its derivative (df)p : TpM → Tf(p)N must necessarily be
an isomorphism (cf. Exercise 4.9.9c). Conversely, if (df)p is an isomorphism
then the Inverse Function Theorem implies that f is a local diffeomorphism
(cf. Section 10.4). Therefore, to check whether f maps a neighborhood of
p diffeomorphically onto a neighborhood of f(p), one just has to check that
the determinant of the local representation of (df)p is nonzero.

When dimM < dim N , the best we can hope for is that (df)p : TpM →
Tf(p)N is injective. The map f is then called an immersion at p. If f is an
immersion at every point in M , it is called an immersion. Locally, every
immersion is (up to a diffeomorphism) the canonical immersion of Rm into
Rn (m < n) where a point (x1, . . . , xm) is mapped to (x1, . . . , xm, 0, . . . , 0).
This result is known as the Local Immersion Theorem .

Theorem 5.1. Let f : M → N be an immersion at p ∈ M . Then
there exist local coordinates around p and f(p) on which f is the canonical
immersion.

Proof. Let (U,ϕ) and (V,ψ) be parametrizations around p and q =
f(p). Let us assume for simplicity that ϕ(0) = p and ψ(0) = q. Since f
is an immersion, (df̂)0 : Rm → Rn is injective (where f̂ := ψ−1 ◦ f ◦ ϕ is
the expression of f in local coordinates). Hence we can assume (changing
basis on Rn if necessary) that this linear transformation is represented by
the n×m matrix 


Im×m

−−−
0



 ,

where Im×m is the m×m identity matrix. Therefore, the map

F : U × Rn−m → Rn

(x1, . . . , xn) +→ f̂(x1, . . . , xm) + (0, . . . , 0, xm+1, . . . , xn),

has derivative (dF )0 : Rn → Rn given by the matrix



Im×m | 0
−−− + −−−

0 | I(n−m)×(n−m)



 = In×n.

Applying the Inverse Function Theorem, we conclude that F is a local dif-
feomorphism at 0. This implies that ψ◦F is also a local diffeomorphism at 0,
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and so ψ◦F is another parametrization of N around q. Denoting the canon-
ical immersion of Rm into Rn by j, we have f̂ = F ◦ j ⇔ f = ψ ◦F ◦ j ◦ϕ−1,
implying that the following diagram commutes:

M ⊃ ϕ(Ũ )
f−→ (ψ ◦ F )(Ṽ ) ⊂ N

ϕ ↑ ↑ ψ ◦ F

Rm ⊃ Ũ
j−→ Ṽ ⊂ Rn

(for possibly smaller open sets Ũ ⊂ U and Ṽ ⊂ V ). Hence, on these new
coordinates, f is the canonical immersion. !

Remark 5.2. As a consequence of the Local Immersion Theorem, any
immersion at a point p ∈ M is an immersion on a neighborhood of p.

When an immersion f : M → N is also a homeomorphism onto its
image f(M) ⊂ N with its subspace topology, it is called an embedding.
We leave as an exercise to show that the Local Immersion Theorem implies
that, locally, any immersion is an embedding.

Example 5.3.

(1) The map f : R → R2 given by f(t) = (t2, t3) is not an immersion
at t = 0.

(2) The map f : R → R2 defined by f(t) = (cos t, sin 2t) is an immer-
sion but it is not an embedding (it is not injective).

(3) Let g : R → R be the function g(t) = 2 arctan(t) + π/2. If f is the
map from (2), h := f ◦ g is an injective immersion which is not an
embedding. Indeed, the set S = h(R) in Figure 13 is not the image
of an embedding of R into R2. The arrows in the figure mean that
the line approaches itself arbitrarily close at the origin but never
self-intersects. If we consider the usual topologies on R and on R2,
the image of an open set in R containing 0 is not an open set in
h(R) for the subspace topology, and so h−1 is not continuous.

S

Figure 13
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(4) The map f : R→ R2 given by f(t) = (et cos t, et sin t) is an embed-
ding of R into R2.

If M ⊂ N and the inclusion map i : M ↪→ N is an embedding, M is said
to be a submanifold of N . Therefore, an embedding f : M → N maps
M diffeomorphically onto a submanifold of N . Charts on f(M) are just
restrictions of appropriately chosen charts on N to f(M) (cf. Exercise 5.9.3).

A differentiable map f : M → N for which (df)p is surjective is called a
submersion at p. Note that, in this case, we necessarily have m ≥ n. If
f is a submersion at every point in M it is called a submersion. Locally,
every submersion is the standard projection of Rm onto the first n factors.

Theorem 5.4. Let f : M → N be a submersion at p ∈ M . Then
there exist local coordinates around p and f(p) for which f is the standard
projection.

Proof. Let us consider parametrizations (U,ϕ) and (V,ψ) around p
and f(p), such that f(ϕ(U)) ⊂ ψ(V ), ϕ(0) = p and ψ(0) = f(p). In
local coordinates f is given by f̂ := ψ−1 ◦ f ◦ ϕ and, as (df)p is surjective,

(df̂)0 : Rm → Rn is a surjective linear transformation. By a linear change
of coordinates on Rn we may assume that (df̂)0 =

(
In×n | ∗

)
. As in

the proof of the Local Immersion Theorem, we will use an auxiliary map F
that will allow us to use the Inverse Function Theorem,

F : U ⊂ Rm → Rm

(x1, . . . , xm) +→
(
f̂(x1, . . . , xm), xn+1, . . . , xm

)
.

Its derivative at 0 is the linear map given by

(dF )0 =




In×n | ∗
−− − + −−−

0 | I(m−n)×(m−n)



 .

The Inverse Function Theorem then implies that F is a local diffeomorphism
at 0, meaning that it maps some open neighborhood of this point Ũ ⊂ U ,
diffeomorphically onto an open set W of Rm containing 0. If π1 : Rm → Rn

is the standard projection onto the first n factors, we have π1 ◦ F = f̂ , and
hence

f̂ ◦ F−1 = π1 : W → Rn.

Therefore, replacing ϕ by ϕ̃ := ϕ ◦ F−1, we obtain coordinates for which f
is the standard projection π1 onto the first n factors:

ψ−1 ◦ f ◦ ϕ̃ = ψ−1 ◦ f ◦ ϕ ◦ F−1 = f̂ ◦ F−1 = π1.

!

Remark 5.5. This result is often stated together with the Local Immer-
sion Theorem in what is known as the Rank Theorem.
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Let f : M → N be a differentiable map between smooth manifolds of
dimensions m and n, respectively. A point q ∈ N is called a regular value
of f if, for every p ∈ f−1(q), (df)p is surjective. If p ∈ M is such that (df)p
is not surjective it is called a critical point of f . The corresponding value
f(p) is called a critical value. Note that if there exists a regular value of
f then m ≥ n. We can obtain differentiable manifolds by taking inverse
images of regular values.

Theorem 5.6. Let q ∈ N be a regular value of f : M → N and assume
that the level set L = f−1(q) = {p ∈ M : f(p) = q} is nonempty. Then L is
a submanifold of M and TpL = ker(df)p ⊂ TpM for all p ∈ L.

Proof. For each point p ∈ f−1(q), we choose parametrizations (U,ϕ)
and (V,ψ) around p and q for which f is the standard projection π1 onto the
first n factors, ϕ(0) = p and ψ(0) = q (cf. Theorem 5.4). We then construct
a differentiable structure for L = f−1(q) in the following way: take the sets
U from each of these parametrizations of M ; since f ◦ ϕ = ψ ◦ π1, we have

ϕ−1(f−1(q)) = π−1
1 (ψ−1(q)) = π−1

1 (0)

= {(0, . . . , 0, xn+1, . . . , xm) | xn+1, . . . , xm ∈ R},

and so

Ũ := ϕ−1(L) = {(x1, . . . , xm) ∈ U : x1 = · · · = xn = 0};

hence, taking π2 : Rm → Rm−n the standard projection onto the last m− n
factors and j : Rm−n → Rm the immersion given by

j(x1, . . . , xm−n) = (0, . . . , 0, x1, . . . , xm−n),

the family {(π2(Ũ),ϕ ◦ j)} is an atlas for L.
Moreover, the inclusion map i : L → M is an embedding. In fact, if A

is an open set in L contained in a coordinate neighborhood then

A = ϕ
(
(Rn × (ϕ ◦ j)−1(A)) ∩ U

)
∩ L

is an open set for the subspace topology on L.
We will now show that TpL = ker (df)p. For that, for each v ∈ TpL, we

consider a curve c on L such that c(0) = p and ċ(0) = v. Then (f ◦ c)(t) = q
for every t and so

d

dt
(f ◦ c) (0) = 0⇔ (df)p ċ(0) = (df)p v = 0,

implying that v ∈ ker (df)p. As dim TpL = dim (ker (df)p) = m − n, the
result follows. !

Given a differentiable manifold, we can ask ourselves if it can be embed-
ded into RK for some K ∈ N. The following theorem, which was proved by
Whitney in [Whi44a, Whi44b] answers this question and is known as the
Whitney Embedding Theorem.
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Theorem 5.7. (Whitney) Any differentiable manifold M of dimension
n can be embedded in R2n (and, provided that n > 1, immersed in R2n−1).

Remark 5.8. By the Whitney Embedding Theorem, any smooth man-
ifold Mn is diffeomorphic to a submanifold of R2n.

Exercises 5.9.

(1) Show that any parametrization ϕ : U ⊂ Rm →M is an embedding
of U into M .

(2) Show that, locally, any immersion is an embedding, i.e., if f : M →
N is an immersion and p ∈ M , then there is an open set W ⊂ M
containing p such that f |W is an embedding.

(3) Let N be a manifold and M ⊂ N . Show that M is a submanifold
of N of dimension m if and only if, for each p ∈ M , there is a
coordinate system x : W → Rn around p on N , for which M ∩W
is defined by the equations xm+1 = · · · = xn = 0.

(4) Consider the sphere

Sn =
{
x ∈ Rn+1 : (x1)2 + · · · (xn+1)2 = 1

}
.

Show that Sn is an n-dimensional submanifold of Rn+1 and

TxSn =
{
v ∈ Rn+1 : 〈x, v〉 = 0

}
,

where 〈·, ·〉 is the usual inner product on Rn.
(5) Let f : M → N be a differentiable map between smooth manifolds

and let V ⊂ M , W ⊂ N be submanifolds. If f(V ) ⊂ W , show that
f : V →W is also a differentiable map.

(6) Let f : M → N be an injective immersion. Show that if M is
compact then f(M) is a submanifold of N .

6. Vector Fields

A vector field on a smooth manifold M is a map that to each point
p ∈M assigns a vector tangent to M at p:

X : M → TM

p +→ X(p) := Xp ∈ TpM.

The vector field is said to be differentiable if this map is differentiable.
The set of all differentiable vector fields on M is denoted by X(M). Locally
we have:

Proposition 6.1. Let W be a coordinate neighborhood on M (that is,
W = ϕ(U) for some parametrization ϕ : U → M), and let x := ϕ−1 : W →
Rn be the corresponding coordinate chart. Then, a map X : W → TW is a
differentiable vector field on W if and only if,

Xp = X1(p)

(
∂

∂x1

)

p

+ · · · + Xn(p)

(
∂

∂xn

)

p

for some differentiable functions Xi : W → R (i = 1, . . . , n).
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Proof. Let us consider the coordinate chart x = (x1, . . . , xn). As Xp ∈
TpM , we have

Xp = X1(p)

(
∂

∂x1

)

p

+ · · · + Xn(p)

(
∂

∂xn

)

p

for some functions Xi : W → R. In the local chart associated with the
parametrization (U ×Rn, dϕ) of TM , the local representation of the map X
is

X̂(x1, . . . , xn) = (x1, . . . , xn, X̂1(x1, . . . , xn), . . . , X̂n(x1, . . . , xn)).

Therefore X is differentiable if and only if the functions X̂i : U → R are
differentiable, i.e., if and only if the functions Xi : W → R are differentiable.

!

A vector field X is differentiable if and only if, given any differentiable
function f : M → R, the function

X · f : M → R

p +→ Xp · f := Xp(f)

is also differentiable (cf. Exercise 6.11.1). This function X · f is called the
directional derivative of f along X. Thus one can view X ∈ X(M) as a
linear operator X : C∞(M) → C∞(M).

Let us now take two vector fields X,Y ∈ X(M). In general, the operators
X ◦Y , Y ◦X will involve derivatives of order two, and will not correspond to
vector fields. However, the commutator X ◦ Y − Y ◦X does define a vector
field.

Proposition 6.2. Given two differentiable vector fields X,Y ∈ X(M)
on a smooth manifold M , there exists a unique differentiable vector field
Z ∈ X(M) such that

Z · f = (X ◦ Y − Y ◦X) · f

for every differentiable function f ∈ C∞(M).

Proof. Considering a coordinate chart x : W ⊂ M → Rn, we have

X =
n∑

i=1

Xi ∂

∂xi
and Y =

n∑

i=1

Y i ∂

∂xi
.
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Then,

(X ◦ Y − Y ◦X) · f

= X ·

(
n∑

i=1

Y i ∂f̂

∂xi

)

− Y ·

(
n∑

i=1

Xi ∂f̂

∂xi

)

=
n∑

i=1

(

(X · Y i)
∂f̂

∂xi
− (Y · Xi)

∂f̂

∂xi

)

+
n∑

i,j=1

(

XjY i ∂2f̂

∂xj∂xi
− Y jXi ∂2f̂

∂xj∂xi

)

=

(
n∑

i=1

(
X · Y i − Y · Xi

) ∂

∂xi

)

· f,

and so, at each point p ∈ W , one has (X ◦ Y − Y ◦X) (f)(p) = Zp ·f , where

Zp =
n∑

i=1

(
X · Y i − Y · Xi

)( ∂

∂xi

)

p

.

Hence, the operator X ◦ Y − Y ◦X is a derivation at each point, and con-
sequently defines a vector field. Note that this vector field is differentiable,
as (X ◦ Y − Y ◦X) · f is smooth for any smooth function f : M → R. !

The vector field Z is called the Lie bracket of X and Y , and is denoted
by [X,Y ]. In local coordinates it is given by

(1) [X,Y ] =
n∑

i=1

(
X · Y i − Y · Xi

) ∂

∂xi
.

We say that two vector fields X,Y ∈ X(M) commute if [X,Y ] = 0. We
leave the proof of the following properties of the Lie bracket as an exercise.

Proposition 6.3. Given X,Y,Z ∈ X(M), we have:

(i) Bilinearity: for any α,β ∈ R,

[αX + βY,Z] = α[X,Z] + β[Y,Z]

[X,αY + βZ] = α[X,Y ] + β[X,Z];

(ii) Antisymmetry:

[X,Y ] = −[Y,X];

(iii) Jacobi identity:

[[X,Y ], Z] + [[Y,Z],X] + [[Z,X], Y ] = 0;

(iv) Leibniz Rule: For any f, g ∈ C∞(M),

[f X, g Y ] = fg [X,Y ] + f(X · g)Y − g(Y · f)X.

The space X(M) of vector fields on M is a particular case of a Lie
algebra:
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Definition 6.4. A vector space V equipped with an anti-symmetric bi-
linear map [·, ·] : V × V → V (called a Lie bracket) satisfying the Jacobi
identity is called a Lie algebra. A linear map F : V →W between Lie alge-
bras is called a Lie algebra homomorphism if F ([v1, v2]) = [F (v1), F (v2)]
for all v1, v2 ∈ V . If F is bijective then it is called a Lie algebra isomor-
phism.

Given a vector field X ∈ X(M) and a diffeomorphism f : M → N
between smooth manifolds, we can naturally define a vector field on N using
the derivative of f . This vector field, the push-forward of X, is denoted
by f∗X and is defined in the following way: given p ∈ M ,

(f∗X)f(p) := (df)pXp.

This makes the following diagram commute:

TM
df→ TN

X ↑ ↑ f∗X

M
f→ N

Let us now turn to the definition of integral curve. If X ∈ X(M) is a
smooth vector field, an integral curve of X is a smooth curve c : (−ε, ε) →
M such that ċ(t) = Xc(t). If this curve has initial value c(0) = p, we denote
it by cp and we say that cp is an integral curve of X at p.

M

U

Rn

ϕ

c

ĉ

X

X̂

Figure 14. Integral curves of a vector field.
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Considering a parametrization ϕ : U ⊂ Rn → M on M , the integral
curve c is locally given by ĉ := ϕ−1 ◦ c. Applying (dϕ−1)c(t) to both sides of
the equation defining c, we obtain

˙̂c(t) = X̂(ĉ(t)),

where X̂ = dϕ−1 ◦ X ◦ ϕ is the local representation of X with respect to
the parametrizations (U,ϕ) and (TU, dϕ) on M and on TM (cf. Figure 14).
This equation is just a system of n ordinary differential equations:

(2)
dĉi

dt
(t) = X̂i(ĉ(t)), for i = 1, . . . , n.

The (local) existence and uniqueness of integral curves is then determined
by the Picard-Lindelöf Theorem of ordinary differential equations (see for
example [Arn92]), and we have

Theorem 6.5. Let M be a smooth manifold and X ∈ X(M) a smooth
vector field on M . Given p ∈ M , there exists an integral curve cp : I → M
of X at p (that is, ċp(t) = Xcp(t) for t ∈ I = (−ε, ε) and cp(0) = p).
Moreover, this curve is unique, meaning that any two such curves agree on
the intersection of their domains.

This solution of (2) depends smoothly on the initial point p (see [Arn92]).

Theorem 6.6. Indeed, if y > 0 the allowed interval for t decreases as b
increases, if y < 0 the allowed interval for t decreases as a decreases, and if
y = 0 this interval decrease as b increases or as a decreases. Let X ∈ X(M).
For each p ∈ M there exists a neighborhood W of p, an interval I = (−ε, ε)
and a mapping F : W × I →M such that:

(i) for a fixed q ∈ W the curve F (q, t), t ∈ I, is an integral curve of
X at q, that is, F (q, 0) = q and ∂F

∂t (q, t) = XF (q,t);
(ii) the map F is differentiable.

The map F : W × I → M defined above is called the local flow of X
at p. Let us now fix t ∈ I and consider the map

ψt : W → M

q +→ F (q, t) = cq(t).

defined by the local flow. The following proposition then holds:

Proposition 6.7. The maps ψt : W → M above are local diffeomor-
phisms and satisfy

(3) (ψt ◦ ψs)(q) = ψt+s(q),

whenever t, s, t + s ∈ I and ψs(q) ∈W .

Proof. First we note that
dcq

dt
(t) = Xcq(t)
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and so
d

dt
(cq(t + s)) = Xcq(t+s).

Hence, as cq(t + s)|t=0 = cq(s), the curve ccq(s)(t) is just cq(t + s), that is,
ψt+s(q) = ψt(ψs(q)). We can use this formula to extend ψt to ψs(W ) for
all s ∈ I such that t + s ∈ I. In particular, ψ−t is well defined on ψt(W ),
and (ψ−t ◦ ψt)(q) = ψ0(q) = cq(0) = q for all q ∈ W . Thus the map ψ−t is
the inverse of ψt, which consequently is a local diffeomorphism (it maps W
diffeomorphically onto its image). !

A collection of diffeomorphisms {ψt : M → M}t∈I , where I = (−ε, ε),
satisfying (3) is called a local 1-parameter group of diffeomorphisms.
When the interval of definition I of cq is R, this local 1-parameter group
of diffeomorphisms becomes a group of diffeomorphisms. A vector field
X whose local flow defines a 1-parameter group of diffeomorphisms is said
to be complete. This happens for instance when the vector field X has
compact support.

Theorem 6.8. If X ∈ X(M) is a smooth vector field with compact sup-
port then it is complete.

Proof. For each p ∈ M we can take a neighborhood W and an interval
I = (−ε, ε) such that the local flow of X at p, F (q, t) = cq(t), is defined on
W×I. We can therefore cover the support of X (which is compact) by a finite
number of such neighborhoods Wk and consider an interval I0 = (−ε0, ε0)
contained in the intersection of the corresponding intervals Ik. If q is not
in supp(X), then Xq = 0 and so cq(t) is trivially defined on I0. Hence we
can extend the map F to M × I0. Moreover, condition (3) is true for each
−ε0/2 < s, t < ε0/2, and we can again extend the map F , this time to
M ×R. In fact, for any t ∈ R, we can write t = kε0/2 + s, where k ∈ Z and
0 ≤ s < ε0/2, and define F (q, t) := F k(F (q, s), ε0/2). Indeed, if y > 0 the
allowed interval for t decreases as b increases, if y < 0 the allowed interval for
t decreases as a decreases, and if y = 0 this interval decrease as b increases
or as a decreases. !

Corollary 6.9. If M is compact then all smooth vector fields on M
are complete.

We finish this section with an important result, whose proof is left as an
exercise (cf. Exercise 6.11.12).

Theorem 6.10. Let X1,X2 ∈ X(M) be two complete vector fields. Then
their flows ψ1,ψ2 commute (i.e., ψ1,t ◦ ψ2,s = ψ2,s ◦ ψ1,t for all s, t ∈ R) if
and only if [X1,X2] = 0.

Exercises 6.11.

(1) Let X : M → TM be a differentiable vector field on M and, for
a smooth function f : M → R, consider its directional derivative
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along X defined by

X · f : M → R

p +→ Xp · f.

Show that:
(a) (X · f)(p) = (df)pXp;
(b) the vector field X is smooth if and only if X ·f is a differentiable

function for any smooth function f : M → R;
(c) the directional derivative satisfies the following properties: for

f, g ∈ C∞(M) and α ∈ R,
(i) X · (f + g) = X · f + X · g;
(ii) X · (αf) = αX · f ;
(iii) X · (fg) = fX · g + gX · f .

(2) Prove Proposition 6.3.
(3) Show that (R3,×) is a Lie algebra, where × is the cross product

on R3.
(4) Let X1,X2,X3 ∈ X(R3) be the vector fields defined by

X1 = y
∂

∂z
− z

∂

∂y
, X2 = z

∂

∂x
− x

∂

∂z
, X3 = x

∂

∂y
− y

∂

∂x
,

where (x, y, z) are the usual Cartesian coordinates.
(a) Compute the Lie brackets [Xi,Xj ] for i, j = 1, 2, 3.
(b) Show that span{X1,X2,X3} is a Lie subalgebra of X(R3), iso-

morphic to (R3,×).
(c) Compute the flows ψ1,t,ψ2,t,ψ3,t of X1,X2,X3.
(d) Show that ψi, π

2
◦ ψj, π

2
'= ψj, π

2
◦ ψi, π

2
for i '= j.

(5) Give an example of a non complete vector field.
(6) Let N be a differentiable manifold, M ⊂ N a submanifold and

X,Y ∈ X(N) vector fields tangent to M , i.e., such that Xp, Yp ∈
TpM for all p ∈ M . Show that [X,Y ] is also tangent to M .

(7) Let f : M → N be a smooth map between manifolds. Two vector
fields X ∈ X(M) and Y ∈ X(N) are said to be f -related (and we
write Y = f∗X) if, for each q ∈ N and p ∈ f−1(q) ⊂ M , we have
(df)pXp = Yq. Show that:
(a) The vector field X is f -related to Y if and only if, for any

differentiable function g defined on some open subset W of N ,
(Y · g) ◦ f = X · (g ◦ f) on the inverse image f−1(W ) of the
domain of g;

(b) For differentiable maps f : M → N and g : N → P between
smooth manifolds and vector fields X ∈ X(M), Y ∈ X(N) and
Z ∈ X(P ), if X is f -related to Y and Y is g-related to Z, then
X is (g ◦ f)-related to Z.
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(8) Let f : M → N be a diffeomorphism between smooth manifolds.
Show that f∗[X,Y ] = [f∗X, f∗Y ] for every X,Y ∈ X(M). There-
fore, f∗ induces a Lie algebra isomorphism between X(M) and
X(N).

(9) Let f : M → N be a differentiable map between smooth manifolds
and consider two vector fields X ∈ X(M) and Y ∈ X(N). Show
that:
(a) if the vector field Y is f -related to X then any integral curve

of X is mapped by f into an integral curve of Y ;
(b) the vector field Y is f -related to X if and only if the local flows

FX and FY satisfy f(FX(p, t)) = FY (f(p), t) for all (t, p) for
which both sides are defined.

(10) (Lie derivative of a function) Given a vector field X ∈ X(M), we
define the Lie derivative of a smooth function f : M → R in the
direction of X as

LXf(p) :=
d

dt
((f ◦ ψt)(p))

|t=0

,

where ψt = F (·, t), for F the local flow of X at p. Show that
LXf = X · f , meaning that the Lie derivative of f in the direction
of X is just the directional derivative of f along X.

(11) (Lie derivative of a vector field) For two vector fields X,Y ∈ X(M)
we define the Lie derivative of Y in the direction of X as,

LXY :=
d

dt
((ψ−t)∗Y )

|t=0

,

where {ψt}t∈I is the local flow of X. Show that:
(a) LXY = [X,Y ];
(b) LX [Y,Z] = [LXY,Z] + [Y,LXZ], for X,Y,Z ∈ X(M);
(c) LX ◦ LY − LY ◦ LX = L[X,Y ].

(12) Let X,Y ∈ X(M) be two complete vector fields with flows ψ,φ.
Show that:
(a) given a diffeomorphism f : M →M , we have f∗X = X if and

only if f ◦ ψt = ψt ◦ f for all t ∈ R;
(b) ψt ◦ φs = φs ◦ ψt for all s, t ∈ R if and only if [X,Y ] = 0.

7. Lie Groups

A Lie group G is a smooth manifold which is at the same time a group,
in such a way that the group operations

G×G → G
(g, h) +→ gh

and
G → G
g +→ g−1

are differentiable maps (where we consider the standard differentiable struc-
ture of the product on G×G).

Example 7.1.
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(1) (Rn,+) is trivially an abelian Lie group
(2) The general linear group

GL(n) = {n× n invertible real matrices}

is the most basic example of a nontrivial Lie group. We have seen
in Example 2.3.4 that it is a smooth manifold of dimension n2.
Moreover, the group multiplication is just the restriction to

GL(n)×GL(n)

of the usual multiplication of n × n matrices, whose coordinate
functions are quadratic polynomials; the inversion is just the re-
striction to GL(n) of the usual inversion of nonsingular matrices
which, by Cramer’s rule, is a map with rational coordinate func-
tions with nonzero denominators (only the determinant appears on
the denominator).

(3) The orthogonal group

O(n) = {A ∈Mn×n | AtA = I}

of orthogonal transformations of Rn is also a Lie group. We can
show this by considering the map f : A +→ AtA from Mn×n

∼= Rn2

to the space Sn×n
∼= R

1
2n(n+1) of symmetric n × n matrices. Its

derivative at a point A ∈ O(n), (df)A, is a surjective map from
TAMn×n

∼= Mn×n onto Tf(A)Sn×n
∼= Sn×n. Indeed,

(df)A(B) = lim
h→0

f(A + hB)− f(A)

h

= lim
h→0

(A + hB)t(A + hB)−AtA

h

= BtA + AtB,

and any symmetric matrix S can be written as BtA + AtB with
B = 1

2(A−1)tS = 1
2AS. In particular, the identity I is a regular

value of f and so, by Theorem 5.6, we have that O(n) = f−1(I) is a
submanifold of Mn×n of dimension 1

2n(n−1). Moreover, it is also a
Lie group as the group multiplication and inversion are restrictions
of the same operations on GL(n) to O(n) (a submanifold) and have
values on O(n) (cf. Exercise 5.9.5).

(4) The map f : GL(n) → R given by f(A) = detA is differentiable,
and the level set f−1(1) is

SL(n) = {A ∈Mn×n | det A = 1},

the special linear group. Again, the derivative of f is surjective
at a point A ∈ GL(n), making SL(n) into a Lie group. Indeed, it
is easy to see that

(df)I(B) = lim
h→0

det (I + hB)− det I

h
= tr B
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implying that

(df)A(B) = lim
h→0

det (A + hB)− det A

h

= lim
h→0

(det A) det (I + hA−1B)− detA

h

= (det A) lim
h→0

det (I + hA−1B)− 1

h

= (det A) (df)I(A
−1B) = (detA) tr(A−1B).

Since det (A) = 1, for any k ∈ R, we can take the matrix B = k
nA

to obtain (df)A(B) = tr
(

k
nI
)

= k. Therefore, (df)A is surjective
for every A ∈ SL(n), and so 1 is a regular value of f . Consequently,
SL(n) is a submanifold of GL(n). As in the preceding example, the
group multiplication and inversion are differentiable, and so SL(n)
is a Lie group.

(5) The map A +→ det A is a differentiable map from O(n) to {−1, 1},
and the level set f−1(1) is

SO(n) = {A ∈ O(n) | detA = 1},

the special orthogonal group or the rotation group in Rn,
which is then an open subset of O(n), and therefore a Lie group of
the same dimension.

(6) We can also consider the space Mn×n(C) of complex n× n matri-
ces, and the space GL(n, C) of complex n × n invertible matrices.
This is a Lie group of real dimension 2n2. Moreover, similarly to
what was done above for O(n), we can take the group of unitary
transformations on Cn,

U(n) = {A ∈Mn×n(C) | A∗A = I},

where A∗ is the adjoint of A. This group is a submanifold of
Mn×n(C) ∼= Cn2 ∼= R2n2

, and a Lie group, called the unitary
group. This can be seen from the fact that I is a regular value of
the map f : A +→ A∗A from Mn×n(C) to the space of selfadjoint
matrices. As any element of Mn×n(C) can be uniquely written as
a sum of a selfadjoint with an anti-selfadjoint matrix, and the map
A → iA is an isomorphism from the space of selfadjoint matrices
to the space of anti-selfadjoint matrices, we conclude that these
two spaces have real dimension 1

2 dimR Mn×n(C) = n2. Hence,
dim U(n) = n2.

(7) The special unitary group

SU(n) = {A ∈ U(n) | det A = 1},

is also a Lie group now of dimension n2−1 (note that A +→ det (A)
is now a differentiable map from U(n) to S1).
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As a Lie group G is, by definition, a manifold, we can consider the
tangent space at one of its points. In particular, the tangent space at the
identity e is usually denoted by

g := TeG.

For g ∈ G, we have the maps

Lg : G → G
h +→ g · h and

Rg : G → G
h +→ h · g

which correspond to left multiplication and right multiplication.
A vector field on G is called left invariant if (Lg)∗X = X for every

g ∈ G, that is,

((Lg)∗X)gh = Xgh or (dLg)hXh = Xgh,

for every g, h ∈ G. There is, of course, a vector space isomorphism between
g and the space of left invariant vector fields on G that, to each V ∈ g,
assigns the vector field XV defined by

XV
g := (dLg)eV,

for any g ∈ G. This vector field is left invariant as

(dLg)hXV
h = (dLg)h(dLh)eV = (d(Lg ◦ Lh))eV = (dLgh)eV = XV

gh.

Note that, given a left invariant vector field X, the corresponding element
of g is Xe. As the space XL(G) of left invariant vector fields is closed under
the Lie bracket of vector fields (because, from Exercise 6.11.8, (Lg)∗[X,Y ] =
[(Lg)∗X, (Lg)∗Y ]), it has a structure of Lie subalgebra of the Lie algebra
of vector fields (see Definition 6.4). The isomorphism XL(G) ∼= g then
determines a Lie algebra structure on g. We call g the Lie algebra of the
Lie group G.

Example 7.2.

(1) If G = GL(n), then gl(n) = TIGL(n) = Mn×n is the space of n×n
matrices with real coefficients, and the Lie bracket on gl(n) is the
commutator of matrices

[A,B] = AB −BA.

In fact, if A,B ∈ gl(n) are two n × n matrices, the corresponding
left invariant vector fields are given by

XA
g = (dLg)I(A) =

∑

i,k,j

xikakj ∂

∂xij

XB
g = (dLg)I(B) =

∑

i,k,j

xikbkj ∂

∂xij
,
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where g ∈ GL(n) is a matrix with components xij . The ij-component
of [XA,XB ]g is given by XA

g · (XB)ij −XB
g · (XA)ij , i.e.

[XA,XB ]ij(g) =




∑

l,m,p

xlpapm ∂

∂xlm




(
∑

k

xikbkj

)

−

−




∑

l,m,p

xlpbpm ∂

∂xlm




(
∑

k

xikakj

)

=
∑

k,l,m,p

xlpapmδilδkmbkj −
∑

k,l,m,p

xlpbpmδilδkmakj

=
∑

m,p

xip(apmbmj − bpmamj)

=
∑

p

xip(AB −BA)pj

(where δij = 1 if i = j and δij = 0 if i '= j is the Kronecker
symbol). Making g = I, we obtain [A,B] = [XA,XB ]I = AB −
BA. This will always be the case when G is a matrix group, that
is, when G is a subgroup of GL(n) for some n.

(2) If G = O(n) then its Lie algebra is

o(n) = {A ∈Mn×n | At + A = 0}.
In fact, we have seen in Example 7.1.3 that O(n) = f−1(I) where
the identity I is a regular value of the map

f : Mn×n → Sn×n

A +→ AtA.

Hence, o(n) = TIG = ker(df)I = {A ∈Mn×n | At + A = 0} is the
space of skew-symmetric matrices.

(3) If G = SO(n) = {A ∈ O(n) | detA = 1}, then its Lie algebra is

so(n) = TISO(n) = TIO(n) = o(n).

(4) Similarly to Example 7.2.2, the Lie algebra of U(n) is

u(n) = {A ∈Mn×n(C) | A∗ + A = 0},
the space of skew-hermitian matrices. To determine the Lie algebra
of SU(n), we see that SU(n) is the level set f−1(1), where f(A) =
det A, and so

su(n) = ker(df)I = {A ∈ u(n) | tr(A) = 0}.

We now study the flow of a left invariant vector field.

Proposition 7.3. Let F be the local flow of a left invariant vector field
X at a point h ∈ G. Then the map ψt defined by F (that is, ψt(g) = F (g, t))
satisfies ψt = Rψt(e). Moreover, the flow of X is globally defined for all t ∈ R.
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Proof. For g ∈ G, Rψt(e)(g) = g · ψt(e) = Lg(ψt(e)). Hence,

Rψ0(e)(g) = g · e = g

and

d

dt

(
Rψt(e)(g)

)
=

d

dt
(Lg(ψt(e))) = (dLg)ψt(e)

(
d

dt
(ψt(e))

)

= (dLg)ψt(e)

(
Xψt(e)

)
= Xg·ψt(e)

= XRψt(e)
(g),

implying that Rψt(e)(g) = cg(t) = ψt(g) is the integral curve of X at g.
Consequently, if ψt(e) is defined for t ∈ (−ε, ε), then ψt(g) is defined for
t ∈ (−ε, ε) and g ∈ G. Moreover, condition (3) in Section 6 is true for each
−ε/2 < s, t < ε/2 and we can extend the map F to G × R as before: for
any t ∈ R, we write t = kε/2 + s where k ∈ Z and 0 ≤ s < ε/2, and define
F (g, t) := F k(F (g, s), ε/2) = gF (e, s)F k(e, ε/2). !

Remark 7.4. A homomorphism F : G1 → G2 between Lie groups is
called a Lie group homomorphism if, besides being a group homomor-
phism, it is also a differentiable map. Since

ψt+s(e) = ψs(ψt(e)) = Rψs(e)ψt(e) = ψt(e) · ψs(e),

the integral curve t +→ ψt(e) defines a group homomorphism between (R,+)
and (G, ·).

Definition 7.5. The exponential map exp : g→ G is the map that, to
each V ∈ g, assigns the value ψ1(e), where ψt is the flow of the left-invariant
vector field XV .

Remark 7.6. If cg(t) is the integral curve of X at g and s ∈ R, it is easy
to check that cg(st) is the integral curve of sX at g. On the other hand, for
V ∈ g one has XsV = sXV . Consequently,

ψt(e) = ce(t) = ce(t · 1) = F (e, 1) = exp (tV ),

where F is the flow of tXV = XtV .

Example 7.7. If G is a group of matrices, then for A ∈ g,

exp A = eA =
∞∑

k=0

Ak

k!
.

In fact, this series converges for any matrix A and the map h(t) = eAt

satisfies

h(0) = e0 = I

dh

dt
(t) = eAtA = h(t)A.

Hence, h is the flow of XA at the identity (that is, h(t) = ψt(e)), and so
exp A = ψ1(e) = eA.
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Let now G be any group and M be any set. We say that G acts on
M if there is a homomorphism φ from G to the group of bijective mappings
from M to M , or, equivalently, writing

φ(g)(p) = A(g, p),

if there is a mapping A : G×M →M satisfying the following conditions:

(i) if e is the identity in G, then A(e, p) = p, ∀p ∈ M ;
(ii) if g, h ∈ G, then A(g,A(h, p)) = A(gh, p), ∀p ∈ M .

Usually we denote A(g, p) by g · p.

Example 7.8.

(1) Let G be a group and H ⊂ G a subgroup. Then H acts on G by
left multiplication: A(h, g) = h · g for h ∈ H, g ∈ G.

(2) GL(n) acts on Rn through A · x = Ax for A ∈ GL(n) and x ∈ Rn.
The same is true for any subgroup G ⊂ GL(n).

For each p ∈ M we can define the orbit of p as the set G · p := {g · p |
g ∈ G}. If G · p = {p} then p is called a fixed point of G. If there is a
point p ∈ M whose orbit is all of M (i.e. G · p = M), then the action is
said to be transitive. Note that when this happens, there is only one orbit
and, for every p, q ∈ M with p '= q, there is always an element of the group
g ∈ G such that q = g · p. The manifold M is then called a homogeneous
space of G. The stabilizer (or isotropy subgroup) of a point p ∈ M is
the group

Gp = {g ∈ G | g · p = p}.
The action is called free if all the stabilizers are trivial.

If G is a Lie group and M is a smooth manifold, we say that the action
is smooth if the map A : G ×M → M is differentiable. In this case, the
map p +→ g · p is a diffeomorphism. We will always assume the action of
a Lie group on a differentiable manifold to be smooth. A smooth action is
said to be proper if the map

G×M → M ×M

(g, p) +→ (g · p, p)

is proper (recall that a map is called proper if the preimage of any compact
set is compact).

Remark 7.9. Note that a smooth action is proper if and only if, given
two convergent sequences {pn} and {gn ·pn} in M , there exists a convergent
subsequence {gnk

} in G. If G is compact this condition is always satisfied.

Proposition 7.10. If the action of a Lie group G on a differentiable
manifold M is proper, then the orbit space M/∼ is a Hausdorff space.

Proof. The relation p ∼ q ⇔ q ∈ G · p is an open equivalence relation.
Indeed, since p +→ g · p is a homeomorphism, the set [U ] = {g · p | p ∈
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U and g ∈ G} =
⋃

g∈G g · U is an open subset of M for any open set U in
M . Therefore we just have to show that the set

R = {(p, q) ∈M ×M | p ∼ q}

is closed (cf. Proposition 10.2). This follows from the fact that R is the
image of the map

G×M → M ×M

(g, p) +→ (g · p, p)

which is continuous and proper, hence closed. !

Under certain conditions the orbit space M/G is naturally a differen-
tiable manifold.

Theorem 7.11. Let M be a differentiable manifold equipped with a free
proper action of a Lie group G. Then the orbit space M/G is naturally a
differentiable manifold of dimension dimM − dim G, and the quotient map
π : M →M/G is a submersion.

Proof. By the previous proposition, the quotient M/G is Hausdorff.
Moreover, this quotient satisfies the second countability axiom because M
does so and the equivalence relation defined by G is open. It remains to
be shown that M/G has a natural differentiable structure for which the
quotient map is a submersion. We do this only in the case of a discrete Lie
group.

In this case, we just have to prove that for each point p ∈ M there exists
a neighborhood U / p such that g ·U ∩h ·U = ∅ for g '= h. This guarantees
that each point [p] ∈ M/G has a neighborhood [U ] homeomorphic to U ,
which we can assume to be a coordinate neighborhood. Since G acts by
diffeomorphisms, the differentiable structure defined in this way does not
depend on the choice of p ∈ [p]. Since the charts of M/G are obtained from
charts of M , the overlap maps are smooth. Therefore M/G has a natural
differentiable structure for which π : M → M/G is a local diffeomorphism
(as the coordinate expression of π|U : U → [U ] is the identity map).

Showing that g · U ∩ h · U = ∅ for g '= h is equivalent to showing
that g · U ∩ U = ∅ for g '= e. Assume that this did not happen for any
neighborhood U / p. Then there would exist a sequence of open sets Un / p
with Un+1 ⊂ Un,

⋂+∞
n=1 Un = {p} and a sequence gn ∈ G \ {e} asuch that

gn · Un ∩ Un '= ∅. Choose pn ∈ gn · Un. Then pn = gn · qn for some
qn ∈ Un. We have pn → p and qn → p. Since the action is proper, gn

admits a convergent subsequence gnk
. Let g be its limit. Making k → +∞

in qnk
= gnk

· pnk
yields g · p = p, implying that g = e (the action is free).

Because G is discrete, we would then have gnk
= e for sufficiently large k,

which is a contradiction. !

Example 7.12.
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(1) Let Sn = {x ∈ Rn+1 |
∑n

i=1(x
i)2 = 1} be equipped with the action

of G = Z2 = {−I, I} given by −I · x = −x (antipodal map). This
action is proper and free, and so the orbit space Sn/G is an n-
dimensional manifold. This space is the real projective space RPn

(cf. Exercise 2.5.8).
(2) The group G = R \ {0} acts on M = Rn+1 \ {0} by multiplica-

tion: t · x = tx. This action is proper and free, and so M/G is a
differentiable manifold of dimension n (which is again RPn).

(3) Consider M = Rn equipped with an action of G = Zn defined by:

(k1, . . . , kn) · (x1, . . . , xn) = (x1 + k1, . . . , xn + kn).

This action is proper and free, and so the quotient M/G is a
manifold of dimension n. This space with the quotient differen-
tiable structure defined in Theorem 7.11 is called the n-torus and
is denoted by Tn. It is diffeomorphic to the product manifold
S1 × · · · × S1 and, when n = 2, is diffeomorphic to the torus of
revolution in R3.

Quotients by dicrete group actions determine coverings of manifolds.

Definition 7.13. A smooth covering of a differentiable manifold B is
a pair (M,π), where M is a connected differentiable manifold, π : M → B
is a surjective local diffeomorphism, and, for each p ∈ B, there exists a
connected neighborhood U of p in B such that π−1(U) is the union of disjoint
open sets Uα ⊂ M (called slices), and the restrictions πα of π to Uα are
diffeomorphisms onto U . The map π is called a covering map and M is
called a covering manifold.

Remark 7.14.

(1) It is clear that we must have dimM = dim B.
(2) Note that the collection of mutually disjoint open sets {Uα} must

be countable (M has a countable basis).
(3) The fibers π−1(p) ⊂ M have the discrete topology. Indeed, as

each slice Uα is open and intersects π−1(p) in exactly one point,
this point is open in the subspace topology.

Example 7.15.

(1) The map π : R → S1 given by

π(t) = (cos(2πt), sin(2πt))

is a smooth covering of S1. However the restriction of this map to
(0,+∞) is a surjective local diffeomorphism which is not a covering
map.

(2) The product of covering maps is clearly a covering map. Thus we
can generalize the above example and obtain a covering of Tn ∼=
S1 × · · ·× S1 by Rn.

(3) In Example 7.12.1 we have a covering of RPn by Sn.
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A diffeomorphism h : M →M , where M is a covering manifold, is called
a deck transformation (or covering transformation) if π ◦ h = π, or,
equivalently, if each set π−1(p) is carried to itself by h. It can be shown that
the group G of all covering transformations is a discrete Lie group whose
action on M is free and proper.

If the covering manifold M is simply connected (cf. Section 10.5), the
covering is said to be a universal covering. In this case, B is diffeomorphic
to M/G. Moreover, G is isomorphic to the fundamental group π1(B) of
B (cf. Section 10.5).

Lie’s Theorem states that for a given Lie algebra g there exists a unique
simply connected Lie group G̃ whose Lie algebra is g. If a Lie group G also
has g as its Lie algebra, then there exists a unique Lie group homomorphism
π : G̃ → G which is a covering map. The group of deck transformations is,
in this case, simply ker(π), and hence G is diffeomorphic to G̃/ ker(π). In
fact, G is also isomorphic to G̃/ ker(π), which has a natural group structure
(ker(π) is a normal subgroup).

Example 7.16.

(1) In the universal covering of S1 of Example 7.15.1 the deck trans-
formations are translations hk : t +→ t + k by an integer k, and so
the fundamental group of S1 is Z.

(2) Similarly, the deck transformations of the universal covering of Tn

are translations by integer vectors (cf. Example 7.15.2), and so the
fundamental group of Tn is Zn.

(3) In the universal covering of RPn from Example 7.15.3, the only
deck transformations are the identity and the antipodal map, and
so the fundamental group of RPn is Z2.

Exercises 7.17.

(1) (a) Given two Lie groups G1, G2, show that G1 × G2 (the direct
product of the two groups) is a Lie group with the standard
differentiable structure on the product.

(b) The circle S1 can be identified with the subset of complex
numbers of absolute value 1. Show that S1 is a Lie group and
conclude that the n-torus T n ∼= S1 × . . . × S1 is also a Lie
group.

(2) (a) Show that (Rn,+) is a Lie group, determine its Lie algebra
and write an expression for the exponential map.

(b) Prove that, if G is an abelian Lie group, then [V,W ] = 0 for
all V,W ∈ g.

(3) We can identify each point in

H = {(x, y) ∈ R2 | y > 0}
with an invertible affine map h : R → R given by h(t) = yt+x. The
set of all such maps is a group under composition; consequently,
our identification induces a group structure on H.
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(a) Show that the induced group operation is given by

(x, y) · (z,w) = (yz + x, yw),

and that H, with this group operation, is a Lie group.
(b) Show that the derivative of the left translation map L(x,y) :

H → H at point (z,w) ∈ H is represented in the above coor-
dinates by the matrix

(
dL(x,y)

)
(z,w)

=

(
y 0
0 y

)
.

Conclude that the left-invariant vector field XV ∈ X(H) de-
termined by the vector

V = ξ
∂

∂x
+ η

∂

∂y
∈ h ≡ T(0,1)H (ξ, η ∈ R)

is given by

XV
(x,y) = ξy

∂

∂x
+ ηy

∂

∂y
.

(c) Given V,W ∈ h, compute [V,W ].
(d) Determine the flow of the vector field XV , and give an expres-

sion for the exponential map exp : h → H.
(e) Confirm your results by first showing that H is the subgroup

of GL(2) formed by matrices
(

y x
0 1

)

with y > 0.
(4) Consider the group

SL(2) =

{(
a b
c d

)
: ad− bc = 1

}
,

which we already know to be a 3-manifold. Making

a = p + q, d = p− q, b = r + s, c = r − s,

show that SL(2) is diffeomorphic to S1 × R2.
(5) For A ∈ gl(n), consider the differentiable map

h : R → R\{0}
t +→ det eAt

and show that:
(a) this map is a group homomorphism between (R,+) and (R\{0}, ·);
(b) h′(0) = trA;
(c) det(eA) = etrA.
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(6) (a) If A ∈ sl(2), show that there is a λ ∈ R ∪ iR such that

eA = coshλ I +
sinhλ

λ
A.

(b) Show that exp : sl(2) → SL(2) is not surjective.
(7) Consider the vector field X ∈ X(R2) defined by

X =
√

x2 + y2 ∂

∂x
.

(a) Show that the flow of X defines a free action of R on M =
R2 \ {0}.

(b) Describe the topological quotient space M/R. Is the action
above proper?

(8) Let M = S2 × S2 and consider the diagonal S1 action on M given
by

eiθ · (u, v) = (eiθ · u, e2iθ · v),

where, for u ∈ S2 ⊂ R3 and eiβ ∈ S1, eiβ · u denotes the rotation
of u by an angle β around the z-axis.
(a) Determine the fixed points for this action.
(b) What are the possible nontrivial stabilizers?

(9) Let G be a Lie group and H a closed Lie subgroup, i.e. a subgroup
of G which is also a closed submanifold of G. Show that the action
of H in G defined by A(h, g) = h · g is free and proper.

(10) (Grassmannian) Consider the set H ⊂ GL(n) of invertible matrices
of the form (

A 0
C B

)
,

where A ∈ GL(k), B ∈ GL(n− k) and C ∈M(n−k)×k.
(a) Show that H is a Lie subgroup of GL(n). Therefore H acts

freely and properly on GL(n) (cf. Exercise 7.17.9).
(b) Show that the points of the quotient manifold

Gr(n, k) = GL(n)/H

can be identified with the set of k-dimensional subspaces of Rn

(in particular Gr(n, 1) is just the projective space RPn−1).
(c) The manifold Gr(n, k) is called the Grassmannian of k-planes

in Rn. What is its dimension?
(11) Let G and H be Lie groups and F : G → H a Lie group homomor-

phism. Show that:
(a) (dF )e : g→ h is a Lie algebra homomorphism;
(b) if (dF )e is an isomorphism then F is a local diffeomorphism;
(c) if F is a surjective local diffeomorphism then F is a covering

map.
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(12) (a) Show that R ·SU(2) is a four dimensional real linear subspace
of M2×2(C), closed under matrix multiplication, with basis

1 =

(
1 0
0 1

)
, i =

(
i 0
0 −i

)
,

j =

(
0 1
−1 0

)
, k =

(
0 i
i 0

)
,

satisfying i2 = j2 = k2 = ijk = −1. Therefore this space can
be identified with the quaternions. Show that SU(2) can be
identified with the quaternions of Euclidean length equal to 1,
and is therefore diffeomorphic to S3.

(b) Let us identify R3 with the quaternions of zero real part. Show
that if n ∈ R3 is a unit vector then

exp

(
nθ

2

)
= 1cos

(
θ

2

)
+ n sin

(
θ

2

)

is also a unit quaternion.
(c) Show that the map

R3 → R3

v +→ exp

(
nθ

2

)
· v · exp

(
−

nθ

2

)

is a rotation by an angle θ about the axis defined by n.
(d) Show that there exists a surjective homomorphism F : SU(2) →

SO(3), and use this to conclude that SU(2) is the universal
covering of SO(3).

(e) What is the fundamental group of SO(3)?

8. Orientability

Let V be a finite dimensional vector space and consider two ordered
bases β = {b1, . . . , bn} and β′ = {b′1, . . . , b′n}. There is a unique linear
transformation S : V → V such that b′i = S bi for every i = 1, . . . , n. We say
that the two bases are equivalent if det S > 0. This defines an equivalence
relation that divides the set of all ordered basis of V into two equivalence
classes. An orientation for V is an assignment of a positive sign to the
elements of one equivalence class and a negative sign to the elements of the
other. The sign assigned to a basis is called its orientation and the basis
is said to be positively oriented or negatively oriented according to its
sign. It is clear that there are exactly two possible orientations for V .

Remark 8.1.

(1) The ordering of the basis is very important. If we interchange the
positions of two basis vectors we obtain a different ordered basis
with the opposite orientation.



46 1. DIFFERENTIABLE MANIFOLDS

(2) An orientation for a zero-dimensional vector space is just an as-
signment of a sign +1 or −1.

(3) We call the standard orientation of Rn to the orientation that
assigns a positive sign to the standard ordered basis.

An isomorphism A : V →W between two oriented vector spaces carries
two ordered bases of V in the same equivalence class to equivalent ordered
bases of W . Hence, for any ordered basis β, the sign of the image Aβ is
either always the same as the sign of β or always the opposite. In the first
case, the isomorphism A is said to be orientation preserving, and in the
latter it is called orientation reversing.

An orientation of a smooth manifold consists on a choice of orientations
for all tangent spaces TpM . If dimM = n ≥ 1, these orientations have to
fit together smoothly, meaning that for each point p ∈ M there exists a
parametrization (U,ϕ) around p such that

(dϕ)x : Rn → Tϕ(x)M

preserves the standard orientation of Rn at each point x ∈ U .

Remark 8.2. If the dimension of M is zero, an orientation is just an
assignment of a sign (+1 or −1), called orientation number, to each point
p ∈M .

Definition 8.3. A smooth manifold M is said to be orientable if it
admits an orientation.

Proposition 8.4. If a smooth manifold M is connected and orientable
then it admits precisely two orientations.

Proof. We will show that the set of points where two orientations agree
and the set of points where they disagree are both open. Hence, one of them
has to be M and the other the empty set. Let p be a point in M and let
(Uα,ϕα), (Uβ,ϕβ) be two parametrizations centered at p such that dϕα is
orientation preserving for the first orientation and dϕβ is orientation preserv-

ing for the second. The map
(
d(ϕ−1

β ◦ ϕα)
)

0
: Rn → Rn is either orientation

preserving (if the two orientations agree at p) or reversing. In the first case,

it has positive determinant at 0, and so, by continuity,
(
d(ϕ−1

β ◦ ϕα)
)

x
has

positive determinant for x on a neighborhood of 0, implying that the two

orientations agree on a neighborhood of p. Similarly, if
(
d(ϕ−1

β ◦ ϕα)
)

0
is

orientation reversing, the determinant of
(
d(ϕ−1

β ◦ ϕα)
)

x
is negative on a

neighborhood of 0, and so the two orientations disagree on a neighborhood
of p.

Let O be an orientation for M (i.e. a smooth choice of an orientation Op

of TpM for each p ∈ M), and −O the opposite orientation (corresponding
to taking the opposite orientation −Op at each tangent space TpM). If O′

is another orientation for M , then, for a given point p ∈ M , we know that
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O′
p agrees either with Op or with −Op (because a vector space has just two

possible orientations). Consequently, O′ agrees with either O or −O on
M . !

An alternative characterization of orientability is given by the following
proposition, whose proof is left as an exercise.

Proposition 8.5. A smooth manifold M is orientable if and only if
there exists an atlas A = {(Uα,ϕα)} for which all the overlap maps ϕ−1

β ◦ϕα

are orientation-preserving.

An oriented manifold is an orientable manifold together with a choice
of an orientation.

Exercises 8.6.

(1) Prove that the relation of “being equivalent” between ordered basis
of a finite dimensional vector space described above is an equiva-
lence relation.

(2) Show that a differentiable manifold M is orientable iff there exists
an atlas A = {(Uα,ϕα)} for which all the overlap maps ϕ−1

β ◦ ϕα

are orientation-preserving.
(3) (a) Show that if a manifold M is covered by two coordinate neigh-

borhoods V1 and V2 such that V1 ∩ V2 is connected, then M is
orientable.

(b) Show that Sn is orientable.
(4) Let M be an oriented n-dimensional manifold and c : I → M a

differentiable curve. A smooth vector field along c is a differ-
entiable map V : I → TM such that V (t) ∈ Tc(t)M for all t ∈ I
(cf. Section 2 in Chapter 3). Show that if V1, . . . , Vn : I → M are
smooth vector fields along c such that {V1(t), . . . , Vn(t)} is a basis
of Tc(t)M for all t ∈ I then all these basis have the same orientation.

(5) The Möbius band is the 2-dimensional submanifold of R3 given
by the image of the immersion g : (−1, 1) × R → R3 defined by

g(t,ϕ) =
((

1 + t cos
(ϕ

2

))
cos ϕ,

(
1 + t cos

(ϕ

2

))
sinϕ, t sin

(ϕ

2

))
.

Show that the Möbius band is not orientable.
(6) Let f : M → N be a diffeomorphism between two smooth man-

ifolds. Show that M is orientable if and only if N is orientable.
If, in addition, both manifolds are connected and oriented, and
(df)p : TpM → Tf(p)N preserves orientation at one point p ∈ M ,
show that it is orientation preserving at all points. The map f is
said to be orientation preserving in this case, and orientation
reversing otherwise.

(7) Let M and N be two oriented manifolds. We define an orientation
on the product manifold M × N (called product orientation)
in the following way: If α = {a1, . . . , am} and β = {b1, . . . , bn}
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are ordered bases of TpM and TqN , we consider the ordered basis
{(a1, 0), . . . , (am, 0), (0, b1), . . . , (0, bn)} of T(p,q)(M ×N) ∼= TpM ×
TqN . We then define an orientation on this space by setting the
sign of this basis equal to the product of the signs of α and β. Show
that this orientation does not depend on the choice of α and β.

(8) Show that the tangent bundle TM is always orientable, even if M
is not.

(9) (Orientable double covering) Let M be a non-orientable n-dimensional
manifold. For each point p ∈ M we consider the set Op of the (two)
equivalence classes of bases of TpM . Let M be the set

M = {(p,Op) | p ∈M,Op ∈ Op}.

Given a parametrization (U,ϕ) of M consider the maps ϕ : U →M
defined by

ϕ(x1, . . . , xn) =

(

ϕ(x1, . . . , xn),

[(
∂

∂x1

)

ϕ(x)

, . . . ,

(
∂

∂xn

)

ϕ(x)

])

,

where x = (x1, . . . , xn) ∈ U and
[(

∂
∂x1

)
ϕ(x)

, . . . ,
(

∂
∂xn

)
ϕ(x)

]
repre-

sents the equivalence class of the basis
{(

∂
∂x1

)
ϕ(x)

, . . . ,
(

∂
∂xn

)
ϕ(x)

}

of Tϕ(x)M .
(a) Show that these maps determine the structure of an orientable

differentiable manifold of dimension n on M .
(b) Consider the map π : M → M defined by π(p,Op) = p. Show

that π is differentiable and surjective. Moreover, show that,
for each p ∈ M , there exists a neighborhood V of p with
π−1(V ) = W1 ∪ W2, where W1 e W2 are two disjoint open
subsets of M , such that π restricted to Wi (i = 1, 2) is a
diffeomorphism onto V .

(c) Show that M is connected (M is therefore called the ori-
entable double covering of M).

(d) Let σ : M → M be the map defined by σ(p,Op) = (p,−Op),
where −Op represents the orientation of TpM opposite to Op.
Show that σ is a diffeomorphism which reverses orientations
satisfying π ◦ σ = π and σ ◦ σ = id.

(e) Show that any simply connected manifold is orientable.

9. Manifolds with Boundary

Let us consider again the closed half space

Hn = {(x1, . . . , xn) ∈ Rn | xn ≥ 0}

with the topology induced by the usual topology of Rn. Recall that a map
f : U → Rm defined on an open set U ⊂ Hn is said to be differentiable
if it is the restriction to U of a differentiable map f̃ defined on an open
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subset of Rn containing U (cf. Section 10.2). In this case, the derivative

(df)p is defined to be
(
df̃
)

p
. Note that this derivative is independent of the

extension used since any two extensions have to agree on U .

Definition 9.1. A smooth n-manifold with boundary is a topological
manifold with boundary of dimension n and a family of parametrizations
ϕα : Uα ⊂ Hn → M (that is, homeomorphisms of open sets Uα of Hn onto
open sets of M), such that:

(i) the coordinate neighborhoods cover M , meaning that
⋃
α ϕα(Uα) =

M ;
(ii) for each pair of indices α, β such that

W := ϕα(Uα) ∩ ϕβ(Uβ) '= ∅,

the overlap maps

ϕ−1
β ◦ ϕα : ϕ−1

α (W ) → ϕ−1
β (W )

ϕ−1
α ◦ ϕβ : ϕ−1

β (W ) → ϕ−1
α (W )

are smooth;
(iii) the family A = {(Uα,ϕα)} is maximal with respect to (i) and (ii),

meaning that, if ϕ0 : U0 → M is a parametrization such that ϕ0 ◦
ϕ−1 and ϕ−1 ◦ ϕ0 are C∞ for all ϕ in A, then ϕ0 is in A.

Recall that a point in M is said to be a boundary point if it is
on the image of ∂Hn under some parametrization (that is, if there is a
parametrization ϕ : U ⊂ Hn →M such that ϕ(x1, . . . , xn−1, 0) = p for some
(x1, . . . , xn−1) ∈ Rn−1), and that the set ∂M of all such points is called the
boundary of M .

Proposition 9.2. The boundary of a smooth n-manifold with boundary
is a differentiable manifold of dimension n− 1.

Proof. Suppose that p is a boundary point of M (an n-manifold with
boundary) and choose a parametrization ϕα : Uα ⊂ Hn → M around p.
Letting Vα := ϕα(Uα), we claim that ϕα(∂Uα) = ∂Vα, where ∂Uα = Uα ∩
∂Hn and ∂Vα = Vα ∩ ∂M . By definition of boundary, we already know
that ϕα(∂Uα) ⊂ ∂Vα, so we just have to show that ∂Vα ⊂ ϕα(∂Uα). Let
q ∈ ∂Vα and consider a parametrization ϕβ : Uβ → Vα around q, mapping
an open subset of Hn to an open subset of M and such that q ∈ ϕβ(∂Uβ).
If we show that ϕβ(∂Uβ) ⊂ ϕα(∂Uα) we are done. For that, we prove that(
ϕ−1
α ◦ ϕβ

)
(∂Uβ) ⊂ ∂Uα. Indeed, suppose that this map ϕ−1

α ◦ ϕβ takes
a point x ∈ ∂Uβ to an interior point (in Rn) of Uα. As this map is a
diffeomorphism, x would be an interior point (in Rn) of Uβ. This, of course,
contradicts the assumption that x ∈ ∂Uβ . Hence,

(
ϕ−1
α ◦ ϕβ

)
(∂Uβ) ⊂ ∂Uα

and so ϕβ(∂Uβ) ⊂ ϕα(∂Uα).
The map ϕα then restricts to a diffeomorphism from ∂Uα onto ∂Vα,

where we identify ∂Uα with an open subset of Rn−1. We obtain in this way
a parametrization around p in ∂M . !
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Remark 9.3. In the above proof we saw that the definition of a bound-
ary point does not depend on the parametrization chosen, meaning that, if
there exists a parametrization around p such that p is an image of a point
in ∂Hn, then any parametrization around p maps a boundary point of Hn

to p.

It is easy to see that if M is orientable then so is ∂M .

Proposition 9.4. Let M be an orientable manifold with boundary. Then
∂M is also orientable.

Proof. If M is orientable we can choose an atlas {(Uα,ϕα)} on M for
which the determinants of the derivatives of all overlap maps are positive.
With this atlas we can obtain an atlas {(∂Uα, ϕ̃α)} for ∂M in the way
described in the proof of Proposition 9.2. For any overlap map

(ϕ−1
β ◦ ϕα)(x1, . . . , xn) = (y1(x1, . . . , xn), . . . , yn(x1, . . . , xn))

we have

(ϕ−1
β ◦ϕα)(x1, . . . , xn−1, 0) = (y1(x1, . . . , xn−1, 0), . . . , yn−1(x1, . . . , xn−1, 0), 0)

and

(ϕ̃−1
β ◦ ϕ̃α)(x1, . . . , xn−1) = (y1(x1, . . . , xn−1, 0), . . . , yn−1(x1, . . . , xn−1, 0)).

Consequently, denoting (x1, . . . , xn−1, 0) by (x̃, 0),

(d(ϕ−1
β ◦ ϕα))(x̃,0) =




(d(ϕ̃−1

β ◦ ϕ̃α))x̃ | ∗
−− + −−
0 | ∂yn

∂xn (x̃, 0)





and so

det (d(ϕ−1
β ◦ ϕα))(x̃,0) =

∂yn

∂xn
(x̃, 0) det (d(ϕ̃−1

β ◦ ϕ̃α))x̃.

However, fixing x1, · · · , xn−1, we have that yn is positive for positive values
of xn and is zero for xn = 0. Consequently, ∂yn

∂xn (x̃, 0) > 0, and so

det (d(ϕ̃−1
β ◦ ϕ̃α))x̃ > 0.

!

Hence, choosing an orientation on a manifold with boundary M induces
an orientation on the boundary ∂M . The convenient choice, called the
induced orientation, can be obtained in the following way. For p ∈ ∂M
the tangent space Tp(∂M) is a subspace of TpM of codimension 1. As we
have seen above, considering a coordinate system x : W → Rn around p,
we have xn(p) = 0 and (x1, . . . , xn−1) is a coordinate system around p in
∂M . Setting np := −

(
∂

∂xn

)
p

(called an outward pointing vector at p),

the induced orientation on ∂M is defined by assigning a positive sign to an
ordered basis β of Tp(∂M) whenever the ordered basis {np,β} of TpM is

positive, and negative otherwise. Note that, since ∂yn

∂xn (ϕ−1(p)) > 0 (in the
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above notation), the sign of the last component of np does not depend on the
choice of coordinate system. In general, the induced orientation is not the
one obtained from the charts of M by simply dropping the last coordinate
(in fact, it is (−1)n times this orientation).

Exercises 9.5.

(1) Show that there is no diffeomorphism between a neighborhood of
0 in Rn and a neighborhood of 0 in Hn.

(2) Show with an example that the product of two manifolds with
boundary is not always a manifold with boundary.

