An Introduction to
Robot Kinematics
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An Example - The PUMA 560

There are two more
joints on the end
effector (the gripper)

The PUMA 560 has SIX revolute joints
A revolute joint has ONE degree of freedom ( 1 DOF) that is
defined by its angle
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Other basic joints

e i Revolute Joint
R 1 DOF ( Variable - Y)

Yo

Prismatic Joint
1 DOF (linear) (Variables - d)

Spherical Joint
3 DOF ( Variables - Y4, Y,, Y3)
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We are interested in two kinematics topics

Forward Kinematics (angles to position)
What you are given: The length of each link
The angle of each joint

What you can find: The position of any point
(i.e. 1t’s (X, Yy, z) coordinates

Inverse Kinematics (position to angles)

What you are given: The length of each link
The position of some point on the robot

What you can find: The angles of each joint needed to obtain
that position
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Quick Math Review

Dot Product:
Geometric Representation:

AeB =|A||B|cos6

Matrix Representation:

Unit Vector
Vector in the direction of a chosen vector but whose magnitude is 1.
_ B
Uy = —

c
w
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Quick Matrix Review

Matrix Multiplication:

An (m x n) matrix A and an (n x p) matrix B, can be multiplied since
the number of columns of A is equal to the number of rows of B.

Non-Commutative Multiplication
AB is NOT equal to BA

2 s e

Matrix Addition:

s e
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Basic Transformations
Moving Between Coordinate Frames

Translation Along the X-Axis
Y O

A A

(WN,Vv0)

VN

A
\ 4

P, = distance between the XY and NO coordinate planes

_ X _ i _ P
Notation: VXY = v Vv NO — v P=| ~
\VA \VAx 0
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Writing V> in terms of v°

VO
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Translation along the X-Axis and Y-AXis A

VO

v
Z
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Using Basis \Vectors
Basis vectors are unit vectors that point along a coordinate axis

Q

N Unit vector along the N-Axis
O  Unit vector along the N-Axis

HVNO H Magnitude of the VVNO vector ‘

(0]
" N
o _ vl IV™°llcose | . [ HVNOHCOSO ) _[Ven
VO] ||vlsine _HVNOHcos(90—9)_ V'° o5
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Y
Rotation (around the Z-Axis) |
X
Y

O A

> X
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o Y X Unit vector along X-Axis

/\ Can be considered with respect to
the XY coordinates or NO coordinates

s M=

\Vi H\_/XYHcosa — H\_/NOHCOSa — V"N° &%

X N o O, =\ _ < (Substituting for VNO using the N and O
V*© = (V *N+ Vo * O) ®X components of the vector)

V*=V"(XenN)+V°(Xe0)
= V" (cos0) + VV° (cos(0 + 90))
= V" (cosB) — VV°(sinB)
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Similarly....
VY =|VM|sina = [V"°|cos(90—a) = V" ey
VY =(V"N*An+V° x0)ey
VY =VN(Yen)+V°(Ye0d)
= V" (cos(90 —0)) + VV° (cos8)
= V" (sinB) + VV° (cos0)

So....

X
V> =V"(cos0) — V° (sin®) V2 {VY}
VY =V"N(sin®) + VV° (cosB) Vv

Written in Matrix Form

VXY = V> ~ | cosH —sin@ || V" Rotation Matrix about the z-axis
VY| |sin@ cos@ | \V°
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(VN,VO)
YO
VNO N
VXY
Y > w1
...... | 4 > X
P o
.......................... Translation along P followed by rotation by 6

VXY _ V| Px | cos0 —sin@ || Vv
\VAS P,| |sin@ cos® || V°
(Note : P,, P, are relative to the original coordinate frame. Translation followed by
rotation is different than rotation followed by translation.)