(3) Let M be a manifold without boundary and N a manifold with
boundary. Show that the product M×N is a manifold with bound-
ary. What is ∂(M ×N)?

(4) Show that a diffeomorphism between two manifolds with boundary
M and N maps the boundary ∂M diffeomorphically onto ∂N .

10. Notes on Chapter 1

10.1. Section 1. We begin by briefly reviewing the main concepts and
results from general topology that we will need (see [Mun00] for a detailed
exposition).

(1) A topology on a set M is a collection T of subsets of M having
the following properties:
(i) the sets ∅ and M are in T ;
(ii) the union of the elements of any sub-collection of T is in T ;
(iii) the intersection of the elements of any finite sub-collection of

T is in T .
A set M equipped with a topology T is called a topological space.
We say that a subset U ⊂ M is an open set of M if it belongs to
the topology T . A neighborhood of a point p ∈ M is simply an
open set U ∈ T containing p. A closed set F ⊂ M is a set whose
complement M \ F is open. The interior intA of a subset A ⊂ M
is the largest open set contained in A, and its closure A is the
smallest closed set containing A. Finally, the subspace topology
on A ⊂ M is {U ∩A}U∈T .

(2) A topological space (M,T ) is said to be Hausdorff if, for each pair
of distinct points p1, p2 ∈ M , there exist neighborhoods U1, U2 of
p1 and p2 such that U1 ∩ U2 = ∅.

(3) A basis for a topology T on M is a collection B ⊂ T such that, for
each point p ∈ M and each open set U containing p, there exists
a basis element B ∈ B for which p ∈ B ⊂ U . If B is a basis for a
topology T then any element of T is a union of elements of B. A
topological space (M,T ) is said to satisfy the second countability
axiom if T has a countable base.

(4) A map f : M → N between two topological spaces is said to be
continuous if, for each open set U ⊂ N , the preimage f−1(U) is
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an open subset of M . A bijection f is called a homeomorphism
if both f and its inverse f−1 are continuous.

(5) An open cover for a topological space (M,T ) is a collection {Uα} ⊂
T such that

⋃
α Uα = M . A subcover is a sub-collection {Vβ} ⊂

{Uα} which is still an open cover. A topological space is said to be
compact if every open cover admits a finite subcover. A subset
A ⊂ M is said to be a compact subset if it is a compact topo-
logical space for the subspace topology. Continuous maps carry
compact sets to compact sets.

(6) A topological space is said to be connected if the only subsets
of M which are simultaneously open and closed are ∅ and M . A
subset A ⊂ M is said to be a connected subset if it is a connected
topological space for the subspace topology. Continuous maps carry
connected sets to connected sets.

(7) Let (M,T ) be a topological space. A sequence {pn} in M is said to
converge to p ∈ M if, for each neighborhood V of p, there exists an
N ∈ N for which pn ∈ V for n > N . If (M,T ) is Hausdorff, then
a convergent sequence has a unique limit. If in addition (M,T )
is second countable, then F ⊂ M is closed if and only if every
convergent sequence in F has limit in F , and K ⊂ M is compact
if and only if every sequence in K has a sublimit in K.

(8) If M and N are topological spaces, the set of all Cartesian products
of open subsets of M by open subsets of N is a basis for a topology
on M × N , called the product topology. Note that with this
topology the canonical projections are continuous maps.

(9) An equivalence relation ∼ on a set M is a relation with the
following properties:
(i) reflexivity: p ∼ p for every p ∈ M ;
(ii) symmetry: if p ∼ q then q ∼ p;
(iii) transitivity: if p ∼ q and q ∼ r then p ∼ r.
Given a point p ∈ M , we define the equivalence class of p as the
set

[p] = {q ∈ M | q ∼ p}.

Note that p ∈ [p] by reflexivity. Whenever we have an equivalence
relation ∼ on a set M , the corresponding set of equivalence classes
is called the quotient space, and is denoted by M/∼. There is a
canonical projection π : M →M/∼, which maps each element of M
to its equivalence class. If M is a topological space, we can define
a topology on the quotient space (called the quotient topology)
by letting a subset V ⊂ M/∼ be open if and only if the set π−1(V )
is open in M . The map π is then continuous for this topology.
We will be interested in knowing whether some quotient spaces are
Hausdorff. For that, the following definition will be helpful.



10. NOTES ON CHAPTER 1 53

Definition 10.1. An equivalence relation ∼ on a topological
space M is called open if the map π : M → M/∼ is open, i.e., if
for every open set U ⊂M , the set [U ] = π(U) is open.

Proposition 10.2. Let ∼ be an open equivalence relation on
M and let R = {(p, q) ∈ M ×M | p ∼ q}. Then the quotient space
is Hausdorff if and only if R is closed in M ×M .

Proof. Assume that R is closed. Let [p], [q] ∈ M/∼ with
[p] '= [q]. Then p " q, and (p, q) /∈ R. As R is closed, there are open
sets U, V containing p, q, respectively, such that (U × V ) ∩R = ∅.
This implies that [U ] ∩ [V ] = ∅. In fact, if there were a point
[r] ∈ [U ] ∩ [V ], then r would be equivalent to points p′ ∈ U and
q′ ∈ V (that is p′ ∼ r and r ∼ q′). Therefore we would have
p′ ∼ q′ (implying that (p′, q′) ∈ R), and so (U × V ) ∩R would not
be empty. Since [U ] and [V ] are open (as ∼ is an open equivalence
relation), we conclude that M/∼ is Hausdorff.

Conversely, let us assume that M/∼ is Hausdorff. If (p, q) /∈ R,
then p " q and [p] '= [q], implying the existence of open sets Ũ , Ṽ ⊂
M/∼ containing [p] and [q], such that Ũ ∩ Ṽ = ∅. The sets U :=
π−1(Ũ) and V := π−1(Ṽ ) are open in M and (U × V )∩R = ∅. In
fact, if that was not so, there would exist points p′ ∈ U and q′ ∈ V
such that p′ ∼ q′. Then we would have [p′] = [q′], contradicting the
fact that Ũ ∩ Ṽ = ∅ (as [p′] ∈ π(U) = Ũ and [q′] ∈ π(V ) = Ṽ ).
Since (p, q) ∈ U×V ⊂ (M×M)\R and U×V is open, we conclude
that (M ×M) \ R is open, and hence R is closed. !

10.2. Section 2.

(1) Let us begin by reviewing some facts about differentiability of maps
on Rn. A function f : U → R defined on an open subset U of
Rn is said to be continuously differentiable on U if all partial
derivatives ∂f

∂x1 , . . . , ∂f
∂xn exist and are continuous on U . In this

book, the words differentiable and smooth will be used to mean

infinitely differentiable, that is, all partial derivatives ∂kf
∂xi1 ···∂xik

exist and are continuous on U . Similarly, a map F : U → Rm,
defined on an open subset of Rn, is said to be differentiable or
smooth if all coordinate functions f i have the same property, that
is, if they all possess continuous partial derivatives of all orders. If
the map F is differentiable on U , its derivative at each point of U is
the linear map DF : Rn → Rm represented in the canonical bases
of Rn and Rm by the Jacobian matrix

DF =





∂f1

∂x1 · · · ∂f1

∂xn

...
...

∂fm

∂x1 · · · ∂fm

∂xn



 .



54 1. DIFFERENTIABLE MANIFOLDS

A map F : A → Rm defined on an arbitrary set A ⊂ Rn (not
necessarily open) is said to be differentiable on A is there exists
an open set U ⊃ A and a differentiable map F̃ : U → Rm such that
F = F̃ |A.

10.3. Section 4.

(1) Let E, B and F be smooth manifolds and π : E → B a differen-
tiable map. Then, π : E → B is called a fiber bundle of basis B,
total space E and fiber F if
(i) the map π is surjective;
(ii) there is a covering of B by open sets {Uα} and diffeomorphisms

ψα : π−1(Uα) → Uα × F such that for every b ∈ Uα we have
ψα(π−1(b)) = {b}× F .

10.4. Section 5.

(1) (The Inverse Function Theorem) Let f : U ⊂ Rn → Rn be a
smooth function and p ∈ U such that (df)p is a linear isomorphism.
Then there exists an open subset V ⊂ U containing p such that
f |V : V → f(V ) is a diffeomorphism.

10.5. Section 7.

(1) A group is a set G equipped with a binary operation · : G×G → G
satisfying:

(i) Associativity: g1 · (g2 ·g3) = (g1 ·g2) ·g3 for all g1, g2, g3 ∈ G;
(ii) Existence of identity: There exists an element e ∈ G such

that e · g = g · e = g for all g ∈ G;
(iii) Existence of inverses: For all g ∈ G there exists g−1 ∈ G

such that g · g−1 = g−1 · g = e.
If the group operation is commutative, meaning that g1 ·g2 = g2 ·g1

for all g1, g2 ∈ G, the group is said to be abelian. A subset H ⊂ G
is said to be a subgroup of G if the restriction of · to H × H is
a binary operation on H, and H, with this operation, is a group.
A subgroup H ⊂ G is said to be normal if ghg−1 ∈ H for all
g ∈ G,h ∈ H. A map f : G → H between two groups G and H is
said to be a group homomorphism if f(g1 · g2) = f(g1) · f(g2)
for all g1, g2 ∈ G. An isomorphism is a bijective homomorphism.
The kernel of a group homomorphism f : G → H is the subset
ker(f) = {g ∈ G | f(g) = e}, and is easily seen to be a normal
subgroup of G.

(2) Let f, g : X → Y be two continuous maps between topological
spaces and let I = [0, 1]. We say that f is homotopic to g if
there exists a continuous map H : I ×X → Y such that H(0, x) =
f(x) and H(1, x) = g(x) for every x ∈ X. This map is called a
homotopy.
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Homotopy of maps forms an equivalence relation in the set of
continuous maps between X and Y . As an application, let us fix a
base point p on a manifold M and consider the homotopy classes
of continuous maps f : I → M such that f(0) = f(1) = p (these
maps are called loops based at p), with the additional restriction
that H(t, 0) = H(t, 1) = p for all t ∈ I. This set of homotopy
classes is called the fundamental group of M relative to the base
point p, and is denoted by π1(M,p). Among its elements there is
the class of the constant loop based at p, given by f(t) = p
for every t ∈ I. Note that the set π1(M,p) is indeed a group with
operation ∗ (composition of loops) defined by [f ]∗[g] := [h], where
h : I →M is given by

h(t) =

{
f(2t) if t ∈ [0, 1

2 ]
g(2t − 1) if t ∈ [12 , 1]

.

The identity element of this group is the equivalence class of the
constant loop based at p.

If M is connected and this is the only class in π1(M,p), M is
said to be simply connected. This means that every loop through
p can be continuously deformed to the constant loop. This property
does not depend on the choice of point p, and is equivalent to the
condition that any closed path may be continuously deformed to a
constant loop in M .

10.6. Bibliographical notes. The material in this chapter is com-
pletely standard, and can be found in almost any book on differential ge-
ometry (e.g. [Boo03, dC93, GHL04]). Immersions and embeddings are
the starting point of differential topology, which is studied on [GP73,
Mil97]. Lie groups and Lie algebras are a huge field of Mathematics, to
which we could not do justice. See for instance [BtD03, DK99, War83].
More details on the fundamental group and covering spaces can be found in
[Mun00].





CHAPTER 2

Differential Forms

This chapter deals with differential forms, a fundamental tool in dif-
ferential geometry.

Section 1 reviews the notions of tensors and tensor product, and
introduces alternating tensors and their exterior product.

Tensor fields, which are natural generalizations of vector fields, are
discussed in Section 2, where a new operation, the pull-back of a covari-
ant tensor field by a smooth map, is defined. Section 3 studies fields of
alternating tensors, or differential forms, and their exterior derivative.
Important ideas such as the Poincaré Lemma and de Rham cohomol-
ogy, which will not be needed in the remainder of this book, are discussed
in the exercises.

In Section 4 we define the integral of a differential form on a smooth
manifold. To do so we make use of another fundamental tool in differential
geometry, namely the existence of partitions of unity.

The far-reaching Stokes Theorem is proved in Section 5, and some of
its consequences are explored in the exercises.

Finally, in Section 6 we study the relation between orientability and the
existence of special differential forms, called volume forms.

1. Tensors

Let V be an n-dimensional vector space. A k-tensor on V is a real
multilinear function (meaning linear in each variable) defined on the product
V × · · ·× V of k copies of V . The set of all k-tensors is itself a vector space
and is usually denoted by T k(V ∗).

Example 1.1.

(1) The space of 1-tensors T 1(V ∗) is equal to V ∗, the dual space of
V , that is, the space of real-valued linear functions on V .

(2) The usual inner product on Rn is an example of a 2-tensor.
(3) The determinant is an n-tensor on Rn.

Given a k-tensor T and an m-tensor S, we define their tensor product
as the (k + m)-tensor T ⊗ S given by

T ⊗ S(v1, . . . , vk, vk+1, . . . , vk+m) := T (v1, . . . , vk) · S(vk+1, . . . , vk+m).

This operation is bilinear and associative, but not commutative (cf. Exer-
cise 1.14.1).

57
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Proposition 1.2. If {T1, . . . , Tn} is a basis for T 1(V ∗) = V ∗ (the dual
space of V ), then the set {Ti1 ⊗ · · · ⊗ Tik | 1 ≤ i1, . . . , ik ≤ n} is a basis of
T k(V ∗), and therefore dimT k(V ∗) = nk.

Proof. We will first show that the elements of this set are linearly
independent. If

T :=
∑

i1,··· ,ik

ai1···ikTi1 ⊗ · · ·⊗ Tik = 0,

then, taking the basis {v1, . . . , vn} of V dual to {T1, . . . , Tn}, meaning that
Ti(vj) = δij (cf. Section 7.1), we have T (vj1 , . . . , vjk

) = aj1···jk
= 0 for every

1 ≤ j1, . . . , jk ≤ n.
To show that {Ti1 ⊗ · · · ⊗ Tik | 1 ≤ i1, . . . , ik ≤ n} spans T k(V ∗), we

take any element T ∈ T k(V ∗) and consider the k-tensor S defined by

S :=
∑

i1,··· ,ik

T (vi1 , . . . , vik)Ti1 ⊗ · · ·⊗ Tik .

Clearly, S(vi1 , . . . , vik) = T (vi1 , . . . , vik) for every 1 ≤ i1, . . . , ik ≤ n, and so,
by linearity, S = T . !

If we consider k-tensors on V ∗, instead of V , we obtain the space T k(V )
(note that (V ∗)∗ = V , as is shown in Section 7.1). These tensors are called
contravariant tensors on V , while the elements of T k(V ∗) are called co-
variant tensors on V . Note that the contravariant tensors on V are the
covariant tensors on V ∗. The words covariant and contravariant are related
to the transformation behavior of the tensor components under a change of
basis in V , as explained in Section 7.1.

We can also consider mixed (k,m)-tensors on V , that is, multilinear
functions defined on the product V × · · · × V × V ∗ × · · · × V ∗ of k copies
of V and m copies of V ∗. A (k,m)-tensor is then k times covariant and m
times contravariant on V . The space of all (k,m)-tensors on V is denoted
by T k,m(V ∗, V ).

Remark 1.3.

(1) We can identify the space T 1,1(V ∗, V ) with the space of linear maps
from V to V . Indeed, for each element T ∈ T 1,1(V ∗, V ), we define
the linear map from V to V , given by v +→ T (v, ·). Note that
T (v, ·) : V ∗ → R is a linear function on V ∗, that is, an element of
(V ∗)∗ = V .

(2) Generalizing the above definition of tensor product to tensors de-
fined on different vector spaces, we can define the spaces T k(V ∗)⊗
T m(W ∗) generated by the tensor products of elements of T k(V ∗) by
elements of T m(W ∗). Note that T k,m(V ∗, V ) = T k(V ∗)⊗ T m(V ).
We leave it as an exercise to find a basis for this space.
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A tensor is called alternating if, like the determinant, it changes sign
every time two of its variables are interchanged, that is, if

T (v1, . . . , vi, . . . , vj , . . . , vn) = −T (v1, . . . , vj , . . . , vi, . . . , vn).

The space of all alternating k-tensors is a vector subspace Λk(V ∗) of T k(V ∗).
Note that, for any alternating k-tensor T , we have T (v1, . . . , vk) = 0 if
vi = vj for some i '= j.

Example 1.4.

(1) All 1-tensors are trivially alternating, that is, Λ1(V ∗) = T 1(V ∗) =
V ∗.

(2) The determinant is an alternating n-tensor on Rn.

Consider now Sk, the group of all possible permutations of {1, . . . , k}.
If σ ∈ Sk, we set σ(v1, . . . , vk) = (vσ(1), . . . , vσ(k)). Given a k-tensor T ∈
T k(V ∗) we can define a new alternating k-tensor, called Alt(T ), in the fol-
lowing way:

Alt(T ) :=
1

k!

∑

σ∈Sk

(sgnσ) (T ◦ σ)

where sgnσ is +1 or −1 according to whether σ is an even or an odd permu-
tation. We leave it as an exercise to show that Alt(T ) is in fact alternating.

Example 1.5. If T ∈ T 3(V ∗),

Alt(T )(v1, v2, v3) = 1
6 (T (v1, v2, v3) + T (v3, v1, v2) + T (v2, v3, v1)

−T (v1, v3, v2)− T (v2, v1, v3)− T (v3, v2, v1)) .

We will now define the wedge product between alternating tensors: if
T ∈ Λk(V ∗) and S ∈ Λm(V ∗), then T ∧ S ∈ Λk+m(V ∗) is given by

T ∧ S :=
(k + m)!

k!m!
Alt(T ⊗ S).

Example 1.6. If T, S ∈ Λ1(V ∗) = V ∗, then

T ∧ S = 2Alt(T ⊗ S) = T ⊗ S − S ⊗ T,

implying that T ∧ S = −S ∧ T and T ∧ T = 0.

It is easy to verify that this product is bilinear. To prove associativity
we need the following proposition

Proposition 1.7.

(i) Let T ∈ T k(V ∗) and S ∈ T m(V ∗). If Alt(T ) = 0 then

Alt(T ⊗ S) = Alt(S ⊗ T ) = 0;

(ii) Alt(Alt(T ⊗ S)⊗R) = Alt(T ⊗ S ⊗R) = Alt(T ⊗Alt(S ⊗R)).

Proof.
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(i) Let us consider

(k + m)! Alt(T ⊗ S)(v1, . . . , vk+m) =
∑

σ∈Sk+m

(sgn σ)T (vσ(1), . . . , vσ(k))S(vσ(k+1), . . . , vσ(k+m)).

Taking the subgroup G of Sk+m formed by the permutations that leave
k + 1, . . . , k + m fixed, we have

∑

σ∈G

(sgn σ)T (vσ(1), . . . , vσ(k))S(vσ(k+1), . . . , vσ(k+m)) =

=
∑

σ∈G

(sgnσ)T (vσ(1), . . . , vσ(k))S(vk+1, . . . , vk+m)

= k! (Alt(T )⊗ S) (v1, . . . , vk+m) = 0.

Then, since G decomposes Sk+m into disjoint right cosets G · σ̃ = {σσ̃ |
σ ∈ G}, and for each coset

∑

σ∈G·eσ

(sgnσ)(T ⊗ S)(vσ(1), . . . , vσ(k+m)) =

= (sgn σ̃)
∑

σ∈G

(sgnσ) (T ⊗ S)(vσ(eσ(1)), . . . , vσ(eσ(k+m)))

= (sgn σ̃)k! (Alt(T )⊗ S)(veσ(1), . . . , veσ(k+m)) = 0,

we have that Alt(T ⊗S) = 0. Similarly, we prove that Alt(S⊗T ) = 0.
(ii) By linearity of the operator Alt and the fact that Alt ◦ Alt = Alt

(cf. Exercise 1.14.3), we have

Alt(Alt(S ⊗R)− S ⊗R) = 0.

Hence, by (i),

0 = Alt(T ⊗ (Alt(S ⊗R)− S ⊗R))

= Alt(T ⊗Alt(S ⊗R))−Alt(T ⊗ S ⊗R),

and the result follows.

!

Using these properties we can show that

Proposition 1.8. (T ∧ S) ∧R = T ∧ (S ∧R).

Proof. By Proposition 1.7, for T ∈ Λk(V ∗), S ∈ Λm(V ∗) and R ∈
Λl(V ∗), we have

(T ∧ S) ∧R =
(k + m + l)!

(k + m)! l!
Alt((T ∧ S)⊗R)

=
(k + m + l)!

k!m! l!
Alt(T ⊗ S ⊗R)
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and

T ∧ (S ∧R) =
(k + m + l)!

k! (m + l)!
Alt(T ⊗ (S ∧R))

=
(k + m + l)!

k!m! l!
Alt(T ⊗ S ⊗R).

!

We can now prove the following theorem.

Theorem 1.9. If {T1, . . . , Tn} is a basis for V ∗, then the set

{Ti1 ∧ · · · ∧ Tik | 1 ≤ i1 < . . . < ik ≤ n}

is a basis for Λk(V ∗), and

dimΛk(V ∗) =

(
n
k

)
=

n!

k!(n− k)!
.

Proof. Let T ∈ Λk(V ∗) ⊂ T k(V ∗). By Proposition 1.2,

T =
∑

i1,...,ik

ai1···ikTi1 ⊗ · · ·⊗ Tik

and, since T is alternating,

T = Alt(T ) =
∑

i1,...,ik

ai1···ikAlt(Ti1 ⊗ · · ·⊗ Tik).

We can show by induction that Alt(Ti1 ⊗ · · ·⊗ Tik) = 1
k!Ti1 ∧ Ti2 ∧ · · · ∧ Tik .

Indeed, for k = 1, the result is trivially true, and, assuming it is true for k
basis tensors, we have, by Proposition 1.7, that

Alt(Ti1 ⊗ · · ·⊗ Tik+1) = Alt(Alt(Ti1 ⊗ · · ·⊗ Tik)⊗ Tik+1)

=
k!

(k + 1)!
Alt(Ti1 ⊗ · · ·⊗ Tik) ∧ Tik+1

=
1

(k + 1)!
Ti1 ∧ Ti2 ∧ · · · ∧ Tik+1 .

Hence,

T =
1

k!

∑

i1,...,ik

ai1···ikTi1 ∧ Ti2 ∧ · · · ∧ Tik .

However, the tensors Ti1 ∧ · · · ∧ Tik are not linearly independent. Indeed,
due to anticommutativity, if two sequences (i1, . . . ik) and (j1, . . . jk) differ
only in their orderings, then Ti1 ∧ · · · ∧ Tik = ±Tj1 ∧ · · · ∧ Tjk

. In addition,
if any two of the indices are equal, then Ti1 ∧ · · · ∧ Tik = 0. Hence, we can
avoid repeating terms by considering only increasing index sequences:

T =
∑

i1<···<ik

bi1···ikTi1 ∧ · · · ∧ Tik
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and so the set {Ti1 ∧ · · · ∧ Tik | 1 ≤ i1 < . . . < ik ≤ n} spans Λk(V ∗).
Moreover, the elements of this set are linearly independent. Indeed, if

0 = T =
∑

i1<···<ik

bi1···ikTi1 ∧ · · · ∧ Tik ,

then, taking a basis {v1, . . . , vn} of V dual to {T1, . . . , Tn} and an increasing
index sequence (j1, . . . , jk), we have

0 = T (vj1, . . . , vjk
)= k!

∑

i1<···<ik

bi1···ikAlt(Ti1 ⊗ · · ·⊗ Tik)(vj1 , . . . , vjk
)

=
∑

i1<···<ik

bi1···ik

∑

σ∈Sk

(sgn σ)Ti1(vjσ(1)
) · · · Tik(vjσ(k)

).

Since (i1, . . . , ik) and (j1, . . . , jk) are both increasing, the only term of the
second sum that may be different from zero is the one for which σ = id.
Consequently,

0 = T (vj1, . . . , vjk
) = bj1···jk

.

!

The following result is clear from the anticommutativity shown in Ex-
ample 1.6.

Proposition 1.10. If T ∈ Λk(V ∗) and S ∈ Λm(V ∗), then

T ∧ S = (−1)kmS ∧ T.

Remark 1.11.

(1) Another consequence of Theorem 1.9 is that dim(Λn(V ∗)) = 1.
Hence, if V = Rn, any alternating n-tensor in Rn is a multiple of
the determinant.

(2) It is also clear that Λk(V ∗) = 0 if k > n. Moreover, the set Λ0(V ∗)
is defined to be equal to R (identified with the set of constant
functions on V ).

A linear transformation F : V → W induces a linear transformation
F ∗ : T k(W ∗) → T k(V ∗) defined by

(F ∗T )(v1, . . . , vk) = T (F (v1), . . . , F (vk)).

If T ∈ Λk(W ∗), the tensor F ∗T is an alternating tensor on V . It is easy to
check that

F ∗(T ⊗ S) = (F ∗T )⊗ (F ∗S)

for T ∈ T k(W ∗) and S ∈ T m(W ∗). One can then easily show that if T and
S are alternating, then

F ∗(T ∧ S) = (F ∗T ) ∧ (F ∗S).

Another important fact about alternating tensors is the following.

Theorem 1.12. Let F : V → V be a linear map and let T ∈ Λn(V ∗).
Then F ∗T = (det A)T , where A is any matrix representing F .



1. TENSORS 63

Proof. As Λn(V ∗) is 1-dimensional and F is a linear map, F ∗ is just
multiplication by some constant C. Let us consider an isomorphism H
between V and Rn. Then, H∗ det is an alternating n-tensor in V , and so
F ∗H∗ det = CH∗ det. Hence, by Exercise 1.14.4,

(H−1)∗F ∗H∗ det = C det⇔ (H ◦ F ◦H−1)∗ det = C det⇔ A∗ det = C det,

where A is the matrix representation of F induced by H. Taking the stan-
dard basis in Rn, {e1, . . . , en}, we have

A∗ det (e1, . . . , en) = C det(e1, . . . , en) = C,

and so

det (Ae1, . . . , Aen) = C,

implying that C = detA. !

Remark 1.13. By the above theorem, if T ∈ Λn(V ∗) and T '= 0, then
two ordered basis {v1, . . . , vn} and {w1, . . . , wn} are equivalently oriented if
and only if T (v1, . . . , vn) and T (w1, . . . , wn) have the same sign.

Exercises 1.14.

(1) Show that the tensor product is bilinear and associative but not
commutative.

(2) Find a basis for the space T k,m(V ∗, V ) of mixed (k,m)-tensors.
(3) If T ∈ T k(V ∗), show that

(a) Alt(T ) is an alternating tensor;
(b) if T is alternating then Alt(T ) = T ;
(c) Alt(Alt(T )) = Alt(T ).

(4) Let F : V1 → V2, and H : V2 → V3 be two linear maps between
vector spaces. Show that:
(a) (H ◦ F )∗ = F ∗ ◦H∗;
(b) for T ∈ Λk(V ∗

2 ) and S ∈ Λm(V ∗
2 ), F ∗(T ∧ S) = F ∗T ∧ F ∗S.

(5) Prove Proposition 1.10.
(6) Let T1, . . . , Tk ∈ V ∗. Show that

(T1 ∧ · · · ∧ Tk)(v1, . . . , vk) = det [Ti(vj)].

(7) Let T1, . . . , Tk ∈ Λ1(V ∗) = V ∗. Show that they are linearly inde-
pendent if and only if T1 ∧ · · · ∧ Tk '= 0.

(8) Let T ∈ Λk(V ∗) and let v ∈ V . We define contraction of T by v,
ι(v)T , as the (k − 1)-tensor given by

(ι(v)T )(v1, . . . , vk−1) = T (v, v1, . . . , vk−1).

Show that:
(a) ι(v1)(ι(v2)T ) = −ι(v2)(ι(v1)T );
(b) if T ∈ Λk(V ∗) and S ∈ Λm(V ∗) then

ι(v)(T ∧ S) = (ι(v)T ) ∧ S + (−1)kT ∧ (ι(v)S).
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2. Tensor Fields

The definition of vector field can be generalized to tensor fields of general
type. For that, we denote by T ∗

p M the dual of the tangent space TpM at a
point p in M (usually called the cotangent space to M at p).

Definition 2.1. A (k,m)-tensor field is a map that to each point
p ∈M assigns a tensor T ∈ T k,m(T ∗

p M,TpM).

Example 2.2. A vector field is a (0, 1)-tensor field (or a 1-contravariant
tensor field), that is, a map that to each point p ∈ M assigns the 1-
contravariant tensor Xp ∈ TpM .

Example 2.3. Let f : M → R be a differentiable function. We can
define a (1, 0)-tensor field df which carries each point p ∈ M to (df)p, where

(df)p : TpM → R

is the derivative of f at p. This tensor field is called the differential of f .
For any v ∈ TpM we have (df)p(v) = v · f (the directional derivative of f
at p along the vector v). Considering a coordinate system x : W → Rn, we
can write v =

∑n
i=1 vi

(
∂
∂xi

)
p
, and so

(df)p(v) =
∑

i

vi ∂f̂

∂xi
(x(p)),

where f̂ = f ◦ x−1. Taking the projections xi : W → R, we can obtain
1-forms dxi defined on W . These satisfy

(dxi)p

((
∂

∂xj

)

p

)

= δij

and so they form a basis of each cotangent space T ∗
p M , dual to the coordinate

basis
{(

∂
∂x1

)
p
, · · · ,

(
∂

∂xn

)
p

}
of TpM . Hence, any (1, 0)-tensor field on W

can be written as ω =
∑

i ωidxi, where ωi : W → R is such that ωi(p) =
ωp(

(
∂
∂xi

)
p
). In particular, df can be written in the usual way

(df)p =
n∑

i=1

∂f̂

∂xi
(x(p))(dxi)p.

Remark 2.4. Similarly to what was done for the tangent bundle, we can
consider the disjoint union of all cotangent spaces and obtain the manifold

T ∗M =
⋃

p∈M

T ∗
p M

called the cotangent bundle of M . Note that a (1, 0)-tensor field is just a
map from M to T ∗M defined by

p +→ ωp ∈ T ∗
p M.

This construction can be easily generalized for arbitrary tensor fields.
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The space of (k,m)-tensor fields is clearly a vector space since linear
combinations of (k,m)-tensors are still (k,m)-tensors. If W is a coordinate
neighborhood of M , we know that

{
(dxi)p

}
is a basis for T ∗

p M and that{(
∂
∂xi

)
p

}
is a basis for TpM . Hence, the value of a (k,m)-tensor field T at

a point p ∈ W can be written as the tensor

Tp =
∑

aj1···jm

i1···ik (p)(dxi1)p ⊗ · · ·⊗ (dxik)p ⊗
(

∂

∂xj1

)

p

⊗ · · ·⊗
(

∂

∂xjm

)

p

where the aj1···jm

i1···ik : W → R are functions which at each p ∈ W give us the
components of Tp relative to these bases of T ∗

p M and TpM . Just as we did
with vector fileds, we say that a tensor field is differentiable if all these
functions are differentiable for all coordinate sytems of the maximal atlas.
Again, we only need to consider the coordinate sytems of an atlas, since all
overlap maps are differentiable (cf. Exercise 2.8.1).

Example 2.5. The differential of a smooth function f : M → R is

clearly a differentiable (1, 0)-tensor field, since its components ∂f̂
∂xi ◦ x on a

given coordinate system x : W → Rn are smooth.

An important operation on covariant tensors is the pullback by a smooth
map.

Definition 2.6. Let f : M → N be a differentiable map between smooth
manifolds. Then, each differentiable k-covariant tensor field T on N defines
a k-covariant tensor field f∗T on M in the following way:

(f∗T )p(v1, . . . , vk) = Tf(p)((df)pv1, . . . , (df)pvk),

for v1, . . . , vk ∈ TpM .

Remark 2.7. Notice that (f∗T )p is just the image of Tf(p) by the linear

map (df)∗p : T k(T ∗
f(p)N) → T k(T ∗

p M) induced by (df)p : TpM → Tf(p)N

(cf. Section 1). Therefore the properties f∗(αT + βS) = α(f∗T ) + β(f∗S)
and f∗(T ⊗ S) = (f∗T ) ⊗ (f∗S) hold for all α,β ∈ R and all appropriate
covariant tensor fields T, S. We will see in Exercise 2.8.2 that the pull-back of
a differentiable covariant tensor field is still a differentiable covariant tensor
field.

Exercises 2.8.

(1) Find the relation between coordinate functions of a tensor field in
two overlapping coordinate systems.

(2) Show that the pull-back of a differentiable covariant tensor field is
still a differentiable covariant tensor field.

(3) (Lie derivative of a tensor field) Given a vector field X ∈ X(M),
we define the Lie derivative of a k-covariant tensor field T
along X as

LXT :=
d

dt
(ψt

∗T )
|t=0

,
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where ψt = F (·, t) with F the local flow of X at p.
(a) Show that

LX (T (Y1, . . . , Yk)) = LXT (Y1, . . . , Yk)

+ T (LXY1, . . . , Yk) + . . . + T (Y1, . . . , LXYk),

i.e., show that

X · (T (Y1, . . . , Yk)) = LXT (Y1, . . . , Yk)

+ T ([X,Y1], . . . , Yk) + . . . + T (Y1, . . . , [X,Yk]),

for all vector fields Y1, . . . , Yk (cf. Exercises 6.11.10 and 6.11.11
in Chapter 1).

(b) How would you define the Lie derivative of a (k,m)-tensor
field?

3. Differential Forms

Fields of alternating tensors are very important objects called forms.

Definition 3.1. Let M be a smooth manifold. A form of degree k
(or k-form) on M is a field of alternating k-tensors defined on M , that is,
a map ω that, to each point p ∈ M , assigns an element ωp ∈ Λk(T ∗

p M).

The space of k-forms on M is clearly a vector space. By Theorem 1.9,
given a coordinate system x : W → Rn, any k-form on W can be written as

ω =
∑

I

ωIdxI

where I = (i1, . . . , ik) denotes any increasing index sequence of integers
in {1, . . . , n}, dxI is the form dxi1 ∧ · · · ∧ dxik , and the ωI ’s are functions
defined on W . It is easy to check that the components of ω in the basis
{dxi1 ⊗ · · ·⊗ dxik} are ±ωI . Therefore ω is a differentiable (k, 0)-tensor (in
which case it is called a differential form) if the functions ωI are smooth
for all coordinate systems of the maximal atlas. The set of differential k-
forms on M is represented by Ωk(M). From now on we will use the word
“form” to mean a differential form.

Given a smooth map f : M → N between differentiable manifolds, we
can induce forms on M from forms on N using the pull-back operation
(cf. Definition 2.6), since the pull-back of a field of alternating tensors is
still a field of alternating tensors.

Remark 3.2. If g : N → R is a 0-form, that is, a function, the pullback
is defined as f∗g = g ◦ f .

It is easy to verify that the pullback of forms satisfies the following
properties, the proof of which we leave as an exercise:

Proposition 3.3. Let f : M → N be a differentiable map and α,β
forms on N . Then,



3. DIFFERENTIAL FORMS 67

(i) f∗(α + β) = f∗α + f∗β;
(ii) f∗(gα) = (g ◦ f)f∗α = (f∗g)(f∗α) for any function g : N → R;
(iii) f∗(α ∧ β) = f∗α ∧ f∗β;
(iv) g∗f∗α = (f ◦ g)∗α for any differentiable map g : L→M .

Example 3.4. If f : M → N is differentiable and we consider coordinate
systems x : V → Rm, y : W → Rn respectively on M and N , we have yi =
f̂ i(x1, . . . , xm) for i = 1, . . . , n and f̂ = y ◦ f ◦ x−1 the local representation
of f . If ω =

∑
I ωIdyI is a k-form on W , then by Proposition 3.3,

f∗ω = f∗

(
∑

I

ωIdyI

)

=
∑

I

(f∗ωI)(f
∗dyI) =

∑

I

(ωI◦f)f∗dyi1∧· · ·∧f∗dyik .

Moreover, for v ∈ TpM ,

(f∗(dyi))p(v) = (dyi)f(p)((df)pv) =
(
d(yi ◦ f)

)
p
(v),

that is, f∗(dyi) = d(yi ◦ f). Hence,

f∗ω =
∑

I

(ωI ◦ f) d(yi1 ◦ f) ∧ · · · ∧ d(yik ◦ f)

=
∑

I

(ωI ◦ f) d(f̂ i1 ◦ x) ∧ · · · ∧ d(f̂ ik ◦ x).

If k = dim M = dim N = n, then the pullback f∗ω can easily be computed
from Theorem 1.12, according to which

(4) (f∗(dy1 ∧ · · · ∧ dyn))p = det (df̂)x(p)(dx1 ∧ · · · ∧ dxn)p.

Given any form ω on M and a parametrization ϕ : U → M , we can
consider the pullback of ω by ϕ and obtain a form defined on the open set
U , called the representation of ω on that parametrization.

Example 3.5. Let x : W → Rn be a coordinate system on a smooth
manifold M and consider the 1-form dxi defined on W . The pullback ϕ∗dxi

by the corresponding parametrization ϕ := x−1 is a 1-form on an open
subset U of Rn satisfying

(ϕ∗dxi)x(v) = (ϕ∗dxi)x




n∑

j=1

vj

(
∂

∂xj

)

x



 = (dxi)p




n∑

j=1

vj(dϕ)x

(
∂

∂xj

)

x





= (dxi)p




n∑

j=1

vj

(
∂

∂xj

)

p



 = vi = (dxi)x(v),

for x ∈ U , p = ϕ(x) and v =
∑n

j=1 vj
(

∂
∂xj

)
x
∈ TxU . Hence, just as we had(

∂
∂xi

)
p

= (dϕ)x
(

∂
∂xi

)
x
, we now have (dxi)x = ϕ∗(dxi)p, and so (dxi)p is the

1-form in W whose representation on U is (dxi)x.
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If ω =
∑

I ωIdxI is a k-form defined on an open subset of Rn, we define
a (k + 1)-form called exterior derivative of ω as

dω :=
∑

I

dωI ∧ dxI .

Example 3.6. Consider the form ω = − y
x2+y2 dx + x

x2+y2 dy defined on

R2\{0}. Then,

dω = d

(
−

y

x2 + y2

)
∧ dx + d

(
x

x2 + y2

)
∧ dy

=
y2 − x2

(x2 + y2)2
dy ∧ dx +

y2 − x2

(x2 + y2)2
dx ∧ dy = 0.

The exterior derivative satisfies the following properties:

Proposition 3.7. If α,ω,ω1,ω2 are forms on Rn, then

(i) d(ω1 + ω2) = dω1 + dω2;
(ii) if ω is k-form, d(ω ∧ α) = dω ∧ α + (−1)kω ∧ dα;
(iii) d(dω) = 0;
(iv) if f : Rm → Rn is smooth, d(f∗ω) = f∗(dω).

Proof. Property (i) is obvious. Using (i), it is enough to prove (ii) for
ω = aIdxI and α = bJdxJ :

d(ω ∧ α) = d(aIbJ dxI ∧ dxJ) = d(aIbJ) ∧ dxI ∧ dxJ

= (bJ daI + aI dbJ) ∧ dxI ∧ dxJ

= bJ daI ∧ dxI ∧ dxJ + aI dbJ ∧ dxI ∧ dxJ

= dω ∧ α + (−1)kaIdxI ∧ dbJ ∧ dxJ

= dω ∧ α + (−1)kω ∧ dα.

Again, to prove (iii), it is enough to consider forms ω = aIdxI . Since

dω = daI ∧ dxI =
n∑

i=1

∂aI

∂xi
dxi ∧ dxI ,

we have

d(dω) =
n∑

j=1

n∑

i=1

∂2aI

∂xj∂xi
dxj ∧ dxi ∧ dxI

=
n∑

i=1

∑

j<i

(
∂2aI

∂xj∂xi
−

∂2aI

∂xi∂xj

)
dxj ∧ dxi ∧ dxI = 0.

To prove (iv), we first consider a 0-form g:

f∗(dg) = f∗

(
n∑

i=1

∂g

∂xi
dxi

)

=
n∑

i=1

(
∂g

∂xi
◦ f

)
df i=

n∑

i,j=1

((
∂g

∂xi
◦ f

)
∂f i

∂xj

)
dxj

=
n∑

j=1

∂(g ◦ f)

∂xj
dxj = d(g ◦ f) = d(f∗g).
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Then, if ω = aIdxI , we have

d(f∗ω) = d(aI ◦ f) ∧ df I + (aI ◦ f)d(df I) = d(aI ◦ f) ∧ df I = d(f∗aI) ∧ df I

= (f∗daI) ∧ df I = f∗(daI ∧ dxI) = f∗(dω)

(where df I denotes the form df i1 ∧ · · · ∧ df ik), and the result follows. !

If we consider two parametrizations ϕα : Uα → M , ϕβ : Uβ → M such
that ϕα(Uα)∩ϕβ(Uβ) = W '= ∅, and take the corresponding representations
ωα := ϕ∗

αω and ωβ := ϕ∗
βω of a k-form ω, it is easy to verify that

(ϕ−1
α ◦ ϕβ)

∗ωα = ωβ.

Suppose now that ω is a differential k-form on a smooth manifold M . We
define the (k +1)-form dω as the smooth form that is locally represented by
dωα, that is, for each parametrization ϕα : Uα →M , the form dω is defined
on ϕα(U), as (ϕ−1

α )∗(dωα). Given another parametrization ϕβ : Uβ → M
such that ϕα(Uα)∩ϕβ(Uβ) = W '= ∅, then, setting f equal to ϕ−1

α ◦ϕβ , we
have

f∗(dωα) = d(f∗ωα) = dωβ.

Consequently,

(ϕ−1
β )∗dωβ = (ϕ−1

β )∗f∗(dωα)

= (f ◦ ϕ−1
β )∗(dωα)

= (ϕ−1
α )∗(dωα),

and so the two definitions agree on the overlapping set W . Therefore dω
is well defined. We leave it as an exercise to show that the exterior deriv-
ative defined for forms on smooth manifolds also satisfies the properties of
Proposition 3.7.

Exercises 3.8.

(1) Prove Proposition 3.3.
(2) (Exterior derivative) Let M be a smooth manifold. Given a k-form

ω in M we can define its exterior derivative dω without using local
coordinates: given k + 1 vector fields X1, . . . ,Xk+1 ∈ χ(M),

dω(X1, . . . ,Xk+1) :=
k+1∑

i=1

(−1)i−1Xi · ω(X1, . . . , X̂i, . . . ,Xk+1)+

∑

i<j

(−1)i+jω([Xi,Xj ],X1, . . . , X̂i, . . . , X̂j , . . . ,Xk+1),

where the hat indicates an omitted variable.
(a) Show that dω defined above is in fact a (k + 1)-form in M ,

that is,
(i) dω(X1, . . . ,Xi + Yi, . . . ,Xk+1) =

dω(X1, . . . ,Xi, . . . ,Xk+1) + dω(X1, . . . , Yi, . . . ,Xk+1);
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(ii) dω(X1, . . . , fXj , . . . ,Xk+1)=fdω(X1, . . . ,Xk+1) for any
differentiable function f ;

(iii) dω is alternating.
(b) Let x : W → Rn be a coordinate system of M and let ω =∑

I aIdxi1 ∧ · · · ∧ dxik be the expression of ω in these coordi-
nates (where the aI ’s are smooth functions). Show that the
local expression of dω is the same as the one used in the local
definition of exterior derivative, that is,

dω =
∑

I

daI ∧ dxi1 ∧ · · · ∧ dxik .

(3) Show that the exterior derivative defined for forms on smooth man-
ifolds satisfies the properties of Proposition 3.7.

(4) Show that:
(a) if ω = f1dx + f2dy + f3dz is a 1-form on R3 then

dω = g1dy ∧ dz + g2dz ∧ dx + g3dx ∧ dy,

where (g1, g2, g3) = curl(f1, f2, f3);
(b) if ω = f1dy ∧ dz + f2dz ∧ dx + f3dx ∧ dy is a 2-form on R3,

then

dω = div(f1, f2, f3) dx ∧ dy ∧ dz.

(5) (De Rham cohomology) A k-form ω is called closed if dω = 0.
If it exists a (k − 1)-form β such that ω = dβ then ω is called
exact. Note that every exact form is closed. Let Zk be the set of
all closed k-forms on M and define a relation between forms on Zk

as follows: α ∼ β if and only if they differ by an exact form, that
is, if β − α = dθ for some (k − 1)-form θ.
(a) Show that this relation is an equivalence relation.
(b) Let Hk(M) be the corresponding set of equivalence classes

(called the k-dimensional de Rham cohomology space of
M). Show that addition and scalar multiplication of forms
define indeed a vector space structure on Hk(M).

(c) Let f : M → N be a smooth map. Show that:
(i) the pullback f∗ carries closed forms to closed forms and

exact forms to exact forms;
(ii) if α ∼ β on N then f∗α ∼ f∗β on M ;
(iii) f∗ induces a linear map on cohomology f ) : Hk(N) →

Hk(M) naturally defined by f )[ω] = [f∗ω];
(iv) if g : L → M is another smooth map, then (f ◦ g)) =

g) ◦ f ).
(d) Show that the dimension of H0(M) is equal to the number of

connected components of M .
(e) Show that Hk(M) = 0 for every k > dim M .
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(6) Let M be a manifold of dimension n, let U be an open subset of
Rn and let ω be a k-form on R× U . Writing ω as

ω = dt ∧
∑

I

aIdxI +
∑

J

bJdxJ ,

where I = (i1, . . . , ik−1) and J = (j1, . . . , jk) are increasing index
sequences, (x1, . . . , xn) are coordinates in U and t is the coordinate
in R, consider the operator Q defined by

Q(ω)(t,x) =
∑

I

(∫ t

t0

aIds

)
dxI ,

which transforms k-forms ω in R× U into (k − 1)-forms.
(a) Let f : V → U be a diffeomorphism between open subsets

of Rn. Show that the induced diffeomorphism f̃ := id × f :
R× V → R× U satisfies

f̃∗ ◦Q = Q ◦ f̃∗.

(b) Using (a), construct an operator Q which carries k-forms on
R×M into (k−1)-forms and, for any diffeomorphism f : M →
N , the induced diffeomorphism f̃ := id× f : R×M → R×N
satisfies f̃∗ ◦Q = Q ◦ f̃∗. Show that this operator is linear.

(c) Considering the operator Q defined in (b) and the inclusion it0 :
M → R×M of M at the “level” t0, defined by it0(p) = (t0, p),
show that ω − π∗i∗t0ω = dQω + Qdω, where π : R ×M → M
is the projection on M .

(d) Show that the maps π) : Hk(M) → Hk(R × M) and i)t0 :

Hk(R×M)→ H(M) are inverses of each other (and so Hk(M)
is isomorphic to Hk(R×M)).

(e) Use (d) to show that, for k > 0 and n > 0, every closed k-form
in Rn is exact, that is, Hk(Rn) = 0 if k > 0.

(f) Use (d) to show that, if f, g : M → N are two smoothly
homotopic maps between smooth manifolds (meaning that
there exists a smooth map H : R×M → N such that H(t0, p) =
f(p) and H(t1, p) = g(p) for some fixed t0, t1 ∈ R), then
f ) = g).

(g) We say that M is contractible if the identity map id : M →
M is smoothly homotopic to a constant map. Show that Rn

is contractible.
(h) (Poincaré Lemma) Let M be a contractible smooth manifold.

Show that every closed form on M is exact, that is, Hk(M) = 0
for all k > 0.

(7) (Symplectic manifold) A symplectic manifold (M,ω), is a man-
ifold M equiped with a closed non-degenerate 2-form ω. Here



72 2. DIFFERENTIAL FORMS

non-degenerate means that the map that to each tangent vec-
tor Xp ∈ TpM associates the 1-tensor in TpM defined by ι(Xp)ωp

is a bijection (cf. Exercise 1.14.8).
(a) Show that dimM is necessarily even.
(b) Consider coordinates (x1, . . . , xn, y1, . . . , yn) in R2n, and the

differential form ω0 =
∑n

i=1 dxi ∧ dyi. Show that (R2n,ω0) is
a symplectic manifold and compute the wedge product ωn

0 , of
n copies of ω0. (Remark: The form ω0 is called the standard symplec-

tic form. This example gives us a local model for all symplectic manifolds –

Darboux Theorem).
(8) (Lie derivative of a differential form) Given a vector field X ∈

X(M), we define the Lie derivative of a form ω along X as

LXω :=
d

dt
(ψt

∗ω)
|t=0

,

where ψt = F (·, t) with F the local flow of X at p (cf. Exer-
cise 2.8.3). Show that the Lie derivative satisfies the following
properties:
(a) LX(ω1 ∧ ω2) = (LXω1) ∧ ω2 + ω1 ∧ (LXω2);
(b) d(LXω) = LX(dω);
(c) Cartan formula: LXω = ι(X)dω + d(ι(X)ω);
(d) LX(ι(Y )ω) = ι(LXY )ω + ι(Y )LXω
(cf. Exercise 6.11.11 on Chapter 1 and Exercise 1.14.8).

4. Integration on Manifolds

Before we see how to integrate differential forms on manifolds, we will
start by studying the Rn case. For that let us consider an n-form ω defined
on an open subset U of Rn. We already know that ω can be written as

ωx = a(x) dx1 ∧ · · · ∧ dxn,

where a : U → R is a smooth function. The support of ω is, by definition,
the closure of the set where ω '= 0 that is,

suppω = {x ∈ Rn : ωx '= 0}.

We will assume that this set is compact (in which case ω is said to be
compactly supported) and is a subset of U . We define

∫

U
ω =

∫

U
a(x) dx1 ∧ · · · ∧ dxn :=

∫

U
a(x) dx1 · · · dxn,

where the integral on the right is a multiple integral on a subset of Rn. This
definition is almost well-behaved with respect to changes of variables in Rn.
Indeed, if f : V → U is a diffeomorphism of open sets of Rn, we have from
(4) that

f∗ω = (a ◦ f)(det df)dy1 ∧ · · · ∧ dyn,
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and so ∫

V

f∗ω =

∫

V

(a ◦ f)(det df)dy1 · · · dyn.

If f is orientation preserving, then det (df) > 0, and the integral on the
right is, by the Change of Variables Theorem for multiple integrals in Rn

(cf. Section 7.2), equal to
∫
U ω. For this reason, we will only consider ori-

entable manifolds when integrating forms on manifolds. Moreover, we will
also assume that suppω is always compact to avoid convergence problems.

Let M be an oriented manifold, and let A = {(Uα,ϕα)} be an atlas
whose parametrizations are orientation-preserving. Suppose that suppω is
contained in some coordinate neighborhood Wα = ϕα(Uα). Then we define

∫

M
ω :=

∫

Uα

ϕ∗
αω =

∫

Uα

ωα.

Note that this does not depend on the choice of coordinate neighborhood: if
suppω is contained in some other coordinate neighborhood Wβ = ϕβ(Uβ),
then ωβ = f∗ωα, where f = ϕ−1

α ◦ ϕβ , and hence
∫

Uβ

ωβ =

∫

Uβ

f∗ωα =

∫

Uα

ωα.

To define the integral in the general case we use a partition of unity
(cf. Section 7.2) subordinate to the cover {Wα} of M , i.e., a family of dif-
ferentiable functions on M , {ρi}i∈I , such that:

(i) for every point p ∈ M , there exists a neighborhood V of p such
that V ∩ supp ρi = ∅ except for a finite number of ρi’s;

(ii) for every point p ∈ M ,
∑

i∈I ρi(p) = 1;
(iii) 0 ≤ ρi ≤ 1 and suppρi ⊂ Wαi for some element Wαi of the cover.

Because of property (i), suppω (being compact) intersects the supports of
only finitely many ρi’s. Hence we can assume that I is finite, and then

ω =

(
∑

i∈I

ρi

)

ω =
∑

i∈I

ρiω =
∑

i∈I

ωi

with ωi = ρiω and suppωi ⊂ Wαi . Consequently we define:
∫

M

ω :=
∑

i∈I

∫

M

ωi =
∑

i∈I

∫

Uαi

ϕ∗
αi

ωi.

Remark 4.1.

(1) When suppω is contained in one coordinate neighborhood W , the
two definitions above agree. Indeed,

∫

M

ω =

∫

W

ω =

∫

W

∑

i∈I

ωi =

∫

U

ϕ∗

(
∑

i∈I

ωi

)

=

∫

U

∑

i∈I

ϕ∗ωi =
∑

i∈I

∫

U
ϕ∗ωi =

∑

i∈I

∫

M
ωi,
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where we used the linearity of the pullback and of integration on
Rn.

(2) The definition of integral is independent of the choice of partition
of unity and the choice of cover. Indeed, if {ρ̃j}j∈J is another

partition of unity subordinate to another cover {W̃β} compatible
with the same orientation, we have by (1)

∑

i∈I

∫

M

ρiω =
∑

i∈I

∑

j∈J

∫

M

ρ̃jρiω

and ∑

j∈J

∫

M
ρ̃jω =

∑

j∈J

∑

i∈I

∫

M
ρiρ̃jω.

(3) It is also easy to verify the linearity of the integral, that is,
∫

M

aω1 + bω2 = a

∫

M

ω1 + b

∫

M

ω2.

for a, b ∈ R and ω1,ω2 n-forms on M .

Exercises 4.2.

(1) Let M be an n-dimensional differentiable manifold. A subset N ⊂
M is said to have zero measure if the sets ϕ−1

α (N) ⊂ Uα have zero
measure for every parametrization ϕα : Uα → M in the maximal
atlas.
(a) Prove that in order to show that N ⊂ M has zero measure it

suffices to check that the sets ϕ−1
α (N) ⊂ Uα have zero measure

for the parametrizations in an arbitrary atlas.
(b) Suppose that M is oriented. Let ω ∈ Ωn(M) be compactly

supported and let W = ϕ(U) be a coordinate neighborhood
such that M \ W has zero measure. Show that

∫

M
ω =

∫

U
ϕ∗ω,

where the integral on the right-hand side is defined as above
and always exists.

(2) Let x, y, z be the restrictions of the Cartesian coordinate functions
in R3 to S2, oriented so that {(1, 0, 0); (0, 1, 0)} is a positively ori-
ented basis of T(0,0,1)S

2, and consider the 2-form

ω = xdy ∧ dz + ydz ∧ dx + zdx ∧ dy ∈ Ω2(S2).

Compute the integral ∫

S2
ω

using the parametrizations corresponding to
(a) spherical coordinates;
(b) stereographic projection.
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(3) Let M,N be n-dimensional manifolds, f : M → N an orientation
preserving diffeomorphism and ω ∈ Ωn(N) a compactly supported
form. Prove that ∫

N
ω =

∫

M
f∗ω.

5. Stokes Theorem

In this section we will prove a very important theorem.

Theorem 5.1. (Stokes) Let M be an n-dimensional oriented smooth
manifold with boundary, let ω be a (n − 1)-differential form on M with
compact support, and let i : ∂M → M be the inclusion of the boundary ∂M
in M . Then ∫

∂M
i∗ω =

∫

M
dω,

where we consider ∂M with the the induced orientation (cf. Section 9 in
Chapter 1).

Proof. Let us take a partition of unity {ρi}i∈I subordinate to an open
cover of M by coordinate neighborhoods compatible with the orientation.
Then ω =

∑
i∈I ρiω, where we can assume I to be finite (ω is compactly

supported), and hence

dω = d
∑

i∈I

ρiω =
∑

i∈I

d(ρiω).

By linearity of the integral we then have,
∫

M

dω =
∑

i∈I

∫

M

d(ρiω) and

∫

∂M

i∗ω =
∑

i∈I

∫

∂M

i∗(ρiω).

Hence, to prove this theorem, it is enough to consider the case where suppω
is contained inside one coordinate neighborhood of the cover. Let us then
consider a (n − 1)-form ω with compact support contained in a coordinate
neighborhood W . Let ϕ : U → W be the corresponding parametrization,
where we can assume U to be bounded (suppϕ∗ω is compact). Then, the
representation of ω on U can be written as

ϕ∗ω =
n∑

j=1

aj dx1 ∧ · · · ∧ dxj−1 ∧ dxj+1 ∧ · · · ∧ dxn,

(where each aj : U → R is a C∞-function), and

ϕ∗dω = dϕ∗ω =
n∑

j=1

(−1)j−1 ∂aj

∂xj
dx1 ∧ · · · ∧ dxn.

The functions aj can be extended to C∞-functions on Hn by letting

aj(x
1, · · · , xn) =

{
aj(x1, · · · , xn) if (x1, . . . , xn) ∈ U

0 if (x1, . . . , xn) ∈ Hn\U.
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If W ∩ ∂M = ∅, then i∗ω = 0. Moreover, if we consider a rectangle I in H

containing U defined by equations bj ≤ xj ≤ cj (j = 1, . . . , n), we have

∫

M
dω =

∫

U




n∑

j=1

(−1)j−1 ∂aj

∂xj



 dx1 · · · dxn =
n∑

j=1

(−1)j−1
∫

I

∂aj

∂xj
dx1 · · · dxn

=
n∑

j=1

(−1)j−1
∫

Rn−1

(∫ cj

bj

∂aj

∂xj
dxj

)

dx1 · · · dxj−1dxj+1 · · · dxn

=
n∑

j=1

(−1)j−1
∫

Rn−1

(
aj(x

1, . . . , xj−1, cj , x
j+1, . . . , xn)−

−aj(x
1, . . . , xj−1, bj , x

j+1, . . . , xn)
)

dx1 · · · dxj−1dxj+1 · · · dxn = 0,

where we used Fubini Theorem, the Fundamental Theorem of Calculus and
the fact that the aj’s are zero outside U . We conclude that, in this case,∫
∂M i∗ω =

∫
M dω = 0.

If, on the other hand, W ∩ ∂M '= ∅ we take a rectangle I containing
U now defined by the equations bj ≤ xj ≤ cj for j = 1, . . . , n − 1, and
0 ≤ xn ≤ cn. Then, as in the preceding case, we have

∫

M
dω=

∫

U




n∑

j=1

(−1)j−1 ∂aj

∂xj



 dx1 · · · dxn =
n∑

j=1

(−1)j−1
∫

I

∂aj

∂xj
dx1 · · · dxn

= 0 + (−1)n−1
∫

Rn−1

(∫ cn

0

∂an

∂xn
dxn

)
dx1 · · · dxn−1

= (−1)n−1
∫

Rn−1

(
an(x1, . . . , xn−1, cn)− an(x1, . . . , xn−1, 0)

)
dx1 · · · dxn−1

= (−1)n
∫

Rn−1
an(x1, . . . , xn−1, 0) dx1 · · · dxn−1.

To compute
∫
∂M i∗ω we need to consider a parametrization ϕ̃ of ∂M defined

on an open subset of Rn−1 which preserves the standard orientation on
Rn−1 when we consider the induced orientation on ∂M . For that, we can
for instance consider the set

Ũ = {(x1, . . . , xn−1) ∈ Rn−1 | ((−1)nx1, x2, . . . , xn−1, 0) ∈ U}

and the parametrization ϕ̃ : Ũ :→ ∂M given by

ϕ̃(x1, . . . , xn−1) = ϕ
(
(−1)nx1, x2, . . . , xn−1, 0

)
.

Recall that the orientation on ∂M obtained from ϕ by just dropping the last
coordinate is (−1)n times the induced orientation on ∂M (cf. Section 9 in
Chapter 1). Therefore ϕ̃ gives the correct orientation. The local expression
of i : ∂M → M on these coordinates (̂i : Ũ → U such that î = ϕ−1 ◦ i ◦ ϕ̃)
is given by

î(x1, . . . , xn−1) =
(
(−1)nx1, x2, . . . , xn−1, 0

)
.
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Hence,
∫

∂M
i∗ω =

∫

eU
ϕ̃∗i∗ω =

∫

eU
(i ◦ ϕ̃)∗ω =

∫

eU
(ϕ ◦ î)∗ω =

∫

eU
î∗ϕ∗ω.

Moreover,

î∗ϕ∗ω = î∗
n∑

j=1

aj dx1 ∧ · · · ∧ dxj−1 ∧ dxj+1 ∧ · · · ∧ dxn

=
n∑

j=1

(aj ◦ î) d̂i1 ∧ · · · ∧ d̂ij−1 ∧ d̂ij+1 ∧ · · · ∧ d̂in

= (−1)n(an ◦ î) dx1 ∧ · · · ∧ dxn−1,

since d̂i1 = (−1)ndx1, d̂in = 0 and d̂ij = dxj , for j '= 1 and j '= n.
Consequently,
∫

∂M
i∗ω = (−1)n

∫

eU
(an ◦ î) dx1 · · · dxn−1

= (−1)n
∫

eU
an

(
(−1)nx1, x2, . . . , xn−1, 0

)
dx1 · · · dxn−1

= (−1)n
∫

Rn−1
an(x1, x2, . . . , xn−1, 0) dx1 · · · dxn−1 =

∫

M
dω

(where we have used the Change of Variables Theorem). !

Exercises 5.2.

(1) Consider the manifolds

S3 =
{
(x, y, z, w) ∈ R4 : x2 + y2 + z2 + w2 = 2

}
;

T 2 =
{
(x, y, z, w) ∈ R4 : x2 + y2 = z2 + w2 = 1

}
.

The submanifold T 2 ⊂ S3 splits S3 into two connected components.
Let M be one of these components and let ω be the 3-form

ω = zdx ∧ dy ∧ dw − xdy ∧ dz ∧ dw.

Compute the two possible values of
∫
M ω.

(2) (Homotopy invariance of the integral) Recall that two maps f0, f1 :
M → N are said to be smoothly homotopic if there exists a dif-
ferentiable map H : R × M → N such that H(0, p) = f0(p) and
H(1, p) = f1(p) (cf. Exercise 3.8.6). If M is a compact oriented
manifold of dimension n and ω is a closed n-form on N , show that

∫

M

f∗
0 ω =

∫

M

f∗
1ω.

(3) (a) Let X ∈ X(Sn) be a vector field with no zeros. Show that

H(t, p) = cos(πt)p + sin(πt)
Xp

‖Xp‖
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is a smooth homotopy between the identity map and the an-
tipodal map, where we make use of the identification

Xp ∈ TpS
n ⊂ TpR

n+1 ∼= Rn+1.

(b) Using the Stokes Theorem, show that
∫

Sn

ω > 0,

where

ω =
n+1∑

i=1

(−1)i+1xidx1 ∧ · · · ∧ dxi−1 ∧ dxi+1 ∧ · · · ∧ dxn+1

and Sn = ∂{x ∈ Rn+1 : ‖x‖ ≤ 1} has the orientation induced
by the standard orientation of Rn+1.

(c) Show that if n is even then X cannot exist. What happens
when n is odd?

6. Orientation and Volume Forms

In this section we will study the relation between orientation and differ-
ential forms.

Definition 6.1. A volume form (or volume element) on a manifold
M of dimension n is an n-form ω such that ωp '= 0 for all p ∈ M .

The existence of a volume form determines an orientation on M :

Proposition 6.2. A manifold M of dimension n is orientable if and
only if there exists a volume form on M .

Proof. Let ω be a volume form on M , and consider an atlas {(Uα,ϕα)}.
We can assume without loss of generality that the open sets Uα are con-
nected. We will construct a new atlas from this one whose overlap maps
have derivatives with positive determinant. Indeed, considering the repre-
sentation of ω on one of these open sets Uα ⊂ Rn, we have

ϕ∗
αω = aαdx1

α ∧ · · · ∧ dxn
α,

where the function aα cannot vanish, and hence must have a fixed sign.
If aα is positive, we keep the corresponding parametrization. If not, we
construct a new parametrization by composing ϕα with (x1, . . . , xn) +→
(−x1, x2, . . . , xn). Clearly, in these new coordinates, the new function aα
is positive. Repeating this for all coordinate neighborhoods we obtain a
new atlas for which all the functions aα are positive, which we will also de-
note by {(Uα,ϕα)}. Moreover, whenever W := ϕα(Uα) ∩ ϕβ(Uβ) '= ∅, we
have

(ϕ−1
α )∗ωα = (ϕ−1

β )∗ωβ
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and so ωα = (ϕ−1
β ◦ ϕα)∗ωβ. Hence,

aαdx1
α ∧ · · · ∧ dxn

α = (ϕ−1
β ◦ ϕα)∗aβ dx1

β ∧ · · · dxn
β

= (aβ ◦ ϕ−1
β ◦ ϕα) det (d(ϕ−1

β ◦ ϕα)) dx1
α ∧ · · · ∧ dxn

α

and so det (d(ϕ−1
β ◦ ϕα)) > 0. We conclude that M is orientable.

Conversely, if M is orientable, we consider an atlas {(Uα,ϕα)} for which
the overlap maps ϕ−1

β ◦ ϕα are such that det (d(ϕ−1
β ◦ ϕα)) > 0. Taking a

partition of unity {ρi}i∈I subordinate to the cover of M by the corresponding
coordinate neighborhoods, we may define the forms

ωi := ρidx1
i ∧ · · · ∧ dxn

i

with suppωi = supp ρi ⊂ ϕαi(Uαi). Extending these forms to M by making
them zero outside suppρi, we may define the form ω :=

∑
i∈I ωi. Clearly

ω is a well defined n-form on M so we just need to show that ωp '= 0 for
all p ∈ M . Let p be a point in M . Hence there is an i ∈ I such that
ρi(p) > 0 and suppρi ⊂ ϕαi(Uαi). Then, there are linearly independent
vectors v1, . . . , vn ∈ TpM such that (ωi)p(v1, . . . , vn) > 0. Moreover, for
all other j ∈ I\{i}, (ωj)p(v1, . . . , vn) ≥ 0. Indeed, if p /∈ ϕαj (Uαj ), then
(ωj)p(v1, . . . , vn) = 0. On the other hand, if p ∈ ϕαj (Uαj ), then equation (4)
yields

dx1
j ∧ · · · ∧ dxn

j = det (d(ϕ−1
αj
◦ ϕαi))dx1

i ∧ · · · ∧ dxn
i

and hence

(ωj)p(v1, . . . , vn) =
ρj(p)

ρi(p)
det (d(ϕ−1

αj
◦ ϕαi))(ωi)p(v1, . . . , vn) ≥ 0.

Consequently, ωp(v1, . . . , vn) > 0, and so ω is a volume form. !

Remark 6.3. Sometimes we call a volume form an orientation. In this
case the orientation on M is the one for which a basis {v1, . . . , vn} of TpM
is positive if and only if ωp(v1, . . . , vn) > 0.

If we fix a volume form ω ∈ Ωn(M) on the orientable manifold M , we
can define the integral of any compactly supported function f ∈ C∞(M, R)
as ∫

M

f =

∫

M

fω

(where the orientation of M is determined by ω). If M is compact, we define
its volume to be

vol(M) =

∫

M
1 =

∫

M
ω.

Exercises 6.4.

(1) Show that M × N is orientable if and only if both M and N are
orientable.

(2) Let M be an oriented manifold with volume element ω ∈ Ωn(M).
Prove that if f > 0 then

∫
M fω > 0. (Remark: In particular, the volume

of a compact manifold is always positive).
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(3) Let Mn be a compact orientable manifold, and let ω be an (n− 1)-
form in M .
(a) Show that there exists a point p ∈ M for which (dω)p = 0.

(b) Prove that there exists no immersion f : S1 → R, of the unit
circle into R.

(4) Let f : Sn → Sn be the antipodal map. Recall that the n-
dimensional projective space is the differential manifold RPn =
Sn/Z2, where the group Z2 = {1,−1} acts on Sn through 1 · x = x
and (−1) · x = f(x). Let π : Sn → RPn be the natural projection.
(a) Prove that ω ∈ Ωk(Sn) is of the form ω = π∗θ for some θ ∈

Ωk(RPn) iff f∗ω = ω.
(b) Show that RPn is orientable iff n is odd, and that, in this case,

∫

Sn

π∗θ = 2

∫

RP n

θ.

(c) Show that for n even the sphere Sn is the orientable double
covering of RPn (cf. Exercise 8.6.9 in Chapter 1).

(5) Let M be a compact oriented manifold with boundary and ω ∈
Ωn(M) a volume element. The divergence of a vector field X ∈
X(M) is the function div(X) such that

LXω = (div(X))ω

(cf. Exercise 3.8.8). Show that
∫

M

div(X) =

∫

∂M

ι(X)ω.

(6) (Brouwer Fixed Point Theorem)
(a) Let Mn be a compact orientable manifold with boundary ∂M '=

∅. Show that there exists no smooth map f : M → ∂M sat-
isfying f |∂M = id.

(b) Prove the Brouwer Fixed Point Theorem: Let B = {x ∈
Rn : |x| ≤ 1}. Any smooth map g : B → B has a fixed point,
that is, there exists a point p ∈ B such that g(p) = p. (Hint:

For each point x ∈ B, consider the ray rx starting at g(x) and passing through

x. There is only one point y(x) different from g(x) on rx ∩ ∂B. Consider the

map f : B → ∂B, that maps x ∈ B to y(x)).

7. Notes on Chapter 2

7.1. Section 1.

(1) Given a finite dimensional vector space V we define its dual space
as the space of linear functionals on V .

Proposition 7.1. If {v1, . . . , vn} is a basis for V then there is
a unique basis {T1, . . . , Tn} of V ∗ dual to {v1, . . . , vn}, that is, such
that Ti(vj) = δij .
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Proof. By linearity, the equations Ti(vj) = δij define a unique
set of functionals Ti ∈ V ∗. Indeed, for any v ∈ V , we have v =∑n

j=1 ajvj and so

Ti(v) =
n∑

j=1

ajTi(vj) =
n∑

j=1

ajδij = ai.

Moreover, these uniquely defined functionals are linearly indepen-
dent. In fact, if

T :=
n∑

i=1

biTi = 0,

then, for each j = 1, . . . , n, we have 0 = T (vj) =
∑n

i=1 biTi(vj) =
bj . To show that {T1, . . . , Tn} generates V ∗, we take any S ∈ V ∗

and set bi := S(vi). Then, defining T :=
∑n

i=1 biTi, we see that
S(vj) = T (vj) for all j = 1, . . . , n. Since {v1, . . . , vn} is a basis for
V , we have S = T . !

Moreover, if {v1, . . . , vn} is a basis for V and {T1, . . . , Tn} is its
dual basis, then, for any v =

∑
ajvj ∈ V and T =

∑
biTi ∈ V ∗, we

have

T (v) =
n∑

j=i

biTi(v) =
n∑

i,j=1

ajbiTi(vj) =
n∑

i,j=1

ajbiδij =
n∑

i=1

aibi.

If we now consider a linear functional F on V ∗, that is, an element
of (V ∗)∗, we have F (T ) = T (v0) for some fixed vector v0 ∈ V .
Indeed, let {v1, . . . , vn} be a basis for V and let {T1, . . . , Tn} be its
dual basis. Then if T =

∑n
i=1 biTi, we have F (T ) =

∑n
i=1 biF (Ti).

Denoting the values F (Ti) by ai, we get F (T ) =
∑n

i=1 aibi = T (v0)
for v0 =

∑n
i=1 aivi. This establishes a one-to-one correspondence

between (V ∗)∗ and V , and allows us to view V as the space of linear
functionals on V ∗. For v ∈ V and T ∈ V ∗, we write v(T ) = T (v).

(2) Changing from a basis {v1, . . . , vn} to a new basis {v′1, . . . , v′n} in
V , we obtain a change of basis matrix S, whose jth column is
the vector of coordinates of the new basis vector v′j in the old basis.
We can then write the symbolic matrix equation

(v′1, . . . , v
′
n) = (v1, . . . , vn)S.

The coordinate (column) vectors a and b of a vector v ∈ V (a
contravariant 1-tensor on V ) with respect to the old basis and to
the new basis are related by

b =




b1
...
bn



 = S−1




a1
...

an



 = S−1a,
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since we must have (v′1, . . . , v
′
n)b = (v1, . . . , vn)a = (v′1, . . . , v

′
n)S−1a.

On the other hand, if {T1, . . . , Tn} and {T ′
1, . . . , T

′
n} are the dual

bases of {v1, . . . , vn} and {v′1, . . . , v′n}, we have



T1
...

Tn



 (v1, . . . , vn) =




T ′

1
...

T ′
n




(
v′1, . . . , v

′
n

)
= I

(where, in the symbolic matrix multiplication above, each coordi-
nate is obtained by applying the covectors to the vectors). Hence,




T1
...

Tn




(
v′1, . . . , v

′
n

)
S−1 = I ⇔ S−1




T1
...

Tn




(
v′1, . . . , v

′
n

)
= I,

implying that



T ′

1
...

T ′
n



 = S−1




T1
...

Tn



 .

The coordinate (row) vectors a = (a1, . . . , an) and b = (b1, . . . , bn)
of a 1-tensor T ∈ V ∗ (a covariant 1-tensor on V ) with respect to
the old basis {T1, . . . , Tn} and to the new basis {T ′

1, . . . , T
′
n} are

related by

a




T1
...

Tn



 = b




T ′

1
...

T ′
n



 ⇔ aS




T ′

1
...

T ′
n



 = b




T ′

1
...

T ′
n





and so b = aS. Note that the coordinate vectors of the covariant 1-
tensors on V transform like the basis vectors of V (that is, by means
of the matrix S) whereas the coordinate vectors of the contravariant
1-tensors on V transform by means of the inverse of this matrix.

7.2. Section 4.

(1) (Change of Variables Theorem) Let U, V ⊂ Rn be open sets, g :
U → V a diffeomorphism and f : V → R an integrable function.
Then ∫

V
f =

∫

U
(f ◦ g)|det dg|.

(2) To define smooth objects on manifolds it is often useful to define
them first on coordinate neighborhoods and then glue the pieces
together by means of a partition of unity.

Theorem 7.2. Let M be a smooth manifold and V an open
cover of M . Then there is a family of differentiable functions on
M , {ρi}i∈I , such that:
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(i) for every point p ∈ M , there exists a neighborhood U of p such
that U ∩ supp ρi = ∅ except for a finite number of ρi’s;

(ii) for every point p ∈ M ,
∑

i∈I ρi(p) = 1;
(iii) 0 ≤ ρi ≤ 1 and suppρi ⊂ V for some element V ∈ V.

Remark 7.3. This collection ρi of smooth functions is called
partition of unity subordinate to the cover V.

Proof. Let us first assume that M is compact. For every
point p ∈ M we consider a coordinate neighborhood Wp = ϕp(Up)
around p contained in an element Vp of V, such that ϕp(0) = p and
B3(0) ⊂ Up (where B3(0) denotes the ball of radius 3 around 0).
Then we consider the C∞-functions (cf. Figure 1)

λ : R → R

x +→

{
e

1
(x−1)(x−2) if 1 < x < 2

0 otherwise
,

h : R → R

x +→
∫ 2
x λ(t) dt
∫ 2
1 λ(t) dt

,

β : Rn → R

x +→ h(|x|) .

Notice that h is a decreasing function with values 0 ≤ h(x) ≤ 1,

x

λ

h

1 2

Figure 1
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equal to zero for x ≥ 2 and equal to 1 for x ≤ 1. Hence, we can
consider bump functions γp : M → [0, 1] defined by

γp(q) =






β(ϕ−1
p (q)) if q ∈ ϕp(Up)

0 otherwise.

Then suppγp = ϕp(B2(0)) ⊂ ϕp(B3(0)) ⊂ Wp is contained inside
an element Vp of the cover. Moreover, {ϕp(B1(0))}p∈M is an open
cover of M and so we can consider a finite subcover {ϕpi(B1(0))}k

i=1

such that M = ∪k
i=1ϕpi(B1(0)). Finally we take the functions

ρi =
γpi∑k

j=1 γpj

.

Note that
∑k

j=1 γpj(q) '= 0 since q is necessarily contained inside
some ϕpi(B1(0)) and so γi(q) '= 0. Moreover, 0 ≤ ρi ≤ 1,

∑
ρi = 1

and suppρi = suppγpi ⊂ Vpi .
If M is not compact we can use a compact exhaustion, that

is, a sequence {Ki}i∈N of compact subsets of M such that Ki ⊂
intKi+1 and M = ∪∞

i=1Ki. The partition of unity is then obtained
as follows. The family {ϕp(B1(0))}p∈M is a cover of K1, so we can
consider a finite subcover of K1,{

ϕp1(B1(0)), . . . ,ϕpk1
(B1(0))

}
.

By induction, we obtain a finite number of points such that
{
ϕpi

1
(B1(0)), . . . ,ϕpi

ki

(B1(0))
}

covers Ki\intKi−1 (a compact set). Then, for each i, we consider
the corresponding bump functions

γpi
1
, . . . , γpi

ki

: M → [0, 1].

Note that γp1
i + · · ·+γpi

ki

> 0 for every q ∈ Ki\intKi−1 (as there is

always one of these functions which is different from zero). As in the
compact case, we can choose these bump functions so that suppγpi

j

is contained in some element of V. We will also choose them so that
supp γpi

j
⊂ intKi+1\Ki−2 (an open set). Hence, {γpi

j
}i∈N,1≤j≤ki

is

locally finite, meaning that, given a point p ∈ M , there exists
an open neighborhood V of p such that only a finite number of
these functions is different from zero in V . Consequently, the sum∑∞

i=1

∑ki
j=1 γpi

j
is a positive, differentiable function on M . Finally,

making

ρi
j =

γpi
j∑∞

i=1

∑ki
j=1 γpi

j

,

we obtain the desired partition of unity (subordinate to V). !
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Remark 7.4. Compact exhaustions always exist on manifolds.
In fact, if U is a bounded open set of Rn, one can easily construct
a compact exhaustion {Ki}i∈N for U by setting

Ki =

{
x ∈ U : dist(x, ∂U) ≥

1

n

}
.

If M is a differentiable manifold, one can always take a countable
atlas A = {(Uj ,ϕj)}j∈N such that each Uj is a bounded open set,

thus admitting a compact exhaustion {Kj
i }i∈N. Therefore





⋃

i+j=l

ϕj

(
Kj

i

)




l∈N

is a compact exhaustion of M .

7.3. Section 5. (Fubini Theorem) Let A ⊂ Rn and B ⊂ Rm be com-
pact intervals and let f : A×B → R be a continuous function. Then

∫

A×B

f =

∫

A

(∫

B

f(x, y)dy1 · · · dym

)
dx1 · · · dxn

=

∫

B

(∫

A
f(x, y)dx1 · · · dxn

)
dy1 · · · dym.

7.4. Bibliographical notes. The material in this chapter can be found
in most books on differential geometry (e.g. [Boo03, GHL04]). A text en-
tirely dedicated to differential forms and their applications is [dC94]. The
study of de Rham cohomology leads to a beautiful and powerful theory,
whose details can be found for instance in [BT82].





CHAPTER 3

Riemannian Manifolds

In this chapter we begin our study of Riemannian geometry.
Section 1 introduces the concept of a Riemannian metric on a smooth

manifold, which is simply a tensor field determining an inner product at each
tangent space.

In Section 2 we define affine connections, which provide a notion of
parallelism of vectors along curves, and consequently of geodesics (curves
whose tangent vector is parallel). Riemannian manifolds carry a special con-
nection, called the Levi-Civita connection (Section 3), whose geodesics
have special distance-minimizing properties (Section 4).

In Section 5 we prove the Hopf-Rinow Theorem, relating the prop-
erties of a Riemannian manifold as a metric space with the properties of its
geodesics.

1. Riemannian Manifolds

The metric properties of Rn (distances, angles, volumes) are determined
by the canonical Cartesian coordinates. In a general differentiable manifold,
however, there are no such preferred coordinates; to define distances, angles
and volumes we must add more structure, namely a special tensor field called
a Riemannian metric.

Definition 1.1. A tensor g ∈ T 2(T ∗
p M) is said to be

(i) symmetric if g(v,w) = g(w, v) for all v,w ∈ TpM ;
(ii) nondegenerate if g(v,w) = 0 for all w ∈ TpM implies v = 0;
(iii) positive definite if g(v, v) > 0 for all v ∈ TpM \ {0}.

A 2-covariant tensor field g is said to be symmetric, nondegenerate or
positive definite if gp is symmetric, nondegenerate or positive definite for all
p ∈M . If x : V → Rn is a local chart, we have

g =
n∑

i,j=1

gijdxi ⊗ dxj

in V , where

gij = g

(
∂

∂xi
,

∂

∂xj

)
.

It is easy to see that g is symmetric, nondegenerate or positive definite if
and only if the matrix (gij) has these properties (see Exercise 1.11.1).

87
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Definition 1.2. A Riemannian metric on a smooth manifold M is
a symmetric positive definite smooth 2-covariant tensor field g. A smooth
manifold M equipped with a Riemannian metric g is called a Riemannian
manifold, and denoted by (M,g).

A Riemannian metric is therefore a smooth assignment of an inner prod-
uct to each tangent space. It is usual to write

gp(v,w) = 〈v,w〉p.

Example 1.3. (Euclidean n-space) It should be clear that M = Rn

and

g =
n∑

i=1

dxi ⊗ dxi

define a Riemannian manifold.

Proposition 1.4. Let (N, g) be a Riemannian manifold and f : M → N
an immersion. Then f∗g is a Riemannian metric in M (called the induced
metric).

Proof. We just have to prove that f∗g is symmetric and positive defi-
nite. Let p ∈ M and v,w ∈ TpM . Since g is symmetric,

(f∗g)p(v,w) = gf(p)((df)pv, (df)pw) = gf(p)((df)pw, (df)pv) = (f∗g)p(w, v).

On the other hand, it is clear that (f∗g)p(v, v) ≥ 0, and

(f∗g)p(v, v) = 0 ⇒ gf(p)((df)pv, (df)pv) = 0⇒ (df)pv = 0 ⇒ v = 0

(as (df)p is injective). !

In particular, any submanifold M of a Riemannian manifold (N, g) is
itself a Riemannian manifold. Notice that, in this case, the induced metric
at each point p ∈ M is just the restriction of gp to TpM ⊂ TpN . Since Rn

is a Riemannian manifold (cf. Example 1.3), we see that any submanifold
of Rn is a Riemannian manifold. Whitney’s Theorem then implies that any
manifold admits a Riemannian metric.

It was proved in 1954 by John Nash [Nas56] that any compact n-
dimensional Riemannian manifold can be isometrically embedded in RN

for N = n(3n+11)
2 (that is, embedded in such a way that its metric is induced

by the Euclidean metric of RN ). Gromov [Gro70] later proved that one can

take N = (n+2)(n+3)
2 . Notice that for n = 2 Nash’s result gives an isometric

embedding of any compact surface into R17, and Gromov’s into R10. In
fact, Gromov has further showed that any surface isometrically embeds in
R5. This result cannot be improved, as the real projective plane with the
standard metric (see Exercise 1.11.3) cannot be isometrically embedded into
R4.

Example 1.5. The standard metric on

Sn = {x ∈ Rn+1 : ‖x‖ = 1}
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is the metric induced on Sn by the Euclidean metric on Rn+1. A parametriza-
tion of the open set

U = {x ∈ Sn : xn+1 > 0}

is for instance

ϕ(x1, . . . , xn) =
(
x1, . . . , xn,

√
1− (x1)2 − . . .− (xn)2

)
,

and hence the coefficients of the metric tensor are

gij =

〈
∂ϕ

∂xi
,

∂ϕ

∂xj

〉
= δij +

xixj

1− (x1)2 − . . .− (xn)2
.

Two Riemannian manifolds will be regarded to be the same if they are
isometric:

Definition 1.6. Let (M,g) and (N,h) be Riemannian manifolds. A
diffeomorphism f : M → N is said to be an isometry if f∗h = g. Similarly,
a local diffeomorphism f : M → N is said to be a local isometry if f∗h = g.

Particularly simple examples of Riemannian manifolds can be constructed
from Lie groups. Recall that given a Lie group G and x ∈ G, the left trans-
lation by x is the diffeomorphism Lx : G → G given by Lx(y) = xy for all
y ∈ G. A Riemannian metric on G is said to be left-invariant if Lx is an
isometry for all x ∈ G.

Proposition 1.7. Let G be a Lie group. Then g(·, ·) ≡ 〈·, ·〉 is a left-
invariant metric if and only if

(5) 〈v,w〉x = 〈(dLx−1)x v, (dLx−1)x w〉e

for all x ∈ G and v,w ∈ TxG, where e ∈ G is the identity element and 〈·, ·〉e
is an inner product on the Lie algebra g = TeG.

Proof. If g is left-invariant, then (5) must obviously hold. Thus we
just have to show that (5) defines indeed a left-invariant metric on G. We
leave it as an exercise to show that the smoothness of the map

G×G / (x, y) +→ x−1y = Lx−1y ∈ G

implies the smoothness of the map

G× TG / (x, v) +→ (dLx−1)x v ∈ TG,

and that therefore (5) defines a smooth tensor field g on G. It should also
be clear from (5) that g is symmetric and positive definite. All that remains
to be proved is that g is left-invariant, that is,

〈(dLy)x v, (dLy)x w〉yx = 〈v,w〉x
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for all v,w ∈ TxG and all x, y ∈ G. We have
〈
(dLy)x v, (dLy)x w

〉
yx

=
〈(

dL(yx)−1

)
yx

(dLy)x v,
(
dL(yx)−1

)
yx

(dLy)x w
〉

e

=
〈(

d
(
Lx−1y−1 ◦ Ly

))
x
v,
(
d
(
Lx−1y−1 ◦ Ly

))
x
w
〉
e

= 〈(dLx−1)x v, (dLx−1)x w〉e
= 〈v,w〉x.

!

Thus any inner product on the Lie algebra g = TeG determines a left-
invariant metric on G.

A Riemannian metric allows us to compute the length of any vector (as
well as the angle between two vectors with the same base point). Therefore
we can measure the length of curves:

Definition 1.8. If (M, 〈·, ·〉) is a Riemannian manifold and c : I ⊂
R →M is a differentiable curve, the length of its restriction to [a, b] ⊂ I is

l(c) =

∫ b

a

〈ċ(t), ċ(t)〉
1
2 dt.

The length of a curve segment does not depend on the parametrization
(see Exercise 1.11.5).

If M is an orientable n-dimensional manifold then it possesses volume
elements, that is, differential forms ω ∈ Ωn(M) such that ωp '= 0 for all p ∈
M . Clearly, there are as many volume elements as differentiable functions
f ∈ C∞(M) without zeros.

Definition 1.9. If (M,g) is an orientable Riemannian manifold, ω ∈
Ωn(M) is said to be a Riemannian volume element if

ωp(v1, . . . , vn) = ±1

for any orthonormal basis {v1, . . . , vn} of TpM and all p ∈ M .

Notice that if M is connected there exist exactly two Riemannian volume
elements (one for each choice of orientation). Moreover, if ω is a Riemannian
volume element and x : V → R is a chart compatible with the orientation
induced by ω, one has

ω = fdx1 ∧ . . . ∧ dxn

for some positive function

f = ω

(
∂

∂x1
, . . . ,

∂

∂xn

)
.

If S is the matrix whose columns are the components of ∂
∂x1 , . . . , ∂

∂xn on
some orthonormal basis with the same orientation, we have

f = detS =
(
det

(
S2
)) 1

2 =
(
det

(
StS

)) 1
2 = (det(gij))

1
2
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since clearly the matrix StS is the matrix whose (i, j)-th entry is the inner
product g

(
∂
∂xi ,

∂
∂xj

)
= gij .

A Riemannian metric 〈·, ·〉 on M determines a linear isomorphism be-
tween TpM and T ∗

p M for all p ∈ M , by mapping any vector vp ∈ TpM to
the covector ωp given by ωp(wp) = 〈vp, wp〉. This extends to an isomorphism
between X(M) and Ω1(M). In particular, we have

Definition 1.10. Let (M,g) be a Riemannian manifold and f : M → R
a smooth function. The gradient of f is the vector field grad f associated
to the 1-form df through the isomorphism determined by g.

Exercises 1.11.

(1) Let g =
∑n

i,j=1 gij dxi ⊗ dxj ∈ T 2(T ∗
p M). Show that:

(i) g is symmetric iff gij = gji (i, j = 1, . . . , n);
(ii) g is nondegenerate iff det(gij) '= 0;
(iii) g is positive definite iff (gij) is a positive definite matrix;
(iv) if g is nondegenerate, the map Φg : TpM → T ∗

p M given by

Φg(v)(w) = g(v,w)

for all v,w ∈ TpM is a linear isomorphism;
(v) if g is positive definite then g is nondegenerate.

(2) Prove that any differentiable manifold admits a Riemannian struc-
ture without invoking Whitney’s Theorem. (Hint: Use partitions of

unity).
(3) (a) Let (M,g) be a Riemannian manifold and let G be a Lie group

acting freely and properly on M by isometries. Show that
M/G has a natural Riemannian structure (called the quotient
structure).

(b) How would you define the standard metric on the standard
n-torus T n = Rn/Zn?

(c) How would you define the standard metric on the real pro-
jective n-space RPn = Sn/Z2?

(4) Show that the standard metric on S3 ∼= SU(2) is left-invariant.
(5) We say that a differentiable curve γ : J →M is obtained from the

curve c : I → M by reparametrization if there exists a smooth
bijection f : I → J (the reparametrization) such that c = γ ◦ f .
Show that if γ is obtained from c by reparametrization then the
length of the restriction of c to [a, b] ⊂ I is equal to the length of
the restriction of γ to f([a, b]) ⊂ J .

(6) Let (M,g) be a Riemannian manifold and f ∈ C∞(M). Show that
if a ∈ R is a regular value of f then grad(f) is orthogonal to the
submanifold f−1(a).

(7) Let (M,g) be an oriented Riemannian manifold with boundary. For
each point p ∈ M we define the linear isomorphism g̃p : TpM →
T ∗

p M given by (g̃p(v)) (w) = gp(v,w) for all v,w ∈ TpM . Therefore,



92 3. RIEMANNIAN MANIFOLDS

we can identify TpM and T ∗
p M , and extend this identification to

the spaces X(M) and Ω1(M) of vector fields and 1-forms on M .
(a) Given two 1-forms ω, η ∈ Ω1(M), we can define their inner

product 〈ω, η〉 as the inner product of the associated vector
fields. If k ≥ 1, we define the inner product of α := α1∧· · ·∧αk

and β := β1 ∧ · · · ∧ βk (with α1, . . . ,αk,β1, . . . ,βk ∈ Ω1(M))
to be 〈α,β〉 = det (〈αi,βj〉). By linearity, we can define the
inner product of any two k-forms α,β ∈ Ωk(M). Show that
this inner product is well defined, i.e., does not depend on
the representations of α,β. Compute 〈ω, η〉 for the following
2-forms in R3:

ω := a dx ∧ dy + b dy ∧ dz + c dz ∧ dx

η := e dx ∧ dy + f dy ∧ dz + g dz ∧ dx

(Remark: For k = 0 we define the inner product of functions f, g to be the

usual product fg).
(b) (Hodge ∗-operator) Consider the linear isomorphism ∗ : ΛkT ∗

p M →
Λn−kT ∗

p M defined as follows: if {θ1, . . . , θk, θk+1, . . . , θn} is any
positively oriented orthonormal basis of T ∗

p M then ∗(θ1∧ · · ·∧
θk) = θk+1 ∧ · · · ∧ θn. Show that ∗ is well defined.

(c) We can define ∗ : Ωk(M) → Ωn−k(M) by setting (∗ω)p = ∗(ωp)
for all p ∈ M and ω ∈ Ωk(M). Write out an expression for ∗ω
in local coordinates, and show that it is a differential form.

(d) Prove that for all f, g ∈ C∞(M, R) and ω, η ∈ Ωk(M)
(i) ∗(f ω + g η) = f ∗ ω + g ∗ η;
(ii) ∗ ∗ ω = (−1)k(n−k) ω;
(iii) ω ∧ ∗η = η ∧ ∗ω = 〈ω, η〉ϑM ;
(iv) ∗(ω ∧ ∗η) = ∗(η ∧ ∗ω) = 〈ω, η〉;
(v) 〈∗ω, ∗η〉 = 〈ω, η〉,

where ϑM = ∗1 is the Riemannian volume element determined
by the metric g and the orientation of M .

(e) (Divergence Theorem) Let X ∈ X(M) be a vector field on M
and ωX ∈ Ω1(M) be the 1-form determined by X. Defining
the divergence of X to be div X := ∗d ∗ ωX , show that if M
is compact

∫

M

div X ϑM =

∫

∂M

〈X,n〉ϑ∂M

where n is the outward-pointing unit vector field on ∂M .
(f) Assume that ∂M = ∅. Show that

(ω, η) :=

∫

M
〈ω, η〉ϑM

is an inner product on Ωk(M). Moreover, show that (ω, η) =∫
M ω ∧ ∗ η =

∫
M η ∧ ∗ω and (∗ω, ∗η) = (ω, η).
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(g) Define the linear operator δ : Ωk(M) → Ωk−1(M) as δ :=
(−1)k(∗−1)d∗. Show that:

(i) δ = (−1)n(k+1)+1 ∗ d∗;
(ii) ∗δ = (−1)kd∗;
(iii) δ∗ = (−1)k+1 ∗ d;
(iv) δ ◦ δ = 0;
(v) (dω, η) = (ω, δη).

(h) (Laplacian) Consider the Laplacian operator ∆ := dδ + δd :
Ωk(M) → Ωk(M). Show that if ω, η are differential forms and
f is a differentiable function,

(i) ∗∆ = ∆∗;
(ii) (∆ω, η) = (ω,∆η);
(iii) ∆ω = 0 ⇔ (dω = 0 and δω = 0);
(iv) ∆f = − div (grad(f)) ;
(v) ∆(fg) = f∆g + g∆f − 2〈grad(f), grad(g)〉.

(i) A harmonic form is a differential form ω such that ∆ω = 0.
Show that if M is connected then any harmonic function on
M must be constant, and any harmonic n-form (n = dim M)
must be a constant multiple of the volume element ϑM .

(j) Assume the following result (Hodge decomposition): Any
k-form ω on a compact oriented Riemannian manifold M can
be uniquely decomposed in a sum ω = ωH + dα + δβ, where
ωH is a harmonic form, α ∈ Ωk−1(M) and β ∈ Ωk+1(M).
Show that any cohomology class on M (cf. Exercise 3.8.5 in
Chapter 2) can be uniquely represented by a harmonic form.

(k) (Green’s formula) Let M be a compact Riemannian manifold
with boundary. The normal derivative of a smooth map
f : M → R is the differentiable map defined on ∂M by ∂f

∂n :=
〈grad(f), n〉, where n is the outward-pointing unit normal field
on ∂M . Show that

∫

M
(f1∆f2 − f2∆f1) ϑM = −

∫

∂M

(
f1

∂f2

∂n
− f2

∂f1

∂n

)
ϑ∂M .

(l) Let M be a compact Riemannian manifold with boundary, and
suppose that ∆f ≡ 0 in M \∂M and that one of the following
boundary conditions holds:

(i) f |∂M ≡ 0 (Dirichlet condition);
(ii) ∂f

∂n ≡ 0 (Neumann condition).
Show that f ≡ 0 in the first case, and that f is constant in
the second case.

(8) (Degree of a map) Let M , N be compact, connected oriented man-
ifolds of dimension n, and let f : M → N be a smooth map.
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(a) Show that there exists a real number k (called the degree of f ,
and denoted by deg(f)) such that, for any n-form ω ∈ Ωn(N),

∫

M
f∗ω = k

∫

N
ω

(Hint: Use the Hodge decomposition).
(b) If f is not surjective then there exists an open set W ⊂ N

such that f−1(W ) = ∅. Deduce that if f is not surjective
then k = 0.

(c) Show that if f is an orientation-preserving diffeomorphism
then deg(f) = 1, and that if f is an orientation-reversing dif-
feomorphism then deg(f) = −1.

(d) Let f : M → N be surjective and let q ∈ N be a regular value
of f . Show that f−1(q) is a finite set and that there exists a
neighborhood W of q in N such that f−1(W ) is a disjoint union
of opens sets Vi of M with f |Vi : Vi →W a diffeomorphism.

(e) Admitting the existence of a regular value of f , show that
deg(f) is an integer (Remark: Sard’s Theorem guarantees that the

set of critical values of a differentiable map f between manifolds with the same

dimension has zero measure, which in turn guarantees the existence of a regular

value of f).
(f) What is the degree of the natural projection π : Sn → RPn

for n odd?
(g) Given n ∈ N, indicate a smooth map f : S1 → S1 of degree n.
(h) Let Sn ⊂ Rn+1 be the unit sphere with the metric induced by

the Euclidean metric of Rn+1. Let X be a vector field tangent
to Sn such that ‖X‖ = 1. Consider the map Ft : Sn → Rn+1

given by Ft(x) = cos(πt)x + sin(πt)Xx. Show that Ft is a
smooth map of Sn on Sn, and define k(t) = deg(Ft). Show
that the map t +→ k(t) is continuous.

(i) What are the values of k(0) and k(1)? Show that if n is even
then there exists no vector field X on Sn such that Xp '= 0 for
all p ∈ Sn.

2. Affine Connections

If X and Y are vector fields in Euclidean space, we can define the di-
rectional derivative ∇XY of Y along X. This definition, however, uses
the existence of Cartesian coordinates, which no longer holds in a general
manifold. To overcome this difficulty we must introduce more structure:

Definition 2.1. Let M be a differentiable manifold. An affine con-
nection on M is a map ∇ : X(M) × X(M) → X(M) such that

(i) ∇fX+gY Z = f∇XZ + g∇Y Z;
(ii) ∇X(Y + Z) = ∇XY +∇XZ;
(iii) ∇X(fY ) = (X · f)Y + f∇XY
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for all X,Y,Z ∈ X(M) and f, g ∈ C∞(M, R) (we write ∇XY := ∇(X,Y )).

The vector field ∇XY is sometimes known as the covariant derivative
of Y along X.

Proposition 2.2. Let ∇ be an affine connection on M , let X,Y ∈ X(M)
and p ∈ M . Then (∇XY )p ∈ TpM depends only on Xp and on the values
of Y along a curve tangent to X at p. Moreover, if x : W → Rn are local
coordinates on some open set W ⊂ M , we have

(6) ∇XY =
n∑

i=1



X · Y i +
n∑

j,k=1

Γi
jkX

jY k



 ∂

∂xi

where the n3 differentiable functions Γi
jk : W → R, called the Christoffel

symbols, are defined by

(7) ∇ ∂

∂xj

∂

∂xk
=

n∑

i=1

Γi
jk

∂

∂xi
.

Proof. It is easy to show that an affine connection is local, that is, if
X,Y ∈ X(M) coincide with X̃, Ỹ ∈ X(M) in some open set W ⊂ M then
∇XY = ∇X̃ Ỹ on W (see Exercise 2.6.1). Consequently, we can compute
∇XY for vector fields X,Y defined on W only. Let W be a coordinate neigh-
borhood for the local coordinates x : W → Rn, and define the Christoffel
symbols associated with these local coordinates through (7). Writing out

∇XY = ∇Pn
i=1 Xi ∂

∂xi

n∑

j=1

Y j ∂

∂xj

and using the properties listed in definition (2.1), we obtain (6). This for-
mula clearly shows that (∇XY )p depends only on Xi(p), Y i(p) and (X ·
Y i)(p). However, Xi(p) and Y i(p) depend only on Xp and Yp, and (X ·
Y i)(p) = d

dtY
i(c(t))|t=0 depends only on the values of Y i (or Y ) along a

curve c whose tangent vector at p = c(0) is Xp. !

Remark 2.3. Locally, an affine connection is uniquely determined by
specifying its Christoffel symbols on a coordinate neighborhood. However,
the choices of Christoffel symbols on different charts are not independent,
as the covariant derivative must agree on the overlap.

A vector field defined along a differentiable curve c : I →M is a
differentiable map V : I → TM such that V (t) ∈ Tc(t)M for all t ∈ I. An
obvious example is the tangent vector ċ(t). If V is a vector field defined along
the differentiable curve c : I → M with ċ '= 0, its covariant derivative
along c is the vector field defined along c given by

DV

dt
(t) := ∇ċ(t)V = (∇XY )c(t)
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for any vector fields X,Y ∈ X(M) such that Xc(t) = ċ(t) and Yc(s) = V (s),
with s ∈ (t−ε, t+ε) for some ε > 0 (if ċ(t) '= 0 such extensions always exist).
Proposition 2.2 guarantees that (∇XY )c(t) does not depend on the choice of
X,Y ; in fact, if in local coordinates x : W → Rn we have xi(t) := xi(c(t))
and

V (t) =
n∑

i=1

V i(t)

(
∂

∂xi

)

c(t)

,

then

DV

dt
(t) =

n∑

i=1



V̇ i(t) +
n∑

j,k=1

Γi
jk(c(t))ẋ

j(t)V k(t)




(

∂

∂xi

)

c(t)

.

Definition 2.4. A vector field V defined along a curve c : I → M is
said to be parallel along c if

DV

dt
(t) = 0

for all t ∈ I. The curve c is said to be a geodesic of the connection ∇ if ċ
is parallel along c, i.e., if

Dċ

dt
(t) = 0

for all t ∈ I.

In local coordinates x : W → Rn, the condition for V to be parallel
along c is written as

(8) V̇ i +
n∑

j,k=1

Γi
jkẋ

jV k = 0 (i = 1, . . . , n).

This is a system of first order linear ODE’s for the components of V . By
the Picard-Lindelöf Theorem, given a curve c : I →M , a point p ∈ c(I) and
a vector vp ∈ TpM , there exists a unique vector field V : I → TM parallel
along c such that V (0) = vp, which is called the parallel transport of vp

along c.
Moreover, the geodesic equations are

(9) ẍi +
n∑

j,k=1

Γi
jkẋ

j ẋk = 0 (i = 1, . . . , n).

This is a system of second order (nonlinear) ODE’s for the coordinates of
c(t). Therefore the Picard-Lindelöf Theorem implies that, given a point
p ∈ M and a vector vp ∈ TpM , there exists a unique geodesic c : I → M ,
defined on a maximal open interval I such that 0 ∈ I, satisfying c(0) = p
and ċ(0) = vp.
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We will now define the torsion of an affine connection ∇. For that, we
note that, in local coordinates x : W → Rn, we have

∇XY −∇Y X =
n∑

i=1



X · Y i − Y · Xi +
n∑

j,k=1

Γi
jk

(
XjY k − Y jXk

)


 ∂

∂xi

= [X,Y ] +
n∑

i,j,k=1

(
Γi

jk − Γi
kj

)
XjY k ∂

∂xi
.

Definition 2.5. The torsion operator of a connection ∇ on M is the
operator T : X(M)× X(M) → X(M) given by

T (X,Y ) = ∇XY −∇Y X − [X,Y ],

for all X,Y ∈ X(M). The connection is said to be symmetric if T = 0.

The local expression of T (X,Y ) makes it clear that T (X,Y )p depends
linearly on Xp and Yp. In other words, T is the (2, 1)-tensor field on M
given in local coordinates by

T =
n∑

i,j,k=1

(
Γi

jk − Γi
kj

)
dxj ⊗ dxk ⊗

∂

∂xi

(recall that any (2, 1)-tensor T ∈ T 2,1(V ∗, V ) is naturally identified with a
bilinear map ΦT : V ∗ × V ∗ → V ∼= V ∗∗ through ΦT (v,w)(α) = T (v,w,α)
for all v,w ∈ V, α ∈ V ∗).

Notice that the connection is symmetric iff ∇XY − ∇Y X = [X,Y ] for
all X,Y ∈ X(M). In local coordinates, the condition for the connection to
be symmetric is

Γi
jk = Γi

kj (i, j, k = 1, . . . , n)

(hence the name).

Exercises 2.6.

(1) (a) Show that if X,Y ∈ X(M) coincide with X̃, Ỹ ∈ X(M) in some
open set W ⊂ M then ∇XY = ∇X̃ Ỹ on W . (Hint: Use bump

functions with support contained on W and the properties listed in definition

(2.1)).
(b) Obtain the local coordinate expression (6) for ∇XY .
(c) Obtain the local coordinate equations (8) for the parallel trans-

port law.
(d) Obtain the local coordinate equations (9) for the geodesics of

the connection ∇.
(2) Determine all affine connections on Rn. Of these, determine the

connections whose geodesics are straight lines.
(3) Let ∇ be an affine connection on M . If ω ∈ Ω1(M) and X ∈ X(M),

we define ∇Xω ∈ Ω1(M) by

∇Xω(Y ) = X · (ω(Y ))− ω(∇XY )
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for all Y ∈ X(M).
(a) Show that this formula defines indeed a 1-form, i.e., show that

(∇Xω(Y )) (p) is a linear function of Yp.
(b) Show that

(i) ∇fX+gY ω = f∇Xω + g∇Y ω;
(ii) ∇X(ω + η) = ∇Xω +∇Xη;
(iii) ∇X(fω) = (X · f)ω + f∇Xω
for all X,Y ∈ X(M), f, g ∈ C∞(M, R) and ω, η ∈ Ω1(M).

(c) Let x : W → Rn be local coordinates on W ⊂ M , and take

ω =
n∑

i=1

ωidxi

on W . Show that

∇Xω =
n∑

i=1



X · ωi −
n∑

j,k=1

Γk
jiX

jωk



 dxi.

(d) Define ∇XT for an arbitrary tensor field T in M , and write
its expression in local coordinates.

3. Levi-Civita Connection

In the case of a Riemannian manifold, there is a special choice of con-
nection called the Levi-Civita connection, with very important geometric
properties.

Definition 3.1. A connection ∇ in a Riemannian manifold (M, 〈·, ·〉)
is said to be compatible with the metric if

X · 〈Y,Z〉 = 〈∇XY,Z〉+ 〈Y,∇XZ〉
for all X,Y,Z ∈ X(M).

If ∇ is compatible with the metric, then the inner product of two vector
fields V1 and V2, parallel along a curve, is constant along the curve:

d

dt
〈V1(t), V2(t)〉 =

〈
∇ċ(t)V1(t), V2(t)

〉
+
〈
V1(t),∇ċ(t)V2(t)

〉
= 0.

In particular, parallel transport preserves lengths of vectors and angles be-

tween vectors. Therefore, if c : I → M is a geodesic, then 〈ċ(t), ċ(t)〉
1
2 = k

is constant. If a ∈ I, the length s of the geodesic between a and t is

s =

∫ t

a

〈ċ(u), ċ(u)〉
1
2 du =

∫ t

a

k du = k(t− a).

In other words, t is an affine function of the arclength s (and is therefore
called an affine parameter); this shows in particular that the parameters
of two geodesics with the same image are affine functions of each other).

Theorem 3.2. (Levi-Civita) If (M, 〈·, ·〉) is a Riemannian manifold then
there exists a unique connection ∇ on M such that
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(i) ∇ is symmetric;
(ii) ∇ is compatible with 〈·, ·〉.

In local coordinates (x1, . . . , xn), the Christoffel symbols for this connection
are

Γi
jk =

1

2

n∑

l=1

gil

(
∂gkl

∂xj
+

∂gjl

∂xk
−

∂gjk

∂xl

)
(10)

where
(
gij
)

= (gij)
−1.

Proof. Let X,Y,Z ∈ X(M). If the Levi-Civita connection exists then
we must have

X · 〈Y,Z〉 = 〈∇XY,Z〉+ 〈Y,∇XZ〉;
Y · 〈X,Z〉 = 〈∇Y X,Z〉+ 〈X,∇Y Z〉;
−Z · 〈X,Y 〉 = −〈∇ZX,Y 〉 − 〈X,∇ZY 〉,

as ∇ is compatible with the metric. Moreover, since ∇ is symmetric, we
must also have

−〈[X,Z], Y 〉 = −〈∇XZ, Y 〉+ 〈∇ZX,Y 〉,
−〈[Y,Z],X〉 = −〈∇Y Z,X〉 + 〈∇ZY,X〉,
〈[X,Y ], Z〉 = 〈∇XY,Z〉 − 〈∇Y X,Z〉.

Adding these six equalities, we obtain the Koszul formula

2〈∇XY,Z〉 = X · 〈Y,Z〉+ Y · 〈X,Z〉 − Z · 〈X,Y 〉
− 〈[X,Z], Y 〉 − 〈[Y,Z],X〉 + 〈[X,Y ], Z〉.

Since 〈·, ·〉 is nondegenerate and Z is arbitrary, this formula determines
∇XY . Thus, if the Levi-Civita connection exists, it must be unique.

To prove existence, we define ∇XY through the Koszul formula. It is
not difficult to show that this defines indeed a connection (cf. Exercise 3.3.1).
Also, using this formula, we obtain

2〈∇XY −∇Y X,Z〉 = 2〈∇XY,Z〉 − 2〈∇Y X,Z〉 = 2〈[X,Y ], Z〉

for all X,Y,Z ∈ X(M), and hence ∇ is symmetric. Finally, again using the
Koszul formula, we have

2〈∇XY,Z〉+ 2〈Y,∇XZ〉 = 2X · 〈Y,Z〉

and therefore the connection defined by this formula is compatible with the
metric.

Choosing local coordinates (x1, . . . , xn), we have
[

∂

∂xi
,

∂

∂xj

]
= 0 and

〈
∂

∂xi
,

∂

∂xj

〉
= gij .
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Therefore the Koszul formula yields

2

〈
∇ ∂

∂xj

∂

∂xk
,

∂

∂xl

〉
=

∂

∂xj
· gkl +

∂

∂xk
· gjl −

∂

∂xl
· gjk

⇔

〈
n∑

i=1

Γi
jk

∂

∂xi
,

∂

∂xl

〉

=
1

2

(
∂gkl

∂xj
+

∂gjl

∂xk
−

∂gjk

∂xl

)

⇔
n∑

i=1

gilΓ
i
jk =

1

2

(
∂gkl

∂xj
+

∂gjl

∂xk
−

∂gjk

∂xl

)
.

!

Exercises 3.3.

(1) Show that the Koszul formula defines a connection.
(2) We introduce in R3, with the usual Euclidean metric 〈·, ·〉, the con-

nection ∇ defined in Cartesian coordinates (x1, x2, x3) by

Γi
jk = ωεijk,

where ω : R3 → R is a smooth function and

εijk =






+1 if (i, j, k) is an even permutation of (1, 2, 3)
−1 if (i, j, k) is an odd permutation of (1, 2, 3)
0 otherwise.

Show that:
(a) ∇ is compatible with 〈·, ·〉;
(b) the geodesics of ∇ are straight lines;
(c) the torsion of ∇ is not zero in all points where ω '= 0 (therefore

∇ is not the Levi-Civita connection unless ω ≡ 0);
(d) the parallel transport equation is

V̇ i +
3∑

j,k=1

ωεijkẋ
jV k = 0 ⇔ V̇ + ω(ẋ× V ) = 0

(where × is the cross product in R3); therefore, a vector paral-
lel along a straight line rotates about it with angular velocity
−ωẋ.

(3) Let (M,g) and (N, g̃) be isometric Riemannian manifolds with Levi-
Civita connections ∇ and ∇̃, and let f : M → N be an isometry.
Show that:
(a) f∗∇XY = ∇̃f∗Xf∗Y for all X,Y ∈ X(M);
(b) if c : I →M is a geodesic then f ◦c : I → N is also a geodesic.

(4) Consider the usual local coordinates (θ,ϕ) in S2 ⊂ R3 defined by
the parametrization φ : (0,π) × (0, 2π) → R3 given by

φ(θ,ϕ) = (sin θ cos ϕ, sin θ sinϕ, cos θ).
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(a) Using these coordinates, determine the expression of the Rie-
mannian metric induced in S2 by the usual Euclidean metric
of R3.

(b) Compute the Christoffel symbols for the Levi-Civita connec-
tion in these coordinates.

(c) Show that the equator is the image of a geodesic.
(d) Show that any rotation about an axis through the origin in R3

induces an isometry of S2.
(e) Show that the geodesics of S2 traverse great circles.
(f) Find a geodesic triangle whose internal angles add up to 3π

2 .
(g) Let c : R → S2 be given by c(t) = (sin θ0 cos t, sin θ0 sin t, cos θ0),

where θ0 ∈
(
0, π2

)
(therefore c is not a geodesic). Let V be a

vector field parallel along c such that V (0) = ∂
∂θ ( ∂

∂θ is well
defined at (sin θ0, 0, cos θ0) by continuity). Compute the an-
gle by which V is rotated when it returns to the initial point.
(Remark: The angle you have computed is exactly the angle by which the os-

cillation plane of the Foulcaut pendulum - which is just any sufficiently long

and heavy pendulum - rotates during a day in a place at latitude π
2 − θ0, as it

tries to remain fixed with respect to the stars in a rotating Earth).
(h) Use this result to prove that no open set U ⊂ S2 is isometric

to an open set V ⊂ R2 with the Euclidean metric.
(i) Given a geodesic c : R → R2 of R2 with the Euclidean metric

and a point p /∈ c(R), there exists a unique geodesic c̃ : R → R2

(up to reparametrization) such that p ∈ c̃(R) and c(R)∩c̃(R) =
∅ (parallel postulate). Is this true in S2?

(5) Let H be the group of proper affine transformations of R, that is,
the group of functions g : R → R of the form

g(t) = yt + x

with y > 0 and x ∈ R (the group operation being composition).
Taking (x, y) ∈ R×R+ as global coordinates, we induce a differen-
tiable structure in H, and H, with this differentiable structure, is
a Lie group (cf. Exercise 7.17.3 in Chapter 1).
(a) Determine the left-invariant metric induced by the Euclidean

inner product

g = dx⊗ dx + dy ⊗ dy

in h = T(0,1)H (H endowed with this metric is called the hy-
perbolic plane).

(b) Compute the Christoffel symbols of the Levi-Civita connection
in the coordinates (x, y).
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(c) Show that the curves α,β : R → H given in these coordinates
by

α(t) =
(
0, et

)

β(t) =

(
tanh t,

1

cosh t

)

are geodesics. What are the sets α(R) and β(R)?
(d) Determine all images of geodesics.
(e) Show that, given two points p, q ∈ H, there exists a unique

geodesic through them (up to reparametrization).
(f) Give examples of connected Riemannian manifolds contain-

ing two points through which there are (i) infinitely many
geodesics (up to reparametrization); (ii) no geodesics.

(g) Show that no open set U ⊂ H is isometric to an open set V ⊂
R2 with the Euclidean metric. (Hint: Show that in any neighborhood

of any point p ∈ H there is always a geodesic quadrilateral whose internal angles

add up to less than 2π).
(h) Does the parallel postulate hold in the hyperbolic plane?

(6) Let (M, 〈·, ·〉) be a Riemannian manifold with Levi-Civita connec-
tion ∇̃, and let (N, 〈〈·, ·〉〉) be a submanifold with the induced met-
ric and Levi-Civita connection ∇.
(a) Show that

∇XY =
(
∇̃ eX Ỹ

)*

for all X,Y ∈ X(N), where X̃, Ỹ are any extensions of X,Y
to X(M) and * : TM |N → TN is the orthogonal projection.

(b) Use this result to indicate curves that are, and curves that are
not, geodesics of the following surfaces in R3:

(i) the sphere S2;
(ii) the torus of revolution;
(iii) the surface of a cone;
(iv) a general surface of revolution.

(c) Show that if two surfaces in R3 are tangent along a curve,
then the parallel transport of vectors along this curve in both
surfaces coincides.

(d) Use this result to compute the angle ∆θ by which a vector
V is rotated when it is parallel transported along a circle on
the sphere (Hint: Consider the cone which is tangent to the sphere along

the circle (cf. Figure 1); notice that the cone minus a ray through the vertex is

isometric to an open set of the Euclidean plane).
(7) Let (M,g) be a Riemannian manifold with Levi-Civita connection

∇. Show that g is parallel along any curve, i.e., show that

∇Xg = 0

for all X ∈ X(M) (cf. Exercise 2.6.3).
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V0

V0

V0

V

V

∆θ

Figure 1. Parallel transport along a circle on the sphere.

(8) Let (M,g) be a Riemannian manifold with Levi-Civita connection
∇, and let ψt : M → M be a one-parameter group of isometries.
The vector field X ∈ X(M) defined by

Xp =
d

dt

∣∣∣∣
t=0

ψt(p)

is called the Killing vector field associated to ψt. Show that:
(a) LXg = 0 (cf. Exercise 2.8.3);
(b) X satisfies 〈∇Y X,Z〉 + 〈∇ZX,Y 〉 = 0 for all vector fields

Y,Z ∈ X(M);
(c) if c : I →M is a geodesic then

〈
ċ(t),Xc(t)

〉
is constant.

(9) Recall that if M is an oriented differential manifold with volume
element ω ∈ Ωn(M), the divergence of X is the function div(X)
such that

LXω = (div(X))ω

(cf. Exercise 6.4.5 in Chapter 2). Suppose that M has a Riemannian
structure and ω is a Riemannian volume element.
(a) Show that this definition of divergence coincides with the def-

inition in Exercise 1.11.7.
(b) Show that at each point p ∈ M ,

div(X) =
n∑

i=1

〈∇YiX,Yi〉,

where {Y1, . . . , Yn} is an orthonormal basis of TpM and ∇ is
the Levi-Civita connection.
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(10) Let M be an oriented Riemannian manifold of dimension 3. The
curl of a vector field X ∈ X(M) is the vector field curl(X) as-
sociated to the 1-form ∗dωX , where ωX ∈ Ω1(M) is the 1-form
associated to X (cf. Exercise 1.11.7). Show that:
(a) curl(grad(f)) = 0 for f ∈ C∞(M, R);
(b) div(curl(X)) = 0 for X ∈ X(M);
(c) curl(X) =

∑3
i,j,k=1 εijk

〈
∇YjX,Yk

〉
Yi, where {Y1, Y2, Y3} is a

positive basis of orthonormal vector fields, X =
∑n

i=1 XiYi

and εijk was defined on Exercise 3.3.2.

4. Minimizing Properties of Geodesics

Let M be a differentiable manifold with an affine connection ∇. As we
saw in Section 2, given a point p ∈ M and a tangent vector v ∈ TpM , there
exists a unique geodesic cv : I → M defined on a maximal open interval
I ⊂ R such that 0 ∈ I, cv(0) = p and ċv(0) = v. Consider now the curve
γ : J →M defined by γ(t) = cv(at), where a ∈ R and J is the inverse image
of I by the map t +→ at. We have

γ̇(t) = aċv(at)

and, consequently,

∇γ̇ γ̇ = ∇aċv(aċv) = a2∇ċv ċv = 0.

Therefore γ is also a geodesic. Since γ(0) = cv(0) = p and γ̇(0) = aċv(0) =
av, we see that γ is the unique geodesic with initial velocity av ∈ TpM , that
is, γ = cav. Therefore, we have cav(t) = cv(at) for all t ∈ I. This property
is sometimes referred to as the homogeneity of geodesics. Notice that we
can make the interval J arbitrarily large by making a sufficiently small.

If 1 ∈ I, we define expp(v) = cv(1). By homogeneity of geodesics, we
can define expp(v) for v in some open neighborhood U of the origin in TpM .
The map expp : U ⊂ TpM → M thus obtained is called the exponential
map at p.

Proposition 4.1. There exists an open set U ⊂ TpM containing the
origin such that expp : U → M is a diffeomorphism onto some open set
V ⊂ M containing p (called a normal neighborhood).

Proof. The exponential map is clearly differentiable as a consequence
of the smooth dependence of the solution of an ODE on its initial data
(cf. [Arn92]). If v ∈ TpM is such that expp(v) is defined, we have, by
homogeneity, that expp(tv) = ctv(1) = cv(t). Consequently,

(
d expp

)
0
v =

d

dt
expp(tv)|t=0 =

d

dt
cv(t)|t=0 = v.

We conclude that
(
d expp

)
0

: T0(TpM) ∼= TpM → TpM is the identity map.
By the Inverse Function Theorem, expp is then a diffeomorphism of some
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M

TpM

v

p

expp(v)

Figure 2. The exponential map.

open neighbourhood U of 0 ∈ TpM onto some open set V ⊂ M containing
p = expp(0). !

Example 4.2. Consider the Levi-Civita connection in S2 with the stan-
dard metric, and let p ∈ S2. Then expp(v) is well defined for all v ∈ TpS2,
but is not a diffeomorphism, as it clearly is not injective. However, its re-
striction to the open ball Bπ(0) ⊂ TpS2 is a diffeomorphism onto S2 \{−p}.

Now let (M, 〈·, ·〉) be a Riemannian manifold and ∇ its Levi-Civita con-
nection. Since 〈·, ·〉 defines an inner product in TpM , we can think of TpM
as the Euclidean n-space Rn.

Let E be the vector field defined on TpM \ {0} by

Ev =
v

‖v‖
,

and define X = (expp)∗E on V \ {p}, where V ⊂ M is a normal neighbor-
hood. We have

Xexpp(v) =
(
d expp

)
v
Ev =

d

dt
expp

(
v + t

v

‖v‖

)∣∣∣∣
t=0

=
d

dt
cv

(
1 +

t

‖v‖

)∣∣∣∣
t=0

=
1

‖v‖
ċv(1).

Since ‖ċv(1)‖ = ‖ċv(0)‖ = ‖v‖, we see that Xexpp(v) is the unit tangent
vector to the geodesics cv. In particular, X must satisfy

∇XX = 0.
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If ε > 0 is such that Bε(0) ⊂ U := exp−1
p (V ), the normal ball

with center p and radius ε is the open set Bε(p) := expp(Bε(0)), and
the normal sphere of radius ε centered at p is the compact submani-
fold Sε(p) := expp(∂Bε(0)). We will now prove that X is (and hence the
geodesics through p are) orthogonal to normal spheres.

For that, we choose a local parametrization ϕ : W ⊂ Rn−1 → Sn−1 ⊂
TpM , and use it to define a parametrization ϕ̃ : (0,+∞) × W → TpM
through

ϕ̃(r, θ1, . . . , θn−1) = rϕ(θ1, . . . , θn−1)

(hence (r, θ1, . . . , θn−1) are spherical coordinates on TpM). Notice that

∂

∂r
= E,

and consequently

(11) X = (expp)∗
∂

∂r
.

Since ∂
∂θi is tangent to {r = ε}, the vector fields

(12) Yi := (expp)∗
∂

∂θi

are tangent to Sε(p). Notice also that
∥∥ ∂
∂θi

∥∥ =
∥∥∥ ∂ϕ̃
∂θi

∥∥∥ = r
∥∥∥ ∂ϕ
∂θi

∥∥∥ is propor-

tional to r, and consequently ∂
∂θi → 0 as r → 0, implying that (Yi)q → 0p

as q → p.
Since expp is a local diffeomorphism, the vector fields X and Yi are

linearly independent at each point. Also,

[X,Yi] =

[
(expp)∗

∂

∂r
, (expp)∗

∂

∂θi

]
= (expp)∗

[
∂

∂r
,

∂

∂θi

]
= 0,

or, since the Levi-Civita connection is symmetric,

∇XYi = ∇YiX.

To prove that X is orthogonal to the normal spheres Sε(p), we show
that X is orthogonal to each of the vector fields Yi. In fact, since ∇XX = 0
and ‖X‖ = 1, we have

X · 〈X,Yi〉 = 〈∇XX,Yi〉+ 〈X,∇XYi〉 = 〈X,∇YiX〉 = Yi ·
(

1

2
〈X,X〉

)
= 0,

and hence 〈X,Yi〉 is constant along each geodesic through p. Consequently,

〈X,Yi〉(expp v) =
〈
Xexpp(v), (Yi)expp(v)

〉
= lim

t→0

〈
Xexpp(tv), (Yi)expp(tv)

〉
= 0

(as ‖X‖ = 1 and (Yi)q → 0p as q → p).

Proposition 4.3. Let γ : I → M be a differentiable curve such that
γ(0) = p, γ(1) ∈ Sε(p), where Sε(p) is a normal sphere. Then the length
l(γ) of the restriction of γ to [0, 1] satisfies l(γ) ≥ ε, and l(γ) = ε if and
only if γ is a reparametrized geodesic.
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Proof. We can assume that γ(t) '= p for all t ∈ (0, 1): if that were
not so, we could easily construct a curve γ̃ : Ĩ → M with γ̃(0) = p, γ̃(1) =
γ(1) ∈ Sε(p) and l(γ̃) < l(γ). For the same reason, we can assume that
γ([0, 1)) ⊂ Bε(p). Let

γ(t) = expp(r(t)n(t)),

where r(t) ∈ (0, ε] and n(t) ∈ Sn−1 are well defined for t ∈ (0, 1]. Note that
r can be extended to [0, 1] as a smooth function. We have

γ̇(t) = (expp)∗ (ṙ(t)n(t) + r(t)ṅ(t)) .

Since 〈n(t), n(t)〉 = 1, we have 〈ṅ(t), n(t)〉 = 0, and consequently ṅ(t) is
tangent to ∂Br(t)(0). Noticing that n(t) =

(
∂
∂r

)
r(t)n(t)

, we conclude that

γ̇(t) = ṙ(t)Xγ(t) + Y (t),

where Y (t) = r(t)(expp)∗ṅ(t) is tangent to Sr(t)(p), and hence orthogonal
to Xγ(t). Consequently,

l(γ) =

∫ 1

0

〈
ṙ(t)Xγ(t) + Y (t), ṙ(t)Xγ(t) + Y (t)

〉 1
2 dt

=

∫ 1

0

(
ṙ(t)2 + ‖Y (t)‖2

) 1
2 dt

≥
∫ 1

0
ṙ(t)dt = r(1)− r(0) = ε.

It should be clear that l(γ) = ε if and only if ‖Y (t)‖ = 0 and ṙ(t) ≥ 0
for all t ∈ [0, 1]; but then ṅ(t) = 0 (implying that n is constant), and
γ(t) = expp(r(t)n) = cr(t)n(1) = cn(r(t)) is, up to reparametrization, the
geodesic through p with initial condition n ∈ TpM . !

Definition 4.4. A piecewise differentiable curve is a continuous
map c : [a, b] → M such that the restriction of c to [ti−1, ti] coincides with
the restriction of a differentiable curve to the same interval for i = 1, . . . , n,
where a = t0 < t1 < . . . < tn−1 < tn = b. We say that c connects p ∈ M
to q ∈ M if c(a) = p and c(b) = q.

The definition of length of a piecewise differentiable curve offers no
difficulties. It should also be clear that Proposition 4.3 easily extends
to piecewise differentiable curves, if we now allow for piecewise differen-
tiable reparametrizations. Using this extended version of Proposition 4.3,
the properties of the exponential map and the invariance of length under
reparametrization, one easily shows the following result:

Theorem 4.5. Let (M, 〈·, ·〉) be a Riemannian manifold, p ∈ M and
Bε(p) a normal ball centered at p. Then, for each point q ∈ Bε(p), there
exists a geodesic c : I → M connecting p to q; moreover, if γ : J → M is
any other piecewise differentiable curve connecting p to q, then l(γ) ≥ l(c),
and l(γ) = l(c) if and only if γ is a reparametrization of c.
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Conversely, we have

Theorem 4.6. Let (M, 〈·, ·〉) be a Riemannian manifold and p, q ∈ M .
If c : I → M is a piecewise differentiable curve connecting p to q and
l(c) ≤ l(γ) for any piecewise differentiable curve γ : J → M connecting p to
q then c is a reparametrized geodesic.

To prove this theorem, we need the following definition:

Definition 4.7. A normal neighborhood V ⊂ M is called a totally
normal neighborhood if there exists ε > 0 such that V ⊂ Bε(p) for all
p ∈ V .

We will now prove that totally normal neighborhoods always exist. To do
so, we recall that local coordinates (x1, . . . , xn) on M yield local coordinates
(x1, . . . , xn, v1, . . . , vn) on TM labeling the vector

v1 ∂

∂x1
+ . . . + vn ∂

∂xn
.

The geodesic equations,

ẍi +
n∑

j,k=1

Γi
jkẋ

jẋk = 0 (i = 1, . . . , n),

correspond to the system of first order ODE’s
{

ẋi = vi

v̇i = −
∑n

j,k=1 Γ
i
jkv

jvk (i = 1, . . . , n).

These equations define the local flow of the vector field X ∈ X(TM) given
in local coordinates by

X =
n∑

i=1

vi ∂

∂xi
−

n∑

i,j,k=1

Γi
jkv

jvk ∂

∂vi
,

called the geodesic flow. As was seen in Chapter 1, for each point v ∈ TM
there exists an open neighborhood W ⊂ TM and an open interval I ⊂ R

containing 0 such that the local flow F : W × I → TM of X is well defined.
In particular, for each point p ∈M we can choose an open neighborhood U
containing p and ε > 0 such that the geodesic flow is well defined in W × I
with

W = {vq ∈ TM | q ∈ U, ‖vq‖ < ε}.
Using homogeneity of geodesics, we can make the interval I as large as we
want by making ε sufficiently small. Therefore, for ε small enough we can
define a map G : W →M×M by G(vq) := (q, expq(vq)). Since expq(0q) = q,
the matrix representation of (dG)0p in the above local coordinates is

(
I 0
I I

)
,

and hence G is a local diffeomorphism. Reducing U and ε if necessary, we
can therefore assume that G is a diffeomorphism onto its image G(W ), which
contains the point (p, p) = G(0p). Choosing an open neighborhood V of p
such that V ×V ⊂ G(W ), it is clear that V is a totally normal neighborhood:
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for each point q ∈ V we have {q} × expq(Bε(0q)) = G(W ) ∩ ({q}×M) ⊃
{q}× V , that is, expq(Bε(0q)) ⊃ V .