In other words, knowing the coordinates of a point (VN,V©) in some coordinate
frame (NO) you can find the position of that point relative to your original
coordinate frame (X°YY).
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HOMOGENEOUS REPRESENTATION

Putting it all into a Matrix

v \VAS P, cos® —sind | v\ What we found by doing a
V7' = = +| . o translation and a rotation
SING coso ||V

o e 4 - ) N
Vv P, cos® -—sinG O}V Padding with 0’s and 1’s
=\ VY |=|P, |+|sin@ cos® 0| V°
1 1] 1 0 0] 1) 1

V*| [cos® -—sind P_| V"

|V |=|sind cosO Py \VAY Simplifying into a matrix form
1| |0 0 1] 1
(cos®@ —sin®@ P,
H=|sin® cosd P, Homogenous Matrix for a Translation in
0 0 1 XY plane, followed by a Rotation around
B | the z-axis
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Rotation Matrices in 3D — OK,lets return from

homaogenous repn

I —sin® 0] | |
C(_)SO iy € < Rotation around the Z-AXis
SIN@ cos® O

0 0 1

' cosO O sinO |

0 1 0 < Rotation around the Y-Axis
| —sin@ 0 cosO

1 0 0
O cosO —-sinoO |- Rotation around the X-Axis

0 sin@ cosO
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Homogeneous Matrices in 3D

H Is a 4x4 matrix that can describe a translation, rotation, or both in one matrix

A O _ _
1 0 0 P,
Y
t O 1 0 P
P >N H = /
..................................... 0 0 1 Pz
.......................... ;X A
. . O 0 0 1
Translation without rotation — -
Z
Y n, oo a, O
0 o n, o,b a, 0
N n. o a 0
Y4 y4 Z
>X O/ 0 0 1
Rotation part:
Z Rotation without translation Could be rotation around z-axis,
A X-axis, y-axIS or a combination
the three.
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Homogeneous Continued....

VN
VO ) The (n,0,a) position of a point relative to the
VXY =H ) current coordinate frame you are in.
A
V
L 1 —
_nX OX X I:)X_ VN
O X _ N O A
VXY _ n, o, a, P ||V V*=nV" +0, V- +a V" +P,
nZ OZ z I:)Z VA
0 0\O A 1

The rotation and translation part can be combined into a single homogeneous
matrix IF and ONLY IF both are relative to the same coordinate frame.
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Finding the Homogeneous Matrix

.....
.....
----
.o

Point relative to the

X-Y-Z frame

_PI_ _ni OI
= PJ +/n; 0
_Pk_ _nk 0,

.o
.....
.....
.....
.....
.o

......
.....
cees
..
.....
-----
tees
..
..

Point relative to the
I-J-K frame

LR

WN

o | Pointrelative to the

wW

N-O-A frame

WA

OI ai Pl__WN_
o)

0; & PJ W
A

o, a, P W

0 0 1] 1 |[®
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Y i
[ P /W
........................ )( P BRI
Z
WX T [ e KW, wY ok T \\:VVJ
Y | - J R Y Ly y 'y
W* =T, [+|I, }, kK, |W we =l G kT | we
WZ T | k z z z z
- 4 RS R J: kz‘-W— 1 0 0 O l__]__
Fot ] wX| [i, j, k., T.]n o a PJwN"]
Substituting for | W w” _ iy jy ky Ty n;, 0 J PJ- W°
_WK W4 i, j, k, T |n. o a P [|W"
1 0 0 0 1,0 O O l__ 1
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WX WN _ix jx kx Tx__ni 0i ai I:)i_
Y O . -

WZ 1y WA e L, ky Ty n, 0; a; Pj

W W iz jz kz Tz r"k Ok ak I:)k

1] |1 0 0 0 10 0 0 1

» Product of the two matrices

Notice that H can also be written as:

1 00 T |1, J, k, 012 0 O P |n, o 4a O
H— o 10 T,q1, J, k, 00 1 0 PyIn; o; a O
c 01 T,|1, J, k, 0f0 0 1 P |n, o, & O
000 10 0 O 1j0 00 1) 0 0 0 1

H = (Translation relative to the XYZ frame) * (Rotation relative to the XYZ frame)
* (Translation relative to the 1JK frame) * (Rotation relative to the 1JK frame)
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The Homogeneous Matrix is a concatenation of numerous
translations and rotations

One more variation on finding H:

H = (Rotate so that the X-axis is aligned with T)
* ( Translate along the new t-axis by || T || (magnitude of T))
* ( Rotate so that the t-axis is aligned with P)
* ( Translate along the p-axis by || P || )
* ( Rotate so that the p-axis is aligned with the O-axis)

This method might seem a bit confusing, but it’s actually an easier way to
solve our problem given the information we have. Here 1s an example...
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Forward Kinematics
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Ay | | The Situation:

You have a robotic arm that
starts out aligned with the X -axis.
You tell the first link to move by Y,
and the second link to move by Y.

- \9* . TheQuest: -
) Xo What is the position of the

o end of the robotic arm?

Solution:
1. Geometric Approach

This might be the easiest solution for the simple situation. However,
notice that the angles are measured relative to the direction of the previous
link. (The first link 1s the exception. The angle is measured relative to it’s
Initial position.) For robots with more links and whose arm extends into 3
dimensions the geometry gets much more tedious.

2. Algebraic Approach
Involves coordinate transformations. O

THE
ROBOTICS
INSTITUTE



Carnegie Mellon

Example Problem:

You are have a three link arm that starts out aligned in the x-axis.
Each link has lengths 1, |,, I, respectively. You tell the first one to move by Y,
, and so on as the diagram suggests. Find the Homogeneous matrix to get the
position of the yellow dot in the X°Y? frame.

Y3

H = Rz(Yl) * Txl(ll) * Rz(Yz) * Tx2(|2) * Rz(Y3)

i.e. Rotating by v, will put you in the X1Y? frame.
Translate in the along the X! axis by I;.
Rotating by v, will put you in the X2Y? frame.
and so on until you are in the X3Y?3 frame.

The position of the yellow dot relative to the X3Y?3 frame is
(I, 0). Multiplying H by that position vector will give you the
coordinates of the yellow point relative the the X°Y? framef§f’ &

THE
ROBOTICS
INSTITUTE



Carnegie Mellon

Slight variation on the last solution:
Make the yellow dot the origin of a new coordinate X*Y* frame

Y3

X4

H = Rz(Yl) * Txl(ll) * Rz(Yz) * Tx2(|2) * Rz(Y3) * Tx3(|3)
This takes you from the X°Y© frame to the X4Y* frame.

JU /N The position of the yellow dot relative to the X4Y* frame
| ] is (0,0).

Notice that multiplying by the (0,0,0,1) vector will
equal the last column of the H matrix.

«—
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More on Forward Kinematics...

Denavit - Hartenberg Parameters
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Denavit-Hartenberg Notation

IDEA: Each joint is assigned a coordinate frame. Using the Denavit-
Hartenberg notation, you need 4 parameters to describe how a frame (i)

relates to a previous frame (1-1).

THE PARAMETERS/VARIABLES: o, a,d, Y r\
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The Parameters

You can
align the
two axis
just using
the 4
parameters

T 4
%

1) a4

Techfwic)al Definition: a;y, Is the length of the perpendicular between the joint
axes. The joint axes is the axes around which revolution takes place which are the
Zi.1) and Z; axes. These two axes can be viewed as lines in space. The common
perpendicular is the shortest line between the two axis-lines and is perpendicular
to both axis-lines.
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A,:

(i-1) cont...
Visual Approach - “A way to visualize the link parameter a4, IS to Imagine an
expanding cylinder whose axis Is the Z ;, axis - when the cylinder just touches the
joint axis I the radius of the cylinder is equal to a;_;) ” (Manipulator Kinematics)

It’s Usually on the Diagram Approach - If the diagram already specifies the
various coordinate frames, then the common perpendicular is usually the X,

axis. S0 ;. Is just the displacement along the X ;) to move from the (i-1) frame
to the i frame.