Notice that, given any two points p, q in a totally normal neighborhood
V , there exists a geodesic c : I → M connecting p to q; if γ : J → M is
any other piecewise differentiable curve connecting p to q, then l(γ) ≥ l(c),
and l(γ) = l(c) if and only if γ is a reparametrization of c. The proof of
Theorem 4.6 is now an immediate consequence of the following observation:
if c : I → M is a piecewise differentiable curve connecting p to q such that
l(c) ≤ l(γ) for any curve γ : J →M connecting p to q, we see that c must be
a reparametrized geodesic in each totally normal neighborhood it intersects.

Exercises 4.8.

(1) Let (M,g) be a Riemannian manifold and f : M → R a smooth
function. Show that if ‖ grad(f)‖ ≡ 1 then the integral curves of
grad(f) are geodesics.

(2) Let M be a Riemannian manifold and∇ the Levi-Civita connection
on M . Given p ∈ M and a basis {v1, . . . , vn} for TpM , we consider
the parametrization ϕ : U ⊂ Rn →M given by

ϕ(x1, . . . , xn) = expp(x
1v1 + . . . + xnvn)

(the local coordinates (x1, . . . , xn) are called normal coordinates).
Show that:
(a) in these coordinates, Γi

jk(p) = 0 (Hint: Consider the geodesic equa-

tion);
(b) if {v1, . . . , vn} is an orthonormal basis then gij(p) = δij .

(3) Let G be a Lie group endowed with a bi-invariant Riemannian
metric (i.e., such that Lx and Rx are isometries for all x ∈ G), and
let i : G→ G be the diffeomorphism defined by i(x) = x−1.
(a) Compute (di)e and show that

(di)x = (dRx−1)e (di)e (dLx−1)x

for all x ∈ G. Conclude that i is an isometry.
(b) Let v ∈ g = TeG and cv be the geodesic satisfying cv(0) =

e and ċv(0) = v. Show that if t is sufficiently small then
cv(−t) = (cv(t))

−1. Conclude that cv is defined in R and
satisfies cv(t + s) = cv(t)cv(s) for all t, s ∈ R (Hint: Recall that

any two points in a totally normal neighborhood are connected by a unique

geodesic in that neighbourhood).
(c) Show that the geodesics of G are the integral curves of left-

invariant vector fields, and that the maps exp (in the Lie
group) and expe (in the Riemannian manifold) coincide.

(d) Let ∇ be the Levi-Civita connection of the bi-invariant metric
and X,Y two left-invariant vector fields. Show that

∇XY =
1

2
[X,Y ].
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(4) Use Theorem 4.5 to prove that if f : M → N is an isometry and
c : I →M is a geodesic then f ◦ c : I → N is also a geodesic.

(5) Let f : M → M be an isometry whose set of fixed points is a
connected 1-dimensional submanifold N ⊂ M . Show that N is the
image of a geodesic.

(6) Let (M, 〈·, ·〉) be a geodesically complete Riemannian manifold and
let p ∈ M .
(a) Consider a geodesic c : R →M parametrized by the arclength

such that c(0) = p. Let X and Yi be the vector fields defined as
in (11) and (12) (so that Xc(t) = ċ(t)). Show that Yi satisfies
the Jacobi equation

D2Yi

dt2
= R(X,Yi)X,

where R : X(M)× X(M)× X(M) → X(M), defined by

R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z,

is called the curvature operator (cf. Chapter 4). A solution
of the Jacobi equation is called a Jacobi field.

(b) Show that Y is a Jacobi field with Y (0) = 0 if and only if

Y (t) =
∂

∂α

∣∣∣∣
α=0

γ(t,α),

where γ : R × (−ε, ε) → M is such that γ(t, 0) = c(t) and for
each α the curve γ(t,α) is a geodesic with γ(0,α) = p.

(c) A point q ∈ M is said to be conjugate to p if it is a critical
value of expp. Show that q is conjugate to p if and only if
there exists a nonvanishing Jacobi field Y along a geodesic c
connecting p = c(0) to q = c(r) such that Y (0) = Y (r) = 0.
Conclude that if q is conjugate to p then p is conjugate to q.

(d) The manifold M is said to have nonpositive curvature if
〈R(X,Y )X,Y 〉 ≥ 0 for all X,Y ∈ X(M). Show that for such
a manifold no two points are conjugate.

(e) Given a geodesic c : I → M parametrized by the arclength
such that c(0) = p, let tc be the supremum of the set of values
of t such that c is the minimizing curve connecting p to c(t)
(hence tc > 0). The cut locus of p is defined to be the set of
all points of the form c(tc) for tc < +∞. Determine the cut
locus of a given point p ∈ M when M is:

(i) the torus T n with the standard metric.
(ii) the sphere Sn with the standard metric;
(iii) the projective space RPn with the standard metric.

Check that any point in the cut locus is either conjugate to p
or joined to p by two geodesic arcs with the same length but
different images.



5. HOPF-RINOW THEOREM 111

5. Hopf-Rinow Theorem

Let (M,g) be a Riemannian manifold. The existence of totally normal
neighborhoods implies that it is always possible to connect two sufficiently
close points p, q ∈ M by a minimizing geodesic. We now address the same
question globally.

Example 5.1.

(1) Given two distinct points p, q ∈ Rn there exists a unique (up to
reparametrization) geodesic arc for the Euclidean metric connecting
them.

(2) Given two distinct points p, q ∈ Sn there exist at least two geo-
desic arcs for the standard metric connecting them which are not
reparametrizations of each other.

(3) If p '= 0 then there exists no geodesic arc for the Euclidean metric
in Rn \ {0} connecting p to −p.

In many cases (for example in Rn \ {0}) there exist geodesics which
cannot be extended for all values of its parameter. In other words, expp(v)
is not defined for all v ∈ TpM .

Definition 5.2. A Riemannian manifold (M, 〈·, ·〉) is said to be geodesi-
cally complete if, for every point p ∈ M , the map expp is defined in TpM .

There exists another notion of completeness of a connected Riemannian
manifold, coming from the fact that any such manifold is naturally a metric
space.

Definition 5.3. Let (M, 〈·, ·〉) be a connected Riemannian manifold and
p, q ∈ M . The distance between p and q is defined as

d(p, q) = inf{l(γ) | γ is a piecewise differentiable curve connecting p to q}.

Notice that if there exists a minimizing geodesic c connecting p to q then
d(p, q) = l(c). The function d : M ×M → [0,+∞) is indeed a distance, as
stated in the following proposition (whose proof is left as an exercise):

Proposition 5.4. (M,d) is a metric space, that is,

(i) d(p, q) ≥ 0 and d(p, q) = 0 if and only if p = q;
(ii) d(p, q) = d(q, p);
(iii) d(p, r) ≤ d(p, q) + d(q, r),

for all p, q, r ∈ M . The metric space topology induced on M coincides with
the topology of M as a differentiable manifold.

Therefore, we can discuss the completeness of M as a metric space (that
is, whether Cauchy sequences converge). The fact that completeness and
geodesic completeness are equivalent is the content of

Theorem 5.5. (Hopf-Rinow) Let (M, 〈·, ·〉) be a connected Riemannian
manifold and p ∈M . The following assertions are equivalent:
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(i) M is geodesically complete.
(ii) (M,d) is a complete metric space;
(iii) expp is defined in TpM .

Moreover, if (M, 〈·, ·〉) is geodesically complete then for all q ∈ M there
exists a geodesic c connecting p to q with l(c) = d(p, q).

Proof. It is clear that (i) ⇒ (iii).
We begin by showing that if (iii) holds then for all q ∈ M there exists

a geodesic c connecting p to q with l(c) = d(p, q). Let d(p, q) = ρ. If
ρ = 0 then q = p and there is nothing to prove. If ρ > 0, let ε ∈ (0, ρ) be
such that Sε(p) is a normal sphere (which is a compact submanifold of M).
The continuous function x +→ d(x, q) will then have a point of minimum
x0 ∈ Sε(p). Moreover, x0 = expp(εv), where ‖v‖ = 1. Let us consider
the geodesic cv(t) = expp(tv). We will show that q = cv(ρ). For that, we
consider the set

A = {t ∈ [0, ρ] | d(cv(t), q) = ρ− t}.

Since the map t +→ d(cv(t), q) is continuous, A is a closed set. Moreover,

p

r

q

x0

y0

Figure 3. Proof of the Hopf-Rinow Theorem.

A '= ∅, as clearly 0 ∈ A. We will now show that no point t0 ∈ [0, ρ) can be
the maximum of A, which implies that the maximum of A must be ρ, and
consequently that d(cv(ρ), q) = 0, i.e., cv(ρ) = q (hence cv connects p to q
and l(cv) = ρ). Let t0 ∈ A ∩ [0, ρ), r = cv(t0) and δ ∈ (0, ρ − t0) such that
Sδ(r) is a normal sphere. Let y0 be a point of minimum of the continuous
function y +→ d(y, q) on the compact set Sδ(r). Then y0 = cv(t0 + δ). In
fact, we have

ρ− t0 = d(r, q) = δ + min
y∈Sδ(r)

d(y, q) = δ + d(y0, q),
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and so

(13) d(y0, q) = ρ− t0 − δ.

The triangular inequality then implies that

d(p, y0) ≥ d(p, q)− d(y0, q) = ρ− (ρ− t0 − δ) = t0 + δ,

and since the piecewise differentiable curve which connects p to r through
cv and r to y0 through a geodesic arc has length t0 + δ, we conclude that
this is a minimizing curve, hence a (reparametrized) geodesic. Therefore,
y0 = cv(t0 + δ). Consequently, equation (13) can be written as

d(cv(t0 + δ), q) = ρ− (t0 + δ),

indicating that t0 + δ ∈ A. Therefore t0 cannot be the maximum of A.
We can now prove that (iii) ⇒ (ii). To do so, we begin by showing that

any bounded closed subset K ⊂ M is compact. Indeed, if K is bounded
then K ⊂ BR(p) for some R > 0, where

BR(p) = {q ∈ M | d(p, q) < R}.
As we have seen, p can be connected to any point in BR(p) by a geo-

desic of length smaller than R, and so BR(p) ⊂ expp

(
BR(0)

)
. Since

expp : TpM →M is continuous and BR(0) is compact, the set expp

(
BR(0)

)

is also compact. Therefore K is a closed subset of a compact set, hence com-
pact. Now, if {pn} is a Cauchy sequence in M , then its closure is compact.
Thus {pn} must have a convergent subsequence, and therefore must itself
converge.

Finally, we show that (ii) ⇒ (i). Let c be a geodesic defined for t < t0,
which we can assume without loss of generality to be normalized, that is,
‖ċ(t)‖ = 1. Let {tn} be an increasing sequence of real numbers converging to
t0. Since d(c(tm), c(tn)) ≤ |tm−tn|, we see that {c(tn)} is a Cauchy sequence.
As we are assuming M to be complete, we conclude that c(tn) → p ∈ M ,
and it is easily seen that c(t) → p as t → t0. Let Bε(p) be a normal ball
centered at p. Then c can be extended past t0 in this normal ball. !

Corollary 5.6. If M is compact then M is geodesically complete.

Proof. Any compact metric space is complete. !

Corollary 5.7. If M is a closed connected submanifold of a complete
connected Riemannian manifold with the induced metric then M is complete.

Proof. Let M be a closed connected submanifold of a complete con-
nected Riemannian manifold N . Let d be the distance determined by the
metric on N , and let d∗ be the distance determined by the induced metric
on M . Then d ≤ d∗. Let {pn} be a Cauchy sequence on (M,d∗). Then
{pn} is a Cauchy sequence on (N, d), and consequently converges in N to a
point p ∈ M (as N is complete and M is closed). Since the topology of M
is induced by the topology of N , we conclude that pn → p on M . !
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Exercises 5.8.

(1) Prove Proposition 5.4.
(2) Consider R2 \ {(x, 0) | −3 ≤ x ≤ 3} with the Euclidean metric.

Determine B7(0, 4).
(3) (a) Prove that a connected Riemannian manifold is complete if

and only if the compact sets are the closed bounded sets.
(b) Give an example of a connected Riemannian manifold contain-

ing a noncompact closed bounded set.
(c) A Riemannian manifold (M, 〈·, ·〉) is said to be homogeneous

if given any two points p, q ∈ M there exists an isometry f :
M → M such that f(p) = q. Show that any homogenous
Riemannian manifold is complete.

6. Notes on Chapter 3

6.1. Section 5. In this Section we use several definitions and results
about metric spaces, which we now discuss. A metric space is a pair
(M,d), where M is a set and d : M ×M → [0,+∞) is a map satisfying the
properties enumerated in Proposition 5.4. The set

Bε(p) = {q ∈M | d(p, q) < ε}
is called the open ball with center p and radius ε. The family of all such
balls is a basis for a Hausdorff topology on M , called the metric topology.
Notice that in this topology pn → p if and only if d(pn, p) → 0. Although a
metric space (M,d) is not necessarily second countable, it is still true that
F ⊂ M is closed if and only if every convergent sequence in F has limit in
F , and K ⊂ M is compact if and only if every sequence in K has a sublimit
in K.

A sequence {pn} in M is said to be a Cauchy sequence if for all
ε > 0 there exists N ∈ N such that d(pn, pm) < ε for all m,n > N . It is
easily seen that all convergent sequences are Cauchy sequences; the converse,
however, is not necessarily true (but if a Cauchy sequence has a convergent
subsequence then it must converge). A metric space is said to be complete
if all its Cauchy sequences converge. A closed subset of a complete metric
space is itself complete.

A set is said to be bounded if it is a subset of some ball. For instance,
the set of all terms of a Cauchy sequence is bounded. It is easily shown that
if K ⊂ M is compact then K must be bounded and closed (but the converse
is not necessarily true). A compact metric space is necessarily complete.

6.2. Bibliographical notes. The material in this chapter can be found
in most books on Riemannian geometry (e.g. [Boo03, dC93, GHL04]).
For more details on general affine connections, see [KN96]. Bi-invariant
metrics on a Lie group are examples of symmetric spaces, whose beautiful
theory is studied in [Hel01].



CHAPTER 4

Curvature

This chapter addresses the fundamental notion of curvature of a Rie-
mannian manifold.

In Section 1 we define the curvature operator of a general affine con-
nection, and, for Riemannian manifolds, the equivalent (more geometric)
notion of sectional curvature.

Section 2 establishes Cartan’s structure equations, a powerful com-
putational method which employs differential forms to calculate the cur-
vature. We use these equations in Section 3 to prove the Gauss-Bonnet
Theorem, relating the curvature of a compact surface to its topology; we
show in the Exercises how to use this theorem to interpret the curvature
of a surface as a measure of the excess of the sum of the inner angles of a
geodesic triangle over π.

We enumerate all complete Riemannian manifolds with constant cur-
vature in Section 4. These provide important examples of curved geome-
tries.

Finally, in Section 5 we study the relation between the curvature of a
Riemannian manifold and the curvature of a submanifold (with the induced
metric). This can again be used to give different geometric interpretations
of the curvature. In particular, as shown in the Exercises, any sectional
curvature is the curvature of a submanifold of dimension 2.

1. Curvature

As we saw in Exercise 3.3.4 of Chapter 3, no open set of the 2-sphere
S2 with the standard metric is isometric to an open set of the Euclidean
plane. The geometric object that locally distinguishes these two Riemannian
manifolds is the so-called curvature operator, which appears in many
other situations (cf. Exercise 4.8.6 of Chapter 3):

Definition 1.1. The curvature R of a connection ∇ is a correspon-
dence that, to each pair of vector fields X,Y ∈ X(M), associates a map
R(X,Y ) : X(M) → X(M) defined by

R(X,Y )Z = ∇X ∇Y Z −∇Y ∇X Z −∇[X,Y ] Z.

Hence, it is a way of measuring the non-commutativity of the connection.
We leave it as an exercise to show that this defines a (3, 1)-tensor (called
the Riemann tensor), meaning that

115
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(i) R(fX1 + gX2, Y )Z = fR(X1, Y )Z + gR(X2, Y )Z,
(ii) R(X, fY1 + gY2)Z = fR(X,Y1)Z + gR(X,Y2)Z,
(iii) R(X,Y )(fZ1 + gZ2) = fR(X,Y )Z1 + gR(X,Y )Z2,

for all vector fields X,X1,X2, Y, Y1, Y2, Z, Z1, Z2 ∈ X(M) and all smooth
functions f, g ∈ C∞(M, R). Locally, choosing a coordinate system x : V →
Rn on M , this tensor can be written as

R =
n∑

i,j,k,l=1

R l
ijk dxi ⊗ dxj ⊗ dxk ⊗

∂

∂xl
,

where each coefficient R l
ijk is the l-coordinate of the vector field R( ∂

∂xi ,
∂
∂xj ) ∂

∂xk ,
that is,

R

(
∂

∂xi
,

∂

∂xj

)
∂

∂xk
=

n∑

l=1

R l
ijk

∂

∂xl
.

Using [ ∂
∂xi ,

∂
∂xj ] = 0, we have

R

(
∂

∂xi
,

∂

∂xj

)
∂

∂xk
= ∇ ∂

∂xi
∇ ∂

∂xj

∂

∂xk
−∇ ∂

∂xj
∇ ∂

∂xi

∂

∂xk

= ∇ ∂

∂xi

(
n∑

m=1

Γm
jk

∂

∂xm

)

−∇ ∂

∂xj

(
n∑

m=1

Γm
ik

∂

∂xm

)

=
n∑

m=1

(
∂

∂xi
· Γm

jk −
∂

∂xj
· Γm

ik

)
∂

∂xm
+

n∑

l,m=1

(Γm
jkΓ

l
im − Γm

ikΓ
l
jm)

∂

∂xl

=
n∑

l=1

(
∂Γl

jk

∂xi
−

∂Γl
ik

∂xj
+

n∑

m=1

Γm
jkΓ

l
im −

n∑

m=1

Γm
ikΓ

l
jm

)
∂

∂xl
,

and so

R l
ijk =

∂Γl
jk

∂xi
−

∂Γl
ik

∂xj
+

n∑

m=1

Γm
jkΓ

l
im −

n∑

m=1

Γm
ikΓ

l
jm.

Example 1.2. Consider M = Rn with the Euclidean metric and the cor-
responding Levi-Civita connection (that is, with Christoffel symbols Γk

ij ≡
0). Then R l

ijk = 0, and the curvature R is zero. Thus, we interpret the
curvature as a measure of how much a connection on a given manifold differs
from the Levi-Civita connection of Euclidean space.

When the connection is symmetric (as in the case of the Levi-Civita
connection), the tensor R satisfies the following property, known as the
Bianchi Identity:

Proposition 1.3. (Bianchi Identity) If M is a manifold with a sym-
metric connection then the associated curvature satisfies

R(X,Y )Z + R(Y,Z)X + R(Z,X)Y = 0.
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Proof. This property is a direct consequence of the Jacobi identity of
vector fields. Indeed,

R(X,Y )Z + R(Y,Z)X + R(Z,X)Y = ∇X ∇Y Z −∇Y ∇X Z −∇[X,Y ] Z

+∇Y ∇Z X −∇Z ∇Y X −∇[Y,Z] X +∇Z ∇X Y −∇X ∇Z Y −∇[Z,X] Y

= ∇X (∇Y Z −∇Z Y ) +∇Y (∇Z X −∇X Z) +∇Z (∇X Y −∇Y X)

−∇[X,Y ] Z −∇[Y,Z] X −∇[Z,X] Y,

and so, since the connection is symmetric, we have

R(X,Y )Z + R(Y,Z)X + R(Z,X)Y

= ∇X [Y,Z] +∇Y [Z,X] +∇Z [X,Y ]−∇[Y,Z] X −∇[Z,X] Y −∇[X,Y ] Z

= [X, [Y,Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0.

!

We will assume from this point on that (M,g) is a Riemannian manifold
and ∇ its Levi-Civita connection. We can define a new covariant 4-tensor,
known as the curvature tensor:

R(X,Y,Z,W ) := g(R(X,Y )Z,W ).

Again, choosing a coordinate system x : V → Rn on M , we can write this
tensor as

R(X,Y,Z,W ) =




n∑

i,j,k,l=1

Rijkl dxi ⊗ dxj ⊗ dxk ⊗ dxl



 (X,Y,Z,W )

where

Rijkl = g

(
R

(
∂

∂xi
,

∂

∂xj

)
∂

∂xk
,

∂

∂xl

)
= g

(
n∑

m=1

R m
ijk

∂

∂xm
,

∂

∂xl

)

=
n∑

m=1

R m
ijk gml.

This tensor satisfies the following symmetry properties:

Proposition 1.4. If X,Y,Z,W are vector fields in M and ∇ is the
Levi-Civita connection, then

(i) R(X,Y,Z,W ) + R(Y,Z,X,W ) + R(Z,X, Y,W ) = 0;
(ii) R(X,Y,Z,W ) = −R(Y,X,Z,W );
(iii) R(X,Y,Z,W ) = −R(X,Y,W,Z);
(iv) R(X,Y,Z,W ) = R(Z,W,X, Y ).

Proof. Property (i) is an immediate consequence of the Bianchi iden-
tity, and property (ii) holds trivially.

Property (iii) is equivalent to showing that R(X,Y,Z,Z) = 0. Indeed,
if (iii) holds then clearly R(X,Y,Z,Z) = 0. Conversely, if this is true, we
have

R(X,Y,Z + W,Z + W ) = 0 ⇔ R(X,Y,Z,W ) + R(X,Y,W,Z) = 0.
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Now, using the fact that the Levi-Civita connection is compatible with the
metric, we have

X · 〈∇Y Z,Z〉 = 〈∇X ∇Y Z,Z〉+ 〈∇Y Z,∇X Z〉
and

[X,Y ] · 〈Z,Z〉 = 2〈∇[X,Y ] Z,Z〉.
Hence,

R(X,Y,Z,Z) = 〈∇X ∇Y Z,Z〉 − 〈∇Y ∇X Z,Z〉 − 〈∇[X,Y ] Z,Z〉
= X · 〈∇Y Z,Z〉 − 〈∇Y Z,∇X Z〉 − Y · 〈∇X Z,Z〉

+ 〈∇X Z,∇Y Z〉 −
1

2
[X,Y ] · 〈Z,Z〉

=
1

2
X · (Y · 〈Z,Z〉) −

1

2
Y · (X · 〈Z,Z〉)−

1

2
[X,Y ] · 〈Z,Z〉

=
1

2
[X,Y ] · 〈Z,Z〉 −

1

2
[X,Y ] · 〈Z,Z〉 = 0.

To show (iv), we use (i) to get

R(X,Y,Z,W ) + R(Y,Z,X,W ) + R(Z,X, Y,W ) = 0
R(Y,Z,W,X) + R(Z,W, Y,X) + R(W,Y,Z,X) = 0
R(Z,W,X, Y ) + R(W,X,Z, Y ) + R(X,Z,W, Y ) = 0
R(W,X, Y,Z) + R(X,Y,W,Z) + R(Y,W,X,Z) = 0

and so, adding these and using (c), we have

R(Z,X, Y,W ) + R(W,Y,Z,X) + R(X,Z,W, Y ) + R(Y,W,X,Z) = 0.

Using (b) and (c), we obtain

2R(Z,X, Y,W ) − 2R(Y,W,Z,X) = 0.

!

An equivalent way of encoding the information about the curvature of
a Riemannian manifold is by considering the following definition:

Definition 1.5. Let Π be a 2-dimensional subspace of TpM and let
Xp, Yp be two linearly independent elements of Π. Then, the sectional
curvature of Π is defined as

K(Π) := −
R(Xp, Yp,Xp, Yp)

‖Xp‖2‖Yp‖2 − 〈Xp, Yp〉2
.

Note that ‖Xp‖2‖Yp‖2− 〈Xp, Yp〉2 is the square of the area of the paral-
lelogram in TpM spanned by Xp, Yp, and so the above definition of sectional
curvature does not depend on the choice of the linearly independent vec-
tors Xp, Yp. Indeed, when we change of basis on Π, both R(Xp, Yp,Xp, Yp)
and ‖Xp‖2‖Yp‖2− 〈Xp, Yp〉2 change by the square of the determinant of the
change of basis matrix (cf. Exercise 1.11.2.). We will now see that knowing
the sectional curvature of every section of TpM completely determines the
curvature tensor on this space.
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Proposition 1.6. The Riemannian curvature tensor at p is uniquely
determined by the values of the sectional curvatures of sections (that is, 2-
dimensional subspaces) of TpM .

Proof. Let us consider two covariant 4-tensors R1, R2 on TpM sat-
isfying the symmetry properties of Proposition 1.4. Then the tensor T :=
R1−R2 also satisfies these symmetry properties. We will see that, if the val-
ues R1(Xp, Yp,Xp, Yp) and R2(Xp, Yp,Xp, Yp) agree for every Xp, Yp ∈ TpM
(that is, if T (Xp, Yp,Xp, Yp) = 0 for every Xp, Yp ∈ TpM), then R1 = R2

(that is, T ≡ 0). Indeed, for vectors Xp, Yp, Zp ∈ TpM ,

0 = T (Xp + Zp, Yp,Xp + Zp, Yp) = T (Xp, Yp, Zp, Yp) + T (Zp, Yp,Xp, Yp)

= 2T (Xp, Yp, Zp, Yp).

Then T (Xp, Yp, Zp, Yp) = 0 for all Xp, Yp, Zp ∈ TpM , and so

0 = T (Xp, Yp + Wp, Zp, Yp + Wp) = T (Xp, Yp, Zp,Wp) + T (Xp,Wp, Zp, Yp)

= T (Zp,Wp,Xp, Yp)− T (Wp,Xp, Zp, Yp),

that is, T (Zp,Wp,Xp, Yp) = T (Wp,Xp, Zp, Yp). Hence T is invariant by
cyclic permutations of the first three elements and so, by the Bianchi Iden-
tity, we have 3T (Xp, Yp, Zp,Wp) = 0. !

A manifold is called isotropic at a point p ∈ M if its sectional cur-
vature is constant Kp for every section Π ⊂ TpM . Moreover, it is called
isotropic if it is isotropic at all points. Note that every 2-dimensional man-
ifold is trivially isotropic. Its sectional curvature K(p) := Kp is called the
Gauss curvature. We will see later on other equivalent definitions of this
curvature (cf. Exercise 2.8.9, Exercise 3.6.7 and Section 5). We will also
see that the sectional curvature is actually the Gaussian curvature of spe-
cial 2-dimensional submanifolds, formed by geodesics tangent to the sections
(cf. Exercise 5.7.5).

Proposition 1.7. If M is isotropic at p and x : V → Rn is a coordinate
system around p, then the coefficients of the Riemannian curvature tensor
at p are given by

Rijkl(p) = −Kp(gik gjl − gil gjk).

Proof. We first define a covariant 4-tensor A on TpM as

A :=
n∑

i,j,k,l=1

−Kp( gik gjl − gil gjk) dxi ⊗ dxj ⊗ dxk ⊗ dxl.

We leave it as an exercise to check that A satisfies the symmetry properties
of Proposition 1.4. Moreover,

A(Xp, Yp,Xp, Yp) =
n∑

i,j,k,l=1

−Kp( gik gjl − gil gjk)Xi
p Y j

p Xk
p Y l

p

= −Kp

(
〈Xp,Xp〉〈Yp, Yp〉 − 〈Xp, Yp〉2

)

= R(Xp, Yp,Xp, Yp),



120 4. CURVATURE

and so, from Proposition 1.6, we conclude that A = R. !

Definition 1.8. A Riemannian manifold is called a manifold of con-
stant curvature if it is isotropic and Kp is the same at all points of M .

Example 1.9. The Euclidean space is a manifold of constant curvature
Kp ≡ 0.

Another geometric object, very important in General Relativity, is de-
fined as follows:

Definition 1.10. The Ricci curvature tensor is the covariant 2-tensor
locally defined as

Ric(X,Y ) :=
n∑

k=1

dxk

(
R

(
∂

∂xk
,X

)
Y

)
.

Note that the above definition is independent of the choice of coordi-
nates. Indeed, we can see Ricp(Xp, Yp) as the trace of the linear map from
TpM to TpM given by Zp +→ R(Zp,Xp)Yp, hence independent of the choice of
basis. Moreover, this tensor is symmetric. In fact, choosing an orthonormal
basis {E1 . . . , En} of TpM we have

Ricp(Xp, Yp) =
n∑

k=1

R(Ek,Xp, Yp, Ek) =
n∑

k=1

R(Yp, Ek, Ek,Xp)

=
n∑

k=1

R(Ek, Yp,Xp, Ek) = Ricp(Yp,Xp).

Locally, we can write

Ric =
n∑

i,j=1

Rijdxi ⊗ dxj

where the coefficients Rij are given by

Rij := Ric

(
∂

∂xi
,

∂

∂xj

)
=

n∑

k=1

dxk

(
R

(
∂

∂xk
,

∂

∂xi

)
∂

∂xj

)
=

n∑

k=1

R k
kij ,

that is, Rij =
∑n

k=1 R k
kij .

Note that from a (3, 1)-tensor we obtained a (2, 0)-tensor. This is an
example of a general procedure called contraction, where we obtain a (k−
1,m− 1)-tensor from a (k,m)-tensor. To do so, we first choose two indices,
one covariant and other contravariant, and then set them equal and take
summations, obtaining a (k− 1,m− 1)-tensor. On the example of the Ricci
tensor, we took the (3, 1)-tensor R̃ defined by the curvature,

R̃(X,Y,Z,ω) = ω(R(X,Y )Z),
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chose the first covariant index and the first contravariant index, set them
equal and summed over them:

Ric(X,Y ) =
n∑

k=1

R̃

(
∂

∂xk
,X, Y, dxk

)
.

Similarly, we can use contraction to obtain a function (0-tensor) from
the Ricci tensor (a covariant 2-tensor). For that, we first need to define a
new (1, 1)-tensor field T using the metric,

T (X,ω) := Ric(X,Y ),

where Y is such that ω(Z) = 〈Y,Z〉 for every vector field Z. Then, we
set the covariant index equal to the contravariant one and add, obtaining
a function S : M → R called the scalar curvature. Locally, choosing a
coordinate system x : V → Rn, we have

S(p) :=
n∑

k=1

T

(
∂

∂xk
, dxk

)
=

n∑

k=1

Ric

(
∂

∂xk
, Yk

)
,

where, for every vector field Z on V ,

Zk = dxk(Z) = 〈Z, Yk〉 =
n∑

i,j=1

gijZ
iY j

k .

Therefore, we must have Y j
k = gjk (where (gij) = (gij)−1), and hence Yk =∑n

i=1 gik ∂
∂xi . We conclude that the scalar curvature is given by

S(p) =
n∑

k=1

Ric

(
∂

∂xk
,

n∑

i=1

gik ∂

∂xi

)

=
n∑

i,k=1

Rkig
ik =

n∑

i,k=1

gikRik.

(since Ric is symmetric).

Exercises 1.11.

(1) (a) Show that the curvature operator satisfies
(i) R(fX1 + gX2, Y )Z = fR(X1, Y )Z + gR(X2, Y )Z;
(ii) R(X, fY1 + gY2)Z = fR(X,Y1)Z + gR(X,Y2)Z;
(iii) R(X,Y )(fZ1 + gZ2) = fR(X,Y )Z1 + gR(X,Y )Z2,

for all vector fields X,X1,X2, Y, Y1, Y2, Z, Z1, Z2 ∈ X(M) and
smooth functions f, g ∈ C∞(M, R).

(b) Show that (R(X,Y )Z)p ∈ TpM depends only on Xp, Yp, Zp.
Conclude that R defines a (3, 1)-tensor. (Hint: Choose local coor-

dinates around p ∈ M).
(c) Recall that if G is a Lie group endowed with a bi-invariant

Riemannian metric, ∇ is the Levi-Civita connection and X,Y
are two left-invariant vector fields then

∇XY =
1

2
[X,Y ]
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(cf. Exercise 4.8.3 in Chapter 3). Show that if Z is also left-
invariant, then

R(X,Y )Z =
1

4
[Z, [X,Y ]].

(2) Show that ‖Xp‖2‖Yp‖2 − 〈Xp, Yp〉2 gives us the square of the area
of the parallelogram in TpM spanned by Xp, Yp. Conclude that the
sectional curvature does not depend on the choice of the linearly
independent vectors Xp, Yp, that is, when we change of basis on Π,
both R(Xp, Yp,Xp, Yp) and ‖Xp‖2‖Yp‖2 − 〈Xp, Yp〉2 change by the
square of the determinant of the change of basis matrix.

(3) Show that Ric is the only independent contraction of the curvature
tensor: choosing any other two indices and contracting, one either
gets 0 or ±Ric.

(4) Let M be a 3-dimensional manifold. Show that the curvature tensor
is entirely determined by the Ricci tensor.

(5) Let (M,g) be an n-dimensional isotropic Riemannian manifold with
sectional curvature K. Show that Ric = (n − 1)Kg and S =
n(n− 1)K.

(6) Let g1, g2 be two Riemannian metrics on a manifold M such that
g1 = ρg2, for some constant ρ > 0. Show that:
(a) the corresponding sectional curvatures K1 and K2 satisfy K1(Π) =

ρ−1K2(Π) for any 2-dimensional section of a tangent space of
M ;

(b) the corresponding Ricci curvature tensors satisfy Ric1 = Ric2;
(c) the corresponding scalar curvatures satisfy S1 = ρ−1S2.

(7) If ∇ is not the Levi-Civita connection can we still define the Ricci
curvature tensor Ric? Is it necessarily symmetric?

2. Cartan’s Structure Equations

In this section we will reformulate the properties of the Levi-Civita con-
nection and of the Riemannian curvature tensor in terms of differential
forms. For that we will take an open subset V of M where we have de-
fined a field of frames X1, . . . Xn, that is, a set of n vector fields that, at
each point p of V , form a basis for TpM (for example, we can take a coordi-
nate neighborhood V and the vector fields Xi = ∂

∂xi ; however, in general, the
Xi’s are not associated to a coordinate system). Then we consider a field of
dual co-frames, that is, 1-forms ω1, . . . ,ωn on V such that ωi(Xj) = δij .
Note that, at each point p ∈ V , ω1

p, . . . ,ω
n
p is a basis for T ∗

p M . From the
properties of a connection, in order to define ∇X Y we just have to establish
the values of

∇Xi Xj =
n∑

k=1

Γk
ijXk,
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where Γk
ij is defined as the kth component of the vector field ∇Xi Xj on the

basis {Xi}n
i=1. Note that if the Xi’s are not associated to a coordinate system

then the Γk
ij ’s cannot be computed using formula (10), and, in general, they

are not even symmetric in the indices i, j. Given the values of the Γk
ij’s on

V , we can define 1-forms ωk
j (j, k = 1, . . . , n) in the following way:

(14) ωk
j :=

n∑

i=1

Γk
ijω

i.

Conversely, given these forms, we can obtain the values of Γk
ij through

Γk
ij = ωk

j (Xi).

The connection is then completely determined from these forms: given two
vector fields X =

∑n
i=1 aiXi and Y =

∑n
i=1 biXi, we have

∇X Xj = ∇Pn
i=1 aiXi

Xj =
n∑

i=1

ai∇Xi Xj =
n∑

i,k=1

ai Γk
ij Xk(15)

=
n∑

i,k=1

ai ωk
j (Xi)Xk =

n∑

k=1

ωk
j (X)Xk

and hence

∇XY = ∇X

(
n∑

i=1

biXi

)

=
n∑

i=1

(
(X · bi)Xi + bi∇XXi

)
(16)

=
n∑

j=1

(

X · bj +
n∑

i=1

biωj
i (X)

)

Xj .

Note that the values of the forms ωk
j at X are the components of ∇X Xj

relative to the field of frames, that is,

(17) ωi
j(X) = ωi (∇XXj) .

The ωk
j ’s are called the connection forms. For the Levi-Civita connection,

these forms cannot be arbitrary. Indeed, they have to satisfy some equations
corresponding to the properties of symmetry and compatibility with the
metric.

Theorem 2.1. (Cartan) Let V be an open subset of a Riemannian mani-
fold M on which we have defined a field of frames X1, . . . ,Xn. Let ω1, . . . ,ωn

be the corresponding field of co-frames. Then the connection forms of the
Levi-Civita connection are the unique solution of the equations

(i) dωi =
∑n

j=1 ωj ∧ ωi
j,

(ii) dgij =
∑n

k=1(gkj ωk
i + gki ωk

j ),

where gij = 〈Xi,Xj〉.
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Proof. We begin by showing that the Levi-Civita connection forms,
defined by (14), satisfy (i) and (ii). For this, we will use the following
property of 1-forms (cf. Exercise 3.8.2 of Chapter 2):

dω(X,Y ) = X · (ω(Y ))− Y · (ω(X)) − ω([X,Y ]).

We have

∇Y X = ∇Y




n∑

j=1

ωj(X)Xj



 =
n∑

j=1

(
Y · ωj(X)Xj + ωj(X)∇Y Xj

)
,

which implies

(18) ωi(∇Y X) = Y · ωi(X) +
n∑

j=1

ωj(X)ωi(∇Y Xj).

Using (17) and (18), we have



n∑

j=1

ωj ∧ ωi
j



 (X,Y ) =
n∑

j=1

(
ωj(X)ωi

j(Y )− ωj(Y )ωi
j(X)

)

=
n∑

j=1

(
ωj(X)ωi(∇Y Xj)− ωj(Y )ωi(∇X Xj)

)

= ωi(∇Y X)− Y · ωi(X)− ωi(∇X Y ) + X · ωi(Y ),

and so


dωi −
n∑

j=1

ωj ∧ ωi
j



 (X,Y ) =

= X · ωi(Y )− Y · ωi(X)− ωi ([X,Y ])−
n∑

j=1

ωj ∧ ωi
j(X,Y )

= ωi (∇X Y −∇Y X − [X,Y ]) = 0.

Note that equation (i) is equivalent to symmetry of the connection. To show
that (ii) holds, we notice that

dgij(Y ) = Y · 〈Xi,Xj〉,

and, on the other hand,
(

n∑

k=1

gkj ωk
i + gki ω

k
j

)

(Y ) =
n∑

k=1

gkj ωk
i (Y ) + gki ω

k
j (Y )

=

〈
n∑

k=1

ωk
i (Y )Xk,Xj

〉

+

〈
n∑

k=1

ωk
j (Y )Xk,Xi

〉

= 〈∇Y Xi,Xj〉+ 〈∇Y Xj ,Xi〉.
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Hence, equation (ii) is equivalent to

Y · 〈Xi,Xj〉 = 〈∇Y Xi,Xj〉+ 〈Xi,∇Y Xj〉,

for every i, j, that is, it is equivalent to compatibility with the metric (cf. Ex-
ercise 2.8.1). We conclude that the Levi-Civita connection forms satisfy (i)
and (ii).

To prove unicity, we take 1-forms ωj
i (i, j = 1, . . . , n) satisfying (i) and

(ii). Using (15) and (16), we can define a connection, which is necessarily
symmetric and compatible with the metric. By uniqueness of the Levi-Civita
connection, we have uniqueness of the set of forms ωj

i satisfying (i) and (ii)
(note that each connection determines a unique set of n2 connection forms
and vice-versa). !

Remark 2.2. If on an open set we have a field of frames, we can perform
Gram-Schmidt orthogonalization and obtain a smooth field of orthonormal
frames {E1, . . . , En} (the norm function is smooth on TpM\{0}). Then, as
gij = 〈Ei, Ej〉 = δij , equations (i) and (ii) above become

(i) dωi =
∑n

j=1 ωj ∧ ωi
j,

(ii) ωj
i + ωi

j = 0.

In addition to connection forms, we can also define curvature forms.
Again we consider an open subset V of M where we have a field of frames
{X1, . . . ,Xn} (hence a corresponding field of dual coframes ω1, . . . ,ωn). We
then define 2-forms Ωl

k (k, l = 1, . . . , n) by

Ωl
k(X,Y ) := ωl(R(X,Y )Xk),

for all vector fields X,Y in V (i.e., R(X,Y )Xk =
∑n

l=1 Ω
l
k(X,Y )Xl). Using

the basis {ωi ∧ ωj}i<j for 2-forms, we have

Ωl
k =

∑

i<j

Ωl
k(Xi,Xj)ωi ∧ ωj =

∑

i<j

ωl(R(Xi,Xj)Xk)ωi ∧ ωj

=
∑

i<j

R l
ijk ωi ∧ ωj =

1

2

n∑

i,j=1

R l
ijk ωi ∧ ωj,

where R l
ijk are the coefficients of the curvature relative to these frames:

R(Xi,Xj)Xk =
n∑

l=1

R l
ijk Xl.

These forms satisfy the following equation:

Proposition 2.3. In the above notation,

(iii) Ωj
i = dωj

i −
∑n

k=1 ωk
i ∧ ωj

k,

for every i, j = 1, . . . , n.
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Proof. We will show that

R(X,Y )Xi =
n∑

j=1

Ωj
i (X,Y )Xj =

n∑

j=1

((

dωj
i −

n∑

k=1

ωk
i ∧ ωj

k

)

(X,Y )

)

Xj .

Indeed,

R(X,Y )Xi = ∇X ∇Y Xi −∇Y ∇X Xi −∇[X,Y ] Xi =

= ∇X

(
n∑

k=1

ωk
i (Y )Xk

)

−∇Y

(
n∑

k=1

ωk
i (X)Xk

)

−
n∑

k=1

ωk
i ([X,Y ])Xk

=
n∑

k=1

(
X · ωk

i (Y )− Y · ωk
i (X)− ωk

i ([X,Y ])
)

Xk +

+
n∑

k=1

ωk
i (Y )∇X Xk −

n∑

k=1

ωk
i (X)∇Y Xk

=
n∑

k=1

dωk
i (X,Y )Xk +

n∑

k,j=1

(
ωk

i (Y )ωj
k(X)Xj − ωk

i (X)ωj
k(Y )Xj

)

=
n∑

j=1

(

dωj
i (X,Y )−

n∑

k=1

(ωk
i ∧ ωj

k)(X,Y )

)

Xj.

!

Equations (i), (ii) and (iii) are known as Cartan’s structure equa-
tions. We list these equations below, as well as the main definitions:

(i) dωi =
∑n

j=1 ωj ∧ ωi
j,

(ii) dgij =
∑n

k=1(gkj ωk
i + gki ωk

j ),

(iii) dωj
i = Ωj

i +
∑n

k=1 ωk
i ∧ ωj

k,

where ωi(Xj) = δij , ωk
j =

∑n
i=1 Γ

k
ijω

i and Ωj
i =

∑
k<l R

j
kli ωk ∧ ωl.

Remark 2.4. If we consider an orthonormal field of frames {E1, . . . , En},
the above equations become:

(i) dωi =
∑n

j=1 ωj ∧ ωi
j,

(ii) ωj
i + ωi

j = 0,

(iii) dωj
i = Ωj

i +
∑n

k=1 ωk
i ∧ ωj

k (and so Ωj
i + Ωi

j = 0).

Example 2.5. For an orthonormal field of frames in Rn with the Eu-
clidean metric, the curvature forms must vanish (as R = 0), and we obtain
the following structure equations:

(i) dωi =
∑n

j=1 ωj ∧ ωi
j,

(ii) ωj
i + ωi

j = 0,

(iii) dωj
i =

∑n
k=1 ωk

i ∧ ωj
k.
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To finish this section, we will consider in detail the special case of a
2-dimensional Riemannian manifold. In this case, the structure equations
for an orthonormal field of frames are particularly simple: equation (ii)
implies that there is only one independent connection form (ω1

1 = ω2
2 = 0

and ω1
2 = −ω2

1), which can be computed from equation (i):

dω1 = −ω2 ∧ ω2
1;

dω2 = ω1 ∧ ω2
1 .

Equation (iii) then yields that there is only one independent curvature form
Ω2

1 = dω2
1 . This form is closely related to the Gauss curvature of the mani-

fold:

Proposition 2.6. If M is a 2-dimensional manifold, then for an or-
thonormal frame we have Ω2

1 = −Kω1 ∧ ω2, where K = K(p) is the Gauss
curvature of M (that is, its sectional curvature).

Proof. Let p be a point in M and let us choose an open set containing
p where we have defined an orthonormal field of frames {E1, E2}. Then

K = −R(E1, E2, E1, E2) = −R1212,

and consequently

Ω2
1 = Ω2

1(E1, E2)ω1 ∧ ω2 = ω2(R(E1, E2)E1)ω1 ∧ ω2

= 〈R(E1, E2)E1, E2〉ω1 ∧ ω2 = R1212 ω1 ∧ ω2 = −K ω1 ∧ ω2.

!

Note that K does not depend on the choice of the field of frames, since it
is a sectional curvature (cf. Definition 1.5). However, the connection forms
do: Let {E1, E2}, {F1, F2} be two orthonormal fields of frames on an open
subset V of M . Then

(
F1 F2

)
=
(

E1 E2
)
S

where S : V → O(2) has values in the orthogonal group of 2× 2 matrices.
Note that S has one of the following two forms

S =

(
a −b
b a

)
or S =

(
a b
b −a

)
,

where a, b : V → R are such that a2 + b2 = 1. The determinant of S is then
±1 depending on whether the two frames have the same orientation or not.
Then we have the following proposition:

Proposition 2.7. If {E1, E2} and {F1, F2} have the same orientation
then, denoting by ω2

1 and ω2
1 the corresponding connection forms, we have

ω2
1 − ω2

1 = σ, where σ = a db− b da.
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Proof. Denoting by {ω1,ω2} and {ω1,ω2} the fields of dual co-frames
corresponding to {E1, E2} and {F1, F2}, we define the column vectors of
1-forms

ω =

(
ω1

ω2

)
and ω =

(
ω1

ω2

)

and the matrices of 1-forms

A =

(
0 −ω2

1
ω2

1 0

)
and A =

(
0 −ω2

1
ω2

1 0

)
.

The relation between the frames can be written as

ω = S−1ω ⇔ ω = S ω

and the Cartan structure equations as

dω = −A ∧ ω and dω = −A ∧ ω.

Therefore

dω = S dω + dS ∧ ω = −SA ∧ ω + dS ∧ S−1ω

= −SA ∧ S−1ω + dS ∧ S−1ω = −
(
SAS−1 − dS S−1

)
∧ ω,

and unicity of solutions of the Cartan structure equations implies

A = SAS−1 − dSS−1.

Writing this out in full one obtains
(

0 −ω2
1

ω2
1 0

)
=

(
0 −ω2

1
ω2

1 0

)
−
(

a da + b db b da− a db
a db− b da a da + b db

)
,

and the result follows (we also obtain a da + b db = 0, which is clear from
detA = a2 + b2 = 1). !

Let us now give a geometric interpretation of σ. Locally, we can define
at each point p ∈ M the angle θ(p) between (E1)p and (F1)p. Then the
change of basis matrix S has the form

(
a −b
b a

)
=

(
cos θ − sin θ
sin θ cos θ

)
.

Hence,

σ = a db− b da = cos θd (sin θ)− sin θd (cos θ)

= cos2 θdθ + sin2 θdθ = dθ.

Therefore, integrating σ along a curve yields the angle by which F1 rotates
with respect to E1 along the curve.

Notice that in particular σ is closed. This is also clear from

dσ = dω2
1 − dω2

1 = −K ω1 ∧ ω2 + Kω1 ∧ ω2 = 0.

We can use the connection form ω2
1 to define the geodesic curvature

of a curve on an oriented Riemannian 2-manifold M . Let c : I → M be
a smooth curve in M parametrized by its arclength s (hence ‖ċ(s)‖ = 1).
Let V be a neighborhood of a point c(s) in this curve where we have a field



2. CARTAN’S STRUCTURE EQUATIONS 129

of orthonormal frames {E1, E2} satisfying (E1)c(s) = ċ(s). Note that it is
always possible to consider such a field of frames: we start by extending the
vector field ċ(s) to a unit vector field E1 defined on a neighborhood of c(s),
and then consider a unit vector field E2 orthogonal to the first, such that
{E1, E2} is positively oriented. Since

∇E1E1 = ω1
1(E1)E1 + ω2

1(E1)E2 = ω2
1(E1)E2,

the covariant acceleration of c is

∇ċ(s)ċ(s) = ∇E1(s)E1(s) = ω2
1(E1(s))E2(s).

We define the geodesic curvature of the curve c to be kg(s) := ω2
1(E1(s))

(in particular |kg(s)| = ‖∇ċ(s)ċ(s)‖). It is a measure of how much the curve
fails to be a geodesic at c(s). In particular, c is a geodesic if and only if its
geodesic curvature vanishes.

Exercises 2.8.

(1) Let X1, . . . ,Xn be a field of frames on an open set V of a Rie-
mannian manifold (M, 〈·, ·〉).Show that a connection ∇ on M is
compatible with the metric on V if and only if

Xk · 〈Xi,Xj〉 = 〈∇Xk
Xi,Xj〉+ 〈Xi,∇Xk

Xj〉
for all i, j, k.

(2) Show that Cartan’s structure equations (i) and (iii) hold for any
symmetric connection.

(3) Compute the Gauss curvature of:
(a) the sphere S2 with the standard metric;
(b) the hyperbolic plane, i.e., the upper half-plane

H = {(x, y) ∈ R2 | y > 0}
with the metric

g =
1

y2
(dx⊗ dx + dy ⊗ dy)

(cf. Exercise 3.3.5 of Chapter 3).
(4) Determine all surfaces of revolution with constant Gauss curvature.
(5) Compute the Gauss curvature of the graph of a function f : U ⊂

R2 → R with the metric induced by the Euclidean metric of R3.
(6) Let M be the image of the parametrization ϕ : (0,+∞) × R → R3

given by
ϕ(u, v) = (u cos v, u sin v, v),

and let N be the image of the parametrization ψ : (0,+∞)×R → R3

given by
ψ(u, v) = (u cos v, u sin v, log u).

Consider in both M and N the Riemannian metric induced by the
Euclidean metric of R3. Show that the map f : M → N defined by

f(ϕ(u, v)) = ψ(u, v)
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preserves the Gaussian curvature but is not a local isometry.
(7) Consider the metric

g = dr ⊗ dr + f2(r)dθ ⊗ dθ

on M = I×S1, where r is a local coordinate on I ⊂ R and θ is the
usual angular coordinate on S1.
(a) Compute the Gaussian curvature of this metric.
(b) For which functions f(r) is the Gaussian curvature constant?

(8) Consider the metric

g = A2(r)dr ⊗ dr + r2dθ ⊗ dθ + r2 sin2 θ dϕ⊗ dϕ

on M = I × S2, where r is a local coordinate on I ⊂ R and (θ,ϕ)
are spherical local coordinates on S2.
(a) Compute the Ricci tensor and the scalar curvature of this met-

ric.
(b) What happens when A2(r) = (1 − r2)−1 (that is, when M is

locally isometric to S3)?
(c) And when A2(r) = (1 + r2)−1 (that is, when M is locally

isometric to the hyperbolic 3-space)?
(d) For which functions A(r) is the scalar curvature constant?

(9) Let M be a Riemannian 2-manifold and let p be a point in M . Let
D be a neighborhood of p in M homeomorphic to a disc, with a
smooth boundary ∂D. Consider a point q ∈ ∂D and a unit vector
Xq ∈ TqM . Let X be the parallel transport of Xq along ∂D. When
X returns to q it makes an angle ∆θ with the initial vector Xq.
Parameterizing ∂D with arc length (c : I → ∂D) and using fields
of orthonormal frames {E1, E2} and {F1, F2} positively oriented
and such that F1 = X, show that

∆θ =

∫

D

K.

Conclude that the Gauss curvature of M at p satisfies

K(p) = lim
D→p

∆θ

vol(D)
.

(10) Compute the geodesic curvature of a circle on:
(a) R2 with the Euclidean metric and the usual orientation;
(b) S2 with the usual metric and orientation;
(c) the hyperbolic plane with the usual orientation.

(11) Let c be a smooth curve on an oriented 2-manifold M as in the
definition of geodesic curvature. Let X be a vector field parallel
along c and let θ be the angle between X and ċ(s) along c in the
given orientation. Show that the geodesic curvature of c, kg, is
equal to dθ

ds . (Hint: Consider two fields of orthonormal frames {E1, E2} and

{F1, F2} positively oriented and such that F1 = X
‖X‖).
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3. Gauss-Bonnet Theorem

We will now use Cartan’s structure equations to prove the Gauss-
Bonnet Theorem, relating the curvature of a compact surface to its topol-
ogy. Let M be a compact, oriented, 2-dimensional manifold and X a vector
field on M .

Definition 3.1. A point p ∈ M is said to be a singular point of X
if Xp = 0. A singular point is said to be an isolated singularity if there
exists a neighborhood V ⊂ M of p such that p is the only singular point of
X in V .

Since M is compact, if all the singularities of X are isolated then they
are in finite number (as otherwise they would accumulate on a non-isolated
singularity).

To each isolated singularity p ∈ V of X ∈ X(M) one can associate an
integer number, called the index of X at p, as follows:

(i) fix a Riemannian metric in M ;
(ii) choose a positively oriented orthonormal frame {F1, F2}, defined on

V \ {p}, such that

F1 =
X

‖X‖
;

let {ω1,ω2} be the dual co-frame and let ω2
1 be the corresponding

connection form;
(iii) possibly shrinking V , choose a positively oriented orthonormal frame

{E1, E2}, defined on V , with dual co-frame {ω1,ω2} and connection
form ω2

1;
(iv) take a neighborhood D of p in V , homeomorphic to a disc, with a

smooth boundary ∂D, endowed with the induced orientation; we then
define the index Ip of X at p through

2πIp =

∫

∂D

σ,

where σ := ω2
1 − ω2

1 is the form defined in Section 2.

Recall that σ satisfies σ = dθ, where θ is the angle between E1 and F1.
Therefore Ip must be an integer. Intuitively, the index of a vector field
X measures the number of times that X rotates as one goes around the
singularity anticlockwise, counted positively if X itself rotates anticlockwise,
and negatively otherwise.

Example 3.2. In M = R2 the following vector fields have isolated sin-
gularities at the origin with the indicated indices (cf. Figure 1):

(1) X(x,y) = (x, y) has index 1;
(2) Y(x,y) = (−y, x) has index 1;
(3) Z(x,y) = (y, x) has index −1.
(4) W(x,y) = (x,−y) has index −1.
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(1) (2)

(3) (4)

θ
E1 ≡ ∂

∂x

F1 ≡ X
‖X‖ F1 ≡ Y

‖Y ‖

F1 ≡ Z
‖Z‖ F1 ≡ W

‖W‖

Figure 1. Computing the indices of the vector fields X, Y ,
Z and W .

We will now check that the index is well defined. We begin by observing
that, since σ is closed, Ip does not depend on the choice of D. Indeed, the
boundaries of any two such discs are necessarily homotopic (cf. Exercise 5.2.2
of Chapter 2). Next we prove that Ip does not depend on the choice of the
frame {E1, E2}. More precisely, we have

Ip = lim
r→0

1

2π

∫

Sr(p)
ω2

1,

where Sr(p) is the normal sphere of radius r centered at p. Indeed, if r1 >
r2 > 0 are radii of normal spheres, one has

(19)

∫

Sr1 (p)
ω2

1 −
∫

Sr2 (p)
ω2

1 =

∫

∆12

dω2
1 = −

∫

∆12

Kω1 ∧ ω2 = −
∫

∆12

K,

where ∆12 = Br1(p) \ Br2(p). Since K is continuous, we see that

(∫

Sr1(p)
ω2

1 −
∫

Sr2(p)
ω2

1

)

−→ 0
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as r1 → 0. Therefore, if {rn} is a decreasing sequence of positive numbers
converging to zero, the sequence

{∫

Srn(p)
ω2

1

}

is a Cauchy sequence, and therefore converges. Thus the limit

Ip = lim
r→0

1

2π

∫

Sr(p)
ω2

1

exists. Making r2 → 0 on (19) one obtains
∫

Sr1 (p)
ω2

1−2πIp = −
∫

Br1 (p)
K = −

∫

Br1 (p)
Kω1∧ω2 =

∫

Br1 (p)
dω2

1 =

∫

Sr1 (p)
ω2

1 ,

and hence

2πIp =

∫

Sr1 (p)
σ =

∫

Sr1(p)
ω2

1 − ω2
1 = 2πIp.

Finally, we show that Ip does not depend on the choice of Riemannian
metric. Indeed, if 〈·, ·〉0, 〈·, ·〉1 are two Riemannian metrics on M , it is easy
to check that

〈·, ·〉t := (1− t)〈·, ·〉0 + t〈·, ·〉1

is also a Riemannian metric on M , and that the index Ip(t) computed using
the metric 〈·, ·〉t is a continuous function of t (cf. Exercise 3.6.1). Since Ip(t)
is an integer for all t ∈ [0, 1], we conclude that Ip(0) = Ip(1).

Therefore Ip depends only on the vector field X ∈ X(M). We are now
ready to state the Gauss-Bonnet Theorem:

Theorem 3.3. (Gauss-Bonnet) Let M be a compact, oriented, 2-dimensional
manifold and let X be a vector field in M with isolated singularities p1, . . . , pk.
Then

(20)

∫

M

K = 2π
k∑

i=1

Ipi

for any Riemannian metric on M , where K is the Gauss curvature.

Proof. We consider the positively oriented orthonormal frame {F1, F2},
with

F1 =
X

‖X‖
,

defined on M \ ∪k
i=1{pi}, with dual co-frame {ω1,ω2} and connection form

ω2
1. For r > 0 sufficiently small, we take Bi = Br(pi) such that Bi ∩Bj = ∅
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for i '= j and note that
∫

M\∪k
i=1Bi

K =

∫

M\∪k
i=1Bi

K ω1 ∧ ω2 = −
∫

M\∪k
i=1Bi

dω2
1

=

∫

∪k
i=1∂Bi

ω2
1 =

k∑

i=1

∫

∂Bi

ω2
1,

where ∂Bi have the orientation induced by the orientation of Bi. Making
r → 0, one obtains

∫

M

K = 2π
k∑

i=1

Ipi .

!

Remark 3.4.

(1) Since the right-hand side of (20) does not depend on the metric,
we conclude that

∫
M K is the same for all Riemannian metrics on

M .
(2) Since the left-hand side of (20) does not depend on the vector field

X, we conclude that χ(M) :=
∑k

i=1 Ipi is the same for all vector
fields on M with isolated singularities. This is the so-called Euler
characteristic of M .

(3) Recall that a triangulation of M is a decomposition of M in a
finite number of triangles (i.e., images of Euclidean triangles by
parametrizations) such that the intersection of any two triangles is
either a common edge, a common vertex or empty (it is possible to
prove that such a triangulation always exists). Given a triangula-
tion, one can construct a vector field with the following properties
(cf. Figure 2):
(a) each vertex is a singularity, which is a sink;
(b) each face contains exactly one singularity, which is a source;
(c) each edge is formed by integral curves of the vector field and

contains exactly one singularity.
It is easy to see that all singularities are isolated, that the singulari-
ties at the vertices and faces have index 1 and that the singularities
at the edges have index −1. Therefore,

χ(M) = V − E + F,

where V is the number of vertices, E is the number of edges and F
is the number of faces on any triangulation. This is the definition
we used in Exercise 1.8.5 of Chapter 1.

Example 3.5.

(1) Choosing the standard metric in S2, we have

χ(S2) =
1

2π

∫

S2
1 =

1

2π
vol(S2) = 2.
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Figure 2. Vector field associated to a triangulation.

From this one can derive a number of conclusions:
(a) there is no zero curvature metric on S2, for this would imply

χ(S2) = 0.
(b) there is no vector field on S2 without singularities, as this

would also imply χ(S2) = 0.
(c) for any triangulation of S2, one has V − E + F = 2. In par-

ticular, this proves Euler’s formula for convex polyhedra with
triangular faces, as these clearly yield triangulations of S2.

(2) As we saw in Section 4, the torus T 2 has a zero curvature metric,
and hence χ(T 2) = 0. This can also be seen from the fact that
there exist vector fields on T 2 without singularities.

Exercises 3.6.

(1) Show that if 〈·, ·〉0, 〈·, ·〉1 are two Riemannian metrics on M then

〈·, ·〉t := (1− t)〈·, ·〉0 + t〈·, ·〉1
is also a Riemannian metric on M , and that the index Ip(t) com-
puted using the metric 〈·, ·〉t is a continuous function of t.

(2) (Gauss-Bonnet Theorem for non-orientable manifolds) Let (M,g)
be a compact, non-orientable, 2-dimensional Riemannian manifold
and let π : M → M be its orientable double covering (cf. Exer-
cise 8.6.9 in Chapter 1). Show that:
(a) χ(M) = 2χ(M);
(b) K = π∗K, where K is the Gauss curvature of the Riemannian

metric g = π∗g on M ;

(c) χ(M) = 1
2

∫

M

K.



136 4. CURVATURE

(Remark: Even though M is not orientable, we can still define the integral of a

function f on M through

Z

M
f = 1

2

Z

M
π∗f ; with this definition, the Gauss-Bonnet

Theorem holds for non-orientable Riemannian 2-manifolds).
(3) Let M be a compact, oriented, 2-dimensional manifold with bound-

ary and let X be a vector field in M transverse to ∂M (i.e.,
such that Xp '∈ Tp∂M for all p ∈ ∂M), with isolated singularities
p1, . . . , pk ∈ M \ ∂M . Prove that

∫

M

K +

∫

∂M

kg(s)ds = 2π
k∑

i=1

Ipi

for any Riemannian metric on M , where K is the Gauss curvature
of M , kg is the geodesic curvature of ∂M and s is the arclength.

(4) Let (M,g) be a compact orientable 2-dimensional Riemannian man-
ifold, with positive Gauss curvature. Show that any two non-self-
intersecting closed geodesics must intersect each other.

(5) (Hessian) Let M be a differentiable manifold, f : M → R a smooth
function and p ∈ M a critical point of f (i.e. (df)p = 0). For
v,w ∈ TpM we define the Hessian of f at p to be the map (Hf)p :
TpM × TpM → R given by

(Hf)p(v,w) =
∂2

∂t∂s

∣∣∣∣
s=t=0

f ◦ γ (s, t),

where γ : U ⊂ R2 → M is such that γ(0, 0) = p, ∂γ
∂s (0, 0) = v and

∂γ
∂t (0, 0) = w. Show that (Hf)p
(a) is well-defined;
(b) is a symmetric 2-tensor (if (Hf)p is nondegenerate then p is

called a nondegenerate critical point).
(6) (Morse Theorem) A smooth function f : M → R is said to be a

Morse function if all its critical points are nondegenerate. If M
is compact then the number of critical points of any Morse function
on M is finite. Prove that if M is a 2-dimensional compact manifold
and f : M → R is a Morse function with m maxima, s saddle points
and n minima, then

χ(M) = m− s + n.

(Hint: Choose a Riemannian metric on M and consider the vector field X = grad f).
(7) Let (M,g) be a 2-dimensional Riemannian manifold and ∆ ⊂ M

a geodesic triangle, i.e., an open set homeomorphic to a disc
whose boundary is contained in the union of the images of three
geodesics. Let α,β, γ be the inner angles of ∆, i.e., the angles
between the geodesics at the intersection points contained in ∂∆.
Prove that for small enough ∆ one has

α + β + γ = π +

∫

∆
K,
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where K is the Gauss curvature of M , using:
(a) the fact that

∫
∆ K is the angle by which a vector parallel-

transported once around ∂∆ rotates;
(b) the Gauss-Bonnet Theorem for manifolds with boundary.
(Remark: We can use this result to give another geometric interpretation of the

Gauss curvature: K(p) = lim∆→p
α+β+γ−π

vol(∆) ).
(8) Let (M,g) be a simply connected 2-dimensional Riemannian mani-

fold with nonpositive Gauss curvature. Show that any two geodesics
intersect at most in one point. (Hint: Note that if two geodesics intersect

in more than one point then one would have a geodesic biangle, i.e., an open set

homeomorphic to a disc whose boundary is contained in the union of the images of

two geodesics.).

4. Manifolds of Constant Curvature

Recall that a manifold is said to have constant curvature if all sectional
curvatures at all points have the same constant value K. There is an easy
way to identify these manifolds using their curvature forms:

Lemma 4.1. If M is a manifold of constant curvature K, then, around
each point p ∈ M , all curvature forms Ωj

i satisfy

(21) Ωj
i = −Kωi ∧ ωj,

where {ω1, . . . ,ωn} is any field of orthonormal co-frames defined on a neigh-
borhood of p. Conversely, if on a neighborhood of each point of M there is
a field of orthonormal frames E1, . . . , En such that the corresponding field
of co-frames {ω1, . . . ,ωn} satisfies (21) for some constant K, then M has
constant curvature K.

Proof. If M has constant curvature K then

Ωj
i =

∑

k<l

Ωj
i (Ek, El)ωk ∧ ωl =

∑

k<l

ωj(R(Ek, El)Ei)ωk ∧ ωl

=
∑

k<l

〈R(Ek, El)Ei, Ej〉ωk ∧ ωl =
∑

k<l

Rklij ωk ∧ ωl

= −
∑

k<l

K(δkiδlj − δkjδli)ωk ∧ ωl = −Kωi ∧ ωj.

Conversely, let us assume that there is a constant K such that on a neigh-
borhood of each point p ∈ M we have Ωj

i = −Kωi ∧ ωj. Then, for every
section Π of the tangent space TpM , the corresponding sectional curvature
is given by

K(Π) = −R(X,Y,X, Y )

where X,Y are two linearly independent vectors spanning Π (which we
assume to span a parallelogram of unit area). Using the field of orthonormal
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frames around p, we have X =
∑n

i=1 XiEi and Y =
∑n

i=1 Y iEi and so,

K(Π) = −
n∑

i,j,k,l=1

XiY jXkY lR(Ei, Ej , Ek, El)

= −
n∑

i,j,k,l=1

XiY jXkY l Ωl
k(Ei, Ej)

= K
n∑

i,j,k,l=1

XiY jXkY l ωk ∧ ωl(Ei, Ej)

= K
n∑

i,j,k,l=1

XiY jXkY l
(
ωk(Ei)ω

l(Ej)− ωk(Ej)ω
l(Ei)

)

= K
n∑

i,j,k,l=1

XiY jXkY l(δikδjl − δjkδil)

= K
(
‖X‖2 ‖Y ‖2 − 〈X,Y 〉2

)
= K.

!

Let us now see an example of how we can use this lemma:

Example 4.2. Let a be a positive real number and let

Hn(a) = {(x1, . . . xn) ∈ Rn : xn > 0}.

We will see that the Riemannian metric in Hn(a) given by

gij(x) =
a2

(xn)2
δij ,

has constant sectional curvature K = − 1
a2 . Indeed, using the above lemma,

we will show that on Hn(a) there is a field of orthonormal frames E1 . . . , En

whose dual field of co-frames ω1 . . . ωn satisfies

(22) Ωj
i = −Kωi ∧ ωj

for K = − 1
a2 . For that, let us consider the natural coordinate system

x : Hn(a) → Rn and the corresponding field of coordinate frames X1, . . . ,Xn

with Xi = ∂
∂xi

. Since

〈Xi,Xj〉 =
a2

(xn)2
δij ,

we obtain a field of orthonormal frames E1, . . . , En with Ei = xn

a Xi, and the
corresponding dual field of co-frames ω1, . . . ωn where ωi = a

xn dxi. Then

dωi =
a

(xn)2
dxi ∧ dxn =

1

a
ωi ∧ ωn =

n∑

k=1

ωk ∧
(
−

1

a
δknωi

)
,
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and so, using the structure equations

dωi =
n∑

k=1

ωk ∧ ωi
k

ωj
i + ωi

j = 0,

we can guess that the connection forms are given by ωi
j = 1

a(δinωj − δjnωi).
We can easily verify that these forms satisfy the above structure equations
since

n∑

k=1

ωk ∧ ωi
k =

1

a

n∑

k=1

ωk ∧ (δinωk − δknωi) =
1

a
ωi ∧ ωn = dωi

and

ωj
i =

1

a
(δjnωi − δinωj) = −

1

a
(δinωj − δjnωi) = −ωi

j.

Hence, by unicity of solution of these equations, we conclude that these forms
are indeed given by ωj

i = 1
a(δjnωi − δinωj). With the connection forms it

is now easy to compute the curvature forms Ωj
i using the third structure

equation

dωj
i =

n∑

k=1

ωk
i ∧ ωj

k + Ωj
i .

In fact,

dωj
i = d

(
1

a
(δjnωi − δinωj)

)
=

1

a2
(δjnωi ∧ ωn − δinωj ∧ ωn)

and
n∑

k=1

ωk
i ∧ ωj

k =
1

a2

n∑

k=1

(δknωi − δinωk) ∧ (δjnωk − δknωj)

=
1

a2

n∑

k=1

(δknδjnωi ∧ ωk − δknωi ∧ ωj + δinδknωk ∧ ωj)

=
1

a2
(δjnωi ∧ ωn − ωi ∧ ωj + δinωn ∧ ωj),

and so,

Ωj
i =

1

a2
(δjnωi∧ωn−δinωj∧ωn−δjnωi∧ωn+ωi∧ωj−δinωn∧ωj) =

1

a2
ωi∧ωj.

We conclude that K = − 1
a2 . Note that these spaces give us examples in

any dimension of Riemannian manifolds with arbitrary constant negative
curvature.

The Euclidean spaces Rn give us examples of Riemannian manifolds
with constant curvature equal to zero. Moreover, we can easily see that
the spheres Sn(r) ⊂ Rn+1 of radius r have constant curvature equal to 1

r2

(cf. Exercise 5.7.2), and so we have examples in any dimension of spaces with
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arbitrary constant positive curvature. Note that all of the examples given
so far in this section are simply connected and are geodesically complete.
Indeed, the geodesics of the Euclidean space Rn traverse straight lines, Sn(r)
is compact and the geodesics of Hn(a) traverse either half circles perpen-
dicular to the plane xn = 0 and centered on this plane, or vertical half lines
starting at the plane xn = 0.

Every simply connected geodesically complete manifold of constant cur-
vature is isometric to one of these examples as it is stated in the following
theorem (which we will not prove). In general, if the manifold is not simply
connected (but still geodesically complete), it is isometric to the quotient of
one of the above examples by a free and proper action of a discrete subgroup
of the group of isometries (it can be proved that the group of isometries of
a Riemannian manifold is always a Lie group).

Theorem 4.3. (Killing-Hopf)

(1) Let M be a simply connected Riemannian manifold geodesically
complete. If M has constant curvature K then it is isometric to one

of the following: Sn
(

1√
K

)
if K > 0, Rn if K = 0, or Hn

(
1√
−K

)

if K < 0.
(2) Let M be a geodesically complete manifold (not necessarily simply

connected) with constant curvature K. Then M is isometric to a

quotient M̃/Γ, where M̃ is one of the above simply connected spaces

and Γ is a discrete subgroup of the group of isometries of M̃ acting
properly and freely on M̃ .

Example 4.4. Let M̃ = R2. Then the subgroup of isometries Γ cannot
contain any rotation (since it acts freely). Hence it can only contain trans-
lations and gliding reflections (that is, reflections followed by a translation
in the direction of the reflection axis). Moreover, it is easy to check that Γ
has to be generated by at most two elements. Hence we obtain that:

(1) if Γ is generated by one translation, then the resulting surface will
be a cylinder;

(2) if Γ is generated by two translations we obtain a torus;
(3) if Γ is generated by a gliding reflection we obtain a Möbius band;
(4) if Γ is generated by a translation and a gliding reflection we obtain

a Klein bottle.

Note that if Γ is generated by two gliding reflections then it can also be gen-
erated by a translation and a gliding reflection (cf. Exercise 4.7.4). Hence,
these are all the possible examples of geodesically complete Euclidean sur-
faces (2-dimensional manifolds of constant zero curvature).

Example 4.5. The group of orientation-preserving isometries of the hy-
perbolic plane H2 is PSL(2, R) = SL(2, R)/{±Id}, acting on H2 through

(
a b
c d

)
· z :=

az + b

cz + d
,
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where we make the identification R2 ∼= C (cf. Exercise 4.7.5). To find
orientable hyperbolic surfaces, that is, surfaces with constant curvature
K = −1, we have to find discrete subgroups Γ of PSL(2, R) acting prop-
erly and freely on H2. Here there are many more possibilities. As an
example, we can consider the group Γ = 〈t2π〉 generated by the translation
t2π(z) = z + 2π. The resulting surface is known as pseudosphere and is
homeomorphic to a cylinder (cf. Figure 3). However, the width of the end
where y → +∞ converges to zero, while the width of the end where y → 0
converges to +∞. Its height towards both ends is infinite. Note that this
surface has geodesics which transversely autointersect a finite number of
times (cf. Figure 4).

Other examples can be obtained by considering hyperbolic polygons
(bounded by geodesics) and identifying their sides through isometries. For
instance, the surface in Figure 5-(b) is obtained by identifying the sides of the
polygon in Figure 5-(a) through the isometries g(z) = z+2 and h(z) = z

2z+1 .
Choosing other polygons it is possible to obtain compact hyperbolic sur-
faces. In fact, there exist compact hyperbolic surfaces homeomorphic to any
topological 2-manifold with negative Euler characteristic (the Gauss-Bonnet
Theorem does not allow non-negative Euler characteristics).

−2π 0 2π 4π

−→

Figure 3. Pseudosphere.

Example 4.6. To find Riemannian manifolds of constant positive cur-
vature we have to find discrete subgroups of isometries of the sphere that
act properly and freely. Let us consider the case where K = 1. Then
Γ ⊂ O(n + 1). Since it must act freely on Sn, no element of Γ\{Id} can
have 1 as an eigenvalue. We will see that, when n is even, Sn and RPn

are the only geodesically complete manifolds of constant curvature 1. In-
deed, if A ∈ Γ, then A is an orthogonal (n + 1)× (n + 1) matrix and so all
its eigenvalues have absolute value equal to 1. Moreover, its characteristic
polynomial has odd degree (n + 1), implying that, if A '= I, this polynomial
has a real root equal to −1 (since it cannot have 1 as an eigenvalue). Con-
sequently, A2 has 1 as an eigenvalue and so it has to be the identity. Hence,
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−2π 0 2π 4π

Figure 4. Trajectories of geodesics on the pseudosphere.

−1 0 1

−→

(a) (b)

Figure 5. (a) Hyperbolic polygon, (b) Pair of pants.

the eigenvalues of A are either all equal to 1 (if A = Id) or all equal to −1,
in which case A = −Id. We conclude that Γ = {±Id} implying that our
manifold is either Sn or RPn. If n is odd there are other possibilities which
are classified in [Wol78].

Exercises 4.7.

(1) Prove that if the forms ωi in an orthonormal co-frame satisfy dωi =
α ∧ ωi (with α a 1-form), then the connection forms ωj

i are given

by ωj
i = α(Ei)ωj −α(Ej)ωi = −ωi

j. Use this to confirm the results
in Example 4.2.

(2) Let K be a real number and let ρ = 1 + (K
4 )

∑n
i=1(x

i)2. Let V =
ϕ(U) be a coordinate neighborhood of a manifold M of dimension
n, with U = Bε(0) ⊂ Rn (for some ε > 0). Show that, for the
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Riemannian metric defined in V by

gij(p) =
1

ρ2
δij ,

the sectional curvature is constant equal to K. Note that in this
way we obtain manifolds with an arbitrary constant curvature.

(3) (Schur Theorem) Let M be a connected isotropic Riemannian man-
ifold of dimension n ≥ 3. Show that M has constant curvature.
(Hint: Use the structure equations to show that dK = 0).

(4) To complete the details in Example 4.4, show that:
(a) any discrete group of isometries of the Euclidean plane R2 act-

ing properly and freely on R2 can only contain translations and
gliding reflections and is generated by at most two elements;

(b) show that any group generated by two gliding reflections can
also be generated by a translation and a gliding reflection.

(5) Let H2 be the hyperbolic plane. Show that:
(a) (

a b
c d

)
· z :=

az + b

cz + d

defines an action of PSL(2, R) = SL(2, R)/{±Id} on H2 by
orientation-preserving isometries;

(b) for any two geodesics c1, c2 : R → H2, parametrized by the
arclength, there exists g ∈ PSL(2, R) such that c1(s) = g·c2(s)
for all s ∈ R;

(c) if f : H2 → H2 is an orientation-preserving isometry then it
must be a holomorphic function. Conclude that all orientation-
preserving isometries are of the form f(z) = g · z for some
g ∈ PSL(2, R).

(6) Check that the isometries g, h of the hyperbolic plane in Exam-
ple 4.5 identify the sides of the hyperbolic polygon in Figure 5.

(7) A tractrix is the curve described parametrically by
{

x = u− tanh u

y = sech u
(u > 0)

(its name derives from the property that the distance between any
point in the curve and the x-axis along the tangent is constant equal
to 1). Show that the surface of revolution generated by rotating a
tractrix about the x-axis (tractroid) has constant Gauss curvature
K = −1. Determine an open subset of the pseudosphere isometric
to the tractroid. (Remark: The tractroid is not geodesically complete; in fact,

it was proved by Hilbert in 1901 that any surface of constant negative curvature

embedded in Euclidean 3-space must be incomplete).
(8) Show that the group of isometries of Sn is O(n + 1).
(9) Let G be a compact Lie group of dimension 2. Show that:

(a) G is orientable;
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(b) χ(G) = 0;
(c) any left-invariant metric on G has constant curvature;
(d) G is the 2-torus T 2.

5. Isometric Immersions

Many Riemannian manifolds arise as submanifolds of another Riemann-
ian manifold, by taking the induced metric (e.g. Sn ⊂ Rn+1). In this section,
we will analyze how the curvatures of the two manifolds are related.

Let f : N →M be an immersion of an n-manifold N on an m-manifold
M . We know from Section 5 of Chapter 1 that, for each point p ∈ N ,
there is a neighborhood V ⊂ N of p where f is an embedding onto its
image. Hence f(V ) is a submanifold of M . To simplify notation, we will
proceed as if f were the inclusion map, and will identify V with f(V ),
as well as every element v ∈ TpN with (df)pv ∈ Tf(p)M . Let 〈·, ·〉 be a
Riemannian metric on M and 〈〈·, ·〉〉 the induced metric on N (we then call
f an isometric immersion). Then, for every p ∈ V , the tangent space
TpM can be decomposed as follows:

TpM = TpN ⊕ (TpN)⊥.

Therefore, every element v of TpM can be written uniquely as v = v* + v⊥,
where v* ∈ TpN is the tangential part of v and v⊥ ∈ (TpN)⊥ is the normal

part of v. Let ∇̃ and ∇ be the Levi-Civita connections of (M, 〈·, ·〉) and
(N, 〈〈·, ·〉〉), respectively. Let X,Y be two vector fields in V ⊂ N and let X̃,
Ỹ be two extensions of X,Y to a neighborhood W ⊂ M of V . Using the
Koszul formula, we can easily check that

∇X Y =
(
∇̃ eX Ỹ

)*

(cf. Exercise 3.3.6 in Chapter 3). We define the second fundamental form
of N as

B(X,Y ) := ∇̃ eX Ỹ −∇X Y.

Note that this map is well defined, that is, it does not depend on the ex-
tensions X̃, Ỹ of X and Y (cf. Exercise 5.7.1). Moreover, it is bilinear,
symmetric, and, for each p ∈ V , B(X,Y )p ∈ (TpN)⊥ depends only on the
values of Xp and Yp.

Using the second fundamental form, we can define for each vector np ∈
(TpN)⊥ a symmetric bilinear map Hnp : TpN × TpN → R through

Hnp(Xp, Yp) = 〈B(Xp, Yp), np〉.

Hence, we have a quadratic form IInp : TpN → R, given by

IInp(Xp) = Hnp(Xp,Xp),

which is often called the second fundamental form of f at p along the
vector np.
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Finally, since Hnp is bilinear, there exists a linear map Snp : TpN → TpN
satisfying

〈〈Snp(Xp), Yp〉〉 = Hnp(Xp, Yp) = 〈B(Xp, Yp), np〉
for all Xp, Yp ∈ TpM . It is easy to check that this linear map is given by

Snp(Xp) = −(∇̃ eXn)*p ,

where n is a local extension of np normal to N . Indeed, since 〈Ỹ , n〉 = 0 on

N and X̃ is tangent to N , we have

〈〈Sn(X), Y 〉〉 = 〈B(X,Y ), n〉 = 〈∇̃ eX Ỹ −∇X Y, n〉

= 〈∇̃ eX Ỹ , n〉 = X̃ · 〈Ỹ , n〉 − 〈Ỹ , ∇̃ eXn〉

= 〈−∇̃ eXn, Ỹ 〉 = 〈〈−(∇̃ eXn)*, Y 〉〉.
Therefore

〈〈Snp(Xp), Yp〉〉 = 〈〈−(∇̃ eXn)*p , Yp〉〉
for all Yp ∈ TpN .

Example 5.1. Let N be a hypersurface in M , i.e., let dimN = n and
dimM = n + 1. Consider a point p ∈ V (a neighborhood of N where f is
an embedding), and a unit vector np normal to N at p. As the linear map
Snp : TpN → TpN is symmetric, there exists an orthonormal basis of TpN
formed by eigenvectors {(E1)p, . . . , (En)p} (called principal directions at
p) corresponding to a set of real eigenvalues λ1, . . . ,λn (called principal
curvatures at p). The determinant of the map Snp (equal to the product
λ1 · · ·λn) is called the Gauss curvature of f and H := 1

n tr Snp = 1
n(λ1 +

· · · + λn) is called the mean curvature of f . When n = 2 and M = R3

with the Euclidean metric, the Gauss curvature of f is in fact the Gauss
curvature of N as defined in Section 1 (cf. Example 5.5).

Example 5.2. If, in the above example, M = Rn+1 with the Euclidean
metric, we can define the Gauss map g : V ⊂ N → Sn, with values on
the unit sphere, which, to each point p ∈ V , assigns the normal unit vector
np. Since np is normal to TpN , we can identify the tangent spaces TpN
and Tg(p)S

n and obtain a well-defined map (dg)p : TpN → TpN . Note that,
for each Xp ∈ TpN , choosing a curve c : I → N such that c(0) = p and
ċ(0) = Xp, we have

(dg)p(Xp) =
d

dt
(g ◦ c)|t=0 =

d

dt
nc(t)|t=0 = (∇̃ċn)p ,

where we used the fact ∇̃ is the Levi-Civita connection for the Euclidean
metric. However, since ‖n‖ = 1, we have

0 = ċ(t) · 〈n, n〉 = 2〈∇̃ċ n, n〉,
implying that

(dg)p(Xp) = (∇̃ċ n)p = (∇̃ċ n)*p = −Snp(Xp).
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We conclude that the derivative of the Gauss map at p is −Snp .

Let us now relate the curvatures of N and M .

Proposition 5.3. Let p be a point in N , let Xp and Yp be two linearly
independent vectors in TpN ⊂ TpM and let Π ⊂ TpN ⊂ TpM be the two
dimensional subspace generated by these vectors. Let KN (Π) and KM (Π)
denote the corresponding sectional curvatures in N and M , respectively.
Then

KN (Π)−KM (Π) =
〈B(Xp,Xp), B(Yp, Yp)〉 − ‖B(Xp, Yp)‖2

‖Xp‖2‖Yp‖2 − 〈Xp, Yp〉2
.

Proof. Observing that the right-hand side depends only on Π, we can
assume without loss of generality that {Xp, Yp} is orthonormal. Let X,Y be
local extensions of Xp, Yp, defined on a neighborhood of p in N and tangent

to N , also orthonormal. Let X̃, Ỹ be extensions of X,Y to a neighborhood of
p in M . Moreover, consider a field of frames {E1, . . . , En+k}, also defined on
a neighborhood of p in M , such that E1, . . . , En are tangent to N , E1 = X,
E2 = Y on N , and En+1, . . . , En+k are normal to N (m = n + k). Then,
since B(X,Y ) is normal to N ,

B(X,Y ) =
k∑

i=1

〈B(X,Y ), En+i〉En+i =
k∑

i=1

HEn+i(X,Y )En+i.

On the other hand,

KN (Π)−KM(Π) = −RN (Xp, Yp,Xp, Yp) + RM (Xp, Yp,Xp, Yp)

= 〈(−∇X ∇Y X +∇Y ∇X X +∇[X,Y ] X

+ ∇̃ eX ∇̃eY X̃ − ∇̃eY ∇̃ eXX̃ − ∇̃[ eX,eY ] X̃)p, Yp〉

= 〈(−∇X ∇Y X +∇Y ∇X X + ∇̃ eX ∇̃eY X̃ − ∇̃eY ∇̃ eX X̃)p, Yp〉,

where we have used the fact that ∇̃[ eX,eY ]X̃−∇[X,Y ] X is normal to N (cf. Ex-

ercise 5.7.1). However, since on N

∇̃eY ∇̃ eX X̃ = ∇̃eY (B(X,X) +∇X X) =

= ∇̃eY

(
k∑

i=1

HEn+i(X,X)En+i +∇X X

)

=
k∑

i=1

(
HEn+i(X,X)∇̃eY En+i + Ỹ · (HEn+i(X,X))En+i

)
+ ∇̃eY ∇X X,

we have

〈∇̃eY ∇̃ eX X̃, Y 〉 =
k∑

i=1

HEn+i(X,X)〈∇̃eY En+i, Y 〉+ 〈∇̃eY ∇X X,Y 〉.
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Moreover,

0 = Ỹ · 〈En+i, Y 〉 = 〈∇̃eY En+i, Y 〉+ 〈En+i, ∇̃eY Y 〉

= 〈∇̃eY En+i, Y 〉+ 〈En+i, B(Y, Y ) +∇Y Y 〉

= 〈∇̃eY En+i, Y 〉+ 〈En+i, B(Y, Y )〉

= 〈∇̃eY En+i, Y 〉+ HEn+i(Y, Y ),

and so

〈∇̃eY ∇̃ eX X̃, Y 〉 = −
k∑

i=1

HEn+i(X,X)HEn+i(Y, Y ) + 〈∇̃eY ∇X X,Y 〉

= −
k∑

i=1

HEn+i(X,X)HEn+i(Y, Y ) + 〈∇Y ∇X X,Y 〉.

Similarly, we can conclude that

〈∇̃ eX ∇̃eY X̃, Y 〉 = −
k∑

i=1

HEn+i(X,Y )HEn+i(X,Y ) + 〈∇X ∇Y X,Y 〉,

and then

KN (Π)−KM (Π) =

=
k∑

i=1

(
−(HEn+i(Xp, Yp))

2 + HEn+i(Xp,Xp)HEn+i(Yp, Yp)
)

= −‖B(XP , Yp)‖2 + 〈B(Xp,Xp), B(Yp, Yp)〉.

!

Example 5.4. Again in the case of a hypersurface N , we choose an
orthonormal basis {(E1)p, . . . , (En)p} of TpN formed by eigenvectors of Snp ,
where np ∈ (TpN)⊥. Hence, considering a section Π of TpN generated by
two of these vectors (Ei)p, (Ej)p, and using B(Xp, Yp) = 〈〈Snp(Xp), Yp〉〉np,
we have

KN (Π)−KM (Π) =

= −‖B((Ei)p, (Ej)p)‖2 + 〈B((Ei)p, (Ei)p), B((Ej)p, (Ej)p)〉

= −〈〈Snp((Ei)p), (Ej)p〉〉2+ 〈〈Snp((Ei)p), (Ei)p〉〉〈〈Snp((Ej)p), (Ej)p〉〉
= λiλj .

Example 5.5. In the special case where N is a 2-manifold, and M = R3

with the Euclidean metric, we have KM ≡ 0 and hence KN (p) = λ1λ2, as
promised in Example 5.1. Therefore, although λ1 and λ2 depend on the
immersion, their product depends only on the intrinsic geometry of N .
Gauss was so pleased by this discovery that he called it his Theorema
Egregium (‘Remarkable Theorem’).
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Let us now study in detail the particular case where N is a hypersurface
in M = Rn+1 with the Euclidean metric. Let c : I → N be a curve in N
parametrized by arc length s and such that c(0) = p and ċ(0) = Xp ∈ TpN .
We will identify this curve c with the curve f ◦ c in Rn+1. Considering the
Gauss map g : V → Sn defined on a neighborhood V of p in N , we take
the curve n(s) := g ◦ c(s) in Sn. Since ∇̃ is the Levi-Civita connection
corresponding to the Euclidean metric in R3, we have 〈∇̃ċ ċ, n〉 = 〈c̈, n〉. On
the other hand,

〈∇̃ċ ċ, n〉 = 〈B(ċ, ċ) +∇ċ ċ, n〉 = 〈B(ċ, ċ), n〉 = Hn(ċ, ċ) = IIn(ċ).

Hence, at s = 0, IIg(p)(Xp) = 〈c̈(0), np〉. This value knp := 〈c̈(0), np〉 is
called the normal curvature of c at p. Since knp is equal to IIg(p)(Xp),
it does not depend on the curve, but only on its initial velocity. Because
IIg(p)(Xp) = 〈〈Sg(p)(Xp),Xp〉〉, the critical values of these curvatures subject
to ‖Xp‖ = 1 are equal to λ1, . . . ,λn, and are called the principal curva-
tures. This is why in Example 5.1 we also called the eigenvalues of Snp

principal curvatures. The Gauss curvature of f is then equal to the product
of the principal curvatures, K = λ1 . . . λn. As the normal curvature does
not depend on the choice of curve tangent to Xp at p, we can choose c to
take values on a 2 containing np. Then c̈(0) is parallel to the normal vector
np, and

|kn| = |〈c̈(0), n〉| = ‖c̈(0)‖ = kc,

where kc := ‖c̈(0)‖ is the so-called curvature of the curve c at c(0).

Example 5.6. Let us consider the following three surfaces: the 2-sphere,
the cylinder and a saddle surface.

(1) Let p be any point on the sphere. Intuitively, all points of this
surface are on the same side of the tangent plane at p, implying
that both principal curvatures have the same sign (depending on
the chosen orientation), and consequently that the Gauss curvature
is positive at all points.

(2) If p is any point on the cylinder, one of the principal curvatures
is zero (the maximum or the minimum, depending on the chosen
orientation), and so the Gauss curvature is zero at all points.

(3) Finally, if p is a saddle point, the principal curvatures at p have
opposite signs, and so the Gauss curvature is negative.

Exercises 5.7.

(1) Let M be a Riemannian manifold with Levi-Civita connection ∇̃,
and let N be a submanifold endowed with the induced metric and
Levi-Civita connection ∇. Let X̃, Ỹ ∈ X(M) be local extensions
of X,Y ∈ X(N). Recall that the second fundamental form of the
inclusion of N in M is the map B : TpN × TpN → (TpN)⊥ defined
at each point p ∈ N by

B(X,Y ) := ∇̃ eX Ỹ −∇X Y.
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Show that:
(a) B(X,Y ) does not depend on the choice of the extensions X̃, Ỹ ;
(b) B(X,Y ) is orthogonal to N ;
(c) B is symmetric, i.e. B(X,Y ) = B(Y,X);
(d) B(X,Y )p depends only on the values of Xp and Yp;

(e) ∇̃[ eX,eY ]X̃ −∇[X,Y ] X is orthogonal to N .

(2) Let Sn(r) ⊂ Rn+1 be the n dimensional sphere of radius r.
a) Choosing at each point the outward pointing normal unit vec-

tor, what is the Gauss map of this inclusion?
b) What are the eigenvalues and eigenvectors of its derivative?
c) Show that all sectional curvatures are equal to 1

r2 ; conclude

that Sn(r) has constant curvature 1
r2 .

(3) Let M be a Riemannian manifold. A submanifold N ⊂ M is said
to be totally geodesic if the image of any geodesic of M tangent
to N at any point is contained in N . Show that:
(a) N is totally geodesic iff B ≡ 0, where B is the second funda-

mental form of N ;
(b) if N is totally geodesic then the geodesics of N are geodesics

of M ;
(c) if N is the set of fixed points of an isometry then N is totally

geodesic. Use this result to give examples of totally geodesic
submanifolds of Rn, Sn and Hn.

(4) Let N be a hypersurface in Rn+1 and let p be a point in M . Show
that

|K(p)| = lim
D→p

vol(g(D))

vol(D)
.

where D is a neighborhood of p and g : V ⊂ N → Sn is the Gauss
map.

(5) Let M be a smooth Riemannian manifold, p a point in M and Π
a section of TpM . Considering a normal ball around p, Bε(p) :=
expp(Bε(0)), take the set Np := expp(Bε(0) ∩Π). Show that:

a) The set Np is a 2-dimensional submanifold of M formed by
the segments of geodesics in Bε(p) which are tangent to Π at
p;

b) If in Np we use the metric induced by the metric in M , the
sectional curvature KM (Π) is equal to the Gauss curvature of
the 2-manifold Np.

(6) Let M be a Riemannian manifold with Levi-Civita connection ∇̃
and let N be a hypersurface in M . Show that the absolute values of
the principal curvatures are the geodesic curvatures (in M) of the
geodesics of N tangent to the principal directions (the geodesic
curvature of a curve c : I ⊂ R → M , parametrized by arclength,
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is kg(s) = ‖∇̃ċ(s)ċ(s)‖; in the case of an oriented 2-dimensional Rie-
mannian manifold, kg is taken to be positive or negative according

to the orientation of {ċ(s), ∇̃ċ(s)ċ(s)}, cf. Section 2).
(7) (Surfaces of revolution) Consider the map f : R × (0, 2π) → R3

given by

f(s, θ) = (h(s) cos θ, h(s) sin θ, g(s))

with h > 0 and g smooth maps such that

(h′(s))2 + (g′(s))2 = 1.

The image of f is the surface of revolution S with axis Oz, ob-
tained by rotating the curve α(s) = (h(s), g(s)), parametrized by
the arclength s, around that axis.
(a) Show that f is an immersion.
(b) Show that fs := (df)

(
∂
∂s

)
and fθ := (df)( ∂

∂θ ) are orthogonal.
(c) Determine the Gauss map and compute the matrix of the sec-

ond fundamental form of S associated to the frame {Es, Eθ},
where Es := fs and Eθ := 1

‖fθ‖fθ.

(d) Compute the mean curvature H and the Gauss curvature K
of S.

(e) Using this result, give examples of surfaces of revolution with:
(i) K ≡ 0;
(ii) K ≡ 1;
(iii) K ≡ −1;
(iv) H ≡ 0 (not a plane).

(Remark: Surfaces with constant zero mean curvature are called minimal surfaces;

it can be proved that if a compact surface with boundary has minimum area among

all surfaces with the same boundary then it must be a minimal surface).

6. Notes on Chapter 4

6.1. Bibliographical notes. The material in this chapter can be found
in most books on Riemannian geometry (e.g. [Boo03, dC93, GHL04]).
The proof of The Gauss-Bonnet theorem (due to S. Chern) follows [dC93]
closely. See [KN96, Jos02] to see how this theorem fits within the general
theory of characteristic classes of fiber bundles. A more elementary dis-
cussion of isometric immersions of surfaces in R3 (including a proof of the
Gauss-Bonnet Theorem) can be found in [dC76, Mor98].



CHAPTER 5

Geometric Mechanics

In this chapter we show how Riemannian Geometry can be used to give
a geometric formulation of Newtonian Mechanics.

In Section 1 we define what is meant by an abstract mechanical sys-
tem. Section 2 explains how holonomic constraints yield nontrivial ex-
amples of these, as for instance the rigid body, which is studied in detail
in Section 3. Non-holonomic constraints are considered in Section 4.

Section 5 presents the Lagrangian formulation of mechanics, includ-
ing Noether’s Theorem, which relates symmetries to conservation laws.
The dual Hamiltonian formulation is described in Section 6, and used to
formulate the theory of completely integrable systems in Section 7.

1. Mechanical Systems

In Mechanics one studies the motions of particles or systems of particles
subject to known forces.

Example 1.1. The motion of a single particle in n-dimensional space is
described by a curve x : I ⊂ R → Rn. It is generally assumed that the force
acting on the particle depends only on its position and velocity. Newton’s
Second Law requires that the particle’s motion satisfies the second order
ordinary differential equation

mẍ = F (x, ẋ),

where F : Rn × Rn → Rn is the force acting on the particle and m > 0
is the particle’s mass. Therefore the solutions of this equation describe the
possible motions of the particle.

It will prove advantageous to make the following generalization:

Definition 1.2. A mechanical system is a triple (M, 〈·, ·〉,F), where:

(i) M is a differentiable manifold, called the configuration space;
(ii) 〈·, ·〉 is a Riemannian metric on M yielding the mass operator µ :

TM → T ∗M , defined by

µ(v)(w) = 〈v,w〉

for all v,w ∈ TpM and p ∈ M ;
(iii) F : TM → T ∗M is a differentiable map satisfying F(TpM) ⊂ T ∗

p M
for all p ∈ M , called the external force.

151
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A motion of the mechanical system is a solution c : I ⊂ R → M of New-
ton’s equation

µ

(
Dċ

dt

)
= F(ċ).

Remark 1.3. In particular, the geodesics of a Riemannian manifold
(M, 〈·, ·〉) are the motions of the mechanical system (M, 〈·, ·〉, 0) (describing
a free particle on M).

Example 1.4. For the mechanical system comprising a single particle
moving in n-dimensional space, the configuration space is clearly Rn. If we
set

〈〈v,w〉〉 = m 〈v,w〉
for all v,w ∈ Rn, where 〈·, ·〉 is the Euclidean inner product in Rn, then the
Levi-Civita connection of 〈〈·, ·〉〉 will still be the trivial connection, and

Dẋ

dt
= ẍ.

Setting
F(x, v)(w) = 〈F (x, v), w〉

for all v,w ∈ Rn, we see that

µ

(
Dẋ

dt

)
= F(x, ẋ) ⇔ µ

(
Dẋ

dt

)
(v) = F(x, ẋ)(v) for all v ∈ Rn

⇔ m 〈ẍ, v〉 = 〈F (x, ẋ), v〉 for all v ∈ Rn

⇔ mẍ = F (x, ẋ).

Hence the motions of the particle are the motions of the mechanical system
(Rn, 〈〈·, ·〉〉,F).

Definition 1.5. Let (M, 〈·, ·〉,F) be a mechanical system. The external
force F is said to be:

(i) positional if F(v) depends only on π(v), where π : TM → M is the
natural projection;

(ii) conservative if there exists U : M → R such that F(v) = −(dU)π(v)

for all v ∈ TM (the function U is called the potential energy).

Remark 1.6. In particular any conservative force is positional.

Definition 1.7. Let (M, 〈·, ·〉,F) be a mechanical system. The kinetic
energy is the differentiable map K : TM → R given by

K(v) =
1

2
〈v, v〉

for all v ∈ TM .

Example 1.8. For the mechanical system comprising a single particle
moving in n-dimensional space, one has

K(v) =
1

2
m 〈v, v〉.
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Theorem 1.9. (Conservation of Energy) In a conservative mechanical
system (M, 〈·, ·〉,−dU), the mechanical energy E = K + U is constant
along any motion.

Proof.

dE

dt
=

d

dt

(
1

2
〈ċ, ċ〉+ U(c(t))

)
=

〈
Dċ

dt
, ċ

〉
+ dU(ċ)

= µ

(
Dċ

dt

)
(ċ)− F(ċ) = 0.

!

A particularly simple example of a conservative mechanical system is
(M, 〈·, ·〉, 0), whose motions are the geodesics of (M, 〈·, ·〉). In fact, the
motions of any conservative system can be suitably reinterpreted as the
geodesics of a certain metric.

Definition 1.10. Let (M, 〈·, ·〉,−dU) be a conservative mechanical sys-
tem and h ∈ R such that

Mh = {p ∈ M | U(p) < h} '= ∅.

The Jacobi metric on the manifold Mh is given by

〈〈v,w〉〉 = 2 [h− U(p)] 〈v,w〉

for all v,w ∈ TpM and p ∈ M .

Theorem 1.11. (Jacobi) The motions of a conservative mechanical sys-
tem (M, 〈·, ·〉,−dU) with mechanical energy h are, up to reparametrization,
geodesics of the Jacobi metric on Mh.

Proof. We shall need the two following lemmas, whose proofs are left
as exercises:

Lemma 1.12. Let (M, 〈·, ·〉) be a Riemannian manifold with Levi-Civita
connection ∇ and 〈〈·, ·〉〉 = e2ρ〈·, ·〉 a metric conformally related to 〈·, ·〉
(where ρ ∈ C∞(M)). Then the Levi-Civita connection ∇̃ of 〈〈·, ·〉〉 is given
by

∇̃XY = ∇XY + dρ(X)Y + dρ(Y )X − 〈X,Y 〉 grad ρ

for all X,Y ∈ X(M), where grad ρ is defined through 〈grad ρ, Z〉 = dρ(Z)
for all Z ∈ X(M).

Lemma 1.13. A curve c : I ⊂ R → M is a reparametrized geodesic of
the Riemannian manifold (M, 〈·, ·〉) if and only if it satisfies

Dċ

dt
= f(t) ċ

for some differentiable function f : I → R.
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We now prove Jacobi’s Theorem. Let c : I ⊂ R → M be a motion of
(M, 〈·, ·〉,−dU) with mechanical energy h. Then Lemma 1.12 yields

D̃ċ

dt
=

Dċ

dt
+ 2dρ(ċ) ċ− 〈ċ, ċ〉 grad ρ,

where
eD
dt is the covariant derivative along c with respect to the Jacobi metric

and e2ρ = 2(h − U). Newton’s equation yields

Dċ

dt
= − grad U = −2e2ρ grad ρ,

and by conservation of energy

〈ċ, ċ〉 = 2K = 2(h− U) = e2ρ.

Consequently we have

D̃ċ

dt
= 2dρ(ċ) ċ,

which by Lemma 1.13 means that c is a reparametrized geodesic of the
Jacobi metric. !

A very useful expression for writing Newton’s equation in local coordi-
nates is the following:

Proposition 1.14. Let (M, 〈·, ·〉,F) be a mechanical system. If (x1, . . . , xn)
are local coordinates on M and (x1, . . . , xn, v1, . . . , vn) are the local coordi-
nates induced on TM then

µ

(
Dċ

dt
(t)

)
=

n∑

i=1

[
d

dt

(
∂K

∂vi
(x(t), ẋ(t))

)
−

∂K

∂xi
(x(t), ẋ(t))

]
dxi.

In particular, if F = −dU is conservative then the equations of motion are

d

dt

(
∂K

∂vi
(x(t), ẋ(t))

)
−

∂K

∂xi
(x(t), ẋ(t)) = −

∂U

∂xi
(x(t))

(i = 1, . . . , n).

Proof. Recall that the local coordinates (x1, . . . , xn, v1, . . . , vn) on TM
label the vector

n∑

i=1

vi ∂

∂xi

which is tangent to M at the point with coordinates (x1, . . . , xn). Therefore,
we have

K(x1, . . . , xn, v1, . . . , vn) =
1

2

n∑

i,j=1

gij(x
1, . . . , xn)vivj ,

where

gij =

〈
∂

∂xi
,

∂

∂xj

〉



1. MECHANICAL SYSTEMS 155

are the components of the metric in this coordinate system. Consequently,

∂K

∂vi
=

n∑

j=1

gijv
j

and hence
∂K

∂vi
(x(t), ẋ(t)) =

n∑

j=1

gij(x(t))ẋj(t),

leading to

d

dt

(
∂K

∂vi
(x(t), ẋ(t))

)
=

n∑

j=1

gij(x(t))ẍj(t) +
n∑

j,k=1

∂gij

∂xk
(x(t))ẋk(t)ẋj(t).

Moreover,

∂K

∂xi
=

1

2

n∑

j,k=1

∂gjk

∂xi
vjvk,

and hence
∂K

∂xi
(x(t), ẋ(t)) =

1

2

n∑

j,k=1

∂gjk

∂xi
(x(t))ẋj(t)ẋk(t).

We conclude that

d

dt

(
∂K

∂vi
(x(t), ẋ(t))

)
−

∂K

∂xi
(x(t), ẋ(t)) =

n∑

j=1

gij(x(t))ẍj(t) +
n∑

j,k=1

(
∂gij

∂xk
(x(t)) −

1

2

∂gjk

∂xi
(x(t))

)
ẋj(t)ẋk(t).

On the other hand, if v,w ∈ TpM are written as

v =
n∑

i=1

vi ∂

∂xi
, w =

n∑

i=1

wi ∂

∂xi

then we have

µ(v)(w) =
n∑

i,j=1

gijv
iwj =

n∑

i,j=1

gijv
idxj(w),

and hence

µ(v) =
n∑

i,j=1

gijv
idxj =

n∑

i,j=1

gijv
jdxi.

Therefore

µ

(
Dċ

dt
(t)

)
=

n∑

i,j=1

gij(x(t))



ẍj(t) +
n∑

k,l=1

Γj
kl(x(t))ẋk(t)ẋl(t)



 dxi.
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Since
n∑

j=1

gijΓ
j
kl =

1

2

n∑

j,m=1

gij gjm

(
∂gml

∂xk
+

∂gmk

∂xl
−

∂gkl

∂xm

)

=
1

2

(
∂gil

∂xk
+

∂gik

∂xl
−

∂gkl

∂xi

)
,

we have
n∑

j,k,l=1

gij(x(t))Γj
kl(x(t))ẋk(t)ẋl(t)

=
1

2

n∑

k,l=1

(
∂gil

∂xk
(x(t)) +

∂gik

∂xl
(x(t))−

∂gkl

∂xi
(x(t))

)
ẋk(t)ẋl(t)

=
1

2

n∑

j,k=1

(
∂gij

∂xk
(x(t)) +

∂gik

∂xj
(x(t)) −

∂gjk

∂xi
(x(t))

)
ẋj(t)ẋk(t)

=
n∑

j,k=1

(
∂gij

∂xk
(x(t)) −

1

2

∂gjk

∂xi
(x(t))

)
ẋj(t)ẋk(t),

which completes the proof. !

Example 1.15.

(1) (Particle in a central field) Consider a particle of mass m > 0
moving in R2 under the influence of a conservative force whose
potential energy U depends only on the distance r =

√
x2 + y2

to the origin, U = u(r). The equations of motion are most easily
solved when written in polar coordinates (r, θ), defined by

{
x = r cos θ

y = r sin θ

Since

dx = cos θdr − r sin θdθ;

dy = sin θdr + r cos θdθ,

it is easily seen that the Euclidean metric is written in these coor-
dinates as

〈·, ·〉 = dx⊗ dx + dy ⊗ dy = dr ⊗ dr + r2dθ ⊗ dθ,

and hence

K
(
r, θ, vr, vθ

)
=

1

2
m

[
(vr)2 + r2

(
vθ
)2
]

Therefore we have
∂K

∂vr
= mvr,

∂K

∂vθ
= mr2vθ,

∂K

∂r
= mr

(
vθ
)2

,
∂K

∂θ
= 0,
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and consequently Newton’s equations are written

d

dt
(mṙ)−mrθ̇2 = −u′(r);

d

dt

(
mr2θ̇

)
= 0.

Notice that the angular momentum

pθ = mr2θ̇

is constant along the motion. This conservation law can be traced
to the fact that neither K nor U depend on θ.

(2) (Christoffel symbols for the 2-sphere) The metric for the 2-sphere
S2 ⊂ R3 is written as

〈·, ·〉 = dθ ⊗ dθ + sin2 θ dϕ⊗ dϕ

in the usual local coordinates (θ,ϕ) defined by the parametrization

φ(θ,ϕ) = (sin θ cos ϕ, sin θ sinϕ, cos θ)

(cf. Exercise 3.3.4 in Chapter 3). A quick way to obtain the Christof-
fel symbols in this coordinate system is to write out Newton’s equa-
tions for a free particle (of mass m = 1, say) on S2. We have

K
(
θ,ϕ, vθ, vϕ

)
=

1

2

[(
vθ
)2

+ sin2 θ (vϕ)2
]

and hence

∂K

∂vθ
= vθ,

∂K

∂vϕ
= sin2 θ vϕ,

∂K

∂θ
= sin θ cos θ (vϕ)2 ,

∂K

∂ϕ
= 0.

Consequently Newton’s equation are written

d

dt

(
θ̇
)
− sin θ cos θ ϕ̇2 = 0⇔ θ̈ − sin θ cos θ ϕ̇2 = 0

d

dt

(
sin2 ϕ̇

)
= 0⇔ ϕ̈ + 2cot θ θ̇ ϕ̇ = 0

Since these must be the equations for a geodesic on S2, by compar-
ing with the geodesic equations

ẍi +
n∑

j,k=1

ẋj ẋk = 0 (i = 1, . . . , n)

one immediately reads off the nonvanishing Christoffel symbols:

Γθϕϕ = − sin θ cos θ, Γθθϕ = Γθϕθ = cot θ.

Exercises 1.16.

(1) Generalize Examples 1.1, 1.4 and 1.8 to a system of N particles
moving in Rn.
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(2) Let (M, 〈·, ·〉,F) be a mechanical system. Show that Newton’s
equation defines a flow on TM , generated by the vector field X ∈
X(TM) whose local expression is

X = vi ∂

∂xi
+




n∑

j=1

gijFj(x, v)−
n∑

j,k=1

Γi
jk(x)vjvk



 ∂

∂vi
,

where (x1, . . . , xn) are local coordinates on M , (x1, . . . , xn, v1, . . . , vn)
are the local coordinates induced on TM , and

F =
n∑

i=1

Fi(x, v)dxi

on these coordinates. What are the fixed points of the flow?
(3) (Harmonic oscillator) The harmonic oscillator (in appropriate

units) is the conservative mechanical system (R, dx⊗ dx,−dU),
where U : R → R is given by

U(x) =
1

2
ω2x2.

(a) Write the equation of motion and its general solution.
(b) Friction can be included in this model by consedering the ex-

ternal force

F
(

u
d

dx

)
= −dU − ku dx

(where k > 0 is a constant). Write the equation of motion of
this new mechanical system and its general solution.

(c) Generalize the results above to the n-dimensional harmonic
oscillator, whose potential energy U : Rn → R is given by

U(x1, . . . , xn) =
1

2
ω2

((
x1
)2

+ . . . +
(
x1
)2)

.

(4) Consider the conservative mechanical system (R, dx ⊗ dx,−dU).
Show that:
(a) The flow determined by Newton’s equation on TR ∼= R2 is

generated by the vector field

X = v
∂

∂x
− U ′(x)

∂

∂v
∈ X(R2).

(b) The fixed points of the flow are the points of the form (x0, 0),
where x0 is a critical point of U .

(c) If x0 is a maximum of U with U ′′(x0) < 0 then (x0, 0) is an
unstable fixed point.

(d) If x0 is a minimum of U with U ′′(x0) > 0 then (x0, 0) is a stable
fixed point, with arbitrarily small neighborhoods formed by
periodic orbits.
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(e) The periods of these orbits converge to 2πU ′′(x0)
− 1

2 as they
approach (x0, 0).

(f) Locally, any conservative mechanical system (M, 〈·, ·〉,−dU)
with dimM = 1 is of the form above.

(5) Prove Lemma 1.12. (Hint: Use the Koszul formula).
(6) Prove Lemma 1.13.
(7) If (M, 〈·, ·〉) is a compact Riemannian manifold, it is known that

there exists a nontrivial periodic geodesic. Use this fact to show
that if M is compact then any conservative mechanical system
(M, 〈·, ·〉,−dU) admits a nontrivial periodic motion.

(8) Recall that the hyperbolic plane is the upper half plane

H =
{
(x, y) ∈ R2 | y > 0

}

with the Riemannian metric

〈·, ·〉 =
1

y2
(dx⊗ dx + dy ⊗ dy)

(cf. Exercise 3.3.5 in Chapter 3). Use Proposition 1.14 to compute
the Christoffel symbols for the Levi-Civita connection of (H, 〈·, ·〉)
in the coordinates (x, y).

(9) (Kepler problem) The Kepler problem (in appropriate units) con-
sists in determining the motion of a particle of mass m = 1 in the
central potential

U(r) = −
1

r
.

(a) Show that the equations of motion can be integrated to

r2θ̇ = pθ;

ṙ2

2
+

pθ2

2r2
−

1

r
= E,

where E and pθ are integration constants.
(b) Use these equations to show that u = 1

r satisfies the linear
ODE

d2u

dθ2
+ u =

1

pθ2
.

(c) Assuming that the pericenter (i.e. the point in the particle’s
orbit closer to the center of attraction r = 0) occurs at θ = 0,
show that the equation of the particle’s trajectory is

r =
pθ2

1 + ε cos θ
,

where
ε =

√
1 + 2pθ2E.

(Remark: This is the equation of a conic section with eccentricity ε in polar

coordinates).
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(d) Characterize all geodesics of R2 \{(0, 0)} with the Riemannian
metric

〈·, ·〉 =
1√

x2 + y2
(dx⊗ dx + dy ⊗ dy) .

Show that this manifold is isometric to the surface of a cone
with aperture π

3 .

2. Holonomic Constraints

Many mechanical systems involve particles or systems of particles whose
positions are constrained (for example, a simple pendulum, a particle moving
on a given surface, or a rigid system of particles connected by massless rods).
To account for these we introduce the following definition:

Definition 2.1. A holonomic constraint on a mechanical system
(M, 〈·, ·〉,F) is a submanifold N ⊂ M such that dimN < dim M . A curve
c : I ⊂ R →M is said to be compatible with N if c(t) ∈ N for all t ∈ I.

Example 2.2.

(1) A particle of mass m > 0 moving in R2 subject to a constant
gravitational acceleration g is modelled by the mechanical system
(R2, 〈〈·, ·〉〉,−mg dy), where

〈〈v,w〉〉 = m 〈v,w〉

(〈·, ·〉 being the Euclidean inner product on R2). A simple pendu-
lum is obtained by connecting the particle to a fixed pivoting point
by an ideal massless rod of length l > 0. Assuming the pivoting
point to be the origin, this corresponds to the holonomic constraint

N = {(x, y) ∈ R2 | x2 + y2 = l2}

(diffeomorphic to S1).
(2) Similarly, a particle of mass m > 0 moving in R3 subject to a

constant gravitational acceleration g is modelled by the mechanical
system (R3, 〈〈·, ·〉〉,−mg dz), where

〈〈v,w〉〉 = m 〈v,w〉

(〈·, ·〉 being the Euclidean inner product on R3). Requiring the
particle to move on a surface of equation z = f(x, y) yields the
holonomic constraint

N = {(x, y, z) ∈ R3 | z = f(x, y)}.

(3) A system of k particles of masses m1, . . . ,mk moving freely in R3

is modelled by the mechanical system (R3k, 〈〈·, ·〉〉, 0), where

〈〈(v1, . . . , vk), (w1, . . . , wk)〉〉 =
k∑

i=1

mi 〈vi, wi〉
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(〈·, ·〉 being the Euclidean inner product on R3). A rigid body
is obtained by connecting all particles by ideal massless rods, and
correspond to the holonomic constraint

N =
{
(x1, . . . , xk) ∈ R3k | ‖xi − xj‖ = dij for 1 ≤ i < j ≤ k

}
.

If at least three particles are not collinear, N is easily seen to be
diffeomorphic to R3 ×O(3).

Keeping the particles on the holonomic constraint requires an additional
external force (provided by the rods or by the surface in the examples above).

Definition 2.3. A reaction force in a mechanical system with holo-
nomic constraint (M, 〈·, ·〉,F ,N) is a map R : TN → T ∗M with R(TpN) ⊂
T ∗

p M for all p ∈ N such that the generalized Newton equation

µ

(
Dċ

dt

)
= (F + R)(ċ)

has solutions for any initial condition in TN .

Remark 2.4. Since the reaction force is defined only on vectors tan-
gent to the holonomic constraint N , any solution of the generalized Newton
equation is necessarily compatible with N .

For any holonomic constraint there exist in general infinite possible
choices of reaction forces. The following definition yields a particularly use-
ful criterion for selecting reaction forces.

Definition 2.5. A reaction force in a mechanical system with holonomic
constraint (M, 〈·, ·〉,F ,N) is said to be perfect, or to satisfy D’Alembert’s
principle, if

µ−1R(v) ∈ (TpN)⊥

for all v ∈ TpN and p ∈ N .

Remark 2.6. The variation of the kinetic energy of a solution of the
generalized Newton equation is

dK

dt
=

〈
Dċ

dt
, ċ

〉
= F(ċ) + R(ċ) = F(ċ) +

〈
µ−1R, ċ

〉
.

Therefore, a reaction force is perfect if and only if it does not creates nor
dissipates energy along any motion compatible with the constraint.

Example 2.7. In each of the examples above, requiring the reaction
force to be perfect amounts to requiring that:

(1) Simple pendulum: The force transmitted by the rod is purely
radial (i.e. there is no damping);

(2) Particle on a surface: The force exerted by the surface is or-
thogonal to it (i.e. the surface is frictionless);

(3) Rigid body: The cohesive forces do not dissipate energy.
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The next result establishes the existence and unicity of perfect reaction
forces.

Theorem 2.8. Given any mechanical system with holonomic constraint
(M, 〈·, ·〉,F ,N), there exists a unique reaction force R : TN → T ∗M satis-
fying D’Alembert’s principle. The solutions of the generalized Newton Law

µ

(
Dċ

dt

)
= (F + R)(ċ)

are exactly the motions of the mechanical system (N, 〈〈·, ·〉〉,FN ), where
〈〈·, ·〉〉 is the metric induced on N by 〈·, ·〉 and FN is the constraint of F
to N . In particular, if F = −dU is conservative then FN = −d (U |N ).

Proof. Recall from Chapter 4, Section 5 that if ∇̃ is the Levi-Civita
connection of (M, 〈·, ·〉) and ∇ is the Levi-Civita connection of (N, 〈〈·, ·〉〉)

∇XY =
(
∇̃ eX Ỹ

)*

for all X,Y ∈ X(N), where X̃, Ỹ are any extensions of X,Y to X(M) (as
usual v = v* + v⊥ designates the unique decomposition arising from the
splitting TpM = TpN ⊕ (TpN)⊥ for each p ∈ N). Moreover, the second
fundamental form of N ,

B(X,Y ) = ∇̃ eX Ỹ −∇XY =
(
∇̃ eX Ỹ

)⊥
,

is well defined, and B(X,Y )p ∈ (TpN)⊥ is a symmetric bilinear function of
Xp, Yp for all p ∈ N .

Assume that a perfect reaction force R exists; then the solutions of the
generalized Newton equation satisfy

∇̃ċ ċ = µ−1F + µ−1R.

Since by hypothesis µ−1R is orthogonal to N , the component of this equation
tangent to N yields

∇ċ ċ = µ−1FN ,

as for any v ∈ TN one has

〈〈(µ−1F)*, v〉〉 = 〈µ−1F , v〉 = F(v) = FN (v) = 〈〈µ−1FN , v〉〉.
Hence c is a motion of (N, 〈〈·, ·〉〉,FN ). The component of the generalized
Newton equation orthogonal to N yields

B(ċ, ċ) = (µ−1F)⊥ + µ−1R.

Therefore, if R exists then it must satisfy

(23) R(v) = µ(B(v, v)) − µ
[(

µ−1F(v)
)⊥]

for all v ∈ TN . This proves uniqueness.
To prove existence, define R through (23), which certainly guarantees

that µ−1R(v) ∈ (TpN)⊥ for all v ∈ TpN and p ∈ N . Given v ∈ TN , let
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c : I ⊂ R → N be the motion of the mechanical system (N, 〈〈·, ·〉〉,FN ) with
initial condition v. Then

∇̃ċ ċ = ∇ċ ċ + B(ċ, ċ) = µ−1FN + (µ−1F)⊥ + µ−1R

= (µ−1F)* + (µ−1F)⊥ + µ−1R = µ−1F + µ−1R.

!

Example 2.9. To write the equation of motion of a simple pendulum
with a perfect reaction force, we parametrize the holonomic constraint N
using the map ϕ : (−π,π) → R2 defined by

ϕ(θ) = (l sin θ,−l cos θ)

(so that θ = 0 labels the stable equilibrium position). We have

d

dθ
=

dx

dθ

∂

∂x
+

dy

dθ

∂

∂y
= l cos θ

∂

∂x
+ l sin θ

∂

∂y
,

and hence the kinetic energy of the pendulum is

K

(
v

d

dθ

)
=

1

2
m

〈
vl cos θ

∂

∂x
+ vl sin θ

∂

∂y
, vl cos θ

∂

∂x
+ vl sin θ

∂

∂y

〉

=
1

2
ml2v2.

On the other hand, the potential energy is written

U(x, y) = −mgy,

and hence its constraint to N has the local expression

U(θ) = −mgl cos θ.

Consequently the equation of motion is

d

dt

(
∂K

∂v

(
θ, θ̇

))
−

∂K

∂θ

(
θ, θ̇

)
= −

∂U

∂θ
(θ)

⇔
d

dt

(
ml2θ̇

)
= −mgl sin θ

⇔ θ̈ = −
g

l
sin θ.

Exercises 2.10.

(1) Use spherical coordinates to write the equations of motion for the
spherical pendulum of length l, i.e. a particle of mass m > 0
moving in R3 subject to a constant gravitational acceleration g
and the the holonomic constraint

N = {(x, y, z) ∈ R3 | x2 + y2 + z2 = l2}.
Which parallels of N are possible trajectories of the particle?

(2) Write the equations of motion for a particle moving on a frictionless
surface of revolution with equation z = f(r) (where r =

√
x2 + y2)

under a constant gravitational acceleration g.
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(3) Write and solve the equations of motion for a free dumbell, i.e. a
system of two particles of masses m1 and m2 connected by a mass-
less rod of length l, moving in:
(a) R2;
(b) R3.
(Hint: Use the coordinates of the center of mass, i.e. the point along the rod at a

distance m2

m1+m2
l from m1).

(4) The double pendulum of lengths l1, l2 is the mechanical system
defined by two particles moving in R2 subject to a constant gravi-
tational acceleration g and the the holonomic constraint

N = {(x1, x2) ∈ R4 | ‖x1‖ = l1 and ‖x1 − x2‖ = l2}.

(diffeomorphic to the 2-torus T 2).
(a) Write the equations of motion for the double pendulum using

the parametrization φ : (−π,π)× (−π,π) → N given by

φ(θ,ϕ) = (l1 sin θ,−l1 cos θ, l1 sin θ + l2 sinϕ,−l1 cos θ − l2 cos ϕ).

(b) Linearize the equations of motion around θ = ϕ = 0. Look for
solutions of the linearized equations satisfying θ = kϕ, with
k ∈ R constant (normal modes). What are the periods of
the ensuing oscillations?

3. Rigid Body

Recall that a rigid body is a system of k particles of masses m1, . . . ,mk

connected by massless rods in such a way that their mutual distances remain
constant. If in addition we assume that a given particle is fixed (at the origin,
say) then we obtain the holonomic constraint

N =
{

(x1, . . . , xk) ∈ R3k | x1 = 0 and ‖xi − xj‖ = dij for 1 ≤ i < j ≤ k
}

.

If at least three particles are not collinear, this manifold is diffeomorphic to
O(3). In fact, if (ξ1, . . . , ξk) is a point in N then any other point in N is of
the form (Sξ1, . . . , Sξk) for a unique S ∈ O(3). A motion in N can therefore
be specified by a curve S : I ⊂ R → O(3). The trajectory in R3 of the
particle with mass mi will be given by the curve Sξi : I ⊂ R → R3, whose
velocity is Ṡξi (where we use O(3) ⊂ M3×3(R) ∼= R9 to identify TSO(3)
with an appropriate subspace of M3×3(R)). Therefore the kinetic energy of
the system along the motion will be

K =
1

2

n∑

i=1

mi〈Ṡξi, Ṡξi〉,

where 〈·, ·〉 is the Euclidean inner product on R3.
Now O(3), and hence N , has two diffeomorphic connected components.

Since any motion must necessarily occurs in one connected component, we
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can take our configuration space to be simply SO(3). To account for con-
tinuum rigid bodies, we make the following generalization:

Definition 3.1. A rigid body with a fixed point is any mechanical
system of the form (SO(3), 〈〈·, ·〉〉,F), with

〈〈V,W 〉〉 =

∫

R3
〈V ξ,W ξ〉 dm

for all V,W ∈ TSSO(3) and all S ∈ SO(3), where 〈·, ·〉 is the usual Euclidean
inner product on R3 and m (called the mass distribution of the reference
configuration) is a positive finite measure on R3 not supported on any
straight line through the origin and satisfying

∫
R3 ‖ξ‖2dm < +∞.

Example 3.2.

(1) The rigid body composed by k particles of masses m1, . . . ,mk cor-
responds to the measure

m =
k∑

i=1

miδξi
,

where δξi
is the Dirac delta centered at the point ξi ∈ R3.

(2) A continuum rigid body with (say) compactly supported integrable
density function ρ : R3 → [0,+∞) is described by the measure m
defined on the Lebesgue sigma-algebra by

m(A) =

∫

A

ρ(ξ)d3ξ.

Remark 3.3. The rotational motion of a general rigid body can in many
cases be reduced to the motion of a rigid body with a fixed point (cf. Exer-
cise 3.20.2). Unless otherwise stated, from this point onwards we will take
“rigid body” to mean “rigid body with a fixed point”.

Proposition 3.4. The metric 〈〈·, ·〉〉 defined on SO(3) by a rigid body
is left-invariant.

Proof. Since left multiplication by a fixed matrix R ∈ SO(3) is a linear
map LR : M3×3(R) →M3×3(R), we have (dLR)S V = RV ∈ TRSSO(3) for
any V ∈ TSSO(3). Consequently,

〈〈(dLR)S V, (dLR)S W 〉〉 = 〈〈RV,RW 〉〉 =

∫

R3
〈RV ξ, RW ξ〉 dm

=

∫

R3
〈V ξ,W ξ〉 dm = 〈〈V,W 〉〉

(as R ∈ SO(3) preserves the Euclidean inner product). !

Therefore there exist at most as many rigid bodies as inner products on
so(3) ∼= R3, i.e., as real symmetric positive definite 3× 3 matrices. In fact,
we shall see that any rigid body can be specified by 3 positive numbers.
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Proposition 3.5. The metric 〈〈·, ·〉〉 defined on SO(3) by a rigid body
is given by

〈〈V,W 〉〉 = tr
(
V JW t

)
,

where

Jij =

∫

R3
ξiξjdm.

Proof. We just have to notice that

〈〈V,W 〉〉 =

∫

R3

3∑

i=1




3∑

j=1

Vijξ
j




(

3∑

k=1

Wikξ
k

)

dm

=
3∑

i,j,k=1

VijWik

∫

R3
ξjξk dm =

3∑

i,j,k=1

VijJjkWik.

!

Proposition 3.6. If S : I ⊂ R → SO(3) is a curve and ∇ is the
Levi-Civita connection on (SO(3), 〈〈·, ·〉〉) then

〈〈∇Ṡ Ṡ, V 〉〉 =

∫

R3
〈S̈ξ, V ξ〉dm

for any V ∈ TSSO(3).

Proof. We consider first the case in which the rigid body is non pla-
nar, i.e. m is not supported in any plane through the origin. In this case,
the metric 〈〈·, ·〉〉 can be extended to a flat metric on M3×3(R) ∼= R9 by the
same formula

〈〈〈V,W 〉〉〉 =

∫

R3
〈V ξ,W ξ〉 dm

for all V,W ∈ TSM3×3(R) and all S ∈ M3×3(R). Indeed, this formula
clearly defines a symmetric 2-tensor on M3×3(R). To check positive def-
initeness, we notice that if V ∈ TSM3×3(R) in nonzero then its kernel is
contained on a plane through the origin. Therefore, the continuous function
〈V ξ, V ξ〉 is positive on a set of positive measure, and hence

〈〈〈V, V 〉〉〉 =

∫

R3
〈V ξ, V ξ〉 dm > 0.

This metric is easily seen to be flat, as the components of the metric on the
natural coordinates of M3×3(R) are the constant coefficients Jij . Therefore
all Christoffel symbols vanish on these coordinates, and the corresponding
Levi-Civita connection ∇̃ is the trivial connection. If S : I ⊂ R →M3×3(R)
is a curve then

∇̃ṠṠ = S̈.

Since 〈〈·, ·〉〉 is the metric induced on SO(3) by 〈〈〈·, ·〉〉〉, we see that for any
curve S : I ⊂ R → SO(3) one has

∇ṠṠ =
(
∇̃ṠṠ

)*
= S̈*,
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and hence

〈〈∇ṠṠ, V 〉〉 = 〈〈S̈*, V 〉〉 = 〈〈〈S̈*, V 〉〉〉 =

∫

R3
〈S̈ξ, V ξ〉dm

for any V ∈ TSSO(3).
For planar rigid bodies the formula can by obtained by a limiting pro-

cedure (cf. Exercise 3.20.3). !

We can use this result to determine the geodesics of (SO(3), 〈〈·, ·〉〉). A
remarkable shortcut (whose precise nature will be discussed in Section 5)
can be obtained by introducing the following quantity:

Definition 3.7. The angular moment of a rigid body whose motion
is described by S : I ⊂ R→ SO(3) is the vector

p(t) =

∫

R3

[
(S(t)ξ)× (Ṡ(t)ξ)

]
dm

(where × is the usual cross product on R3).

Theorem 3.8. If S : I ⊂ R → SO(3) is a geodesic of (SO(3), 〈〈·, ·〉〉)
then p(t) is constant.

Proof. We have

ṗ =

∫

R3

[
(Ṡξ)× (Ṡξ) + (Sξ)× (S̈ξ)

]
dm =

∫

R3

[
(Sξ)× (S̈ξ)

]
dm.