If the link Is prismatic, then a;; y
IS a variable, not a parameter.
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2) 0.1

Technical Definition: Amount of rotation around the common perpendicular so that
the joint axes are parallel.

I.e. How much you have to rotate around the X;_;, axis so that the Z;_, Is pointing
In the same direction as the Z; axis. Positive rotation follows the right hand rule.

3) d(i-1)

Technical Definition: The displacement
along the Z; axis needed to align the a;;
common perpendicular to the a, common

perpendicular.

In other words, displacement along the
Z; to align the X;_1y and X; axes.

4) Y
Amount of rotation around the Z; axis needed to align the X;_1y axis with the X;
axis.
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The Denavit-Hartenberg Matrix

sin@;sina;_;,, CosO;Sina;_, COSe;_,,  COSa;_y,d;
0 0 0 1

Just like the Homogeneous Matrix, the Denavit-Hartenberg Matrix is a
transformation matrix from one coordinate frame to the next. Using a series of
D-H Matrix multiplications and the D-H Parameter table, the final result is a
transformation matrix from some frame to yc -,

Put the transformation here
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3 Revolute Joints

Zo1 Z,
oy oy .
: — ):(0'1 Y/\—/ )(:2
| Denavit-Hartenberg Link
2 2 Parameter Table
0 1
_ i OLj. ai- d; 0,
Notice that the table has two uses: e -0 | '
1) To describe the robot with its 1 0 0 0 0,
variables and parameters.
2) To describe some state of the 2 0 ao 0 0,
robot by having a numerical values
for the variables. 3 90 - d, 04
O
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I | agy | Ay | di 0i

1 3 '90 d d2 63
do ay
_sz _
Y, 0 1
VXoYozo — T V T :( OT)( 1T)(2T)
\Vis
1 Note: T is the D-H matrix with (i-1) =0 and i = 1.
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L agn | Ay | &6 cos®, -sin@, 0 O
T T o 0 0 e T sind, cos@, O O
; 0 0 10
3 | 90 | a d, 0, This is just a rotation around the Z, axis

cos®, —sing, 0 a,  cos®, -—sin@, 0 a,
. sin@, «cosd, 0 O . 0 0 1 d,
T = )1 = -
0 0 0O O —sin@, —cos6, O
0 0 0 1] 0 0 0 1

This is a translation by a, and then d,
followed by a rotation around the X, and
Z, axis

T=(NEDE)

This is a translation by a, followed by a
rotation around the Z, axis
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Next Example

% X 62 4 %
Bl o d o:
o, O O,
0 70 d, O
O 4 &,
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Alternative PUMA 560

24, I,E
Z5 Va Vg cos f1p —smnfd; 0 O cosfy —snfy 0 aj
Ty(6:) = sinf;, cosf; 0 O Ty(6s) = .0 0 -1 —d,
et Xss X 1 0 0 1 017 sinf; cosf, 0 0 1
N 0 0 0 1 0 0 0 1
4 cosfy —sinf, 0 O cosby —sinfy 0 0
0 0 10
z 0 0 1 d Ts(6s) = .
e T3(01) = _sinf, —cosfy 0 02 5(6s) —sinfs —cosfy 0 0]°
0 0 0 1
0 0 0 1
Xy
» 73
cosfy; —senf; 0 a .
sinf; cosf; 0 O cosfy —sinfly 0 0O
T:(6s) : 0 0 10
0 0 1 d; Ts(6s) = | .
= 0 0 0 1 snfy, cosfy 0 O
&1 ;1 Hi di 0 0 0 1
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Inverse Kinematics

From Position to Angles
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A Simple Example

Revolute and
Prismatic Joints
Combined 0 = arctan(y, Xx)

More Specifically:
x.y) / pecifically

Finding Y:

arctan2() specifies that it’s in the
first quadrant

0 = arctan 2(y, X)

Finding S:

S=\(X+Y°)
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Inverse Kinematics of a Two Link Manipulator

(,Y) Given: I, 1,,x,y

Find: Y, Y,

Redundancy:

A unique solution to this problem
does not exist. Notice, that using the
“givens” two solutions are possible.
Sometimes no solution is possible.