Take any v ∈ R3. Then

〈Sv, ṗ〉 =

∫

R3

〈
Sv, (Sξ) × (S̈ξ)

〉
dm =

∫

R3

〈
S̈ξ, (Sv)× (Sξ)

〉
dm

=

∫

R3

〈
S̈ξ, S(v × ξ)

〉
dm,

where we have used the invariance of 〈·, · × ·〉 ≡ det(·, ·, ·) under even per-
mutations its arguments.

To complete the proof we will need the following lemma, whose proof is
left as an exercise:

Lemma 3.9. There exists a linear isomorphism Ω : so(3) → R3 such that

Aξ = Ω(A)× ξ

for all ξ ∈ R3 and A ∈ so(3).

Let V ∈ so(3) be such that Ω(V ) = v. Then SV ∈ TSSO(3) and

〈Sv, ṗ〉 =

∫

R3

〈
S̈ξ, SV ξ

〉
dm = 〈〈∇ṠṠ, SV 〉〉 = 0

(as S : I ⊂ R → SO(3) is a geodesic). Since v ∈ R3 is arbitrary, we see that
ṗ = 0 along the motion. !
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If S : I ⊂ R → SO(3) is a curve then Ṡ = SA for some A ∈ so(3). Let
us define Ω := Ω(A). Since multiplication by S ∈ SO(3) preserves the cross
product, we have

p =

∫

R3
[(Sξ)× (SAξ)] dm =

∫

R3
S [ξ × (Aξ)] dm

= S

∫

R3
[ξ × (Ω× ξ)] dm.

This suggests the following definition.

Definition 3.10. The linear operator I : R3 → R3 defined as

I(v) =

∫

R3
[ξ × (v × ξ)]dm

is called the rigid body’s moment of inertia tensor.

Proposition 3.11. The moment of inertia tensor of any given rigid
body is a symmetric positive definite linear operator, and the corresponding
kinetic energy map K : TSO(3) → R is given by

K(V ) =
1

2
〈〈V, V 〉〉 =

1

2
〈〈SA,SA〉〉 =

1

2
〈IΩ,Ω〉,

for all V ∈ TSSO(3) and all S ∈ SO(3), where V = SA and Ω = Ω(A).

Proof. We start by checking that I is symmetric:

〈Iv,w〉 = 〈
∫

R3
[ξ × (v × ξ)] dm,w〉 =

∫

R3
〈ξ × (v × ξ), w〉 dm

=

∫

R3
〈v × ξ, w × ξ〉 dm = 〈v, Iw〉.

In particular we have

〈IΩ,Ω〉 =

∫

R3
〈Ω× ξ,Ω× ξ〉 dm =

∫

R3
〈Aξ, Aξ〉 dm

=

∫

R3
〈SAξ, SAξ〉 dm = 2K(V ).

The positive definiteness of I is an immediate consequence of this formula.
!

Corollary 3.12. Given any rigid body there exist positive numbers
I1, I2, I3 (principal moments of inertia) and an ortonormal basis of R3

{e1, e2, e3} (principal axes) such that Iei = Iiei (i = 1, 2, 3).

The principal moments of inertia are the three positive numbers which
completely specify the rigid body (as they determine the inertia tensor,
which in turn yields the kinetic energy). To compute these numbers we must
compute the eigenvalues of a matrix representation of the inertia tensor.
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Proposition 3.13. The matrix representation of the inertia tensor in
the canonical basis of R3 is





∫
R3(y2 + z2) dm −

∫
R3 xy dm −

∫
R3 xz dm

−
∫

R3 xy dm
∫

R3(x2 + z2) dm −
∫

R3 yz dm

−
∫

R3 xz dm −
∫

R3 yz dm
∫

R3(x2 + y2) dm





Proof. Let {u1, u2, u3} be the canonical basis of R3. Then

Iij = 〈Iui, uj〉 =

∫

R3
〈ξ × (ui × ξ), uj〉 dm.

Using the vector identity

u× (v × w) = 〈u,w〉v − 〈u, v〉w

for all u, v,w ∈ R3, we have

Iij =

∫

R3

〈
‖ξ‖2ui − 〈ξ, ui〉ξ, uj

〉
dm =

∫

R3

(
‖ξ‖2δij − ξiξj

)
dm.

!

Proposition 3.14. The equations of motion of a rigid body in the ab-
sence of external forces are given by the Euler equations

IΩ̇ = (IΩ)× Ω.

Proof. We just have to notice that

p = SIΩ.

Therefore

0 = ṗ = ṠIΩ + SIΩ̇ = SAIΩ + SIΩ̇ = S
(
Ω× (IΩ) + IΩ̇

)
.

!

Remark 3.15. Any point ξ ∈ R3 in the rigid body traverses a curve
x(t) = S(t)ξ with velocity

ẋ = Ṡξ = SAξ = S(Ω × ξ) = (SΩ)× (Sξ).

Therefore ω = SΩ is the rigid body’s instantaneous angular velocity: at each
instant, the rigid body rotates about the axis determined by ω with angular
speed ‖ω‖. Consequently, Ω is the angular speed as seen in the (accelerated)
rigid body’s rest frame.

In the basis {e1, e2, e3} of the principal axes, the Euler equations are
written 





I1Ω̇1 = (I2 − I3)Ω2Ω3

I2Ω̇2 = (I3 − I1)Ω3Ω1

I3Ω̇3 = (I1 − I2)Ω1Ω2
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Since I is positive definite (hence invertible), we can change variables to
P = IΩ. Notice that p = SP , i.e. P is the (constant) angular momentum
vector as seen in rigid body’s rest frame. In these new variables, the Euler
equations are written

Ṗ = P ×
(
I−1P

)
.

In the basis {e1, e2, e3} of the principal axes, these are





Ṗ 1 =

(
1

I3
−

1

I2

)
P 2P 3

Ṗ 2 =

(
1

I1
−

1

I3

)
P 3P 1

Ṗ 3 =

(
1

I2
−

1

I1

)
P 1P 2

Proposition 3.16. If I1 > I2 > I3, the stationary points of the Euler
equations are given by

P = λei (i = 1, 2, 3),

and are stable for i = 1, 3 and unstable for i = 2.

Proof. Since there are no external forces, the kinetic energy is con-
served:

2K = 〈IΩ,Ω〉 =
〈
P, I−1P

〉
=

(
P 1

)2

I1
+

(
P 2

)2

I2
+

(
P 3

)2

I3
.

This means that the flow defined by the Euler equations is along ellipsoids

with semiaxes
√

I1
2K >

√
I2
2K >

√
I3
2K . On the other hand, since p is constant

along the motion, we have a second conserved quantity:

‖p‖2 = ‖P‖2 =
(
P 1

)2
+
(
P 2

)2
+
(
P 3

)2
.

Therefore the flow is along spheres. The integral curves on a particular
sphere can be found by intersecting it with the ellipsoids correspondig to
different values of K, as shown in Figure 2. !

Remark 3.17. Since Ω = I−1P , Proposition 3.16 is still true if we
replace P with Ω. The equilibrium points represent rotations about the
principal axes with constant angular speed, as they satisfy Ω = IiP , and
hence ω = Iip is constant. If the rigid body is placed in a rotation state close
to a rotation about the axes e1 or e3, P will remain close to these axes, and
hence Se1 or Se3 will remain close to the fixed vector p. On the other hand,
if the rigid body is placed in a rotation state close to a rotation about the
axis e2, then P will drift away from e2 (approaching −e2 before returning
to e2), and hence Se2 will drift away from the fixed vector p (approaching
−p before returning to p). This can be illustrated by throwing a rigid body
(say a brick) in the air, as its rotational motion about the center of mass is
that of a rigid body with a fixed point (cf. Exercise 3.20.2). When rotating
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e1

e2

e3

Figure 1. Integral curves of the Euler equations.

about the smaller or the larger axis (cf. Exercise 3.20.6) it performs a stable
rotation, but when rotating about the middle axis it flips in midair.

If the rigid body is not free, one must use parametrizations of SO(3).

Definition 3.18. The Euler angles correspond to the local coordinates
(θ,ϕ,ψ) : SO(3) → (0,π) × (0, 2π) × (0, 2π) defined by

S(θ,ϕ,ψ) =




cos ϕ − sinϕ 0
sinϕ cos ϕ 0

0 0 1








1 0 0
0 cos θ − sin θ
0 sin θ cos θ








cos ψ − sinψ 0
sinψ cos ψ 0

0 0 1





The geometric interpretation of the Euler angles is sketched in Figure 2:
if the rotation carries the canonical basis {ex, ey, ez} to a new orthonormal
basis {e1, e2, e3}, then θ is the angle between e3 and ez , ϕ is the angle
between the line of intersection of the planes spanned by {e1, e2} and {ex, ey}
(called the nodal line) and the x-axis, and ψ is the angle between e1 and
the nodal line.

The general expression of the kinetic energy in the local coordinates of
TSO(3) associated to the Euler angles is quite complicated; here we present
it only in the simpler case I1 = I2.
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e1

e2

e3

ex

ey

ezθ

ϕ ψ

nodal line horizontal plane

Figure 2. Euler angles.

Proposition 3.19. If I1 = I2 then the kinetic energy of a rigid body in
the local coordinates (θ,ϕ,ψ, vθ , vϕ, vψ) of TSO(3) is given by

K =
I1

2

((
vθ
)2

+ (vϕ)2 sin2 θ

)
+

I3

2

(
vψ + vϕ cos θ

)2
.

A famous model which can be studied using this expression is the so-
called Lagrange top, corresponding to a symmetric rigid body in a con-
stant gravity field g. The potential energy for the corresponding mechanical
system is

U = g

∫

R3
〈Sξ, ez〉 dm = Mg〈Sξ, ez〉,

where M = m(R3) is the total mass and

ξ =
1

M

∫

R3
ξ dm

is the position of the center of mass in the rigid body’s frame. If the center
of mass satisfies ξ = le3 then

U = Mgl cos θ.

Exercises 3.20.

(1) Show that the bilinear form 〈〈·, ·〉〉 defined on SO(3) by a rigid body
is indeed a Riemannian metric.
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(2) A general rigid body (i.e. with no fixed points) is any mechanical
system of the form (R3 × SO(3), 〈〈〈·, ·〉〉〉,F), with

〈〈〈(v, V ), (w,W )〉〉〉 =

∫

R3
〈v + V ξ, w + W ξ〉 dm

for all (v, V ), (w,W ) ∈ T(x,S)R
3 × SO(3) and (x, S) ∈ R3 × SO(3),

where 〈·, ·〉 is the usual Euclidean inner product on R3 and m is
a positive finite measure on R3 not supported on any straight line
and satisfying

∫
R3 ‖ξ‖2dm < +∞.

(a) Show that one can always translate m in such a way that
∫

R3
ξ dm = 0

(i.e. the center of mass of the reference configuration is placed
at the origin).

(b) Show that for this choice the kinetic energy of the rigid body
is

K(v, V ) =
1

2
M〈v, v〉 +

1

2
〈〈V, V 〉〉,

where M = m(R3) is the total mass of the rigid body and
〈〈·, ·〉〉 is the metric for the rigid body with a fixed point de-
termined by m.

(c) Assume that there exists a differentiable function F : R3 → R3

such that

F(x, S, v, V )(w,W ) =

∫

R3
〈F (x + Sξ), w + W ξ〉 dm.

Show that if∫

R3
(Sξ)× F (x + Sξ) dm = 0

for all (x, S) ∈ R3 × SO(3) then the projection of any motion
on SO(3) is a geodesic of (SO(3), 〈〈·, ·〉〉).

(d) Describe the motion of a rigid body falling in a constant grav-
itational field, for which F = (0, 0,−g) is constant.

(3) Prove Proposition 3.6 for a planar rigid body. (Hint: Include the planar

rigid body in a smooth one-parameter family of non planar rigid bodies).
(4) Prove Lemma 3.9.
(5) Show that I1 ≤ I2 + I3 (and cyclic permutations). When is I1 =

I2 + I3?
(6) Determine the principal axes and the corresponding principal mo-

ments of inertia of:
(a) a homogeneous rectangular parallelepiped with mass M , sides

2a, 2b, 2c ∈ R+ and centered at the origin;
(b) a homogeneous (solid) ellipsoid with mass M , semiaxes a, b, c ∈

R+ and centered at the origin. (Hint: Use the coordinate change

(x, y, z) = (au, bv, cw)).
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(7) A symmetry of a rigid body is an isometry S ∈ O(3) which pre-
serves the mass distribution (i.e. m(SA) = m(A) for any measur-
able set A ⊂ R3). Show that:
(a) SISt = I, where I is the matrix representation of the inertia

tensor;
(b) if S is a reflection in a plane then there exists a principal axis

orthogonal to the reflection plane;
(c) if S is a nontrivial rotation about an axis then that axis is

principal;
(d) if moreover the rotation is not by π then all axes orthogonal

to the rotation axis are principal.
(8) Consider a rigid body satisfying I1 = I2. Use the Euler equations

to show that:
(a) the angular velocity satisfies

ω̇ =
1

I1
p× ω;

(b) if I1 = I2 = I3 then the rigid body rotates about a fixed axis
with constant angular speed (i.e. ω is constant);

(c) if I1 = I2 '= I3 then ω precesses (i.e. rotates) about p with
angular velocity

ωpr =
p

I1
.

(9) Many asteroids have irregular shapes, and hence satisfy I1 < I2 <
I3. To a very good approximation, their rotational motion about
the center of mass is described by the Euler equations. Over very
long periods of time, however, their small interactions with the Sun
and other planetary bodies tend to decrease their kinetic energy
while conserving their angular momentum. Which rotation state
do asteroids approach?

(10) Due to its rotation, Earth is not a perfect sphere, but an oblate
ellipsoid; therefore its moments of inertia are not quite equal, sat-
isfying approximately

I1 = I2 '= I3;

I3 − I1

I1
>

1

306
.

Earth’s rotation axis is very close to e3, but precesses around it
(Chandler precession). Find the period of this precession (in
Earth’s frame).

(11) Consider a rigid body whose motion is described by the curve
S : R → SO(3), and let Ω be the corresponding angular veloc-
ity. Consider a particle with mass m whose motion in the rigid
body’s frame is given by the curve ξ : R → R3. Let f be the
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external force on the particle, so that its motion equation is

m
d2

dt2
(Sξ) = f.

(a) Show that the motion equation can be written as

mξ̈ = F −mΩ× (Ω× ξ)− 2mΩ× ξ̇ −mΩ̇× ξ

where f = SF . (The terms following F are the so-called iner-
tial forces, and are known, respectively, as the centrifugal
force, the Coriolis force and the Euler force).

(b) Show that if the rigid body is a homogeneous sphere rotating
freely (like Earth, for instance) then the Euler force vanishes.
Why must a long range gun in the Northern hemisphere be
aimed at the left of the target?

(c) Compute the force necessary to keep the particle motionless
on the surface of a rigid body satisfying I1 = I2 '= I3 which
rotates freely in space.

(12) Prove Proposition 3.19. (Hint: Notice that symmetry demands that the ex-

pression for K must not depend neither on ϕ nor on ψ).
(13) Consider the Lagrange top.

(a) Write the equations of motion and determine the equilibrium
points.

(b) Show that there exist solutions such that θ, ϕ̇ and ψ̇ are con-
stant, which in the limit |ϕ̇| << |ψ̇| (fast top) satisfy

ϕ̇ >
Mgl

I3ψ̇
.

(14) (Precession of the equinoxes) Due to its rotation, Earth is not a
perfect sphere, but an oblate ellipsoid; therefore its moments of
inertia are not quite equal, satisfying approximately

I1 = I2 '= I3;

I3 − I1

I1
>

1

306

(cf. Exercise 10). As a consequence, the combined gravitational
attraction of the Moon and the Sun disturbs the Earth’s rotation
motion. This perturbation can be modelled by the potential energy
U : SO(3) → R given in the Euler angles (θ,ϕ,ψ) by

U = −
Ω2

2
(I3 − I1) cos2 θ,

where
2π

Ω
> 168 days.

(a) Write the equations of motion and determine the equilibrium
points.
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(b) Show that there exist solutions such that θ, ϕ̇ and ψ̇ are con-
stant, which in the limit |ϕ̇| << |ψ̇| (as is the case with Earth)
satisfy

ϕ̇ > −
(I3 − I1)Ω2 cos θ

I3ψ̇
.

Given that for Earth θ > 23◦, determine the approximate value
of the period of ϕ(t).

(15) (Pseudo-rigid body) Recall that the (non planar) rigid body metric
is the constraint to SO(3) of the flat metric on GL(3) given by

〈〈V,W 〉〉 = tr(V JW t),

where

Jij =

∫

R3
ξiξj dm.

(a) What are the geodesics of the Levi-Civita connection for this
metric? Is (GL(3), 〈〈·, ·〉〉) geodesically complete?

(b) The Euler equation and the continuity equation for an
incompressible fluid with velocity field u : R × R3 → R3 and
pressure p : R×R3 → R are

∂u

∂t
+ (u ·∇)u = −∇p;

∇ · u = 0,

where

∇ =

(
∂

∂x1
,

∂

∂x2
,

∂

∂x3

)

is the usual operator of vector calculus.
Given a geodesic S : R → GL(3), we define

x(t, ξ) = S(t)ξ

u(t, x) = Ṡ(t)ξ = Ṡ(t)S−1(t)x.

Show that the velocity field u satisfies the Euler equation (with
p = 0), but not the continuity equation.

(c) Let f : GL(3) → R be given by f(S) = detS. Show that

∂f

∂Sij
= cof(S)ij

(where cof(S) is the matrix of the cofactors of S), and conse-
quentemently

df

dt
= (det S) tr(ṠS−1).

Therefore if we impose the constraint detS(t) = 1 then the
continuity equation is satisfied.
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(d) Show that the holonomic constraint SL(3) ⊂ GL(3) satisfies
D’Alembert’s Principle if and only if

{
µ
(
S̈
)

= λ(t)df

det S = 1

Show that the motion equation can be rewritten as

S̈ = λ
(
S−1

)t
J−1.

(e) Show that the geodesics of (SL(3), 〈〈·, ·〉〉) yield solutions of
the Euler equation with

p = −
λ

2
xt
(
S−1

)t
J−1S−1x

differentiable which also satisfy the continuity equation.
(Remark: More generally, it is possible to interpret the Euler equation on an

open set U ⊂ Rn as a mechanical system on the group of diffeomorphisms of

U (which is an infinite dimensional Lie group); the continuity equation imposes

the holonomic constraint corresponding to the subgroup of volume-preserving

diffeomorphisms, and the pressure is the perfect reaction force associated to this

constraint).

4. Non-Holonomic Constraints

Some mechanical systems are subject to constaints which force the mo-
tions to proceed in certain admissible directions. To handle such constraints
we must first introduce the corresponding geometric concept.

Definition 4.1. A distribution Σ of dimension m on a differentiable
manifold M is a choice of an m-dimensional subspace Σp ⊂ TpM for each
p ∈ M . The distribution is said to be differentiable if for all p ∈ M there
exists a neighborhood U / p and vector fields X1, . . . ,Xm ∈ X(U) such that

Σq = span
{

(X1)q , . . . , (Xm)q

}

for all q ∈ U .

Equivalently, Σ is differentiable if for all p ∈ M there exists a neighbor-
hood U / p and 1-forms ω1, . . . ,ωn−m ∈ Ω1(U) such that

Σq = ker
(
ω1
)
q
∩ . . . ∩ ker

(
ωn−m

)
q

for all p ∈ U (cf. Exercise 4.15.1). We will assume from this point on that
all distributions are differentiable.

Definition 4.2. A non-holonomic constraint on a mechanical sys-
tem (M, 〈·, ·〉,F) is a distribution Σ on M . A curve c : I ⊂ R → M is said
to be compatible with Σ if ċ(t) ∈ Σc(t) for all t ∈ I.

Example 4.3.
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(1) (Wheel rolling without slipping) Consider a vertical wheel of radius
R rolling without slipping on a plane. Assuming that the motion
takes place along a straight line, we can parametrize any position
of the wheel by the position x of the contact point and the angle
θ between a fixed radius of the wheel and the radius containing
the contact point (cf. Figure 3); hence the configuration space is
R× S1.

θ

x

O

Figure 3. Wheel rolling without slipping.

If the wheel is to rotate without slipping, we must require that
ẋ = Rθ̇ along any motion; this is equivalent to requiring that the
motion be compatible with the distribution defined on R × S1 by
the vector field

X = R
∂

∂x
+

∂

∂θ
,

or, equivalently, by the kernel of the 1-form

ω = dx−Rdθ.

(2) (Ice skate) A simple model for an ice skate is provided by a line seg-
ment which can either move along itself or rotate about its middle
point. The position of the skate can be specified by the Cartesian
coordinates (x, y) of the middle point and the angle θ between the
skate and the x-axis (cf. Figure 4); hence the configuration space
is R2 × S1.

If the skate can only move along itslef, we must require that
(ẋ, ẏ) be proportional to (cos θ, sin θ); this is equivalent to requiring
that the motion be compatible with the distribution defined on
R2 × S1 by the vector fields

X = cos θ
∂

∂x
+ sin θ

∂

∂y
, Y =

∂

∂θ

or, equivalently, by the kernel of the 1-form

ω = − sin θdx + cos θdy.
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θ x

y

Figure 4. Ice skate.

One may wonder whether there exists any connection between holonomic
and non-holonomic constraints. To answer this question, we must make a
small digression.

Definition 4.4. A foliation of dimension m on a differentiable mani-
fold M is a family F = {Lα}α∈A of subsets of M (called leafs) satisfying:

(1) M = ∪α∈ALα;
(2) Lα ∩ Lβ = ∅ if α '= β;
(3) each leaf Lα is pathwise connected, i.e. if p, q ∈ Lα then there

exists a continuous curve c : [0, 1] → Lα such that c(0) = p and
c(1) = q;

(4) for each point p ∈ M there exists an open set U / p and local
coordinates (x1, . . . , xn) : U → Rn such that connected compo-
nents of the intersections of the leafs with U are the level sets of
(xm+1, . . . , xn) : U → Rn−m.

Remark 4.5. The coordinates (x1, . . . , xm) provide local coordinates on
the leafs, which are therefore images of injective immersions. In particular,
the leafs have well defined m-dimensional tangent spaces at each point,
and consequently any foliation of dimension m defines an m-dimensional
distribution.

Definition 4.6. An m-dimensional distribution Σ on a differential man-
ifold M is said to be integrable if there exists an m-dimensional foliation
F = {Lα}α∈A on M such that

Σp = TpLp

for all p ∈ M , where Lp is the leaf containing p. The leafs of F are called
the integral submanifolds of the distribution.

Integrable distributions are particularly simple. For instance, the set of
points q ∈ M which are accessible from a given point p ∈ M by a curve
compatible with the distribution is simply the leaf Lp through p. If the leafs
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are embedded submanifolds, then an integrable non-holonomic restriction
reduces to a family of holonomic restrictions. For this reason, an integrable
distribution is sometimes called a semi-holonomic constraint, whereas a
non-integrable distribution is called a true non-holonomic constraint .

It is therefore important to have a criterion for identifying integrable
distributions.

Definition 4.7. Let Σ be a distribution on a differentiable manifold M .
A vector field X ∈ X(M) is said to be compatible with Σ if Xp ∈ Σp for
all p ∈ M . We denote by X(Σ) the linear subspace of X(M) formed by all
vector fields which are compatible with Σ.

Theorem 4.8. (Frobenius) A distribution Σ is integrable if and only if
X,Y ∈ X(Σ) ⇒ [X,Y ] ∈ X(Σ).

The proof of this theorem can be found in [War83] (see also Exer-
cise 4.15.2). If Σ is locally given by m vector fields X1, . . . ,Xm, then to
check integrability it suffices to check if [Xi,Xj ] =

∑n
k=1 Ck

ijXk for locally

defined functions Ck
ij (cf. Exercise 4.15.3). The next proposition (whose

proof is left as an exercise) provides an alternative criterion.

Proposition 4.9. An m-dimensional distribution Σ on an n-manifold
M is integrable if and only if

dωi ∧ ω1 ∧ . . . ∧ ωn−m = 0 (i = 1, . . . , n −m)

for all locally defined sets of differential forms {ω1, . . . ,ωn−m} whose kernels
determine Σ.

This condition needs only be checked on an open cover of M .

Example 4.10.

(1) (Wheel rolling without slipping) Recall that in this case the con-
straint is given by the kernel of the 1-form

ω = dx−Rdθ.

Since dω = 0, we see that this is a semi-holonomic constraint, corre-
sponding to an integrable distribution. The leafs of the distribution
are the submanifolds with equation x = x0 + Rθ.

(2) (Ice skate) Recall that in this case the constraint is given by the
kernel of the 1-form

ω = − sin θdx + cos θdy.

Since

dω ∧ ω = (− cos θdθ ∧ dx− sin θdθ ∧ dy) ∧ (− sin θdx + cos θdy)

= −dθ ∧ dx ∧ dy '= 0,

we see that this is a true non-holonomic constraint.
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In a Riemannian manifold (M, 〈·, ·〉), any distribution Σ determines an
orthogonal distribution Σ⊥, given by

Σ⊥
p = (Σp)

⊥ ⊂ TpM.

Hence we have two orthogonal projections * : TM → Σ and ⊥ : TM → Σ⊥.
The set of external forces F : TM → T ∗M such that

F (v) = F
(
v*
)

for all v ∈ TM is denoted by FΣ.

Definition 4.11. A reaction force on a mechanical system with non-
holonomic constraints (M, 〈·, ·〉,F ,Σ) is a force R ∈ FΣ such that the solu-
tions of the generalized Newton equation

µ

(
Dċ

dt

)
= (F + R)(ċ)

with initial condition in Σ are compatible with Σ. The reaction force is said
to be perfect, or to satisfy D’Alembert’s principle, if

µ−1R(v) ∈ Σ⊥
p

for all v ∈ TpM,p ∈M .

Just like in the holonomic case, a reaction force is perfect if and only if
it does not creates nor dissipates energy along any motion compatible with
the constraint.

Theorem 4.12. Given a mechanical system with non-holonomic con-
straints (M, 〈·, ·〉,F ,Σ), there exists a unique reaction force R ∈ FΣ satisfy-
ing D’Alembert’s principle.

Proof. We define the second fundamental form of the distribution
Σ at a point p ∈ M as the map B : TpM × Σp → Σ⊥

p given by

B(v,w) = (∇XY )⊥ ,

where X ∈ X(M) and Y ∈ X(Σ) satisfy Xp = v and Yp = w. To check the
validity of this definition, let {Z1, . . . , Zn} is a local orthonormal frame such
that {Z1, . . . , Zm} is a basis for Σ and {Zm+1, . . . , Zn} is a basis for Σ⊥.
Then

∇XY = ∇X

(
m∑

i=1

Y iZi

)

=
m∑

i=1



(X · Y i)Zi +
n∑

j,k=1

Γk
jiX

jY iZk



 ,

where the functions Γk
ij are defined by

∇ZiZj =
n∑

k=1

Γk
ijZk,
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and consequently

(∇XY )⊥ =
n∑

i=1

m∑

j=1

n∑

k=m+1

Γk
ijX

iY jZk

depends indeed only on v = Xp and w = Yp. Moreover, we see that B is a
bilinear map. Incidentally, the restriction of B to Σp × Σp is symmetric for
all p ∈ M if only

Γk
ij = Γk

ji ⇔ 〈∇ZiZj , Zk〉 = 〈∇ZiZj, Zk〉 ⇔ 〈[Zi, Zj ], Zk〉 = 0

for all i, j = 1, . . . ,m and all k = m + 1, . . . , n, i.e. if and only if Σ is
integrable. In this case, B is, of course, the second fundamental form of the
leaves.

Let us assume that R exists. Then any motion c : I ⊂ R → M with
initial condition on Σ is compatible with Σ and satisfies

Dċ

dt
= µ−1F + µ−1R.

The projection of this equation on Σ⊥ yields

B(ċ, ċ) =
(
µ−1F

)⊥
+ µ−1R

(recall that Dċ
dt = ∇ċċ). Therefore, if R exists then it must be given by

R(v) = µ (B(v, v)) − µ
((

µ−1F
)⊥)

for any v ∈ Σ, and by R(v) = R
(
v*
)

for any v ∈ TM (as R ∈ FΣ). This
proves unicity of R.

To prove existence, we just have to show that for this choice of R the
solutions of the generalized Newton equation with initial condition on Σ are
compatible with Σ. Consider the system

{
ċ =

∑m
i=1 viZi

Dċ
dt = µ−1F −

(
µ−1F

)⊥
+ B(ċ, ċ)

(24)

When written in local coordinates, this is a system of first order ODEs with
n+m unknowns x1(t), . . . , xn(t), v1(t), . . . , vm(t). Since the second equation
is just

Dċ

dt
=
(
µ−1F

)*
+

(
Dċ

dt

)⊥
⇔

(
Dċ

dt

)*
=
(
µ−1F

)*
,

we see that this equation has only m nonvanishing components in the local
frame {Z1, . . . , Zn}. Therefore, (24) is a system of (n+m) first order ODEs
on n+m unknowns, and has a unique local solution for any initial condition.
If ċ(0) ∈ Σc(0), we can always choose v1(0), . . . , vm(0) such that

ċ(0) =
m∑

i=1

vi(0) (Zi)c(0) .
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The solution of (24) with initial condition (x1(0), . . . , xn(0), v1(0), . . . , vm(0))
must then, by unicity, be the solution of

Dċ

dt
= µ−1F + µ−1R

with initial condition ċ(0). On the other hand, it is, by construction, com-
patible with Σ. !

Example 4.13. (Wheel rolling without slipping) Recall that in this case
the constraint is given by the kernel of the 1-form

ω = dx−Rdθ.

Since µ−1R is orthogonal to the constraint for perfect reaction force R, the
constraint must be in the kernel of R, and hence R = λω for some smooth
function λ : TM → R.

If kinetic energy of the wheel is

K =
M

2
(vx)2 +

I

2

(
vθ
)2

then

µ

(
Dċ

dt

)
= Mẍdx + I θ̈dθ.

Just to make things more interesting, consider a constant gravitational
acceleration g and suppose that the plane on which the wheel rolls is in-
clined by an angle α with respect to the horizontal, so that there exists a
conservative force with potential energy

U = Mg sinα x.

The equation of motion is therefore

µ

(
Dċ

dt

)
= −dU + R⇔Mẍdx + I θ̈dθ = −Mg sinαdx + λdx− λRdθ.

The motion of the wheel will be given by a solution of this equation which
also satisfies the constraint equation, i.e. a solution of the system of ODEs






Mẍ = −Mg sinα + λ

I θ̈ = −Rλ

ẋ = Rθ̇

Thys system is easily solved to yield





x(t) = x0 + v0t− γ
2 t2

θ(t) = θ0 + v0
R t− γ

2R t2

λ = − Iγ
R2

where

γ =
g sinα

1 + I
MR2

and x0, v0, θ0 are integration constants.
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Physically, the reaction force must be interpreted as a friction force
exerted by the plane on the wheel. This force opposes the translational
motion of the wheel but accelerates its spinning motion. Therefore, contrary
to intuition, there is no dissipation of energy: all the translational kinetic
energy lost by the wheel is restored as rotational kinetic energy.

A perfect reaction force guarantees, as one would expect, conservation
of energy.

Theorem 4.14. If in a conservative mechanical system with constraints
(M, 〈·, ·〉,−dU,Σ) the reaction force satisfies D’Alembert’s principle then the
mechanical energy Em = K + U is constant along any motion with initial
condition in Σ.

Exercises 4.15.

(1) Show that an m-dimensional distribution Σ on an n-manifold M is
differentiable if and only if for all p ∈M there exists a neighborhood
U / p and 1-forms ω1, . . . ,ωn−m ∈ Ω1(U) such that

Σq = ker
(
ω1
)
q
∩ . . . ∩ ker

(
ωn−m

)
q

for all q ∈ U .
(2) Let Σ be an integrable distribution. Shwo that X,Y ∈ X(Σ) ⇒

[X,Y ] ∈ X(Σ).
(3) Show that an m-dimensional distribution Σ is integrable if and only

if each local basis of vector fields {X1, . . . ,Xm} satisfies [Xi,Xj ] =∑n
k=1 Ck

ijXk for locally defined functions Ck
ij . (Remark: Obviously this

condition needs only be checked for an open cover).
(4) Recall that our model for an ice skate is given by the non-holonomic

constraint Σ defined on R2 × S1 by the kernel of the 1-form ω =
− sin θdx + cos θdy.
(a) Show that the ice skate can access all points in the configura-

tion space: given two points p, q ∈ R2×S1 there exists a curve
c : [0, 1] → R2 × S1 compatible with Σ such that c(0) = p and
c(1) = q. Why does this show that Σ is non-integrable?

(b) Assuming that the kinetic energy of the skate is

K =
M

2

(
(vx)2 + (vy)2

)
+

I

2

(
vθ
)2

and that the reaction force is perfect, show that the skate
moves with constant speed along straight lines or circles. What
is the physical interpretation of the reaction force?

(c) Determine the motion of the skate moving on an inclined plane,
i.e. subject to a potential energy U = Mg sinα x.

(5) Prove Proposition 4.9. (Hint: Recall from Exercise 3.8.2 in Chapter 2 that

dω(X, Y ) = X · ω(Y ) − Y · ω(X) − ω([X, Y ]) for any ω ∈ Ω1(M) and X, Y ∈ X(M)).
(6) Prove Theorem 4.14.
(7) Consider a vertical wheel of radius R moving on a plane.
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(a) Show that the non-holonomic constraint corresponding to the
condition of rolling without slipping or sliding is the distribu-
tion determined on the configuration space R2 × S1 × S1 by
the 1-forms

ω1 = dx−R cos ϕ dψ, ω2 = dy −R sinϕ dψ,

where (x, y,ϕ,ψ) are the local coordinates indicated in Fig-
ure 5.

(b) Assuming that the kinetic energy of the wheel is

K =
M

2

(
(vx)2 + (vy)2

)
+

I

2
(vϕ)2 +

J

2
(vϕ)2

and that the reaction force is perfect, show that the wheel
moves with constant speed along straight lines or circles. What
is the physical interpretation of the reaction force?

(c) Determine the motion of the vertical wheel moving on an in-
clined plane, i.e. subject to a potential energy U = Mg sinαx.

ϕ
ψ

x

y

z

O

R

Figure 5. Vertical wheel on a plane.

(8) Consider a sphere of radius R and mass M rolling without slipping
on a plane.
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(a) Show that the condition of rolling without slipping is

ẋ = Rω2, ẏ = −Rω1,

where (x, y) are the Cartesian coodinates of the contact point
on the plane and ω is the angular velocity of the sphere.

(b) Show that if the sphere’s mass is symmetrically distributed
then its kinetic energy is

K =
M

2

(
ẋ2 + ẏ2

)
+

I

2
〈ω,ω〉,

where I is the sphere’s moment of inertia and 〈·, ·〉 is the Eu-
clidean inner product.

(c) Using ω as coordinates on the fibers of TSO(3), show that

Dċ

dt
= ẍ

∂

∂x
+ ÿ

∂

∂y
+ ω̇

(Hint: Recall from Exercise 4.8.3 in Chapter 3 that if ∇ is the Levi-Civita

connection for a bi-invariant metric on a Lie group and X, Y are left-invariant

vector fields then ∇XY = 1
2 [X, Y ]).

(d) Since we are identifying the fibers of TSO(3) with R3, we can
use the Euclidean inner product to also identify the fibers of
T ∗SO(3) with R3. Show that under this identification the non-
holonomic constraint yielding the condition of rolling without
slipping is the distribution determined by the kernels of the
1-forms

θ1 = dx−R e2, θ2 = dx−R e1

(where {e1, e2, e3} is the canonical basis of R3). Is this distri-
bution integrable?

(e) Show that the sphere moves along straight lines with constant
speed and constant angular velocity orthogonal to its motion.

(f) Determine the motion of the sphere moving on an inclined
plane, i.e. subject to a potential energy U = Mg sinαx.

5. Lagrangian Mechanics

Let M be a differentiable manifold, p, q ∈ M and a, b ∈ R such that
a < b. Let us denote by C the set of differentiable curves c : [a, b] →M such
that c(a) = p and c(b) = q.

Definition 5.1. A Lagrangian function on M is a differentiable map
L : TM → R. The action determined by L on C is the map S : C → R

given by

S(c) =

∫ b

a

L(ċ(t))dt.

We can look for the global minima (or maxima) of the action by consid-
ering curves on C.



5. LAGRANGIAN MECHANICS 187

Definition 5.2. A variation of c ∈ C is a map γ : (−ε, ε) → C (for
some ε > 0) such that γ(0) = c and the map γ : (−ε, ε) × [a, b] → M given
by γ(s, t) = γ(s)(t) is differentiable. The curve c is said to be a critical
point of the action if

d

ds

∣∣∣∣
s=0

S(γ(s)) = 0

for any variation γ of c.

Notice that the global minima (or maxima) of S must certainly be critical
points. However, as is usually the case, a critical point is not necessarily a
minimum (or a maximum).

It turns out that the critical points of the action are solutions of second
order ODE’s.

Theorem 5.3. The curve c ∈ C is a critical point of the action de-
termined by the Lagrangian L : TM → R if and only if it satisfies the
Euler-Lagrange equations

d

dt

(
∂L

∂vi
(x(t), ẋ(t))

)
−

∂L

∂xi
(x(t), ẋ(t)) = 0 (i = 1, . . . , n)

for any local chart (x1, . . . , xn).

Proof. Assume first that the image of c is contained on the domain of
a local chart (x1, . . . , xn). Let γ : (−ε, ε) → C be a variation of c. Setting
x(s, t) = x ◦ γ(s, t), we have

S(γ(s)) =

∫ b

a
L

(
x(s, t),

∂x

∂t
(s, t)

)
dt,

and hence

d

ds

∣∣∣∣
s=0

S(γ(s)) =

∫ b

a

n∑

i=1

∂L

∂xi

(
x(0, t),

∂x

∂t
(0, t)

)
∂xi

∂s
(0, t) dt

+

∫ b

a

n∑

i=1

∂L

∂vi

(
x(0, t),

∂x

∂t
(0, t)

)
∂2xi

∂s∂t
(0, t) dt.

Differentiating the relations x(s, a) = x(p), x(s, b) = x(q) with respect to s
one obtains

∂x

∂s
(0, a) =

∂x

∂s
(0, b) = 0.

Consequently, the second integral above can be integrated by parts to yield

−
∫ b

a

n∑

i=1

d

dt

(
∂L

∂vi

(
x(0, t),

∂x

∂t
(0, t)

))
∂xi

∂s
(0, t) dt,

and hence

d

ds

∣∣∣∣
s=0

S(γ(s)) =

∫ b

a

n∑

i=1

(
∂L

∂xi
(x(t), ẋ(t))−

d

dt

(
∂L

∂vi
(x(t), ẋ(t))

))
wi(t) dt,
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where we have set x(t) = x ◦ c(t) and w(t) = ∂x
∂s (0, t). This shows that

if c satisfies the Euler-Lagrange equations then c is a critical point of the
action. To show the converse, we notice that any function w : [a, b] →
Rn satisfying w(a) = w(b) = 0 arises from the variation γ determined by
x(s, t) = x(t) + sw(t). In particular, if ρ : [a, b] → R is a smooth positive
function with ρ(a) = ρ(b) = 0, we can take

wi(t) = ρ(t)

(
∂L

∂xi
(x(t), ẋ(t))−

d

dt

(
∂L

∂vi
(x(t), ẋ(t))

))
.

Therefore if c is a critical point of the action then we must have

∫ b

a

n∑

i=1

(
∂L

∂xi
(x(t), ẋ(t))−

d

dt

(
∂L

∂vi
(x(t), ẋ(t))

))2

ρ(t) dt = 0,

and hence c must satisfy the Euler-Lagrange equations.
The general case (in which the image of c is not contained in the domain

of the local chart) is left as an exercise. !

Corollary 5.4. The motions of any conservative mechanical system
(M, 〈·, ·〉,−dU) are the critical points of the action determined by the La-
grangian L = K − U .

Therefore we can find motions of conservative systems by looking for
minima, say, of the action. This variational approach is often very useful.

The energy conservation in a conservative system is in fact a particular
case of a more general conservation law, which holds for any Lagrangian.

Definition 5.5. The fiber derivative of a Lagrangian function L :
TM → R at v ∈ TpM is the linear map (FL)v : TpM → R given by

(FL)v(w) =
d

dt

∣∣∣∣
t=0

L(v + tw)

for all w ∈ TpM .

Definition 5.6. If L : TM → R is a Lagrangian function then its
associated Hamiltonian function H : TM → R is defined as

H(v) = (FL)v(v) − L(v).

Theorem 5.7. The Hamiltonian function is constant along the solutions
of the Euler-Lagrange equations.

Proof. In local coordinates, we have

H(x, v) =
n∑

i=1

vi ∂L

∂vi
(x, v) − L(x, v).
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Consequently, if c : I ⊂ R → M is a solution of the Euler-Lagrange equa-
tions, given in local coordinates by x = x(t), we have

d

dt
(H(ċ(t))) =

d

dt

(
n∑

i=1

ẋi(t)
∂L

∂vi
(x(t), ẋ(t))− L(x(t), ẋ(t))

)

=
n∑

i,j=1

ẍi(t)
∂L

∂vi
(x(t), ẋ(t)) +

n∑

i=1

ẋi(t)
d

dt

(
∂L

∂vi
(x(t), ẋ(t))

)

−
n∑

i=1

ẋi(t)
∂L

∂xi
(x(t), ẋ(t))−

n∑

i=1

ẍi(t)
∂L

∂vi
(x(t), ẋ(t)) = 0.

!

Example 5.8. If (M, 〈·, ·〉,−dU) is a conservative mechanical system
then its motions are the solutions of the Euler-Lagrange equations for the
Lagrangean L : TM → R given by

L(v) =
1

2
〈v, v〉 − U(π(v))

(where π : TM →M is the canonical projection). Clearly,

(FL)v(w) =
d

dt

∣∣∣∣
t=0

1

2
〈v + tw, v + tw〉 = 〈v,w〉,

and hence

H(v) = 〈v, v〉 −
1

2
〈v, v〉 + U(π(v)) =

1

2
〈v, v〉+ U(π(v))

is the mechanical energy.

The Lagrangian formulation is particularly useful for exploring the rela-
tion between symmetry and conservation laws.

Definition 5.9. Let G be a Lie group acting on a manifold M . The
Lagrangian L : TM → R is said to be G-invariant if

L ((dg)pv) = L(v)

for all v ∈ TpM , p ∈ M and g ∈ G (where g : M →M is the map p +→ g ·p).

We will now show that if a Lagrangian is G-invariant then to each ele-
ment v ∈ g there corresponds a conserved quantity. To do so, we need the
following definitions.

Definition 5.10. Let G be a Lie group acting on a manifold M . The
infinitesimal action of V ∈ g on M is the vector field XV ∈ X(M) defined
as

XV
p =

d

dt

∣∣∣∣
t=0

(exp(tV ) · p) = (dAp)e V,

where Ap : G →M is the map Ap(g) = g · p.
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Theorem 5.11. (Noether) Let G be a Lie group acting on a manifold
M . If L : TM → R is G-invariant then JV : TM → R defined as JV (v) =
(FL)v

(
XV

)
is constant along the solutions of the Euler-Lagrange equations

for all V ∈ g.

Proof. Choose local coordinates (x1, . . . , xn) on M and let (y1, . . . , ym)
be local coordinates centered on e ∈ G. Let A : G×M → M be the action
of G on M , written in these local coordinates as

(A1(x1, . . . , xn, y1, . . . , ym), . . . , An(x1, . . . , xn, y1, . . . , ym)).

Then the infinitesimal action of V =
∑m

i=1 V a ∂
∂ya has components

Xi(x) =
m∑

a=1

∂Ai

∂ya
(x, 0)V a.

Since L is G-invariant, we have

L

(

A1(x, y), . . . , An(x, y),
n∑

i=1

∂A1

∂xi
(x, y)vi, . . . ,

n∑

i=1

∂An

∂xi
(x, y)vi

)

= L(x1, . . . , xn, v1, . . . , vn).

Setting y = y(t) in the above identity, where (y1(t), . . . , ym(t)) is the ex-
pression of the curve exp(tV ) in local coordinates, and differentiating with
respect to t at t = 0, one obtains

n∑

i=1

m∑

a=1

∂L

∂xi
(x, v)

∂Ai

∂ya
(x, 0)V a +

n∑

i,j=1

m∑

a=1

∂L

∂vi
(x, v)

∂2Ai

∂ya∂xj
(x, 0)vjV a = 0

⇔
n∑

i=1

∂L

∂xi
(x, v)Xi(x) +

n∑

i,j=1

∂L

∂vi
(x, v)

∂Xi

∂xj
(x)vj = 0,

where we have used the fact that A(x, 0) = x (and hence ∂Ai

∂xj (x, 0) = δij).
In these coordinates,

JV (x) =
n∑

i=1

∂L

∂vi
(x, v)Xi(x).

Therefore, if c : I ⊂ R → M is a solution of the Euler-Lagrange equations,
given in local coordinates by x = x(t), we have

d

dt

(
JV (ċ(t))

)
=

d

dt

(
n∑

i=1

∂L

∂vi
(x(t), ẋ(t))Xi(x(t))

)

=
n∑

i=1

d

dt

(
∂L

∂vi
(x(t), ẋ(t))

)
Xi(x(t)) +

n∑

i,j=1

∂L

∂vi
(x(t), ẋ(t))

∂Xi

∂xj
(x(t))ẋj(t)

=
n∑

i=1

d

dt

(
∂L

∂vi
(x(t), ẋ(t))

)
Xi(x(t))−

n∑

i=1

∂L

∂xi
(x(t), ẋ(t))Xi(x(t)) = 0.
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!

Remark 5.12. Notice that the map g / V +→ XV ∈ X(M) is linear.
Since FL(v) is also linear, we can see JV as a linear map g / V +→ JV ∈
C∞(M). Therefore Noether’s theorem yields m = dim g independent con-
served quantities.

Example 5.13. Consider a conservative mechanical system consisting of
k particles with masses m1, . . . ,mk moving in R3 under a potential energy
U : R3N → R which depends only on the distances between them. The
motions of the system are the solutions of the Euler-Lagrange equations
obtained from the Lagrangian L : TR3k → R given by

L(x1, . . . , xk, v1, . . . , vk) =
1

2

k∑

i=1

mi〈vi, vi〉+ U(x1, . . . , xk).

This Lagrangian is clearly SO(3)-invariant, where the action of SO(3) on
R3k is defined through

S · (x1, . . . , xk) = (Sx1, . . . , Sxk).

The infinitesimal action of V ∈ so(3) is the vector field

XV
(x1,...,xk) = (V x1, . . . , V xk) = (Ω(V )× x1, . . . ,Ω(V )× xk),

where Ω : so(3) → R3 is the isomorphism in Lemma 3.9. On the other hand,

(FL)(v1,...,vk)(w1, . . . , wk) =
k∑

i=1

mi〈vi, wi〉.

Therefore, Noether’s Theorem guarantees that the quantity

JV =
k∑

i=1

mi〈ẋi,Ω(V )×xi〉 =
k∑

i=1

mi〈Ω(V ), xi×ẋi〉 =

〈

Ω(V ),
k∑

i=1

mixi × ẋi

〉

is conserved along the motion of the system for any V ∈ so(3). In other
words, the system’s total angular momentum

Q =
k∑

i=1

mixi × ẋi

is conserved.

Exercises 5.14.

(1) Complete the proof of Theorem 5.3.
(2) Show that the geodesics of a Riemannian manifold (M, 〈·, ·〉) are,

up to reparametrization, critical points of the arclength, i.e., of the
action determined by the Lagrangian L : TM → R given by

L(v) = 〈v, v〉
1
2

(where we must restrict the action to curves with nonvanishing
velocity).
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(3) (Brachistochrone curve) A particle with mass m moves on a curve
y = y(x) under the action of a constant gravitational field, cor-
responding to the potential energy U = mgy. The curve satisfies
y(0) = y(d) = 0 and y(x) < 0 for 0 < x < d.
(a) Asuming that the particle is set free at the origin with zero

velocity, show that its speed at each point is

v =
√
−2gy,

and that therefore the travel time between the origin and point
(d, 0) is

S = (2g)−
1
2

∫ d

0
(1 + y′2)

1
2 (−y)−

1
2 dx,

where y′ = dy
dx .

(b) Write a differential equation for the curve y = y(x) which
corresponds to the minimum travel time, and show that it can
be integrated to

d

dx

[(
1 + y′2

)
y
]

= 0.

(c) Check that the solution of this equation satisfying y(0) =
y(d) = 0 is given parametrically by

{
x = Rθ −R sin θ

y = −R + R cos θ

where d = 2πR. (This curve is called a cycloid, because it is
the curved traced out by a point on a circle which rolls without
slipping on the xx-axis).

(4) (Charged particle in a stationary electromagnetic field) The motion
of a particle with mass m > 0 and charge e ∈ R in a stationary
electromagnetic field is determined by the Lagrangian L : TR3 → R

given by

L =
1

2
m〈ẋ, ẋ〉+ e〈A, ẋ〉 − eΦ,

where 〈·, ·〉 is the Euclidean inner product, Φ ∈ C∞(R) is the elec-
tric potencial and A ∈ X(R3) is the magnetic vector potential.
(a) Show that the motion equations are

mẍ = eE + ẋ×B,

where E = − gradΦ is the electric field and B = curlA is
the magnetic field.

(b) Write an expression for the Hamiltonian function and use the
motion equations to check that it is constant along any motion.
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(5) (Restricted 3-body problem) Consider two particles with masses µ ∈
(0, 1) and 1−µ, set in circular orbit around each other. We identify
the plane of the orbit with R2 and place the center of mass at the
origin. In the rotating frame where the particles are at rest they
are placed at, say, p1 = (1− µ, 0) and p2 = (−µ, 0). The motion of
a third particle with negligible mass in this frame is determined by
the Lagrangian L : T

(
R2 \ {p1, p2}

)
→ R given by

L(x, y, ẋ, ẏ) =
1

2

(
ẋ2 + ẏ2

)
+ xẏ − yẋ +

1

2

(
x2 + y2

)
+

1− µ

r1
+

µ

r2
,

where r1, r2 : R2 → R are the Euclidean distances to p1, p2.
(a) Determine the equations of motion and the Hamiltonian func-

tion.
(b) Show that (r1, r2) are local coordinates for each of the half-

planes {y > 0} and {y < 0}, and that

(1− µ)r 2
1 + µr 2

2 = x2 + y2 + µ(1− µ).

Use this result to compute the equilibrium points on these
half-planes.

(6) Consider the mechanical system in Example 5.13.
(a) Use Noether’s Theorem to prove that the total linear mo-

mentum

P =
N∑

i=1

miẋi

is conserved along the motion.
(b) Show that the system’s center of mass, defined as the point

X =

∑N
i=1 mixi∑N
i=1 mi

,

moves with constant velocity.
(7) Generalize Example 5.13 to the case in which the particles move in

an arbitrary Riemannian manifold (M, 〈·, ·〉), by showing that given
any Killing vector field X ∈ X(M) (cf. Exercise 3.3.8 in Chapter 3)
the quantity

JX =
N∑

i=1

mi〈ċi,X〉

is conserved, where ci : I ⊂ R → M is the motion of the particle
with mass mi.

(8) Consider the action of SO(3) on itself by left multiplication.
(a) Show that the infinitesimal action of B ∈ so(3) is the right-

invariant vector field determined by B.
(b) Use Noether’s Theorem to show that the angular momentum

of the free rigid body is constant.
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(9) Consider a satellite equiped with a small rotor, i.e. a cylinder which
can spin freely about its axis. When the rotor is locked the satel-
lite can be modelled by a free rigid body with inertia tensor I.
The rotor’s axis passes through the satellite’s center of mass, and
its direction is given by the unit vector e. The rotor’s mass is
symmetrically distributed around the axis, producing a moment of
inertia J .
(a) Show that the configuration space for the satellite with un-

locked rotor is the Lie group SO(3)× S1, and that its motion
is a geodesic of the left-invariant metric corresponding to the
kinetic energy

K =
1

2
〈IΩ,Ω〉+

1

2
J62 + J6〈Ω, e〉,

where the Ω ∈ R3 is the satellite’s angular velocity as seen on
the satellite’s frame and 6 ∈ R is the rotor’s angular speed
around its axis.

(b) Use Noether’s Theorem to show that l = J(6 + 〈Ω, e〉) ∈ R

and p = S(IΩ + J6e) ∈ R3 are conserved along the motion
of the satellite with unlocked rotor, where S : R → SO(3)
describes the satellite’s orientation.

6. Hamiltonian Mechanics

We will now see that under certain conditions it is possible to study the
Euler-Lagrange equations as a flow on the cotangent bundle with special
geometric properties.

Let M be an n-dimensional manifold. The set

TM ⊕ T ∗M :=
⋃

p∈M

TpM × T ∗
p M

has an obvious differentiable structure: if (x1, . . . , xn) are local coordinates
on M then (x1, . . . , xn, v1, . . . , vn, p1, . . . , pn) are the local coordinates on
TM ⊕ T ∗M which label the pair (v,ω) ∈ TpM × T ∗

p M , where

v =
n∑

i=1

vi ∂

∂xi
, ω =

n∑

i=1

pidxi,

and p ∈ M is the point with coordinates (x1, . . . , xn). For this differentiable
structure, the maps π1 : TM ⊕ T ∗M → TM and π2 : TM ⊕ T ∗M → T ∗M
given by π1(v,ω) = v and π2(v,ω) = ω are submersions.

Definition 6.1. The extended Hamiltonian function corresponding
to a Lagrangian L : TM → R is the map H̃ : TM ⊕ T ∗M → R given by

H̃(v,ω) = ω(v)− L(v).
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In local coordinates, we have

H̃(x1, . . . , xn, v1, . . . , vn, p1, . . . , pn) =
n∑

i=1

piv
i − L(x1, . . . , xn, v1, . . . , vn),

and hence

dH̃ =
n∑

i=1

(
pi −

∂L

∂vi

)
dvi +

n∑

i=1

vidpi −
n∑

i=1

∂L

∂xi
dxi.

Thus any critical point of any restriction of H̃ to a submanifold of the form
{ω}× TpM must satisfy

pi −
∂L

∂vi
(x1, . . . , xn, v1, . . . , vn) = 0 (i = 1, . . . , n).

It follows that the set of all such critical points is naturally a 2n-dimensional
submanifold S ⊂ TM⊕T ∗M such that π1|S : S → TM is a diffeomorphism.
If π2|S : S → T ∗M is also a diffeomorphism then the Lagrangian is said to
be hyper-regular. In this case, π2|S ◦ π1|S

−1 : TM → T ∗M is a fiber-
preserving diffeomorphism, called the Legendre transformation.

Given a hyper-regular Lagrangian, we can use the maps π1|S and π2|S
to make the identifications TM ∼= S ∼= T ∗M . Since the Hamiltonian func-
tion H : TM → R is clearly related to the extended Hamiltonian function
through H = H̃ ◦ π1|S

−1, we can under these identifications simply write

H = H̃|S . Therefore

dH =
n∑

i=1

vidpi −
n∑

i=1

∂L

∂xi
dxi

(here we must think of (x1, . . . , xn, v1, . . . , vn, p1, . . . , pn) as local functions
on S such that both (x1, . . . , xn, v1, . . . , vn) and (x1, . . . , xn, p1, . . . , pn) are
local coordinates). On the other hand, thinking of H as a function on the
cotangent bundle, we must have

dH =
n∑

i=1

∂H

∂xi
dxi +

n∑

i=1

∂H

∂pi
dpi

Therefore we must have





∂H

∂xi
= −

∂L

∂xi

∂H

∂pi
= vi

(i = 1, . . . , n),

where the partial derivatives of the Hamiltionian must be computed with re-
spect to the local coordinates (x1, . . . , xn, p1, . . . , pn) and the partial deriva-
tives of the Lagrangian must be computed with respect to the local coordi-
nates (x1, . . . , xn, v1, . . . , vn).
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Proposition 6.2. The Euler-Lagrange equations for a hyper-regular La-
grangian L : TM → R define a flow on TM . This flow is carried by the
Legendre tranformation to the flow defined on T ∗M by Hamilton’s equa-
tions






ẋi =
∂H

∂pi

ṗi = −
∂H

∂xi

(i = 1, . . . , n).

Proof. The Euler-Lagrange equations can be cast as a system of first
order ordinary differential equations on TM as follows:






ẋi = vi

d

dt

(
∂L

∂vi

)
=

∂L

∂xi

(i = 1, . . . , n).

Since on S one has

pi =
∂L

∂vi
, vi =

∂H

∂pi
,

∂L

∂xi
= −

∂H

∂xi
,

we see that this system reduces to Hamilton’s equations in the local coor-
dinates (x1, . . . , xn, p1, . . . , pn). Since Hamilton’s equations clearly define a
flow on T ∗M , the Euler-Lagrange equations must define a flow on TM . !

Example 6.3. The Lagrangian for a conservative mechanical system
(M, 〈·, ·〉,−dU) is written is local coordinates as

L(x1, . . . , xn, v1, . . . , vn) =
1

2

n∑

i,j=1

gij(x
1, . . . , xn)vivj − U(x1, . . . , xn).

The Legendre transformation is given in these coordinates by

pi =
∂L

∂vi
=

n∑

j=1

gijv
j (i = 1, . . . , n),

and is indeed a fiber-preserving diffeomorphism, whose inverse is given by

vi =
n∑

j=1

gijpj (i = 1, . . . , n).

As a function on the tangent bundle, the Hamiltonian is (cf. Example 5.8)

H =
1

2

n∑

i,j=1

gijv
ivj + U.
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Using the Legendre transformation, we can see the Hamiltonian as the fol-
lowing function on the cotangent bundle:

H =
1

2

n∑

i,j,k,l=1

gijg
ikpkg

jlpl + U =
1

2

n∑

k,l=1

gklpkpl + U.

Therefore Hamilton’s equations for a conservative mechanical system are





ẋi =
n∑

j=1

gijpj

ṗi =
1

2

n∑

k,l=1

∂gkl

∂xi
pkpl

(i = 1, . . . , n).

The flow defined by Hamilton’s equations has remarkable geometric
properties, which are better understood by introducing the following def-
inition.

Definition 6.4. The canonical symplectic potential is the 1-form
θ ∈ Ω1(T ∗M) given by

θα(v) = α ((dπ)α(v))

for all v ∈ Tα(T ∗M) and all α ∈ T ∗M , where π : T ∗M → M is the natural
projection. The canonical symplectic form is the 2-form ω ∈ Ω2(T ∗M)
given by ω = dθ.

In local coordinates, we have

π(x1, . . . , xn, p1, . . . , pn) = (x1, . . . , xn)

and

v =
n∑

i=1

dxi(v)
∂

∂xi
+

n∑

i=1

dpi(v)
∂

∂pi
.

Consequently,

(dπ)α(v) =
n∑

i=1

dxi(v)
∂

∂xi
,

and hence

θα(v) = α ((dπ)α(v)) =
n∑

i=1

pidxi




n∑

j=1

dxj(v)
∂

∂xj



 =
n∑

i=1

pidxi(v).

We conclude that

θ =
n∑

i=1

pidxi,

and consequently

ω =
n∑

i=1

dpi ∧ dxi
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Proposition 6.5. The canonical symplectic form ω is closed (dω = 0)
and non-degenerate. Moreover, ωn = ω ∧ . . . ∧ ω is a volume form (in
particular T ∗M is always orientable, even if M itself is not).

We leave the proof of this proposition as an exercise. Recall from Exer-
cise 1.14.8 in Chapter 2 that if v ∈ TpM then ι(v)ω ∈ T ∗

p M is the covector
given by

(ι(v)ω) (w) = ω(v,w)

for all w ∈ TpM . Therefore the first statement in Proposition 6.5 is equiv-
alent to saying that the map TpM / v +→ ι(v)ω ∈ T ∗

p M is a linear isomor-
phism for all p ∈ M .

The key to the geometric meaning of Hamilton’s equations is contained
in the following result.

Proposition 6.6. The Hamilton equations are the equations for the flow
of the vector field XH satisfying

ι(XH)ω = −dH.

Proof. Hamilton’s equations yield the flow of the vector field

XH =
n∑

i=1

(
∂H

∂pi

∂

∂xi
−

∂H

∂xi

∂

∂pi

)
.

Therefore

ι(XH)ω = ι(XH)
n∑

i=1

(dpi ⊗ dxi − dxi ⊗ dpi)

=
n∑

i=1

(
−

∂H

∂xi
dxi −

∂H

∂pi
dpi

)
= −dH

!

Remark 6.7. Notice that H completely determines XH , as ω is nonde-
generate. By analogy with the Riemannian case, −XH is sometimes called
the symplectic gradient of H.

Definition 6.8. The Hamiltonian flow generated by F ∈ C∞(T ∗M)
is the flow of the unique vector field XF ∈ X(T ∗M) such that

ι(XF )ω = −dF.

The flow determined on T ∗M by a hyper-regular Lagrangian is therefore
a particular case of a Hamiltonian flow (in which the generating function is
the Hamiltonian function). We will now dicuss the geometric properties of
general Hamiltonian flows.

Proposition 6.9. Hamiltonian flows preserve their generating func-
tions.

Proof. XF · F = dF (XF ) = (−ι(XF )ω) (XF ) = −ω(XF ,XF ) = 0, as
ω is alternating. !
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Proposition 6.10. Hamiltonian flows preserve the canonical symplectic
form: if ψt : T ∗M → T ∗M is a Hamiltonian flow then ψt

∗ω = ω.

Proof. Let F ∈ C∞(T ∗M) be the function whose Hamiltonian flow is
ψt. Recall from Exercise 3.8.8 in Chapter 2 that the Lie derivative of ω
along XF ∈ X(T ∗M),

LXF
ω =

d

dt

∣∣∣∣
t=0

ψt
∗ω,

can be computed by the Cartan formula:

LXF
ω = ι(XF )dω + d(ι(XF )ω) = d(−dF ) = 0.

Therefore
d

dt
ψt

∗ω =
d

ds

∣∣∣∣
s=0

(ψt+s)
∗ω =

d

ds

∣∣∣∣
s=0

(ψs ◦ ψt)
∗ω =

d

ds

∣∣∣∣
s=0

ψt
∗(ψs)

∗ω

= ψt
∗ d

ds

∣∣∣∣
s=0

(ψs)
∗ω = ψt

∗LXω = 0.

We conclude that
ψt

∗ω = (ψ0)
∗ω = ω.

!

Theorem 6.11. (Liouville) Hamiltonian flows preserve integral with re-
spect to the symplectic volume form: if ψt : T ∗M → T ∗M is a Hamiltonian
flow and F ∈ C∞(T ∗M) is a compactly supported function then

∫

T ∗M
F ◦ ψt =

∫

T ∗M
F.

Proof. This is a simple consequence of the fact that ψt preserves the
symplectic volume form:

ψt
∗(ωn) = (ψt

∗ω)n = ωn.

Therefore∫

T ∗M

F ◦ ψt =

∫

T ∗M

(F ◦ ψt)ω
n =

∫

T ∗M

(F ◦ ψt)ψt
∗(ωn)

=

∫

T ∗M
ψt

∗(Fωn) =

∫

T ∗M
Fωn =

∫

T ∗M
F

(cf. Exercise 4.2.3 in Chapter 2). !

Corollary 6.12. (Poincaré Recurrence) Let ψt : T ∗M → T ∗M be a
Hamiltonian flow and K ⊂ T ∗M a compact set invariant for ψt. Then for
each open set U ⊂ K and each T > 0 there exist p ∈ U and t ≥ T such that
ψt(p) ∈ U .

Proof. Let F ∈ C∞(T ∗M) be non-negative function with support con-
tained in U ⊂ K such that ∫

T ∗M

F > 0.
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Consider the open sets Un = ψnT (U). If these sets were all disjoint then one
could define a function F̃ ∈ C∞(M) through

F̃ (p) =

{
(F ◦ ψnT )(p) if p ∈ Un

0 otherwise

The support of F̃ would be a closed subset of K, hence compact. On the
other hand, one would have

∫

T ∗M
F̃ ≥

N∑

n=1

∫

T ∗M
F ◦ ψnT = N

∫

T ∗M
F

for all N ∈ N, which is absurd. We conclude that there must exist m,n ∈ N

(with, say, n > m) such that

Um ∩ Un '= ∅ ⇔ ψmT (U) ∩ ψnT (U) '= ∅ ⇔ U ∩ ψ(n−m)T (U) '= ∅.

Choosing t = (n−m)T and p ∈ U ∩ ψt(U) yields the result. !