THE
ROBOTICS
INSTITUTE




[TT777777
Using the Law of Cosines:

sinB _sinC

b C
sind, sin(180-6,)  sin(0,)

Carnegie Mellon

Using the Law of Cosines:

¢’ =a’+b*—2abcosC

(X2 +y?) =1°+1,°-2l1,cos(180-6,)
cos(180—-6,) =—cos(9,)

2 2 2 2
X“+y -1 -l
cos(0,) = Y ~h 75
21,1,
2 2 2 2
X“+y -1 -l
0, = arccos Y —h 7k
21,1,

Redundant since 6, could be in the
first or fourth quadrant.

0,=0-0,

o = arctan Z(Xj
X

Redundancy caused since 6, has two possible
values

sin(0,)

0, = arctan 2(y, x)— arcsin( 2

Wp
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C, = CO0SO,
Cp,, =C0S(0,+0,)
(1) x=1lc,+l,c.,

(2) Y = |1 S;+ Iz Sin1+2

L1777 7 777

(1) +(2)° =x*+y* =
— (|12 ¢, +1,%(c,,)* +2LL, cl(cl+2))+ (|12 s, +1,%(sin,,,)* + 2L, sl(sinm))

= I12 + |22 + 2|1|2(C1(C1+2) +Sl(Sin1+2)) \

2 2
_ «—Only Unk -
=1"+1,"+2l1l,c, 157 DL GO Note :

x24y?— 1212 ) cos(a"h) = (cos a)(cosb) (sin a)(sinb)

211, sin(a’b) = (cosa)(sinb) ™ (cosb)(sin
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x=lc+l,c, Note :
=1,c,+1,c,c,—L,s;5, cos(a"h) = (cos a)(cosh) (sin a)(sinb)
=C, (I, +1,¢,) —s,(l;5,) sin(a’b) = (cos a)(sinb) (cosb)(sin a)
y=lys,+1;sin,,, We know what 0, is from the previous
=1,s,+1,8,C,+1,5,C, slide. We need to solve for 6, . Now
=c,(l,s,)+s,(I, +1,c,) we have two equations and two

unknowns (sin 6; and cos 6, )

X _ (Il +1, Cz)(_lz Sz) Cy
y (s, I, +1,c,) |s, Substituting for ¢, and simplifying

many times

Notice this is the law of cosines
and can be replaced by x?+ y?

6, = arctan 2(s,,C,)
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x=lLc+l,c.,
=1, c,+1,c,c,—1,s,5,
=C, (I +1;¢3) —s,(l;s;)

y=Is,+1,sin,,
=1,s,+1,s,c,+1,s,C;
=Cy(l;s,)+s, (I, +1,c;)
C. — X+ Sl(Izsz)
L=
(I + | Cz)
X+S (I 2) (I
(I —|—I 2)
1

T, +1,c,)

_ y(l, +1,c,)—xl,s,
X+ y?

;) +S: (L +1;C;)

(x1,s, +s5, (1,

Note :
cos(a"h) = (cos a)(cosh) (sin a)(sinb)
sin(a’b) = (cosa)(sinb) (cosb)(sin a)

We know what 6, is from the previous
slide. We need to solve for 6, . Now
we have two equations and two
unknowns (sin 6; and cos 6, )

Substituting for ¢, and simplifying
many times

Notice this is the law of cosines

2
+ 2I1I2*Cz))and can be replaced by x?+ y?

6, = arctan 2(s,,C,)
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