We can use the symplectic structure of the contangent bundle to define
a new binary operation on the set of differentiable functions on T ∗M .

Definition 6.13. The Poisson bracket of two differentiable functions
F,G ∈ C∞(T ∗M) is {F,G} := XF (G).

Proposition 6.14. (C∞(T ∗M), {·, ·}) is a Lie algebra, and the map
that associates to a function F ∈ C∞(T ∗M) its Hamiltonian vector field
XF ∈ X(T ∗M) is a Lie algebra homomorphism:

(i) {F,G} = −{G,F};
(ii) {αF + βG,H} = α{F,H} + β{F,H};
(iii) {F, {G,H}} + {G, {H,F}} + {H, {F,G}} = 0;
(iv) X{F,G} = [XF ,XG]

(for any F,G,H ∈ C∞(T ∗M) and any α,β ∈ R).

Proof. We have

{F,G} = XF (G) = dG(XF ) = (−ι(XG)ω)(XF )

= −ω(XG,XF ) = ω(XF ,XG),

which proves the anti-symmetry and bilinearity of the Poisson bracket. On
the other hand,

ι(X{F,G}ω) = −d{F,G} = −d(XF · G) = −d(ι(XF )dG) = −LXF
dG

= LXF
(ι(XG)ω) = ι(LXF

XG)ω + ι(XG)LXF
ω

= ι([XF ,XG])ω

(cf. Exercise 3.8.8 in Chapter 2). Since ω is non-degenerate, we have

X{F,G} = [XF ,XG].
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Finally,

{F, {G,H}} + {G, {H,F}} + {H, {F,G}}
= {F,XG · H}− {G,XF · H} + X{F,G} · H
= XF · (XG · H)−XG · (XF · H)− [XF ,XG] · H = 0.

!

Remark 6.15. In general, we can define a symplectic manifold as a
pair (M,ω), where M is a differentiable manifold and ω ∈ Ω2(M) is closed
and nondegenerate (hence the dimension of M is necessarily even). All
definitions and results above are readily extended to arbitrary symplectic
manifolds.

Darboux’s Theorem guarantees that around each point of a symplec-
tic manifold (M,ω) there exist local coordinates (x1, . . . , xn, p1, . . . , pn) such
that

ω =
n∑

i=1

dpi ∧ dxi.

Therefore all symplectic manifolds are locally the same (i.e. there is no
symplectic analogue of the curvature).

Exercises 6.16.

(1) Prove Proposition 6.5
(2) Let (M, 〈·, ·〉) be a compact Riemannian manifold. Show that for

each normal ball B ⊂ M and each T > 0 there exist geodesics
c : R → M with ‖ċ(t)‖ = 1 such that c(0) ∈ B and c(t) ∈ B for
some t ≥ T .

(3) Let (x1, . . . , xn, p1, . . . , pn) be the usual local coordinates on T ∗M .
Compute Xxi , Xpi , {xi, xj}, {pi, pj} and {pi, xj}.

(4) Show that the Poisson bracket satisfies the Leibnitz rule

{F,GH} = {F,G}H + {F,H}G

for all F,G,H ∈ C∞(T ∗M).
(5) Let (M, 〈·, ·〉) be a Riemannian manifold, α ∈ Ω1(M) a 1-form and

U ∈ C∞(M) a differentiable function.
(a) Show that the Euler-Lagrange equations for the Lagrangian

L : TM → R given by

L(v) =
1

2
〈v, v〉 + ι(v)αp − U(p)

for v ∈ TpM yield the motions of the mechanical system
(M, 〈·, ·〉,F), where

F(v) = −(dU)p − ι(v)(dα)p

for v ∈ TpM .
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(b) Show that the mechanical energy E = K + U is conserved
along the motions of (M, 〈·, ·〉,F) (which is therefore called a
conservative mechanical system with magnetic term).

(c) Show that L is hyper-regular and compute the Legendre trans-
formation.

(d) Find the Hamiltonian H : T ∗M → R and write Hamilton’s
equations.

(e) Show that ω̃ = ω + π∗dα is a symplectic form on T ∗M , where
ω is the canonical symplectic form and π : T ∗M → M is the
natural projection (ω̃ is called a canonical symplectic form
with magnetic term).

(f) Show that the Hamiltonian flow generated by the function
H̃ ∈ C∞(T ∗M) with respect to the symplectic form ω̃ is given
by the equations






ẋi =
∂H̃

∂pi

ṗi = −
∂H̃

∂xi
+

n∑

j=1

(
∂αj

∂xi
−

∂αi

∂xj

)
ẋj

(g) The map F : T ∗M → T ∗M given by

F (ξ) = ξ − αp

for ξ ∈ T ∗
p M is a fiber-preserving diffeomorfism. Show that F

carries the Hamiltonian flow of H with respect to the canonical
symplectic form ω to the Hamiltonian flow of H̃ with respect
to the symplectic form ω̃, where

H̃(ξ) =
1

2
〈ξ, ξ〉+ U(p)

for ξ ∈ T ∗
p M . (Remark: Since the projections of the two flows on M

coincide, we see that the motion of a conservative mechanical system with mag-

netic term can be obtained by changing either the Lagrangian or the symplectic

form.)
(6) Show that:

(a) symplectic manifolds are even-dimensional and orientable;
(b) any orientable 2-manifold admits a symplectic structure;
(c) S2 is the only sphere which admits a symplectic structure.

(Hint: Use the fact that if n > 2 then any closed 2-form ω ∈ Ω2(Sn) is exact).
(7) Consider the symplectic structure on

S2 = {(x, y, z) ∈ R3 : x2 + y2 + z2 = 1}

determined by the usual volume form. Compute the Hamiltonian
flow generated by the function H(x, y, z) = z.
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7. Completely Integrable Systems

We now concentrate on studying the Hamiltonian flow of the Hamilton-
ian function H ∈ C∞(T ∗M). As in the previous section, all definitions and
results can be easily extended to arbitrary symplectic manifolds

We already know that H is constant along its Hamiltonian flow, so that
it suffices to study this flow along the level sets of H. This can be further
simplified if there exist additional nontrivial functions F ∈ C∞(T ∗M) such
that

XH · F = 0⇔ {H,F} = 0.

Definition 7.1. A function F ∈ C∞(T ∗M) is said to be a first inte-
gral of H if {H,F} = 0.

In general, there is no reason to expect that there should exist nontrivial
first integrals othen than H itself. In the special cases when these exist,
many times they satisfy additional conditions.

Definition 7.2. The functions F1, . . . , Fm ∈ C∞(M) are said to be

(i) in involution if {Fi, Fj} = 0 (i, j = 1, . . . ,m);
(ii) independent at α ∈ T ∗M if (dF1)α , . . . , (dFm)α ∈ T ∗

α(T ∗M) are
linearly independent covectors.

Proposition 7.3. If F1, . . . , Fm ∈ C∞(T ∗M) are in involution and are
independent at some point α ∈ T ∗M then m ≤ n.

We leave the proof of this proposition as an exercise. The maximal case
m = n is especially interesting.

Definition 7.4. The Hamiltonian H is said to be completely inte-
grable if there exist n first integrals F1, . . . , Fn in involution which are in-
dependent on an dense open set U ⊂ T ∗M .

Example 7.5.

(1) If M is 1-dimensional and dH '= 0 on a dense open set of T ∗M
then H is completely integrable.

(2) (Particle in a central field) Recall from Example 1.15 that a par-
ticle of mass m > 0 moving in a central field is described by the
Lagrangian function

L
(
r, θ, vr, vθ

)
=

1

2
m

[
(vr)2 + r2

(
vθ
)2
]

+ u(r).

corresponding to the Hamiltonian

H (r, θ, pr, pθ) =
pr

2

2m
+

pθ2

2mr2
+ u(r).

By Hamilton’s equations,

ṗθ = −
∂H

∂θ
= 0,
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and hence pθ is a first integral. Since

dH =

(
−

pθ2

mr3
+ u′(r)

)
dr +

pr

m
dpr +

pθ
mr2

dpθ,

we see that dH and dpθ are independent on the dense open set of
T ∗R2 formed by the points whose polar coordinates (r, θ, pr, pθ) are
well defined and do not verify

u′(r)−
pθ2

mr3
= pr = 0

(i.e. are not on a circular orbit – cf. Exercise 7.17.4). Therefore
this Hamiltonian is completely integrable.

Proposition 7.6. Let H be a completely integrable Hamiltonian with
first integrals F1, . . . , Fn in involution, independent in the dense open set
U ⊂ T ∗M , and such that XF1, . . . ,XFn are complete on U . Then each
nonempty level set

Lf = {p ∈ U : F1(p) = f1, . . . , Fn(p) = fn}

is a submanifold of dimension n, invariant for the Hamiltonian flow of H,
admitting a locally free action of Rn which is transitive on each connected
component.

Proof. All points in U are regular points of the map F : U → Rn

given by F (α) = (F1(α), . . . , Fn(α)); therefore all nonempty level sets Lf =
F−1(f) are submanifolds of dimension n.

Since XH · Fi = 0 for i = 1, . . . , n, the level sets Lf are invariant for the
flow of XH . In fact, we have XFi · Fj = {Fi, Fj} = 0, and hence these level
sets are invariant for the flow of XFi . Moreover, these flows commute, as
[XFi ,XFj ] = X{Fi,Fj} = 0.

Consider the map A : Rn × Lf → Lf given by

A(t1, . . . , tn,α) = ψ1,t1 ◦ . . . ◦ ψn,tn(α),

where ψi,t : Lf → Lf is the flow of XFi . Since these flows commute, this
map defines an action of Rn on Lf . On the other hand, for each α ∈ Lf

the map Aα : Rn → Lf given by Aα(t1, . . . , tn) = A(t1, . . . , tn,α) is a local
diffeomorphism at the origin, as

(dAα)0 (ei) =
d

dt

∣∣∣∣
t=0

ψi,t(α) = (XFi)α

and the vector fields XFi are linearly independent. Therefore the action is
locally free, meaning that the isotropy groups are discrete. Also, the action
is locally transitive, and hence transitive on each connected component. !

Proposition 7.7. Let Γ be a discrete subgroup of Rn. Then there
exist k ∈ {0, 1, . . . , n} linearly independ vectors e1, . . . , ek such that Γ =
spanZ{e1, . . . , ek}.
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Proof. If Γ = {0} then we are done. If not, let e ∈ Γ \ {0}. Since Γ is
discrete, the set

Γ ∩ {λe | 0 < λ ≤ 1}
is finite (and nonempty). Let e1 be the element in this set which is closest
to 0. Then

Γ ∩ spanR{e} = spanZ{e1}.
If Γ = spanZ{e1} then we are done. If not, let e ∈ Γ \ spanZ{e1}. Then the
set

Γ ∩ {λe + λ1e1 | 0 < λ,λ1 ≤ 1}
is finite (and nonempty). Let e2 be the element in this set which is closest
to spanR{e1}. Then

Γ ∩ spanR{e, e1} = spanZ{e1, e2}.

Iterating this procedure yields the result. !

Proposition 7.8. Let Lα
f be the connected component of α ∈ Lf . Then

Lp
f is diffeomorphic to T k×Rn−k, where k is the number of generators of the

isotropy subgroup Γα. In particular, if Lα
f is compact then it is diffeomorphic

to the n-dimensional torus T n.

Proof. Since the action A : Rn × Lα
f → Lα

f is transitive, the local

diffeomorphism Aα : Rn → Lp
α is surjective. On the other hand, because Γα

is discrete, the action of Γα on Rn by translation is free and proper, and we
can form the quotient Rn/Γα, which is clearly diffeomorphic to T k × Rn−k.
Finally, it is easily seen that Aα induces a diffeomorphism Rn/Γα ∼= Lα

f . !

Definition 7.9. A linear flow on the torus T n = Rn/Zn is the projec-
tion of the flow ψt : Rn → Rn given by

ψt(x) = x + νt.

The frequencies of the linear flow are the components ν1, . . . , νn of ν.

Theorem 7.10. (Arnold-Liouville) Let H be a completely integrable
Hamiltonian with n first integrals F1, . . . , Fn ∈ C∞(T ∗M) in involution,
independent on the dense open set U ⊂ T ∗M . If the connected components
of the level sets of the map (F1, . . . , Fn) : U → Rn are compact then they are
n-dimensional tori, invariant for the flow of XH . The flow of XH on these
tori is a linear flow.

Proof. All that remains to be seen is that the flow of XH on the in-
variant tori is a linear flow. It is clear that the flow of each XFi is linear.
Since XH is tangent to the invariant tori, we have XH =

∑n
i=1 f iXFi for

certain functions f i. Now

0 = X{Fi,H} = [XFi ,XH ] =
n∑

j=1

(XFi · f
j)XFj ,
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and hence each function f i is constant on the invariant torus. We conclude
that the flow of XH is linear. !

Definition 7.11. Let ψt : T n → T n be a linear flow. The time average
of a function f ∈ C∞(T n) along ψy is the map

f(x) = lim
T→+∞

1

T

∫ T

0
f(ψt(x))dt

(defined on the set of points x ∈ T n where the limit exists).

Definition 7.12. The frequencies ν ∈ Rn of a linear flow ψt : T n → T n

are said to be independent if they are linearly independent over Q, i.e. if
〈k, ν〉 '= 0 for all k ∈ Zn \ {0}.

Theorem 7.13. (Birkhoff) If the frequencies ν ∈ Rn of a linear flow
ψt : T n → T n are independent then the time average of any function f ∈
C∞(T n) exists for all x ∈ T n and

f(x) =

∫

T n

f.

Proof. Since T n = Rn/Zn, the differentiable functions on the torus
arise from periodic differentiable functions on Rn, which can be expanded
as Fourier series. Therefore it suffices to show that the theorem holds for
f(x) = e2πi〈k,x〉 with k ∈ Zn.

If k = 0 then both sides of the equality are 1, and the theorem holds.
If k '= 0, the right-hand side of the equality is zero, and the left-hand

side is

f(x) = lim
T→+∞

1

T

∫ T

0
e2πi〈k,x+νt〉dt

= lim
T→+∞

1

T
e2πi〈k,x〉 e

2πi〈k,ν〉T − 1

2πi〈k, ν〉
= 0

(where we used the fact that 〈k, ν〉 '= 0). !

Corollary 7.14. If the frequencies of a linear flow ψt : T n → T n are
independent then {ψt(x) | t ≥ 0} is dense on the torus for all x ∈ T n.

Proof. If {ψt(x) | t ≥ 0} were not dense then it would not intersect an
open set U ⊂ T n. Therefore any nonnegative function f ∈ C∞(T n) with
nonempty support contained in U would satisfy f(x) = 0 and

∫
T n f > 0,

contradicting Birkhoff’s Theorem. !

Corollary 7.15. If the frequencies of a linear flow ψt : T n → T n are
independent and n ≥ 2 then ψt(x) is not periodic.

Remark 7.16. The qualitative behaviour of the Hamiltonian flow gen-
erated by completely integrable Hamiltonians is completely understood.
Complete integrability is however a very strong condition, not satisfied by
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generic Hamiltonians. The Komolgorov-Arnold-Moser (KAM) Theo-
rem guarantees a small measure of genericity by establishing that a large
fraction of the invariant tori of a completely integrable Hamiltonians sur-
vives under perturbation, the flow on these tori remaining linear with the
same frequencies. On the other hand, many invariant tori, including those
whose frequencies are not independ (resonant tori), are tipically destroyed.

Exercises 7.17.

(1) Show that if F,G ∈ C∞(T ∗M) are first integrals, then {F,G} is
also a first integral.

(2) Prove Proposition 7.3
(3) Consider a revolution surface M ⊂ R3 given in cylindrical coordi-

nates (r, θ, z) by

r = f(z),

where f : (a, b) → (0,+∞) is differentiable.
(a) Show that the geodesics of M are the critical points of the

action determined by the Lagrangian L : TM → R given in
local cordinates by

L(θ, z, θ̇, ż) =
1

2

(
(f(z))2θ̇2 +

(
(f ′(z))2 + 1

)
ż2
)

.

(b) Show that the curves given in local coordinates by θ = constant
or f ′(z) = 0 are images of geodesics.

(c) Compute the Legendre tranformation, show that L is hyper-
regular and write an expression in local coordinates for the
Hamiltonian H : T ∗M → R.

(d) Show that H is completely integrable.
(e) Show that the projection on M of the invariant set

L(E,l) = H−1(E) ∩ pθ
−1(l)

(E, l > 0) is given in local coordinates by

f(z) ≥
l√
2E

.

Use this fact to conclude that if f has a strict local maximum
at z = z0 then the geodesic whose image is z = z0 is stable,
i.e. geodesic with initial condition close to (θ0, z0, 1, 0) ∈ TM
stay close to z = z0.

(4) Recall from Example 7.5 that a particle of mass m > 0 moving in a
central field is described by the completely integrable Hamiltonian
function

H (r, θ, pr, pθ) =
pr

2

2m
+

pθ2

2mr2
+ u(r).

(a) Show that there exist circular orbits of radius r0 whenever
u′(r0) > 0.
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(b) Show that the set of points where dH and dpθ are not inde-
pendent is the unions of these circular orbits.

(c) Show that the projection of the invariant set

L(E,l) = H−1(E) ∩ pθ
−1(l)

on R2 is given in local coordinates by

u(r) +
l2

2r2
≤ E.

(d) Conclude that if u′(r0) > 0 and

u′′(r0) +
3u′(r0)

r0
> 0

the the circular orbit of radius r0 is stable.
(5) In General Relativity, the motion of a particle in the gravitational

field of a point mass M > 0 is given by the Lagrangian L : TU → R

written in cylindrical coordinates (u, r, θ) as

L(u, r, θ, u̇, ṙ, θ̇) = −
1

2

(
1−

2M

r

)
u̇2 +

1

2

(
1−

2M

r

)−1

ṙ2 +
1

2
r2θ̇2,

where U ⊂ R3 is the open set given by r > 2M (the coordinate u
is called the time coordinate, and in general is different from the
proper time of the particle, i.e. the parameter t of the curve).
(a) Show that L is hyper-regular and compute the corresponding

Hamiltoninan H : T ∗U → R.
(b) Show that H is completely integrable.
(c) Show that there exist circular orbits of radius r0 for any r0 >

2M , with H < 0 for r0 > 3M (speed lower than the speed of
light), H = 0 for r0 = 3M (speed equal to the speed of light)
and H > 0 for r0 < 3M (speed higher than the speed of light).

(d) Show that the set of points where dH, dpu and dpθ are not
independent is the unions of these circular orbits.

(e) Show that the projection of the invariant cylinder

L(E,k,l) = H−1(E) ∩ pu
−1(k) ∩ pθ

−1(l)

on U is given in local coordinates by

l2

r2
−
(

1−
2M

r

)−1

k2 ≤ 2E.

(f) Conclude that if r0 > 6M then the circular orbit of radius r0

is stable.
(6) Recall that the Lagrange top is the mechanical system determined

by the Lagrangian L : TSO(3) → R given in local coordinates by

L =
I1

2

(
θ̇2 + ϕ̇2 sin2 θ

)
+

I3

2

(
ψ̇ + ϕ̇ cos θ

)2
−Mgl cos θ,
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where (θ,ϕ,ψ) are the Euler angles, M is the top’s mass and l is
the distance from the fixed point to the center of mass.
(a) Compute the Legendre transformation, show that L is hyper-

regular and write an expression in local coordinates for the
Hamiltonian H : T ∗SO(3) → R.

(b) Prove that H is completely integrable.
(c) Show that the solutions found in Exercise 3.20.13 traverse de-

generate 2-dimensional tori. Use this fact to argue that these
solutions are stable.

(7) Consider the sequence formed by the first digit of the decimal ex-
pansion of each of the integers 2n for n ∈ N0:

1, 2, 4, 8, 1, 3, 6, 1, 2, 5, 1, 2, 4, 8, 1, 3, 6, 1, 2, 5, . . .

The purpose of this exercise is to answer the following question: is
there a 7 in this sequence?
(a) Show that if ν ∈ R \ Z then

lim
n→+∞

1

n + 1

n∑

k=0

e2πiνk = 0.

(b) Prove the following discrete version of Birkhoff’s theorem: if
a differentiable function f : R → R is periodic with period 1
and ν ∈ R \ Q then for all x ∈ R

lim
n→+∞

1

n + 1

n∑

k=0

f(x + νk) =

∫ 1

0
f(x)dx.

(c) Show that log 2 is an irrational multiple of log 10.
(d) Is there a 7 in the sequence above?

8. Notes on Chapter 5

8.1. Bibliographical notes. The material in this chapter follows [Oli02]
and [Arn97] closely. There are of course many other excellent books on Me-
chanics, both traditional [GPS02] and geometric [AM78, MR99]. Non-
holonomic systems (including control theory) are treated in greater detail
in [Blo03, BL05]. For more information on completely integrable systems
see [CB97, Aud96].





CHAPTER 6

Relativity

In this chapter we study one of the most important applications of Rie-
mannian geometry, namely General Relativity.

In Section 1 we discuss Galileo spacetime, the geometric structure
underlying Newtonian mechanics, which hinges on the existence of arbitrar-
ily fast motions; if, however, a maximum speed is assumed to exist, then it
must be replaced by Minkowski spacetime, whose geometry is studied in
Special Relativity (Section 2).

Section 3 shows how to include Newtonian gravity in Galileo spacetime
by introducing the symmetric Cartan connection. By trying to generalize
this procedure we are led to consider general Lorentzian manifolds sat-
isfying the Einstein field equation, of which Minkowski spacetime is the
simplest example (Section 4).

Other simple solutions are analyzed in the subsequent sections: the
Schwarzschild solution, modeling the gravitational field outside spher-
ically symmetric bodies or black holes (Section 5), and the Friedmann-
Robertson-Walker models of cosmology, describing the behavior of the
Universe as a whole (Section 6).

This chapter concludes with a discussion of the causal structure of
a Lorentz manifold (Section 7), in preparation for the proof of one of the
Hawking-Penrose singularity theorems (Section 8).

1. Galileo Spacetime

The set of all physical occurrences can be modeled as a connected 4-
dimensional manifold M , which we call spacetime, and whose points we
refer to as events. We assume that M is diffeomorphic to R4, and that
there exists a special class of diffeomorphisms x : M → R4, called iner-
tial frames. An inertial frame yields global coordinates (x0, x1, x2, x3) =
(t, x, y, z). We call the coordinate t : M → R the time function associated
to a given inertial frame. Two events p, q ∈ M are said to be simultaneous
on that frame if t(p) = t(q). The level functions of the time function are
therefore called simultaneity hypersurfaces. The distance between two
simultaneous events p, q ∈M is given by

d(p, q) =

√√√√
3∑

i=1

(xi(p)− xi(q))2.

211
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The motion of a particle is modeled by a smooth curve c : I → M such
that dt(ċ) '= 0. A special class of motion is the motions of s free particle,
i.e., a particle which is not acted upon by any external force. The special
property that inertial frames have to satisfy is that the motions of a free
particle is always represented by a straight line. In other words, free particles
move with constant velocity relative to inertial frames (Newton’s law of
inertia). In particular, motions of particles at rest in an inertial frame are
motions of free particles.

Inertial frames are not unique: if x : M → R4 is an inertial frame and
T : R4 → R4 is an invertible affine transformation then T ◦ x is another
inertial frame. In fact, any two inertial frames must be related by such an
affine transformation (cf. Exercise 1.1.2).

The Galileo spacetime, which underlies Newtonian mechanics, is ob-
tained by further requiring that inertial frames should:

(1) agree on the time interval between any two events (and hence on
whether two given events are simultaneous);

(2) agree on the distance between simultaneous events.

Therefore, up to translations and reflections, all coordinate transfor-
mations between inertial frames belong to the Galileo group Gal(4), the
group of linear orientation-preserving maps which preserve time functions
and the Euclidean structures of the simultaneity hypersurfaces.

When analyzing problems in which only one space dimension is impor-
tant, we can use a simpler 2-dimensional Galileo spacetime. If (t, x) are
the spacetime coordinates associated to an inertial frame and T ∈ Gal(2)
is a Galileo change of basis to a new inertial frame with global coordinates
(t′, x′), then

∂

∂t′
:= T

(
∂

∂t

)
=

∂

∂t
+ v

∂

∂x

∂

∂x′ := T

(
∂

∂x

)
=

∂

∂x

with v ∈ R, since we must have

dt

(
∂

∂t′

)
= dt′

(
∂

∂t′

)
= 1,

and we want the orientation-preserving map T to be an isometry of {t =
0} ≡ {t′ = 0}. The change of basis matrix is then

S =

(
1 0
v 1

)
,

with inverse

S−1 =

(
1 0
−v 1

)
.
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Therefore the corresponding coordinate transformation is
{

t′ = t

x′ = x− vt
(v ∈ R)

(Galileo transformation), and hence the new frame is moving with veloc-
ity v with respect to the old one (as the curve x′ = 0 is the curve x = vt).
Notice that S−1 is obtained from S simply by reversing the sign of v, as one
would expect, as the old frame must be moving relative to the new one with
velocity −v. We shall call this observation the Relativity Principle.

Exercises 1.1.

(1) (Lucas Problem) By the late 19th century there existed a regular
transatlantic service between Le Havre and New York. Every day
at noon (GMT) a transatlantic ship would depart Le Havre and
another one would depart New York. The journey took exactly
seven days, so that arrival would also take place at noon (GMT).
Therefore, a transatlantic ship traveling from Le Havre to New
York would meet a transatlantic ship just arriving from New York
at departure, and another one just leaving New York on arrival.
Besides these, how many other ships would it meet? At what times?
What was the total number of ships needed for this service? (Hint:

Represent the ships’ motions as curves in a 2-dimensional Galileo spacetime).
(2) Let f : Rn → Rn (n ≥ 2) be a bijection that takes straight lines to

straight lines. Show that f must be an affine function, i.e., that

f(x) = Ax + b

for all x ∈ Rn, where A ∈ GL(n, R) and b ∈ Rn.
(3) Prove that the Galileo group Gal(4) is the subset of GL(4, R)

formed by matrices of the form
(

1 0
v R

)

where v ∈ R3 and R ∈ SO(3). Conclude that Gal(4) is isomorphic
to the group of orientation-preserving isometries of the Euclidean
3-space R3.

(4) Show that Gal(2) is a subgroup of Gal(4).

2. Special Relativity

The Galileo spacetime assumption that all inertial observers should agree
on the time interval between two events is intimately connected with the pos-
sibility of synchronizing clocks in different frames using signals of arbitrarily
high speeds. Experience reveals that this is actually impossible. Instead,
there appears to be a maximum propagation speed, the speed of light, which
is the same at all events and in all directions, and that we can therefore take
to be 1 by choosing suitable units (for instance, measuring time in years and
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distance in light-years). Therefore a more accurate requirement is that any
two inertial frames should

(1’) agree on whether a given particle is moving at the speed of light.

Notice that we no longer require that different inertial frames should
agree on the time interval between two events, or even if two given events
are simultaneous. However we still require that any two inertial frames
should

(2’) agree on the distance between events which are simultaneous in both
frames.

Fix a particular inertial frame with coordinates (x0, x1, x2, x3). A free
particle moving at the speed of light will be a straight line whose tangent
vector

v = v0 ∂

∂x0
+ v1 ∂

∂x1
+ v2 ∂

∂x2
+ v3 ∂

∂x3

must satisfy

(v0)2 = (v1)2 + (v2)2 + (v3)2

(since the distance travelled must equal the elapsed time). In other words,
v must satisfy 〈v, v〉 = 0, where

〈v,w〉 = −v0w0 + v1w1 + v2w2 + v3w3 =
3∑

µ,ν=0

ηµνv
µwν ,

with (ηµν) = diag(−1, 1, 1, 1). Notice that 〈·, ·〉 is a symmetric non-degenerate
tensor which is not positive definite; we call it the Minkowski (pseudo)
inner product. The coordinate basis

{
∂

∂x0
,

∂

∂x1
,

∂

∂x2
,

∂

∂x3

}

is an orthonormal basis for this inner product (cf. Exercise 2.2.1), as
〈

∂

∂xµ
,

∂

∂xν

〉
= ηµν

(µ, ν = 0, 1, 2, 3).
By assumption (1’), given a motion of a free particle at the speed of light,

all inertial observers must agree that the particle is moving at this (maxi-
mum) speed. Therefore, if (x0′, x1′, x2′, x3′) are the coordinates associated
to another inertial frame, the vectors

∂

∂x0′ ±
∂

∂xi′

(i = 1, 2, 3) must be tangent to a motion at the speed of light, i.e.,
〈

∂

∂x0′ ±
∂

∂xi′ ,
∂

∂x0′ ±
∂

∂xi′

〉
= 0.
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This implies that
〈

∂

∂x0′ ,
∂

∂x0′

〉
= −

〈
∂

∂xi′ ,
∂

∂xi′

〉
;

〈
∂

∂x0′ ,
∂

∂xi′

〉
= 0.

Similarly, we must have
〈√

2
∂

∂x0′ +
∂

∂xi′ +
∂

∂xj ′ ,
√

2
∂

∂x0′ +
∂

∂xi′ +
∂

∂xj ′

〉
= 0

(i '= j), and hence 〈
∂

∂xi′ ,
∂

∂xj ′

〉
= 0.

Since 〈·, ·〉 is non-degenerate, we conclude that there must exist k '= 0 such
that 〈

∂

∂xµ′ ,
∂

∂xν ′

〉
= kηµν

(µ, ν = 0, 1, 2, 3).
The simultaneity hypersurfaces {x0 = const.} and {x0′ = const.} are

3-planes in R4. If they are parallel, they coincide; otherwise, they must
intersect along 2-planes of events which are simultaneous in both frames.
Let v '= 0 be a vector tangent to one of these 2-planes. Then dx0(v) =
dx0′(v) = 0, and hence

v =
3∑

i=1

vi ∂

∂xi
=

3∑

i=1

vi′ ∂

∂xi′ .

By assumption (2’), we must have

3∑

i=1

(
vi
)2

=
3∑

i=1

(
vi′)2 .

Consequently, from

3∑

i=1

(
vi
)2

= 〈v, v〉 =

〈
3∑

i=1

vi′ ∂

∂xi′ ,
3∑

i=1

vi′ ∂

∂xi′

〉

= k
3∑

i=1

(
vi′)2

we conclude that we must have k = 1. Therefore the coordinate basis
{

∂

∂x0′ ,
∂

∂x1′ ,
∂

∂x2′ ,
∂

∂x3′

}

must also be an orthonormal basis. In particular, this means that the
Minkowski inner product 〈·, ·〉 is well defined (i.e., is independent of the in-
ertial frame we choose to define it), and that we can identify inertial frames
with orthonormal bases of (R4, 〈·, ·〉).
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Definition 2.1. (R4, 〈·, ·〉) is said to be the Minkowski spacetime.

The length of a vector v ∈ R4 is |v| = |〈v, v〉|
1
2 .

The study of the geometry of Minkowski spacetime is usually called
Special Relativity. A vector v ∈ R4 is said to be:

(1) timelike if 〈v, v〉 < 0; in this case, there exists an inertial frame
(x0′, x1′, x2′, x3′) such that

v = |v|
∂

∂x0′

(cf. Exercise 2.2.1), and consequently any two events p and p +
v occur on the same location in this frame, separated by a time
interval |v|;

(2) spacelike if 〈v, v〉 > 0; in this case, there exists an inertial frame
(x0′, x1′, x2′, x3′) such that

v = |v|
∂

∂x1′

(cf. Exercise 2.2.1), and consequently any two events p and p + v
occur simultaneously in this frame, a distance |v| apart;

(3) lightlike, or null, if 〈v, v〉 = 0; in this case any two events p and
p+v are connected by a motion at the speed of light in any inertial
frame.

The set of all null vectors is called the light cone, and in a way is the
structure that replaces the absolute simultaneity hypersurfaces of Galileo
spacetime. It is the boundary of the set of all timelike vectors, which has
two connected components; we represent by C(v) the connected component
of a given timelike vector v. A time orientation for Minkowski spacetime
is a choice of one of these components, whose elements are said to be future-
pointing; this is easily extended to nonzero null vectors.

An inertial frame (x0, x1, x2, x3) determines a time orientation, namely
that for which the future-pointing timelike vectors are the elements of C

(
∂
∂x0

)
.

Up to translations and reflections, all coordinate transformations between in-
ertial frames belong to the (proper) Lorentz group SO0(3, 1), the group of
linear maps which preserve orientation, time orientation and the Minkowski
inner product (hence the light cone).

A curve c : I ⊂ R → R4 is said to be timelike if 〈ċ, ċ〉 < 0. Timelike
curves represent motions of particles with nonzero mass, since only for these
curves is it possible to find an inertial frame in which the particle is instanta-
neously at rest. In other words, massive particles must always move at less
than the speed of light (cf. Exercise 2.2.13). The proper time measured
by the particle between events c(a) and c(b) is

τ(c) :=

∫ b

a

|ċ(s)|ds.
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p

null vector

timelike future-pointing vector

spacelike vector

∂
∂t

∂
∂x

∂
∂y

Figure 1. Minkowski geometry (it is traditional represented
with the t-axis pointing upwards).

When analyzing problems in which only one space dimension is impor-
tant, we can use a simpler 2-dimensional Minkowski spacetime. If (t, x) are
the spacetime coordinates associated to an inertial frame and T ∈ SO0(1, 1)
is a Lorentzian change of basis to a new inertial frame with global coordi-
nates (t′, x′), we must have

∂

∂t′
:= T

(
∂

∂t

)
= cosh u

∂

∂t
+ sinhu

∂

∂x

∂

∂x′ := T

(
∂

∂x

)
= sinh u

∂

∂t
+ cosh u

∂

∂x

with u ∈ R (cf. Exercise 2.2.3). The change of basis matrix is

S =

(
cosh u sinh u
sinhu cosh u

)
,

with inverse

S−1 =

(
cosh u − sinhu
− sinh u cosh u

)
.

Therefore the corresponding coordinate transformation is
{

t′ = t cosh u− x sinh u

x′ = x cosh u− t sinhu

(Lorentz transformation), and hence the new frame is moving with ve-
locity v = tanh u with respect to the old one (as the curve x′ = 0 is the curve
x = vt; notice that |v| < 1). The matrix S−1 is obtained from S simply
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by reversing the sign of u, or, equivalently, of v; therefore, the Relativity
Principle still holds for Lorentz transformations.

Moreover, since

cosh u =
(
1− v2

)− 1
2 ;

sinhu = v
(
1− v2

)− 1
2 ,

one can also write the Lorentz transformation as
{

t′ =
(
1− v2

)− 1
2 t− v

(
1− v2

)− 1
2 x

x′ =
(
1− v2

)− 1
2 x− v

(
1− v2

)− 1
2 t

.

In everyday life situations, we deal with frames whose relative speed is much
smaller that the speed of light, |v|@ 1, and with events for which |x|@ |t|
(distances traveled by particles in one second are much smaller that 300,000
kilometers). An approximate expression for the Lorentz transformations in
these situations is then {

t′ = t

x′ = x− vt

which is just a Galileo transformation. In other words, the Galileo group is
a convenient low-speed approximation of the Lorentz group.

Suppose that two distinct events p and q occur in the same spatial loca-
tion in the inertial frame (t′, x′),

q − p = ∆t′
∂

∂t′
= ∆t′ cosh u

∂

∂t
+ ∆t′ sinhu

∂

∂x
= ∆t

∂

∂t
+ ∆x

∂

∂x
.

We see that the time separation between the two events in a different inertial
frame (t, x) is bigger,

∆t = ∆t′ cosh u > ∆t′.

Loosely speaking, moving clocks run slower when compared to stationary
ones (time dilation).

If, on the other hand, two distinct events p and q occur simultaneously
in the inertial frame (t′, x′),

q − p = ∆x′ ∂

∂x′ = ∆x′ sinhu
∂

∂t
+ ∆x′ cosh u

∂

∂x
= ∆t

∂

∂t
+∆x

∂

∂x
,

then they will not be simultaneous in the inertial frame (t, x), where the
time difference between them is

∆t = ∆x′ sinhu '= 0

(relativity of simultaneity).
Finally, consider two particles at rest in the inertial frame (t′, x′). Their

motions are the lines x′ = x′
0 and x′ = x′

0 + l′. In the inertial frame (t, x),
these lines have equations

x =
x′

0

cosh u
+ vt and x =

x′
0 + l′

cosh u
+ vt,
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which describe motions of particles moving with velocity v and separated
by a distance

l =
l′

cosh u
< l′.

Loosely speaking, moving objects shrink in the direction of their motion
(length contraction).

Exercises 2.2.

(1) Let 〈·, ·〉 be a nondegenerate symmetric 2-tensor on an n-dimensional
vector space V . Show that there always exists an orthonor-
mal basis {v1, . . . , vn}, i.e. a basis such that 〈vi, vj〉 = εij , where
εii = ±1 and εij = 0 for i '= j. Moreover, show that s =

∑n
i=1 εii

(known as the signature of 〈·, ·〉) does not depend on the choice
of orthonormal basis.

(2) Consider the Minkowski inner product 〈·, ·〉 on R4 with a given time
orientation.
(a) Let v ∈ R4 be timelike and future-pointing. Show that:

(i) if w ∈ R4 is timelike or null and future-pointing then
〈v,w〉 < 0;

(ii) if w ∈ R4 is timelike or null and future-pointing then
v + w is timelike and future-pointing;

(iii) {v}⊥ = {w ∈ R4 | 〈v,w〉 = 0} is a hyperplane containing
only spacelike vectors (and the zero vector).

(b) Let v ∈ R4 be null and future-pointing. Show that:
(i) if w ∈ R4 is timelike or null and future-pointing then
〈v,w〉 ≤ 0, with equality iff w = λv for some λ > 0;

(ii) if w ∈ R4 is timelike or null and future-pointing then
v + w is timelike or null and future-pointing, being null
iff w = λv for some λ > 0;

(iii) {v}⊥ is a hyperplane containing only spacelike and null
vectors, all of which are multiples of v.

(c) Let v ∈ R4 be spacelike. Show that {v}⊥ is a hyperplane
containing timelike, null and spacelike vectors.

(3) Show that if (t, x) are the spacetime coordinates associated to an
inertial frame and T ∈ SO0(1, 1) is a Lorentzian change of basis to
a new inertial frame with global coordinates (t′, x′), we must have

∂

∂t′
= T

(
∂

∂t

)
= cosh u

∂

∂t
+ sinhu

∂

∂x

∂

∂x′ = T

(
∂

∂x

)
= sinhu

∂

∂t
+ cosh u

∂

∂x

for some u ∈ R.
(4) (Twin Paradox) Twins Alice and Bob separate on their 20th an-

niversary: while Alice stays on Earth (which is approximately an
inertial frame), Bob leaves at 80% of the speed of light towards a
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planet 8 light-years away from Earth, which he therefore reaches 10
years later (as measured in Earth’s frame). After a short stay, Bob
returns to Earth, again at 80% of the speed of light. Consequently,
Alice is 40 years old when they meet again.
(a) How old is Bob at this meeting?
(b) How do you explain the asymmetry in the twin’s ages? Notice

that, from Bob’s point of view, he is the one who is stationary,
while the Earth moves away and back again.

(c) Imagine that each twin has a very powerful telescope. What
does each of them see? In particular, how much time elapses
for each of them as they see their twin experiencing one year?
(Hint: Notice that light rays are represented by null lines, i.e. lines whose

tangent vector is null; therefore, if event p in Alice’s history is seen by Bob at

event q then there must exist a future-directed null line connecting p to q).
(5) (Car and Garage Paradox) A 5-meter long car moves at 80% of light

speeed towards a 4-meter long garage with doors at both ends.
(a) Compute the length of the car in the garage’s frame, and show

that if the garage doors are closed at the right time the car
will be completely inside the garage for a few moments.

(b) Compute the garage’s length in the car’s frame, and show that
in this frame the car is never completely inside the garage.
How do you explain this apparent contradiction?

(6) Let (t′, x′) be an inertial frame moving with velocity v with respect
to the inertial frame (t, x). Prove the velocity addition formula:
if a particle moves with velocity w′ in the frame (t′, x′), the particle’s
velocity in the frame (t, x) is

w =
w′ + v

1 + w′v
.

What happens when w′ = ±1?
(7) (Hyperbolic angle)

(a) Show that

(i) so(1, 1) =

{(
0 u
u 0

)
| u ∈ R

}
;

(ii) exp

(
0 u
u 0

)
=

(
cosh u sinhu
sinh u cosh u

)
= S(u);

(iii) S(u)S(u′) = S(u + u′).
(b) Consider the Minkowski inner product 〈·, ·〉 on R2 with a given

time orientation. If v,w ∈ R2 are unit timelike future-pointing
vectors then there exists a unique u ∈ R such that w = S(u)v
(which we call the hyperbolic angle between v and w). Show
that:

(i) |u| is the length of the curve formed by all unit timelike
vectors between v and w;
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(ii) 1
2 |u| is the area of the region swept by the position vector
of the curve above;

(iii) hyperbolic angles are additive;
(iv) the velocity addition formula of Exercise 6 is simply the

formula for the hyperbolic tangent of a sum.
(8) (Generalized Twin Paradox) Let p, q ∈ R4 be two events connected

by a timelike straight line l. Show that the proper time between
p and q measured along l is bigger than the proper time between
p and q measured along any other timelike curve connecting these
two events. In other words, if an inertial observer and a (necessar-
ily) accelerated observer separate at a given event and are rejoined
at a later event, then the inertial observer always measures a big-
ger (proper) time interval between the two events. In particular,
prove the reversed triangle inequality: if v,w ∈ R4 are timelike
vectors with w ∈ C(v) then |v + w| ≥ |v| + |w|.

(9) (Doppler effect) Use the spacetime diagram in Figure 2 to show that
an observer moving with velocity v away from a source of light of
period T measures the period to be

T ′ = T

√
1 + v

1− v

(Remark: This effect allows astronomers to measure the radial velocity of stars and

galaxies relative to the Earth).

t

x

x = vt

T

T ′

Figure 2. Doppler effect.

(10) (Aberration) Suppose that the position in the sky of the star Sir-
ius makes an angle θ with the x-axis of a given inertial observer.
Show that the angle θ′ measured by a second inertial observer mov-
ing with velocity v = tanh u along the x-axis of the first observer
satisfies

tan θ′ =
sin θ

cosh u cos θ + sinhu
.
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(11) Minkowski geometry can be used in many contexts. For instance,
let l = R ∂

∂t represent the motion of an observer at rest in the
atmosphere and choose units such that the speed of sound is 1.
(a) Let τ : R4 → R the map such that τ(p) is the t coordinate of

the event in which the observer hears the sound generated at
p. Show that the level surfaces of τ are the conical surfaces

τ−1(t0) =

{
p ∈ R4 | t0

∂

∂t
− p is null and future-pointing

}
.

(b) Show that c : I → R4 represents the motion of a supersonic
particle iff

〈
ċ,

∂

∂t

〉
< 0 and 〈ċ, ċ〉 > 0.

(c) Argue that the observer hears a sonic boom whenever c is tan-
gent to a surface τ = constant. Assuming that c is a straight
line, what does the observer hear before and after the boom?

(12) Let c : R → R4 be the motion of a particle in Minkowski spacetime
parametrized by the proper time τ .
(a) Show that

〈ċ, ċ〉 = −1

and

〈ċ, c̈〉 = 0.

Conclude that c̈ is the particle’s acceleration as measured in
the particle’s instantaneous rest frame, i.e., in the inertial
frame (t, x, y, z) for which ċ = ∂

∂t . For this reason, c̈ is called
the particle’s proper acceleration, and |c̈| is interpreted as
the acceleration measured by the particle.

(b) Compute the particles’s motion assuming that it is moving
along the x-axis with constant proper acceleration |c̈| = a.

(c) Consider a spaceship launched from Earth towards the center
of the Galaxy (at a distance of 30,000 light-years) with a = g,
where g represents the gravitational acceleration at the surface
of the Earth. Using the fact that g > 1 year−1 in units such
that c = 1, compute the proper time measured aboard the
spaceship for this journey. How long would the journey take
as measured from Earth?

(13) (The faster-than-light missile) While conducting a surveillance mis-
sion on the home planet of the wicked Klingons, the Enterprise un-
covers their evil plan to build a faster-than-light missile and attack
Earth, 12 light-years away. Captain Kirk immediately orders the
Enterprise back to Earth at its top speed (12

13 of the speed of light),
and at the same time sends out a radio warning. Unfortunately, it
is too late: eleven years later (as measured by them), the Klingons
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launch their missile, moving at 12 times the speed of light. There-
fore the radio warning, traveling at the speed of light, reaches Earth
at the same time as the missile, twelve years after its emission, and
the Enterprise arrives on the ruins of Earth one year later.
(a) How long does the Enterprise trip take according to its crew?
(b) On Earth’s frame, let (0, 0) be the (t, x) coordinates of the

event in which the Enterprise discovers the Klingon plan, (11, 0)
the coordinates of the missile’s launch, (12, 12) the coordinates
of Earth’s destruction and (13, 12) the coordinates of the En-
terprise’s arrival on Earth’s ruins. Compute the (t′, x′) coor-
dinates of the same events on the Enterprise’s frame.

(c) Plot the motions of the Enterprise, the Klingon planet, Earth,
the radio signal and the missile on Enterprise’s frame. Does
the missile motion according to the Enterprise crew make
sense?

3. The Cartan Connection

Let (x0, x1, x2, x3) = (t, x, y, z) be an inertial frame on Galileo spacetime,
which we can therefore identify with R4. Recall that Newtonian gravity
is described by a gravitational potential Φ : R4 → R. This potential
determines the motions of free-falling particles through

d2xi

dt2
= −

∂Φ

∂xi

(i = 1, 2, 3), and is in turn determined by the matter density function
ρ : R4 → R through the Poisson equation

∂2Φ

∂x2
+

∂2Φ

∂y2
+

∂2Φ

∂z2
= 4πρ

(we are using units in which Newton’s universal gravitation constant G is
set equal to 1). The vacuum Poisson equation (corresponding to the case
in which all matter is concentrated on singularities of the field) is the well
known Laplace equation

∂2Φ

∂x2
+

∂2Φ

∂y2
+

∂2Φ

∂z2
= 0.

Notice that the equation of motion is the same for all particles, irrespec-
tive of their mass. This observation, dating back to Galileo, was made into
the so-called Equivalence Principle by Einstein. Thus a gravitational
field determines special curves on Galileo spacetime, namely the motions of
free-falling particles. These curves are the geodesics of a symmetric connec-
tion, known as the Cartan connection, defined through the nonvanishing
Christoffel symbols

Γi
00 =

∂Φ

∂xi
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(cf. Exercise 3.1.1), corresponding to the nonvanishing connection forms

ωi
0 =

∂Φ

∂xi
dt.

Cartan’s structure equations

Ωµ
ν = dωµ

ν +
3∑

α=0

ωµ
α ∧ ωα

ν

still hold for this connection (cf. Exercise 2.8.2 in Chapter 4), and hence we
have the nonvanishing curvature forms

Ωi
0 =

3∑

j=1

∂2Φ

∂xj∂xi
dxj ∧ dt.

The Ricci curvature tensor of this connection is

Ric =

(
∂2Φ

∂x2
+

∂2Φ

∂y2
+

∂2Φ

∂z2

)
dt⊗ dt

(cf. Exercise 3.1.2), and hence the Poisson equation can be written as

Ric = 4πρ dt⊗ dt.

In particular, the Laplace equation can be written as

Ric = 0.

Exercises 3.1.

(1) Check that the motions of free-falling particles are indeed geodesics
of the Cartan connection. What other geodesics are there? How
would you interpret them?

(2) Check the formula for the Ricci curvature tensor of the Cartan
connection.

(3) Show that the Cartan connection ∇ is compatible with Galileo
structure, i.e., show that
(a) ∇Xdt = 0 for all X ∈ X(R4) (cf. Exercise 2.6.3 in Chapter 3).
(b) If E,F ∈ X(R4) are tangent to the simultaneity hypersurfaces

and parallel along some curve c : R → R4, then 〈E,F 〉 is
constant.

(4) Show that the Cartan connection is not the Levi-Civita connection
of any pseudo-Riemannian metric on R4 (cf. Section 4).

4. General Relativity

Gravity can be introduced in Newtonian mechanics through the sym-
metric Cartan connection, which preserves Galileo spacetime structure. A
natural idea for introducing gravity in Special Relativity is then to search-
ing for symmetric connections preserving the Minkowski inner product. To
formalize this, we introduce the following
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Definition 4.1. A pseudo-Riemannian manifold is a pair (M,g),
where M is a connected n-dimensional differentiable manifold and g is a
symmetric nondegenerate differentiable 2-tensor field (g is said to be a pseudo-
Riemannian metric in M). The signature of a pseudo-Riemannian
manifold is just the signature of g at any tangent space. A Lorentzian
manifold is a pseudo-Riemannian manifold with signature n− 2.

The Minkowski spacetime (R4, 〈·, ·〉) is obviously a Lorentzian mani-
fold. It is easily seen that the Levi-Civita Theorem still holds for pseudo-
Riemannian manifolds: given a pseudo-Riemannian manifold (M,g) there
exists a unique symmetric connection ∇ which is compatible with g (given
by the Koszul formula). Therefore there exists just one symmetric connec-
tion preserving the Minkowski metric: the trivial connection (obtained in
Cartesian coordinates by taking all Christoffel symbols equal to zero), whose
geodesics are straight lines.

To introduce gravity through a symmetric connection we must therefore
consider more general 4-dimensional Lorentzian manifolds, which we will
still call spacetimes. These are no longer required to be diffeomorphic to
R4, or to have inertial charts. The study of the geometry of these spacetimes
is usually called General Relativity.

Each spacetime comes equipped with its unique Levi-Civita connection,
and hence with its geodesics. If c : I ⊂ R → M is a geodesic, then 〈ċ, ċ〉 is
constant, as

d

ds
〈ċ(s), ċ(s)〉 = 2

〈
Dċ

ds
(s), ċ(s)

〉
= 0.

A geodesic is called timelike, null, or spacelike according to whether
〈ċ, ċ〉 < 0, 〈ċ, ċ〉 = 0 or 〈ċ, ċ〉 > 0 (i.e. according to whether its tangent vector
is timelike, spacelike or null). By analogy with the Cartan connection, we
will take timelike geodesics to represent the free-falling motions of massive
particles. This ensures that the Equivalence Principle holds. Null geodesics
will be taken to represent the motions of light rays.

In general, any curve c : I ⊂ R →M is said to be timelike if 〈ċ, ċ〉 < 0.
In this case, c represents the motion of a particle with nonzero mass (which
is accelerating unless c is a geodesic). The proper time measured by the
particle between events c(a) and c(b) is

τ(c) =

∫ b

a

|ċ(s)|ds.

To select physically relevant spacetimes we must impose some sort of
constraint. By analogy with the formulation of the Laplace equation in
terms of the Cartan connection, we make the following

Definition 4.2. We say that the Lorentzian manifold (M,g) is a vac-
uum solution of the Einstein field equation if its Levi-Civita connection
satisfies Ric = 0.
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The general Einstein field equation is

Ric = 8πT,

where T is the so-called reduced energy-momentum tensor of the mat-
ter content of the spacetime. The simplest model of such a matter content
is that of a pressureless perfect fluid, which is described by a rest den-
sity function ρ ∈ C∞(M) and a unit velocity vector field U ∈ X(M)
(whose integral lines are the motions of the fluid particles). The reduced
energy-momentum tensor for this matter model turns out to be

T = ρ

(
ν ⊗ ν +

1

2
g

)
,

where ν ∈ Ω1(M) is the 1-form associated to U by the metric g. Conse-
quently, the Einstein field for this matter model is

Ric = 4πρ(2ν ⊗ ν + g)

(compare this to Poisson’s equation in terms of the Cartan connection).
It turns out that spacetimes satisfying the Einstein field equation model

astronomical phenomena with great accuracy.

Exercises 4.3.

(1) Show that the signature of a pseudo-Riemannian manifold (M,g)
is well defined, i.e., show that the signature of gp ∈ T 2(TpM) does
not depend on p ∈ M .

(2) Let (M,g) be a pseudo-Riemannian manifold and f : N → M an
immersion. Show that f∗g is not necessarily a pseudo-Riemannian
metric on N .

(3) Let (M,g) be the (n + 1)-dimensional Minkowski spacetime, i.e.,
M = Rn+1 and

g = −dx0 ⊗ dx0 + dx1 ⊗ dx1 + . . . + dxn ⊗ dxn.

Let

N = {v ∈ M : 〈v, v〉 = −1 and v0 > 0},
and i : N → M the inclusion map. Show that (N, i∗g) is the
n-dimensional hyperbolic space Hn.

(4) Let c : I ⊂ R → R4 be a timelike curve in Minkowski space
parametrized by the proper time, U = ċ the tangent unit vector
and A = c̈ the proper acceleration. A vector field V : I → R4 is
said to be Fermi-Walker transported along c if

DV

dτ
= 〈V,A〉U − 〈V,U〉A.

(a) Show that U is Fermi-Walker transported along c.
(b) Show that if V and W are Fermi-Walker transported along c

then 〈V,W 〉 is constant.
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(c) If 〈V,U〉 = 0 then V is tangent at U to the submanifold

N = {v ∈ R4 : 〈v, v〉 = −1 and v0 > 0},

which is isometric to the hyperbolic 3-space. Show that in this
case V is Fermi-Walker transported iff it is parallel transported
along U : I → N .

(d) Assume that c describes a circular motion with constant speed
v and 〈V,U〉 = 0. Compute the angle by which V varies
(or precesses) after one revolution. (Remark: It is possible to

prove that the angular momentum vector of a spinning particle is Fermi-Walker

transported along its motion and orthogonal to it; the above precession, which

has been observed for spinning particles such as electrons, is called the Thomas

precession).
(5) (Twin Paradox on a Cylinder) Consider the vacuum solution of the

Einstein field equation obtained by quotienting Minkowski space-
time by the discrete isometry group generated by the translation
ξ : R4 → R4 defined by ξ(t, x, y, z) = (t, x + 8, y, z). Assume that
Earth’s motion is represented by the line x = y = z = 0, and that
once again as Bob turns 20 he leaves his twin sister Alice on Earth
and departs at 80% of the speed of light along the x-axis. Because
of the topology of space, the two twins meet again after 10 years
(as measured on Earth), without Bob ever having accelerated.
(a) Compute the age of each twin in their meeting.
(b) From Bob’s viewpoint, it is the Earth which moves away from

him. How do you explain the asymmetry in the twins’ ages?
(6) (Rotating frame)

(a) Show that the metric of Minkowski spacetime can be written
as

g = −dt⊗ dt + dr ⊗ dr + r2dθ ⊗ dθ + dz ⊗ dz

by using cylindrical coordinates (r, θ, z) in R3.
(b) Let ω > 0 and consider the coordinate change given by θ =

θ′ + ωt. Show that in these coordinates the metric is written
as

g =− (1− ω2r2)dt⊗ dt + ωr2dt⊗ dθ′ + ωr2dθ′ ⊗ dt

+ dr ⊗ dr + r2dθ′ ⊗ dθ′ + dz ⊗ dz.

(c) Show that in the region U = {r < 1
ω} the coordinate curves of

constant (r, θ′, z) are timelike curves corresponding to (accel-
erated) observers rotating rigidly with respect to the inertial
observers of constant (r, θ, z).

(d) The set of the rotating observers is a 3-dimensional smooth
manifold Σ with local coordinates (r, θ′, z), and there exists a
natural projection π : U → Σ. We introduce a Riemannian
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metric h on Σ as follows: if v ∈ Tπ(p)Σ then

h(v, v) = g
(
v†, v†

)
,

where v† ∈ TpU satisfies

(dπ)p v† = v and g

(

v†,

(
∂

∂t

)

p

)

= 0.

Show that h is well defined and

h = dr ⊗ dr +
r2

1− ω2r2
dθ′ ⊗ dθ′ + dz ⊗ dz.

(Remark: This is the metric resulting from local distance measurements be-

tween the rotating observers; Einstein used the fact that this metric has cur-

vature to argue for the need to use non-Euclidean geometry in the relativistic

description of gravity).
(e) The image of a curve c : R → U consists of simultaneous

events from the point of view of the rotating observers if ċ is
orthogonal to ∂

∂t at each point. Show that this is equivalent to
requiring that α(ċ) = 0, where

α = dt−
ωr2

1− ω2r2
dθ′.

In particular, show that in general synchronization of the ro-
tating observers’ clocks around closed paths leads to inconsis-
tencies. (Remark: This is the so-called Sagnac effect; it must be taken into

account when synchronizing the very precise atomic clocks on the GPS system

ground stations).
(7) Let (Σ, h) be a 3-dimensional Riemannian manifold and consider

the 4-dimensional Lorentzian manifold (M,g) determined by M =
R× Σ and

g = −e2Φ◦πdt⊗ dt + π∗h,

where t is the usual coordinate in R, π : M → Σ is the natural
projection and Φ : Σ→ R is a smooth function.
(a) Let c : I ⊂ R → M be a timelike geodesic, and γ = π ◦ c.

Show that

Dγ̇

dτ
= (1 + h(γ̇, γ̇))G,

where G = − grad(Φ) is the vector field associated to −dΦ by
h and can be thought of as the gravitational field. Show that
this equation implies that the quantity

E = (1 + h(γ̇, γ̇))
1
2 eΦ

is a constant of motion.
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(b) Let c : I ⊂ R → M be a lightlike geodesic, c̃ its reparametriza-
tion by the coordinate time t, and γ̃ = π ◦ c̃. Show that γ̃ is a
geodesic of the Fermat metric

l = e−2Φh.

(c) Show that the vacuum Einstein field equation for g is equiva-
lent to

div G = h(G,G);

Ric +∇dΦ = dΦ⊗ dΦ,

where Ric and ∇ are the Ricci curvature and the Levi-Civita
connection of h; ∇dΦ is the tensor defined by ∇dΦ(X,Y ) =
(∇XdΦ) (Y ) for all X,Y ∈ X(Σ) (cf. Exercise 2.6.3 in Chap-
ter 3).

5. The Schwarzschild Solution

The vacuum Einstein field equation is nonlinear, and hence much harder
to solve that the Laplace equation. One of the first solutions to be discovered
was the so-called Schwarzschild solution, which can be obtained from
the simplifying hypotheses of time independence and spherical symmetry,
i.e. looking for solutions of the form

g = −A2(r)dt⊗ dt + B2(r)dr ⊗ dr + r2dθ ⊗ dθ + r2 sin2 θdϕ⊗ dϕ

for unknown positive smooth functions A,B : R → R. Notice that this
expression reduces to the Minkowski metric in spherical coordinates for A ≡
B ≡ 1).

It is easily seen that Cartan’s structure equations still hold for pseudo-
Riemannian manifolds. We have

g = −ω0 ⊗ ω0 + ωr ⊗ ωr + ωθ ⊗ ωθ + ωϕ ⊗ ωϕ

with

ω0 = A(r)dt;

ωr = B(r)dr;

ωθ = rdθ;

ωϕ = r sin θdϕ,

and hence {ω0,ωr,ωθ,ωϕ} is an orthonormal coframe. The first structure
equations,

dωµ =
3∑

ν=0

ων ∧ ωµ
ν ;

dgµν =
3∑

α=0

gµαωα
ν + gναωα

µ ,
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together with

dω0 =
A′

B
ωr ∧ dt;

dωr = 0;

dωθ =
1

B
ωr ∧ dθ;

dωϕ =
sin θ

B
ωr ∧ dϕ + cos θωθ ∧ dϕ,

yield

ω0
r = ωr

0 =
A′

B
dt;

ωθ
r = −ωr

θ =
1

B
dθ;

ωϕ
r = −ωr

ϕ =
sin θ

B
dϕ;

ωϕ
θ = −ωθ

ϕ = cos θdϕ.

The curvature forms can be computed from the second structure equa-
tions

Ωµ
ν = dωµ

ν +
3∑

α=0

ωµ
α ∧ ωα

ν ,

and are found to be

Ω0
r = Ωr

0 =
A′′B −A′B′

AB3
ωr ∧ ω0;

Ω0
θ = Ωθ

0 =
A′

rAB2
ωθ ∧ ω0;

Ω0
ϕ = Ωϕ

0 =
A′

rAB2
ωϕ ∧ ω0;

Ωθ
r = −Ωr

θ =
B′

rB3
ωθ ∧ ωr;

Ωϕ
r = −Ωr

ϕ =
B′

rB3
ωϕ ∧ ωr;

Ωϕ
θ = −Ωθ

ϕ =
B2 − 1

r2B2
ωϕ ∧ ωθ.

Thus the components of the curvature tensor on the orthonormal frame
can be read off from the curvature forms using

Ωµ
ν =

∑

α<β

R µ
αβν ωα ∧ ωβ,

and in turn be used to compute the components of the Ricci curvature tensor
Ric on the same frame. The nonvanishing components of Ric on this frame
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turn out to be

R00 =
A′′B −A′B′

AB3
+

2A′

rAB2
;

Rrr = −
A′′B −A′B′

AB3
+

2B′

rB3
;

Rθθ = Rϕϕ = −
A′

rAB2
+

B′

rB3
+

B2 − 1

r2B2
.

Thus the vacuum Einstein field equation Ric = 0 is equivalent to the
ODE system






A′′

A
−

A′B′

AB
+

2A′

rA
= 0

A′′

A
−

A′B′

AB
−

2B′

rB
= 0

A′

A
−

B′

B
−

B2 − 1

r
= 0

⇔






A′

A
+

B′

B
= 0

(
A′

A

)′
+ 2

(
A′

A

)2

+
2A′

rA
= 0

2B′

B
+

B2 − 1

r
= 0

The last equation can be immediately solved to yield

B =

(
1−

2m

r

)− 1
2

,

where m ∈ R is an integration constant. The first equation implies that
A = α

B for some constant α > 0. By rescaling the time coordinate t we
can assume that α = 1. Finally, it is easily checked that the second ODE
is identically satisfied. Therefore there exists a one-parameter family of
solutions of the vacuum Einstein field equation of the form we seeked, given
by

g = −
(

1−
2m

r

)
dt⊗dt+

(
1−

2m

r

)−1

dr⊗dr+r2dθ⊗dθ+r2 sin2 θdϕ⊗dϕ.

To interpret this family of solutions, we compute the proper acceleration
(cf. Exercise 2.2.12) of the stationary observers, whose motions are the
integral curves of ∂

∂t . If {E0, Er, Eθ, Eϕ} is the orthonormal frame obtained

by normalizing
{

∂
∂t ,

∂
∂r ,

∂
∂θ ,

∂
∂ϕ

}
(hence dual to {ω0,ωr,ωθ,ωϕ}), we have

∇E0E0 =
3∑

µ=0

ωµ
0 (E0)Eµ = ωr

0(E0)Er =
A′

AB
ω0(E0)Er =

m

r2

(
1−

2m

r

)− 1
2

Er.

Therefore, each stationary observer is accelerating with a proper acceleration
m
r2

(
1− 2m

r

)− 1
2 away from the origin, to prevent falling towards it. In other

words, they are experiencing a gravitational field of intensity m
r2

(
1− 2m

r

)− 1
2 ,

directed towards the origin. Since for large values of r this approaches the
familiar acceleration m

r2 of the Newtonian gravitational field generated by
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a point particle of mass m, we interpret the Schwarzschild solution as the
general relativistic field of a point particle of mass m. Accordingly, we will
assume that m > 0 (notice that m = 0 corresponds to Minkowski spacetime).

When obtaining the Schwarzschild solution we assumed A(r) > 0, and
hence r > 2m. However, it is easy to check that it is also a solution of Ein-
stein’s vacuum field equation for r < 2m. Notice that the coordinate system
(t, r, θ,ϕ) is singular at r = 2m, and hence covers only the two disconnected
open sets {r > 2m} and {r < 2m}. Both these sets are geodesically incom-
plete, as for instance radial timelike or null geodesics cannot be continued
past r = 0 or r = 2m. While this is to be expected for r = 0, as the curva-
ture blows up along geodesics approaching this limit, this is not the case for
r = 2m. It turns out that it is possible to fit these two open sets together
to obtain a solution of Einstein’s vacuum field equation regular at r = 2m.
To do so, we introduce the so-called Painlevé time coordinate

t′ = t +

∫ √
2m

r

(
1−

2m

r

)−1

dr.

In the coordinate system (t′, r, θ,ϕ), the Schwarzschild metric is written

g = −dt′⊗dt′+

(

dr +

√
2m

r
dt′
)

⊗

(

dr +

√
2m

r
dt′
)

+r2dθ⊗dθ+r2 sin2 θdϕ⊗dϕ.

This expression is nonsingular at r = 2m, and is a solution of Einstein’s
vacuum field equation for {r > 2m} and {r < 2m}. By continuity, it must
be a solution also at r = 2m.

The submanifold r = 2m is called the event horizon, and is ruled by
null geodesics. This is easily seen from the fact that ∂

∂t′ = ∂
∂t becomes null

at r = 2m, and hence its integral curves are (reparametrizations of) null
geodesics.

The causal properties of the Schwarzschild spacetime are best under-
stood by studying the light cones, i.e. the set of tangent null vectors at
each point. For instance, radial null vectors v = v0 ∂

∂t′ + vr ∂
∂r satisfy

−
(
v0
)2

+

(

vr +

√
2m

r
v0

)2

= 0 ⇔ vr =

(

±1−
√

2m

r

)

v0.

For r A 2m we obtain approximately the usual light cones of Minkowski
spacetime. as r approaches 2m, however, the light cones “tip over” towards
the origin, becoming tangent to the event horizon at r = 2m (cf. Figure 3).
Since the tangent vector to a timelike curve must be inside the light cone,
we see that no particle which crosses the event horizon can ever leave the
region r = 2m (which for this reason is called a black hole). Once inside
the black hole, the light cones tip over even more, forcing the particle into
the singularity r = 0.

Notice that the Schwarzschild solution in Painlevé coordinates is still not
geodesically complete at the event horizon, as outgoing radial timelike and
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t′

r

r = 2m

Figure 3. Light cones in Painlevé coordinates.

null geodesics cannot be continued to the past through r = 2m. Physically,
this is not important: black holes are thought to form through the collapse
of (approximately) spherical stars, whose surface follows a radial timelike
curve in the spacetime diagram of Figure 3. Since only outside the star
is there vacuum, the Schwarzschild solution in expected to hold only above
this curve, thereby removing the region of r = 2m leading to incompleteness.
Nevertheless, it is possible to glue two copies of the Schwarzschild spacetime
in Painlevé coordinates to obtain a solution of the vacuum Einstein field
equation which is geodesically incomplete only at the two copies of r = 0.
This solution, known as the Kruskal extension, contains a black hole and
its time-reversed version, known as a white hole.

For some time it was thought that the curvature singularity at r = 0
was an artifact of the high symmetry of Schwarzschild spacetime, and that
more realistic models of collapsing stars would be singularity-free. Penrose
and Hawking (see [Pen65, HP70]) proved that this was is the case: once
the collapse has begun, no matter how asymmetric, nothing can prevent a
singularity from forming (cf. Section 8).

Exercises 5.1.

(1) Show that Cartan’s structure equations still hold for pseudo-Rie-
mannian manifolds

(2) Let (M,g) be a 2-dimensional Lorentzian manifold.
(a) Consider an orthonormal frame {E0, E1} on an open set U ⊂

M , with associated coframe {ω0,ω1}. Show that Cartan’s
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structure equations are

ω0
1 = ω1

0;

dω0 = ω1 ∧ ω0
1;

dω1 = ω0 ∧ ω0
1;

Ω0
1 = dω0

1 .

(b) Let {F0, F1} be another orthonormal frame such that F0 ∈
C(E0), with associated coframe {ω0,ω1} and connection form
ω0

1. Show that σ = ω0
1−ω0

1 is given locally by σ = du, where u
is the hyperbolic angle between F0 and E0 (cf. Exercise 2.2.7).

(c) Consider a triangle ∆ ⊂ U whose sides are timelike geodesics,
and let α, β and γ be the hyperbolic angles between them
(cf. Figure 4). Show that

γ = α + β +

∫

∆
Ω0

1,

where, following the usual convention for spacetime diagrams,
we orient U so that {E0, E1} is negative.

(d) Provide a physical interpretation for the formula above in the
case in which (M,g) is a totally geodesic submanifold of the
Schwarzschild spacetime obtained by fixing (θ,ϕ) (cf. Exer-
cise 5.7.3 in Chapter 4).

α

β

γ

Figure 4. Timelike geodesic triangle.
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(3) Consider the Schwarzschild spacetime with local coordinates (t, r, θ,ϕ).
An equatorial circular curve is a curve given in these coordi-
nates by (t(τ), r(τ), θ(τ),ϕ(τ)) with ṙ(τ) ≡ 0 and θ(τ) ≡ π

2 .
(a) Show that the conditions for such a curve to be a timelike

geodesic parametrized by its proper time are





ẗ = 0

ϕ̈ = 0

rϕ̇2 = m
r2 ṫ2(

1− 3m
r

)
ṫ2 = 1

Conclude that massive particles can orbit the central mass in
circular orbits for all r > 3m.

(b) Show that there exists an equatorial circular null geodesic for
r = 3m. What does a stationary observer placed at r = 3m,
θ = π

2 see as he looks along the direction of this lightlike
geodesic?

(c) The angular momentum vector of a free-falling spinning par-
ticle is parallel-transported along its motion, and orthogonal
to it (cf. Exercise 4.3.4). Consider a spinning particle on a
circular orbit around a pointlike mass m. Show that the axis
precesses by an angle

δ = 2π

(

1−
(

1−
3m

r

) 1
2

)

,

after one revolution, if initially aligned with the radial direc-
tion. (Remark: The above precession, which has been observed for spinning

quartz spheres in orbit around the Earth during the Gravity Probe B experiment,

is called the geodesic precession).
(4) We consider again the Schwarzschild spacetime with local coordi-

nates (t, r, θ,ϕ).
(a) Show that the proper time interval ∆τ measured by a station-

ary observer between two events on his history is

∆τ =

(
1−

2m

r

) 1
2

∆t,

where ∆t is the difference between the time coordinates of the
two events (loosely speaking, clocks closer to the central mass
run slower).

(b) Show that if (t(τ), r(τ), θ(τ),ϕ(τ)) is a geodesic then so is
(t(τ) + ∆t, r(τ), θ(τ),ϕ(τ)) for any ∆t ∈ R. Conclude that
the time coordinate t can be thought of as the time between
events at a fixed location as seen by stationary observers at
infinity.
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t

r

r0 r1

T

T ′

Figure 5. Gravitational redshift.

(c) (Gravitational redshift) Use the spacetime diagram in Figure 5
to show that if a stationary observer at r = r0 measures a
light signal to have period T , a stationary observer at r = r1

measures a period

T ′ = T

√√√√1− 2m
r1

1− 2m
r0

for the same signal.
(d) Show that the proper time interval ∆τ measured by an ob-

server moving on a circular orbit between two events on his
history is

∆τ =

(
1−

3m

r

) 1
2

∆t,

where ∆t is the difference between the time coordinates of the
two events. (Remark: Notice that in particular the period of a circular orbit

as measured by a free-falling orbiting observer is smaller than the period of the

same orbit as measured by an accelerating stationary observer; thus a circular

orbit over a full period is a non-maximizing geodesic – cf. Exercise 8.12.9).
(e) By setting c = G = 1, one can measure both time intervals

and masses in meters. In these units, Earth’s mass is approx-
imately 0.0044 meters. Assume the atomic clock at a GPS
ground station in the equator (whose radius is approximately
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6, 400 kilometers) and the atomic clock on a GPS satellite mov-
ing on a circular orbit at an altitude of 20, 200 kilometers are
initially synchronized. By how much will the two clocks be
offset after one day? (Remark: This has important consequences for the

GPS navigational system, which uses very accurate time measurements to com-

pute the receiver’s coordinates: if it were not taken into account, the error in the

calculated position would be of the order of the time offset you just computed).
(5) Let (M,g) be the region r > 2m of the Schwarzschild solution with

the Schwarzschild metric. The set of all stationary observers in
M is a 3-dimensional smooth manifold Σ with local coordinates
(r, θ,ϕ), and there exists a natural projection π : M → Σ. We
introduce a Riemannian metric h on Σ as follows: if v ∈ Tπ(p)Σ
then

h(v, v) = g
(
v†, v†

)
,

where v† ∈ TpM satisfies

(dπ)p v† = v and g

(

v†,

(
∂

∂t

)

p

)

= 0

(cf. Exercise 4.3.6).
(a) Show that h is well defined and

h =

(
1−

2m

r

)−1

dr ⊗ dr + r2dθ ⊗ dθ + r2 sin2 θdϕ⊗ dϕ.

(b) Show that h is not flat, but has zero scalar curvature.
(c) Show that the equatorial plane θ = π

2 is isometric to the rev-

olution surface generated by the curve z(r) =
√

8m(r − 2m)
when rotated around the z-axis (cf. Figure 6).

(Remark: This is the metric resulting from local distance measurements between the

stationary observers; loosely speaking, gravity deforms space).

Figure 6. Surface of revolution isometric to the equatorial plane.
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(6) In this exercise we study in detail the timelike and null geodesics of
the Schwarzschild spacetime. We start by observing that the sub-
manifold θ = π

2 is totally geodesic (cf. Exercise 5.7.3 in Chapter 4).
By adequately choosing the angular coordinates (θ,ϕ), one can al-
ways assume that the initial condition of the geodesic is tangent to
this submanifold; hence it suffices to study the timelike and null
geodesics of the 3-dimensional Lorentzian manifold (M,g), where

g = −
(

1−
2m

r

)
dt⊗ dt +

(
1−

2m

r

)−1

dr ⊗ dr + r2dϕ⊗ dϕ.

(a) Show that ∂
∂t and ∂

∂ϕ are Killing fields (cf. 3.3.8 in Chapter 3).
(b) Conclude that the equations for a curve c : R → M to be a

future-directed geodesic (parametrized by proper time if time-
like) can be written as






g(ċ, ċ) = −σ

g
(
∂
∂t , ċ

)
= E

g
(

∂
∂ϕ , ċ

)
= L

⇔






ṙ2 = E2 −
(
σ + L2

r2

) (
1− 2m

r

)
(
1− 2m

r

)
ṫ = E

r2ϕ̇ = L

where E > 0 and L are integration constants, σ = 1 for time-
like geodesics and σ = 0 for null geodesics.

(c) Show that if L '= 0 then u = 1
r satisfies

d2u

dϕ2
+ u =

mσ

L2
+ 3mu2.

(d) For situations where relativistic corrections are small one has
mu@ 1, and hence the approximate equation

d2u

dϕ2
+ u =

m

L2

holds for timelike geodesics. Show that the solution to this
equation is the equation for a conic section in polar coordi-
nates,

u =
m

L2
(1 + ε cos(ϕ− ϕ0)),

where the integration constants ε ≥ 0 and ϕ0 are the eccen-
tricity and the argument of the pericenter.

(e) Show that for ε @ 1 this approximate solution satisfies

u2 =
2m

L2
u−

m2

L4
.

Argue that timelike geodesics close to circular orbits where
relativistic corrections are small yield approximate solutions
of the equation

d2u

dϕ2
+

(
1−

6m2

L2

)
u =

m

L2

(
1−

3m2

L2

)
,
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and hence the pericenter advances by approximately

6πm

r

radians per revolution. (Remark: The first success of General Relativity

was due to this effect, which explained the anomalous precession of Mercury’s

perihelion – 43 arcseconds per century.).
(f) Show that if one neglects relativistic corrections then null

geodesics satisfy

d2u

dϕ2
+ u = 0.

Show that the solution to this equation is the equation for a
straight line in polar coordinates,

u =
1

b
sin(ϕ− ϕ0)),

where the integration constants b > 0 and ϕ0 are the impact
parameter (distance of closest approach to the center) and
the angle between the line and the x-axis.

(g) Assume that mu @ 1. Let us include relativistic corrections
by looking for approximate solutions of the form

u =
1

b

(
sinϕ +

m

b
v
)

(where we take ϕ0 = 0 for simplicity). Show that v is an
approximate solution of the equation

d2v

dϕ2
+ v = 3 sin2 ϕ,

and hence u is approximately given by

u =
1

b

(
sinϕ +

m

b

(
3

2
+

1

2
cos(2ϕ) + α cos ϕ + β sinϕ

))
,

where α and β are integration constants.
(h) Show that for the incoming part of the null geodesic (ϕ > 0)

one has approximately

u = 0 ⇔ ϕ = −
m

b
(2 + α) .

Similarly, show that for the outgoing part of the null geodesic
(ϕ > π) one has approximately

u = 0 ⇔ ϕ = π +
m

b
(2− α) .

Conclude that ϕ varies by approximately

∆ϕ = π +
4m

b
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radians along its path, and hence the null geodesic is deflected
towards the center by approximately

4m

b

radians. (Remark: The measurement of this deflection of light by the Sun

– 1.75 arcseconds – was the first experimental confirmation of General Relativity,

and made Einstein a world celebrity overnight).
(7) (Birkhoff Theorem) Prove that the only Ricci-flat Lorentzian metric

given in local coordinates (t, r, θ,ϕ) by

g = A2(t, r)dt⊗ dt + B2(t, r)dr ⊗ dr + r2dθ ⊗ dθ + r2 sin2 θdϕ⊗ dϕ

is the Schwarzschild metric. Loosely speaking, spherically symmet-
ric mass configurations do not radiate.

(8) Show that observers satisfying

dr

dt′
= −

√
2m

r

in Painlevé’s coordinates are free-falling, and that t′ is their proper
time.

(9) What does a stationary observer at infinity see as a particle falls
into a black hole?

(10) Show that an observer who crosses the horizon will hit the singu-
larity in proper time at most πm.

6. Cosmology

The the purpose of cosmology is the study of the behavior of the Uni-
verse as a whole. Experimental observations (chiefly that of the cosmic
background radiation) suggest that space is isotropic at Earth’s location.
Assuming the Copernican Principle that Earth’s location in the Universe
is not in any way special, we take an isotropic (hence constant curvature)
3-dimensional Riemannian manifold (Σ, h) as our model of space. We can
always find local coordinates (r, θ,ϕ) on Σ such that

h = a2

(
1

1− kr2
dr ⊗ dr + r2dθ ⊗ dθ + r2 sin2 θdϕ⊗ dϕ

)
,

where a > 0 is the “radius” of space and k = −1, 0, 1 according to whether
the curvature is negative, zero or positive (cf. Exercise 6.1.1). Allowing for
the possibility that the “radius” of space may be varying in time, we take
our model of the Universe to be (M,g), where M = R× Σ and

g = −dt⊗ dt + a2(t)

(
1

1− kr2
dr ⊗ dr + r2dθ ⊗ dθ + r2 sin2 θdϕ⊗ dϕ

)
.

These are the so-called Friedmann-Robertson-Walker models of cosmol-
ogy.
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One can easily compute the Ricci curvature for the metric g: we have

g = −ω0 ⊗ ω0 + ωr ⊗ ωr + ωθ ⊗ ωθ + ωϕ ⊗ ωϕ

with

ω0 = dt;

ωr = a(t)
(
1− kr2

)− 1
2 dr;

ωθ = rdθ;

ωϕ = r sin θdϕ,

and hence {ω0,ωr,ωθ,ωϕ} is an orthonormal coframe. The first structure
equations yield

ω0
r = ωr

0 = ȧ
(
1− kr2

)− 1
2 dr;

ω0
θ = ωθ

0 = ȧrdθ;

ω0
ϕ = ωϕ

0 = ȧr sin θdϕ;

ωθ
r = −ωr

θ =
(
1− kr2

) 1
2 dθ;

ωϕ
r = −ωr

ϕ =
(
1− kr2

) 1
2 sin θdϕ;

ωϕ
θ = −ωθ

ϕ = cos θdϕ.

The curvature forms can be computed from the second structure equa-
tions, and are found to be

Ω0
r = Ωr

0 =
ä

a
ω0 ∧ ωr;

Ω0
θ = Ωθ

0 =
ä

a
ω0 ∧ ωθ;

Ω0
ϕ = Ωϕ

0 =
ä

a
ω0 ∧ ωϕ;

Ωθ
r = −Ωr

θ =

(
k

a2
+

ȧ2

a2

)
ωθ ∧ ωr;

Ωϕ
r = −Ωr

ϕ =

(
k

a2
+

ȧ2

a2

)
ωϕ ∧ ωr;

Ωϕ
θ = −Ωθ

ϕ =

(
k

a2
+

ȧ2

a2

)
ωϕ ∧ ωθ.

The components of the curvature tensor on the orthonormal frame can
be read off from the curvature forms, and can in turn be used to compute
the components of the Ricci curvature tensor Ric on the same frame. The
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nonvanishing components of Ric on this frame turn out to be

R00 = −
3ä

a
;

Rrr = Rθθ = Rϕϕ =
ä

a
+

2ȧ2

a2
+

2k

a2
.

At very large scales, galaxies and clusters of galaxies are expected to
behave as particles of a pressureless fluid, which we take to be our matter
model. Therefore the Einstein field equation is

Ric = 4πρ(2dt⊗ dt + g),

and is equivalent to the ODE system





−
3ä

a
= 4πρ

ä

a
+

2ȧ2

a2
+

2k

a2
= 4πρ

⇔






ä +
ȧ2

2a
+

k

2a
= 0

ρ = −
3ä

4πa

The first equation allows us to determine the function a(t), and the
second yields ρ (which in particular must be a function of the t coordinate
only; this is to be taken to mean that the average density of matter at
cosmological scales is spatially constant). It is easy to check that the first
equation implies

ä = −
α

a2

for some integration constant α (we take α > 0 so that ρ > 0). Substituting
in the first equation we get the first order ODE

ȧ2

2
−

α

a
= −

k

2
.

This is formally identical to the energy conservation equation for a particle
falling on a Keplerian potential V (a) = −α

a with total energy −k
2 . Thus we

see that a(t) will be bounded if and only if k = 1. Notice that in all cases
a(t) explodes for some value of t, conventionally taken to be t = 0 (Big
Bang). Again it was thought that this could be due to the high symme-
try of the Friedmann-Robertson-Walker models. Hawking and Penrose (see
[Haw67, HP70]) showed that actually the big bang is a generic feature of
cosmological models (cf. Section 8).

The function

H(t) =
ȧ

a
is (somewhat confusingly) called Hubble’s constant. It is easy to see from
the above equations that

H2 +
k

a2
=

8π

3
ρ.
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Therefore, in these models one has k = −1, k = 0 or k = 1 according to
whether the average density ρ of the Universe is smaller than, equal to or
bigger than the so-called critical density

ρc =
3H2

8π
.

These models were the standard models for cosmology for a long time.
Currently, however, things are thought to be slightly more complicated
(cf. Exercise 6.1.7).

Exercises 6.1.

(1) Show that the Riemannian metric h given in local coordinates
(r, θ,ϕ) by

h = a2

(
1

1− kr2
dr ⊗ dr + r2dθ ⊗ dθ + r2 sin2 θdϕ⊗ dϕ

)

has constant curvature K = k
a2 .

(2) The motions of galaxies and groups of galaxies in the Friedmann-
Robertson-Walker models are the integral curves of ∂

∂t . Show that
these are timelike geodesics, and that the time coordinate t is the
proper time of such observers.

(3) (a) Show that the differential equation for a(t) implies that this
function explodes in finite time (usually the singularity is taken
to be at t = 0).

(b) Show that if k = −1 or k = 0 then the solution can be extended
to all values of t > 0.

(c) Show that if k = 1 then the solution cannot be extended past
some positive value t = T > 0 (Big Crunch).

(d) Show that if the spatial sections are 3-spheres (hence k = 1)
then the light which leaves some galaxy at the Big Bang travels
once around the 3-sphere and is just reaching it at the Big
Crunch. Conclude that no observer can circumnavigate the
Universe, no matter how fast he moves.

(4) Show that the solutions to the Einstein equation for the Friedmann-
Robertson-Walker models can be given parametrically by:
(a) k = 1: {

a = α(1 − cos u)

t = α(u− sin u)

(b) k = 0: {
a = α

2 u2

t = α
6 u3

(c) k = −1: {
a = α(cosh u− 1)

t = α(sinh u− u)
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(5) Show that the Friedmann-Robertson-Walker model with k = 1 is
isometric to the hypersurface with equation

√
x2 + y2 + z2 + w2 = 2α−

t2

8α

in the 5-dimensional Minkowski spacetime (R5, g) with metric

g = −dt⊗ dt + dx⊗ dx + dy ⊗ dy + dz ⊗ dz + dw ⊗ dw.

(6) (A model of collapse) Show that the radius of a free-falling spherical
shell r = r0 in a Friedmann-Robertson-Walker model changes with
proper time in exactly the same fashion as the radius of a free-falling
spherical shell in a Schwarzschild spacetime of mass parameter m
moving with energy parameter E (cf. Exercise 5.1.6), provided that

{
M = αr3

0

E2 − 1 = −kr3
0

Therefore these two spacetimes ca be matched along the 3-dimensional
hypersurface determined by the spherical shell’s history to yield a
model of collapsing matter. Can you physically interpret the three
cases k = 1, k = 0 and k = −1?

(7) Show that if we allow for a cosmological constant Λ ∈ R, i.e. for
an Einstein equation of the form

Ric = 4πρ(2ν ⊗ ν + g) + Λg

then the equations for the Friedmann-Robertson-Walker models
become 





ȧ2

2
−

α

a
−

Λ

6
a2 = −

k

2

4π

3
a3ρ = α

Analyze the possible behaviors of the function a(t). (Remark: It is

currently thought that there exists indeed a positive cosmological constant, also known

as dark energy. The model favored by experimental observations seems to be k = 0,

Λ > 0).
(8) Consider the 5-dimensional Minkowski spacetime (R5, g) with met-

ric

g = −dt⊗ dt + dx⊗ dx + dy ⊗ dy + dz ⊗ dz + dw ⊗ dw.

Show that the induced metric on each of the following hypersurfaces
determines generalized Friedmann-Robertson-Walker models with
the indicated parameters:
(a) (Einstein universe) The “cylinder” of equation

x2 + y2 + z2 + w2 =
1

Λ
,

satisfies k = 1, Λ > 0 and ρ = Λ
4π .
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(b) (de Sitter universe) The “sphere” of equation

−t2 + x2 + y2 + z2 + w2 =
3

Λ

satisfies k = 1, Λ > 0 and ρ = 0.

7. Causality

In this section we will study the causal features of spacetimes. This is
a subject which has no parallel in Riemannian geometry, where the metric
is positive definite. Although we will focus on 4-dimensional Lorentzian
manifolds, the discussion can be easily generalized to any number n ≥ 2 of
dimensions.

A spacetime (M,g) is said to be time-orientable if there exists a vector
field T ∈ X(M) such that 〈T, T 〉 < 0. In this case, we can define a time
orientation on each tangent space TpM (which is, of course, isometric to
Minkowski spacetime) by choosing C(Tp) to be the future-pointing timelike
vectors.

Assume that (M,g) is time-oriented (i.e. time-orientable with a def-
inite choice of time orientation). A timelike curve c : I ⊂ R → M is said
to be future-directed if ċ is future-pointing. The chronological future
of p ∈ M is the set I+(p) of all points to which p can be connected by a
future-directed timelike curve. A future-directed causal curve is a curve
c : I ⊂ R →M such that ċ is non-spacelike and future-pointing (if nonzero).
The causal future of p ∈ M is the set J+(p) of all points to which p can
be connected by a future-directed causal curve. Notice that I+(p) is simply
the set of all events which are accessible to a particle with nonzero mass at
p, whereas J+(p) is the set of events which can be causally influenced by
p (as this causal influence cannot propagate faster than the speed of light).
Analogously, the chronological past of p ∈ M is the set I−(p) of all points
which can be connected to p by a future-directed timelike curve, and the
causal past of p ∈ M is the set J−(p) of all points which can be connected
to p by a future-directed causal curve.

In general, the chronological and causal pasts and futures can be quite
complicated sets, because of global features of the spacetime. Locally, how-
ever, causal properties are similar to those of Minkowski spacetime. More
precisely, we have the following statement:

Proposition 7.1. Let (M,g) be a time-oriented spacetime. Then each
point p0 ∈ M has an open neighborhood V ⊂ M such that the spacetime
(V, g) obtained by restricting g to V satisfies:

(1) If p, q ∈ V then there exists a unique geodesic (up to reparametriza-
tion) joining p to q (i.e. V is geodesically convex);

(2) q ∈ I+(p) iff there exists a future-directed timelike geodesic con-
necting p to q;

(3) J+(p) = I+(p);
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(4) q ∈ J+(p) iff there exists a future-directed timelike or null geodesic
connecting p to q.

Proof. Let U be a normal neighborhood of p0 and choose normal
coordinates (x0, x1, x2, x3) on U , given by the parametrization

ϕ(x0, x1, x2, x3) = expp0
(x0v0 + x1v1 + x2v2 + x3v3),

where {v0, v1, v2, v3} is a basis of Tp0(M) (cf. Exercise 4.8.2 in Chapter 3).
Let D : U → R be the differentiable function

D(p) :=
3∑

α=0

(xα(p))2 ,

and let us define for each ε > 0 the set

Bε = {p ∈ U | D(p) < ε},
which for sufficiently small ε is diffeomorphic to an open ball in Tp0M .
Assume, for simplicity, that U is one such set.

Let us show that there exists k > 0 such that if c : I ⊂ R → Bk is a
geodesic then all critical points of D(t) := D(c(t)) are strict local minima.
In fact, setting xµ(t) := xµ(c(t)), we have

Ḋ(t) = 2
3∑

α=0

xα(t)ẋα(t);

D̈(t) = 2
3∑

α=0

(ẋα(t))2 + 2
4∑

α=0

xα(t)ẍα(t)

= 2
3∑

µ,ν=0

(

δµν −
3∑

α=0

Γαµν(c(t))x
α(t)

)

ẋµ(t)ẋν(t),

and for k sufficiently small the matrix

δµν −
3∑

α=0

Γαµνx
α

is positive definite on Bk.
Consider the map F : W ⊂ TM → M × M , defined on some open

neighborhood W of 0 ∈ Tp0M by

F (v) = (π(v), exp(v)).

As was established in the Riemannian case (cf. Chapter 3, Section 4), this
map is a local diffeomorphism at 0 ∈ Tp0M . Choosing δ > 0 sufficiently
small and reducing W , we can assume that F maps W diffeomorphically to
Bδ ×Bδ, and that exp(tv) ∈ Bk for all t ∈ [0, 1] and v ∈ W .

Finally, set V = Bδ. If p, q ∈ V and v = F−1(p, q), then c(t) = expp(tv)
is a geodesic connecting p to q whose image is contained in Bk. If it image
were not contained in V , there would necessarily be a point of local maxi-
mum of D(t), which cannot occur. Therefore, there exists a geodesic in V
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connecting p to q. Since expp is a diffeomorphism onto V , this geodesic is
unique (up to reparametrization). This proves (1).

To prove assertion (2), we start by noticing that if there exists a future-
directed timelike geodesic connecting p to q then it is obvious that q ∈ I+(p).
Suppose now that q ∈ I+(p); then there exists a future-directed timelike
curve c : [0, 1] → V such that c(0) = p and c(1) = q. Choose normal
coordinates (x0, x1, x2, x3) given by the parametrization

ϕ(x0, x1, x2, x3) = expp(x
0E0 + x1E1 + x2E2 + x3E3),

where {E0, E1, E2, E3} is an orthonormal basis of TpM (with E0 timelike and
future-pointing). These are global coordinates in V , since F : W → V × V
is a diffeomorphism. Defining

Wp(q) := −
(
x0(q)

)2
+
(
x1(q)

)2
+
(
x2(q)

)2
+
(
x3(q)

)2

=
3∑

µ,ν=0

ηµνx
µ(q)xν(q),

we have to show that Wp(q) < 0. Let Wp(t) := Wp(c(t)). Since xµ(p) = 0
(µ = 0, 1, 2, 3), we have Wp(0) = 0. Setting xµ(t) = xµ(c(t)), we have

Ẇp(t) = 2
3∑

µ,ν=0

ηµνx
µ(t)ẋν(t);

Ẅp(t) = 2
3∑

µ,ν=0

ηµνx
µ(t)ẍν(t) + 2

3∑

µ,ν=0

ηµν ẋ
µ(t)ẋν(t),

and consequently (recalling that
(
d expp

)
p

= id)

Ẇp(0) = 0;

Ẅp(0) = 2〈ċ(0), ċ(0)〉 < 0.

Therefore there exists ε > 0 such that Wp(t) < 0 for t ∈ (0, ε).
Using the same ideas as in the Riemannian case (cf. Chapter 3, Sec-

tion 4), it is easy to prove that the level surfaces of Wp are orthogonal to
the geodesics through p. Therefore, if cv(t) = expp(tv) is the geodesic with
initial condition v ∈ TpM , we have

(grad Wp)cv(1) = a(v)ċv(1),

where the gradient of a function is defined as in the Riemannian case (notice
however that in the Lorentzian case a smooth function f decreases along
the direction of grad f if grad f is timelike). Now

〈
(grad Wp)cv(t), ċv(t)

〉
=

d

dt
Wp(cv(t)) =

d

dt
Wp(ctv(1))

=
d

dt

(
t2Wp(cv(1))

)
= 2tWp(cv(1)),
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and hence 〈
(grad Wp)cv(1), ċv(1)

〉
= 2Wp(cv(1)).

On the other hand,
〈
(grad Wp)cv(1), ċv(1)

〉
= 〈a(v)ċv(1), ċv(1)〉
= a(v)〈v, v〉 = a(v)Wp(cv(1)).

We conclude that a(v) = 2, and therefore

(grad Wp)cv(1) = 2ċv(1).

Consequently gradWp is tangent to geodesics through p, being future-pointing
on future-directed geodesics.

Suppose that Wp(t) < 0. Then

Ẇ (t) =
〈
(grad Wp)c(t) , ċ(t)

〉
< 0

as both (gradWp)c(t) and ċ(t) are timelike future-pointing (cf. Exercise 2.2.2).

We conclude that we must have Wp(t) < 0 for all t ∈ [0, 1]. In particular,
Wp(q) = Wp(1) < 0, and hence there exists a future-directed timelike geo-
desic connecting p to q.

Assertion (3) can be proved by using the global normal coordinates
(x0, x1, x2, x3) of V to approximate causal curves by timelike curves. We
leave the details of this as an exercise. Once this is done, (4) is obvious from
the fact that expp is a diffeomorphism onto V . !

The generalized twin paradox (cf. Exercise 2.2.8) also holds locally for
general spacetimes. More precisely, we have the following statement:

Proposition 7.2. Let (M,g) be a time-oriented spacetime and p0 ∈M .
Then there exists a geodesically convex open neighborhood V ⊂ M of p0 such
that the spacetime (V, g) obtained by restricting g to V satisfies the following
property: if q ∈ I+(p), c is the timelike geodesic connecting p to q and γ is
any timelike curve connecting p to q, then τ(γ) ≤ τ(c), with equality iff γ is
a is a reparametrization of c.

Proof. Choose V as in the proof of Proposition 7.1. Any timelike curve
γ : [0, 1] → V satisfying γ(0) = p, γ(1) = q can be written as

γ(t) = expp(r(t)n(t)),

for t ∈ [0, 1], where r(t) ≥ 0 and 〈n(t), n(t)〉 = −1. We have

γ̇(t) = (expp)∗ (ṙ(t)n(t) + r(t)ṅ(t)) .

Since 〈n(t), n(t)〉 = −1, we have 〈ṅ(t), n(t)〉 = 0, and consequently ṅ(t) is
tangent to the level surfaces of the function v +→ 〈v, v〉. We conclude that

γ̇(t) = ṙ(t)Xγ(t) + Y (t),
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where X is the unit tangent vector field to timelike geodesics through p
and Y (t) = r(t)(expp)∗ṅ(t) is tangent to the level surfaces of Wp – hence
orthogonal to Xγ(t). Consequently,

τ(γ) =

∫ 1

0

∣∣〈ṙ(t)Xγ(t) + Y (t), ṙ(t)Xγ(t) + Y (t)
〉∣∣ 1

2 dt

=

∫ 1

0

(
ṙ(t)2 − |Y (t)|2

) 1
2 dt

≤
∫ 1

0
ṙ(t)dt = r(1) = τ(c),

(where we’ve used the facts that ṙ(t) > 0 for all t ∈ [0, 1], as ċ is future-
pointing, and τ(c) = r(1), as q = expp(r(1)n(1)). It should be clear that
τ(γ) = τ(c) if and only if |Y (t)| ≡ 0 ⇔ Y (t) ≡ 0 (Y (t) is spacelike) for
all t ∈ [0, 1], implying that n is constant. In this case, γ(t) = expp(r(t)n)
is, up to reparametrization, the geodesic through p with initial condition
n ∈ TpM . !

There is also a local property characterizing null geodesics:

Proposition 7.3. Let (M,g) be a time-oriented spacetime and p0 ∈M .
Then there exists a geodesically convex open neighborhood V ⊂ M of p0 such
that the spacetime (V, g) obtained by restricting g to V satisfies the following
property: if there exists a future-directed null geodesic c connecting p to q
and γ is a causal curve connecting p to q then γ is a reparametrization of c.

Proof. Again choose V as in the proof of Proposition 7.1. Since p and
q are connected by a null geodesic, we conclude from Proposition 7.1 that
q ∈ J+(p) \ I+(p). Let γ : [0, 1] → V be a causal curve connecting p to q.
Then we must have γ(t) ∈ J+(p)\I+(p) for all t ∈ [0, 1], since γ(t0) ∈ I+(p)
implies γ(t) ∈ I+(p) for all t > t0 (again by Proposition 7.1). Consequently,
we have 〈

(grad Wp)γ(t) , γ̇(t)
〉

= 0.

The formula (gradWp)cv(1) = 2ċv(1), which was proved for timelike geodesics
cv with initial condition v ∈ TpM , must also hold for null geodesics (by
continuity). Hence gradWp is tangent to the null geodesics ruling J+(p) \
I+(p) and future-pointing. Since γ̇(t) is also future-pointing, we conclude
that γ̇ is proportional to gradWp (cf. Exercise 2.2.8), and therefore γ must
be a reparametrization of a null geodesic (which must be c). !

It is not difficult to show that if r ∈ I+(p) and q ∈ J+(r) (or r ∈ J+(p)
and q ∈ I+(r)) then q ∈ I+(p) (cf. Exercise 7.8.3). Therefore, we see that if
p and q are connected by a future-directed causal curve which is not a null
geodesic then q ∈ I+(p) (cf. Exercise 7.8.4).

For physical applications, it is important to require that the spacetime
satisfies reasonable causality conditions. The simplest of these conditions
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excludes time travel, i.e. the possibility of a particle returning to an event
in its past history.

Definition 7.4. A spacetime (M,g) is said to satisfy the chronology
condition if it does not contain closed timelike curves.

This condition is violated by compact spacetimes:

Proposition 7.5. Any compact spacetime (M,g) contains closed time-
like curves.

Proof. Taking if necessary the time-orientable double covering (cf. Ex-
ercise 7.8.1), we can assume that (M,g) is time-oriented. Since I+(p) is
an open set for any p ∈ M (cf. Exercise 7.8.3), it is clear that {I+(p)}p∈M

is an open cover of M . If M is compact, we can obtain a finite subcover
{I+(p1), . . . , I+(pN )}. Now if p1 ∈ I+(pi) for i '= 1 then I+(p1) ⊂ I+(pi),
and we can exclude I+(p1) from the subcover. Therefore, we can assume
without loss of generality that p1 ∈ I+(p1), and hence there exists a closed
timelike curve starting and ending at p1. !

A stronger restriction on the causal behavior of the spacetime is the
following:

Definition 7.6. A spacetime (M,g) is said to be stably causal if there
exists a global time function, i.e. a smooth function t : M → R such that
grad(t) is timelike.

In particular, a stably causal spacetime is time-orientable. We choose
the time orientation defined by − grad(t), so that t increases along future-
directed timelike curves. Notice that this implies that no closed timelike
curves can exist, i.e. any stably causal spacetime satisfies the chronology
condition. In fact, any small perturbation of a causally stable spacetime
still satisfies the chronology condition (cf. Exercise 7.8.5).

Let (M,g) be a time-oriented spacetime. A smooth future-directed
causal curve c : (a, b) → M (with possibly a = −∞ or b = +∞) is said
to be future-inextendible if limt→b c(t) does not exist. The definition of
a past-inextendible causal curve is analogous. The future domain of
dependence of S ⊂ M is the set D+(S) of all events p ∈ M such that
any past-inextendible causal curve starting at p intersects S. Therefore any
causal influence on an event p ∈ D+(S) had to register somewhere in S,
and one can expect that what happens at p can be predicted from data on
S. Similarly, the past domain of dependence of S is the set D−(S) of
all events p ∈ M such that any future-inextendible causal curve starting at
p intersects S. Therefore any causal influence of an event p ∈ D+(S) will
register somewhere in S, and one can expect that what happened at p can
be retrodicted from data on S. The domain of dependence of S is simply
the set D(S) = D+(S) ∪D−(S).

Let (M,g) be a stably causal spacetime with time function t : M →
R. The level sets Sa = t−1(a) are said to be Cauchy hypersurfaces if
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D(Sa) = M . Spacetimes for which this happens have particularly good
causal properties.

Definition 7.7. A stably causal spacetime possessing a time function
whose level sets are Cauchy hypersurfaces is said to be globally hyper-
bolic.

Notice that the future and past domains of dependence of the Cauchy
surfaces Sa are D+(Sa) = t−1([a,+∞)) and D−(Sa) = t−1((−∞, a]).

Exercises 7.8.

(1) (Time-orientable double covering) Using ideas similar to those of
Exercise 8.6.9 in Chapter 1, show that if (M,g) is a non-time-
orientable Lorentzian manifold then there exists a time-orientable
double covering, i.e. a time-orientable Lorentzian manifold (M,g)
and a local isometry π : M → M such that every point in M has
two preimages by π. Use this to conclude that the only compact
surfaces which admit a Lorentzian metric are the torus T 2 and the
Klein bottle K2.

(2) Complete the proof of Proposition 7.1.
(3) Let (M,g) be a time oriented spacetime and p ∈ M . Show that:

(a) I+(p) is open;
(b) J+(p) is not necessarily closed;
(c) J+(p) ⊂ I+(p);
(d) if r ∈ I+(p) and q ∈ J+(r) then q ∈ I+(p);
(e) if r ∈ J+(p) and q ∈ I+(r) then q ∈ I+(p);
(f) it may happen that I+(p) = M ;
(g) if U is an open set such that H = ∂I+(p)∩U is a hypersurface,

then the normal vector to H is null;
(h) H is ruled by null geodesics.

(4) Consider the 3-dimensional Minkowski spacetime (R3, g), where

g = −dt⊗ dt + dx⊗ dx + dy ⊗ dy.

Let c : R → R3 be the curve c(t) = (t, cos t, sin t). Show that
although ċ(t) is null for all t ∈ R we have c(t) ∈ I+(c(0)) for all
t > 0. What kind of motion does this curve represent?

(5) Let (M,g) be a causally stable spacetime and h an arbitrary (2, 0)-
tensor field with compact support. Show that for sufficiently small
ε > 0 the tensor field gε = g + εh is still a Lorentzian metric on M ,
and (M,gε) satisfies the chronology condition.

(6) Let (M,g) be the quotient of Minkowski 2-dimensional spacetime
by the discrete group of isometries generated by the map f(t, x) =
(t + 1, x+ 1)). Show that (M,g) satisfies the chronology condition,
but there exist arbitrarily small perturbations of (M,g) (in the
sense of Exercise 7.8.5) which do not.

(7) Let (M,g) be a time oriented spacetime and S ⊂ M . Show that:
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(a) S ⊂ D+(S);
(b) D+(S) is not necessarily open;
(c) D+(S) is not necessarily closed;
(d) if U is an open set such that H = ∂D+(S)∩U is a hypersurface,

then the normal vector to H is null;
(e) H is ruled by null geodesics.

(8) Show that the following spacetimes are globally hyperbolic:
(a) Minkowski spacetime;
(b) Friedmann-Robertson-Walker spacetimes;
(c) The region {r > 2m} of Schwarzschild spacetime;
(d) The region {r < 2m} of Schwarzschild spacetime.

(9) Let (M,g) be the 2-dimensional spacetime obtained by remov-
ing the positive x-semi-axis of Minkowski 2-dimensional spacetime
(cf. Figure 7). Show that:
(a) (M,g) is stably causal but not globally hyperbolic.
(b) There exist points p, q ∈ M such that J+(p) ∩ J−(q) is not

compact.
(c) There exist points p, q ∈ M with q ∈ I+(p) such that the

supremum of the lengths of timelike curves connecting p to q
is not attained by any timelike curve.

tt

xx

S

D(S)

p

J+(p)

Figure 7. Stably causal but not globally hyperbolic spacetime.

(10) Let (Σ, h) be a 3-dimensional Riemannian manifold. Show that the
spacetime (M,g) = (R×Σ,−dt⊗ dt + h) is globally hyperbolic iff
(Σ, h) is complete.

(11) Let (M,g) be a global hyperbolic spacetime with Cauchy surface
S. Show that M is diffeomorphic to R× S.
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8. Singularity Theorem

As we have seen in Sections 5 and 6, both the Schwarzschild solution and
the Friedmann-Robertson-Walker cosmological models display singularities,
beyond which timelike geodesics cannot be continued.

Definition 8.1. A spacetime (M,g) is singular if it is not geodesically
complete.

It was once thought that the examples above were singular due to their
high degree of symmetry, and that more realistic spacetimes would be non-
singular. Following Hawking and Penrose (cf. [Pen65, Haw67, HP70]),
we will show that this is not the case: any sufficiently small perturbation of
these solutions will still be singular.

The question of whether a given Riemannian manifold is geodesically
complete is settled by the Hopf-Rinow Theorem. Unfortunately, this theo-
rem does not hold on Lorentzian geometry (essentially because one cannot
use the metric to define a distance function). For instance, compact man-
ifolds are not necessarily geodesically complete (cf. Exercise 8.12.1), and
the exponential map is not necessarily surjective in geodesically complete
manifolds (cf. Exercise 8.12.2).

Let (M,g) be a globally hyperbolic spacetime and S a Cauchy hyper-
surface with future-pointing normal vector field n. Let cp be the timelike
geodesic with initial condition np for each point p ∈ S. We define a smooth
map exp : U → M on an open set U ⊂ R × S containing {0} × S as
exp(t, p) = cp(t).

Definition 8.2. The critical values of exp are said to be conjugate
points to S.

Loosely speaking, conjugate points are points where geodesics starting
orthogonally at nearby points of S intersect.

Let q = exp(t0, p) be a point not conjugate to S, and let (x1, x2, x3) be
local coordinates on S around p . Then (t, x1, x2, x3) are local coordinates
on some open set V / q. Since ∂

∂t is the unit tangent field to the geodesics

orthogonal to S, we have g00 =
〈
∂
∂t ,

∂
∂t

〉
= −1. On the other hand,

∂g0i

∂t
=

∂

∂t

〈
∂

∂t
,

∂

∂xi

〉
=

〈
∂

∂t
,∇ ∂

∂t

∂

∂xi

〉

=

〈
∂

∂t
,∇ ∂

∂xi

∂

∂t

〉
=

1

2

∂

∂xi

〈
∂

∂t
,

∂

∂t

〉
= 0,

and since g0i = 0 on S we have g0i = 0 on V . Therefore the surfaces of
constant t are orthogonal to the geodesics tangent to ∂

∂t ; for this reason,
(t, x1, x2, x3) is said to be a synchronized coordinate system. On this
coordinate system we have

g = −dt⊗ dt +
3∑

i,j=1

γij(t)dxi ⊗ dxj,
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where the functions γij define a positive definite matrix. This matrix is
well defined along cp, even at points where the synchronized coordinate
system breaks down. These are the points along cp which are conjugate to
S, and are also those where γ(t) = det (γij(t)) vanishes, since only then will{
∂
∂t ,

∂
∂x1 , ∂

∂x2 , ∂
∂x3

}
fail to be linearly independent.

It is easy to see that

Γ0
00 = Γi

00 = 0 and Γi
0j =

3∑

k=1

γikβkj,

where (γij) = (γij)−1 and βij = 1
2
∂γij

∂t . Consequently,

R00 =
3∑

i=1

R i
i00 =

3∑

i=1



∂Γi
00

∂xi
−

∂Γi
i0

∂t
+

3∑

j=1

Γj
00Γ

i
ij −

3∑

j=1

Γj
i0Γ

i
0j





= −
∂

∂t

3∑

i,j=1

γijβij −
3∑

i,j,k,l=1

γikγjlβijβkl.

(cf. Chapter 4, Section 1). The quantity

θ =
3∑

i,j=1

γijβij

appearing in this expression is called the expansion of the synchronized
observers, and has an important geometric meaning:

θ =
1

2
tr

(
(γij)

−1 ∂

∂t
(γij)

)
=

1

2

∂

∂t
log γ =

∂

∂t
log γ

1
2

where we have used the formula

(log detA)′ = tr
(
A−1A′)

for any smooth matrix function A : R → GL(n) (cf. Example 7.1.4 in
Chapter 1). Therefore the expansion measures the variation of the spatial
volume spanned by neighboring synchronized observers. More importantly
for our purposes, we see that a singularity of the expansion indicates a zero
of γ, i.e. a conjugate point to S.

Definition 8.3. A spacetime (M,g) is said to satisfy the strong en-
ergy condition if Ric(V, V ) ≥ 0 for any timelike vector field V ∈ X(M).

By the Einstein equation, this is equivalent to requiring that the reduced
energy-momentum tensor T satisfies T (V, V ) ≥ 0 for any timelike vector field
V ∈ X(M). In the case of a pressureless fluid with rest density function
ρ ∈ C∞(M) and unit velocity vector field U ∈ X(M), this requirement
becomes

ρ

(
〈U, V 〉2 +

1

2
〈V, V 〉

)
≥ 0,
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or, since the term in brackets is always positive (cf. Exercise 8.12.3), simply
ρ ≥ 0. For more complicated matter models, the strong energy condition
produces equally reasonable restrictions.

Proposition 8.4. Let (M,g) be a globally hyperbolic spacetime satisfy-
ing the strong energy condition, S ⊂ M a Cauchy hypersurface and p ∈ S
be a point where θ = θ0 < 0. Then the geodesic cp contains at least a point
conjugate to S, at a distance of at most − 3

θ0
to the future of S.

Proof. Since (M,g) satisfies the strong energy condition, we have R00 =
Ric

(
∂
∂t ,

∂
∂t

)
≥ 0 on any synchronized frame. Consequently,

∂θ

∂t
+

3∑

i,j,k,l=1

γikγjlβijβkl ≤ 0

on such a frame. Using the identity

(tr A)2 ≤ n tr(AtA),

which holds for square n×n matrices (as a simple consequence of the Cauchy-
Schwarz inequality), it is easy to show that

3∑

i,j,k,l=1

γikγjlβijβkl ≥
1

3
θ2.

Consequently θ must satisfy

∂θ

∂t
+

1

3
θ2 ≤ 0.

Integrating this inequality yields

1

θ
≥

1

θ0
+

t

3
,

and hence θ must blow up at a value of t no greater than − 3
θ0

. !

Proposition 8.5. Let (M,g) be a globally hyperbolic spacetime, S a
Cauchy hypersurface, p ∈ M and c a timelike geodesic through p orthogonal
to S. If there exists a conjugate point between S and p then c does not
maximize length (among the timelike curves connecting S to p).

Proof. We will offer only a sketch of the proof. Let q be the first
conjugate point along c between S and p. Then we can use a synchronized
coordinate system around the portion of c between S and q. Since q is
conjugate to S, there exists another geodesic c̃, orthogonal to S, with the
same (approximate) length t(q), which (approximately) intersects c at q.
Let V be a geodesically convex neighborhood of q, r ∈ V a point along c̃
between S and q, and s ∈ V a point along c between q and p (cf. Figure 8).
Then the piecewise smooth timelike curve obtained by following c̃ between
S and r, the unique geodesic in V between r and s, and c between s and
p connects S to p and has strictly bigger length than c (by the generalized
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twin paradox). This curve can be easily smoothed while retaining bigger
length than c. !

p

q

r

s

S

cc̃

Figure 8. Proof of Proposition 8.5.

Proposition 8.6. Let (M,g) be a globally hyperbolic spacetime, S a
Cauchy hypersurface and p ∈ D+(S). Then D+(S) ∩ J−(p) is compact.

Proof. Let us define a simple neighborhood U ⊂ M to be a geodesi-
cally convex open set diffeomorphic to an open ball whose boundary is a
compact submanifold of a geodesically convex open set (therefore ∂U is dif-
feomorphic to S3 and U is compact). It is clear that simple neighborhoods
form a basis for the topology of M . Also, it is easy to show that any open
cover {Vα}α∈A has a countable, locally finite refinement {Un}n∈N by simple
neighborhoods (cf. Exercise 8.12.5).

If A = D+(S)∩ J−(p) were not compact, there would exist a countable,
locally finite open cover {Un}n∈N of A by simple neighborhoods not admit-
ting any finite subcover. Take qn ∈ A ∩ Un such that qm '= qn for m '= n.
The sequence {qn}n∈N cannot have accumulation points, for any point in M
has a neighborhood intersecting only finite simple neighborhoods Un. Con-
sequently, each simple neighborhood Un contains only finite points in the
sequence (as Un is compact).

Set p1 = p. Since p1 ∈ A, we have p1 ∈ Un1 for some n1 ∈ N. Let
qn '∈ Un1 . Since qn ∈ J−(p1), there exists a future-directed causal curve
cn connecting qn to p1. This curve will necessarily intersect ∂Un1 . Let
r1,n be an intersection point. Since Un1 contains only finite points in the
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sequence {qn}n∈N, there will exist infinite intersection points r1,n. As ∂Un1

is compact, these will accumulate to some point p2 ∈ ∂Un1 .
Because Un1 is contained in a geodesically convex open set, p2 ∈ J−(p1):

if γ1,n is the unique causal geodesic connecting p1 to r1,n, parametrized
by the global time function t : M → R, then the subsequence of {γ1,n}
corresponding to a convergent subsequence of {r1,n} will converge to a causal
geodesic γ1 connecting p1 to p2. Since t(r1,n) ≥ 0, we have t(p2) ≥ 0, and
therefore p2 ∈ A. Since p2 '∈ Un1 , there must exist n2 ∈ N such that
p2 ∈ Un2 .

Since Un2 contains only finite points in the sequence {qn}n∈N, infinite
curves cn must intersect ∂Un2 to the past of r1,n. Let r2,n be the inter-
section points. As ∂Un2 is compact, {r2,n} must accumulate to some point
p3 ∈ ∂Un2 . Because Un2 is contained in a geodesically convex open set,
p3 ∈ J−(p2): if γ2,n is the unique causal geodesic connecting r1,n to r2,n,
parametrized by the global time function, then the subsequence of {γ2,n}
corresponding to convergent subsequences of both {r1,n} and {r2,n} will
converge to a causal geodesic connecting p2 to p3. Since J−(p2) ⊂ J−(p1)
and t(r2,n) ≥ 0 ⇒ t(p3) ≥ 0, we have p3 ∈ A.

Iterating the procedure above, we can construct a sequence {pi}i∈N of
points in A satisfying pi ∈ Uni with ni '= nj if i '= j, such that pi is
connected pi+1 by a causal geodesic γi. It is clear that γi cannot intersect
S, for t(pi+1) > t(pi+2) ≥ 0. On the other hand, the piecewise smooth
causal curve obtained by joining the curves γi can easily be smoothed into a
past-directed causal curve starting at p1 which does not intersect S. Finally,
such curve is inextendible: it cannot converge to any point, as {pi}i∈N cannot
accumulate. But since p1 ∈ D+(S), this curve would have to intersect S.
Therefore A must be compact. !

Corollary 8.7. Let (M,g) be a globally hyperbolic spacetime and p, q ∈
M . Then:

(i) J+(p) is closed;
(ii) J+(p) ∩ J−(q) is compact.

We leave the proof of this corollary as an easy exercise. Proposition 8.6
is a key ingredient in establishing the following fundamental result:

Theorem 8.8. Let (M,g) be a globally hyperbolic spacetime with Cauchy
hypersurface S, and p ∈ D+(S). Then among all timelike curves connecting
p to M there exists a timelike curve with maximal length. This curve is a
timelike geodesic, orthogonal to S.

Proof. Consider the set T (S, p) of all timelike curves connecting S to p.
Since we can always use the global time function t : M → R as a parameter,
these curves are determined by their images, which are compact subsets of
the compact set A = D+(S) ∩ J−(p). As is well known (cf. [Mun00]),
the set C(A) of all compact subsets of A is a compact metric space for the
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p = p1

p2

p3

Un1

Un2

Figure 9. Proof of Proposition 8.6.

Hausdorff metric dH , defined as follows: if d : M ×M → R is a metric
yielding the topology of M ,

dH(K,L) = inf{ε > 0 | K ⊂ Uε(L) and L ⊂ Uε(K)},

where Uε(K) is a ε-neighborhood of K for the metric d. Therefore, the
closure C(S, p) = T (S, p) is a compact subset of C(A). It is not difficult
to show that C(S, p) can be identified with the set of continuous causal
curves connecting S to p (a continuous curve c : [0, t(p)] →M is said to be
causal if c(t2) ∈ J+(c(t1)) whenever t2 > t1).

The length function τ : T (S, p)→ R is defined by

τ(c) =

∫ t(p)

0
|ċ(t)|dt.

This function is upper semicontinuous, i.e. continuous for the topology

O = {(−∞, a) | −∞ ≤ a ≤ +∞}

in R. Indeed, let c ∈ T (S, p) be parametrized by its arclength T . For suffi-
ciently small ε > 0, the function T can be extended to the ε-neighborhood
Uε(c) in such a way that its level hypersurfaces are spacelike and orthogonal
to c (i.e. − grad T is timelike and coincides with ċ on c), and S ∩ Uε(c) is



8. SINGULARITY THEOREM 259

one of these surfaces. If γ ∈ T (S, p) is in the open ball Bε(c) ⊂ C(A) then
we can use T as a parameter, thus obtaining

γ̇ · T = 1 ⇔ 〈γ̇, grad T 〉 = 1.

Therefore γ̇ can be decomposed as

γ̇ =
1

〈grad T , grad T 〉
grad T + X

where X is spacelike and orthogonal to gradT . Consequently,

τ(γ) =

∫ τ(c)

0
|γ̇| dT =

∫ τ(c)

0

∣∣∣∣
1

〈grad T , grad T 〉
+ 〈X,X〉

∣∣∣∣

1
2

dT .

Given δ > 0, we can choose ε > 0 sufficiently small so that

−
1

〈grad T , grad T 〉
<

(
1 +

δ

τ(c)

)2

on the ε-neighborhood Uε(c) (as 〈grad T , grad T 〉 = −1 on c). Consequently,

τ(γ) =

∫ τ(c)

0

∣∣∣∣−
1

〈grad T , grad T 〉
− 〈X,X〉

∣∣∣∣

1
2

dT

<

∫ τ(c)

0

(
1 +

δ

τ(c)

)
dT = τ(c) + δ,

proving upper semicontinuity. As a consequence, the length function and
can be extended to C(S, p) through

τ(c) = lim
ε→0

sup{τ(γ) | γ ∈ Bε(c) ∩ T (S, p)}

(as for ε > 0 sufficiently small the supremum will be finite). Also, it is clear
that if c ∈ T (S, p) then the upper semicontinuity of the length forces the
two definitions of τ(c) to coincide. The extension of the length function to
C(S, p) is trivially upper semicontinuous: given c ∈ C(S, p) and δ > 0, let
ε > 0 be such that τ(γ) < τ(c) + δ

2 for any γ ∈ B2ε(c) ∩ T (S, p). Then it is
clear that τ(c′) < τ(c) + δ for any c′ ∈ Bε(c).

Finally, we notice that the compact sets of R for the topology O are sets
with maximum. Therefore, the length function attains a maximum at some
point c ∈ C(S, p). All that remains to be seen is that the maximum is also
attained at a smooth timelike curve γ. To do so, cover c with finitely many
geodesically convex neighborhoods and choose points p1, . . . , pk in c such
that p1 ∈ S, pk = p and the portion of c between pi−1 and pi is contained
in a geodesically convex neighborhood for all i = 2, . . . , k. It is clear that
there exists a sequence cn ∈ T (S, p) such that cn → c and τ(cn) → τ(c).
Let ti = t(pi) and pi,n be the intersection of cn with t−1(ti). Replace cn

by the sectionally geodesic curve γn obtained by joining pi−1,n to pi,n in
the corresponding geodesically convex neighborhood. Then τ(γn) ≥ τ(cn),
and therefore τ(γn) → τ(c). Since each sequence pi,n converges to pi, γn

converges to the sectionally geodesic curve γ obtained by joining pi−1 to pi
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(i = 2, . . . , k), and it is clear that τ(γn) → τ(γ) = τ(c). Therefore γ is a
point of maximum for the length. Finally, we notice that γ must be smooth
at the points pi, for otherwise we could increase its length by using the
generalized twin paradox. Therefore γ must be a timelike geodesic. Using
a synchronized coordinate system around γ(0), it is clear that γ must be
orthogonal to S, for otherwise it would be possible to increase its length. !

We have now all the necessary ingredients to prove the singularity the-
orem:

Theorem 8.9. Let (M,g) be a globally hyperbolic spacetime satisfying
the strong energy condition, and suppose that the expansion satisfies θ ≤
θ0 < 0 on a Cauchy hypersurface S. Then (M,g) is singular.

Proof. We will show that no future-directed timelike geodesic orthog-
onal to S can be extended to proper time greater than τ0 = − 3

θ0
to the

future of S. Suppose that this was not so. Then there would exist a future-
directed timelike geodesic c orthogonal to S defined in an interval [0, τ0 +2ε)
for some ε > 0. Let p = c(τ0 + ε). According to Theorem 8.8, there would
exist a timelike geodesic γ with maximal length connecting S to p, orthog-
onal to S. Because τ(c) = τ0 + ε, we would necessarily have τ(γ) ≥ τ0 + ε.
Proposition 8.4 guarantees that γ would develop a conjugate point at a dis-
tance of at most τ0 to the future of S, and Proposition 8.5 states that γ
would cease to be maximizing beyond this point. Therefore we arrive at a
contradiction. !

Remark 8.10. It should be clear that (M,g) is singular if the condition
θ ≤ θ0 < 0 on a Cauchy hypersurface S is replaced by the condition θ ≥
θ0 > 0 on S. In this case, no past-directed timelike geodesic orthogonal
to S can be extended to proper time greater than τ0 = 3

θ0
to the past of S.

Example 8.11.

(1) The Friedmann-Robertson-Walker models are globally hyperbolic
(cf. Exercise 7.8.8), and satisfy the strong energy condition (as
ρ > 0). Furthermore,

βij =
ȧ

a
γij ⇒ θ =

3ȧ

a
.

Assume that the model is expanding at time t0. Then θ = θ0 =
3ȧ(t0)
a(t0) > 0 on the Cauchy hypersurface S = {t = t0}, and hence

Theorem 8.9 guarantees that this model is singular to the past of
S (i.e. there exists a Big Bang). Furthermore, Theorem 8.9 implies
that this singularity is generic: any sufficiently small perturbation
of an expanding Friedmann-Robertson-Walker model satisfying the
strong energy condition will also be singular. Loosely speaking, any
expanding universe must have begun at a Big Bang.
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(2) The region {r < 2m} of the Schwarzschild solution is globally hy-
perbolic (cf. Exercise 7.8.8), and satisfies the strong energy condi-
tion (as Ric = 0). The metric can be written is this region as

g = −dτ ⊗ dτ +

(
2m

r
− 1

)
dt⊗ dt + r2dθ ⊗ dθ + r2 sin2 θdϕ⊗ dϕ,

where

τ =

∫ 2m

r

(
2m

u
− 1

)− 1
2

du.

Therefore the inside of the black hole can be pictured as a cylinder
R×S2 whose shape is evolving in time. As r → 0, the S2 contracts
to a singularity, with the t-direction expanding. Since

3∑

i,j=1

βijdxi ⊗ dxj =
dr

dτ

(
−

m

r2
dt⊗ dt + rdθ ⊗ dθ + r sin2 θdϕ⊗ dϕ

)
,

we have

θ =

(
2m

r
− 1

)− 1
2
(

2

r
−

3m

r2

)
.

Therefore θ = θ0 < 0 on any Cauchy hypersurface S = {r =
r0} with r0 < 3m

2 , and hence Theorem 8.9 guarantees that the
Schwarzschild solution is singular to the future of S. Further-
more, Theorem 8.9 implies that this singularity is generic: any
sufficiently small perturbation of the Schwarzschild solution satis-
fying the strong energy condition will also be singular. Loosely
speaking, once the collapse has advanced long enough, nothing can
prevent the formation of a singularity.

Exercises 8.12.

(1) (Clifton-Pohl torus) Consider the Lorentzian metric

g =
1

u2 + v2
(du⊗ dv + dv ⊗ du)

on M = R2 \ {0}. The Lie group Z acts freely and properly on M
by isometries through

n · (u, v) = (2nu, 2nv),

and this determines a Lorentzian metric g on M = M/Z ∼= T 2.
Show that (M,g) is not geodesically complete (although M is com-
pact). (Hint: Look for null geodesics with v ≡ 0).

(2) (2-dimensional Anti-de Sitter spacetime) Consider R3 with the pseudo-
Riemannian metric

−du⊗ du− dv ⊗ dv + dw ⊗ dw,

and let (M,g) be the universal covering of the submanifold

{(u, v,w) ∈ R3 | u2 + v2 − w2 = 1)}
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with the induced metric. Show that:
(a) A model for (M,g) is M = R×

(
−π

2 , π2
)

and

g =
1

cos2 x
(−dt⊗ dt + dx⊗ dx)

(hence (M,g) is not globally hyperbolic).
(b) (M,g) is geodesically complete, but expp is not surjective for

any p ∈ M . (Hint: Notice each isometry of R3 with the given pseudo-

Riemannian metric determines an isometry of (M, g)).
(c) There exist points p, q ∈ M connected by arbitrarily long time-

like curves (cf. Exercise 9).

t

x

(−π, 0)

(π, 0)

π
2−π

2

Figure 10. The exponential map is not surjective in 2-
dimensional Anti-de Sitter space.

(3) Show that if U is a unit timelike vector field and V is any timelike
vector field then 〈U, V 〉2 + 1

2 〈V, V 〉 is a positive function.
(4) Show that a spacetime (M,g) whose matter content is a pressure-

less fluid with rest density function ρ ∈ C∞(M) and a cosmological
constant Λ ∈ R (cf. Exercise 6.1.7) satisfies the strong energy con-
dition iff ρ ≥ Λ

4π .
(5) Let (M,g) be a spacetime. Show that any open cover {Vα}α∈A has

a countable, locally finite refinement {Un}n∈N by simple neighbor-
hoods (i.e., ∪n∈NUn = ∪α∈AVα, for each n ∈ N there exists α ∈ A
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such that Un ⊂ Vα, and each point p ∈ M has a neighborhood
which intersects only finite simple neighborhoods Un).

(6) Prove Corollary 8.7.
(7) Let (M,g) be a globally hyperbolic spacetime, t : M → R a global

time function, S = t−1(0) a Cauchy hypersurface, p ∈ D+(S) and
A = D+(S) ∩ J−(p). Show that the closure C(S, p) = T (S, p) in
the space C(A) of all compact subsets of A with the Hausdorff
metric can be identified with the set of continuous causal curves
connecting S to p (parametrized by t).

(8) Show that if (M,g) is a globally hyperbolic spacetime and S is a
Cauchy surface then exp : U ⊂ R× S →M is surjective.

(9) Let (M,g) be a globally hyperbolic spacetime and p, q ∈ M with
q ∈ I+(p). Show that among all timelike curves connecting p to
q there exists a timelike curve with maximal length, which is a
timelike geodesic.

(10) Use ideas similar to those leading to the proof of Theorem 8.9 to
prove the following theorem of Riemannian geometry: if (M,g) is
a complete Riemannian manifold whose Ricci curvature satisfies
Ric(X,X) ≥ ε〈X,X〉 for some ε > 0 then M is compact. Is it
possible to prove a singularity theorem in Riemannian geometry?

(11) Explain why each of the following spacetimes does not have to be
singular.
(a) Minkowski spacetime.
(b) Einstein universe (cf. Exercise 6.1.8).
(c) de Sitter universe (cf. Exercise 6.1.8).
(d) 2-dimensional Anti-de Sitter spacetime (cf. Exercise 2).

(12) Prove that any sufficiently small perturbation of the model of col-
lapse in Exercise 6.1.6 is also singular.

9. Notes on Chapter 6

9.1. Bibliographical notes. There are many excellent texts on Gen-
eral Relativity, usually containing also the relevant differential and Lorentzian
geometry. These range from introductory [Sch02] to more advanced [Wal84]
to encyclopedic [MTW73]. A more mathematically oriented treatment can
be found in [BEE96, O’N83] ([GHL04] also contains a brief glance at
pseudo-Riemannian geometry). For more information on Special Relativity
and the Lorentz group see [Nab92, Oli02]. Causality and the singularity
theorems are treated in greater detail in [Pen87, HE95, Nab88].
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