## Paper IS04

# An Introduction to SDTM – 298 pages in 20 minutes?!

Jennie Mc Guirk, ICON, Dublin, Ireland

### ABSTRACT

The Study Data Tabulation Model (SDTM) and its Implementation Guide are very detailed documents, holding vast amounts of information and practical examples. These can seem a daunting set of document's to new comers to the industry, particularly if training consists of the 'read it and get started' approach. This paper will attempt to introduce the Study Data Tabulation Model, by summarizing the guidelines, providing some real life examples, and also some tips on how to confirm the compliance and validity of your mappings by using tools such as OpenCDISC.

### INTRODUCTION

CDISC is a global, open, multidisciplinary, non-profit organization that has established standards to support the acquisition, exchange, submission and archive of clinical research data and metadata. CDISC has a number of Foundation Standards. This paper shall focus on one of those standards - The Study Data Tabulation Model (SDTM)., and provide a high level summary of how to use the SDTM Implementation Guide.

### SDTM FUNDAMENTALS

CDISC SDTM is defined within 2 key documents – The Study Data Tabulation Model, and the SDTM Implementation Guide, see Figure 1.

FIGURE 1



There are 3 key building blocks to how data is structured within the SDTM, see Figure 2.

FIGURE 2



The first of the blocks, the **Data Class**, describes the datasets or domains within the SDTM. These are categorized into 6 classes; see Figure 3, which gives a description of the class, along with some examples.

### FIGURE 3 – DATA CLASSES



The next block, describes the **Variable Roles**. Variables have 4 main roles within the SDTM, see Figure 4, which gives a description of the role, along with some examples.



The final block, describes the **Core Variables**. Variables are divided into 3 core categories within the SDTM, see Figure 5, which gives a description of the core variables, along with the associated rules.



This is the foundation of the SDTM. However it is very theoretical. We now need to interpret the theory and guidelines into some practical examples!

## **CDISC SDTM IMPLEMENTATION**

As this paper is aimed at those starting out with SDTM, the 3 examples selected are simple in complexity. When dealing with such simple examples, there are 5 critical steps to transforming source data to the SDTM, described in Figure 6.



#### Step1: Determine the Data Class.

Although this sounds like a relatively easy step, it can often require some consideration. A simple approach to determining the Data Class is to select keys words from the CRF page, and search the Implementation Guide. For example, a simple search on the text 'Adverse Events' or 'Signs and Symptoms' will indicate immediately that they are within the Events Class. However, if it is not immediately obvious from a key word search, you need to consider the content of the data, alongside the descriptions within the Implementation guide for 'GUIDELINES FOR DETERMINING THE GENERAL OBSERVATION CLASS'.

## Step2: Identify the Required Variables

Once the Data Class has been determined, identifying the required variables is a straightforward look-up of the implementation guide. To start with, STUDYID, DOMAIN, USUBJID, and –SEQ are all required within the General Observation Classes. Then using the Domain model definition select other required variables (for example within EVENTS these are --TERM, --DECOD, within INTERVENTIONS --TRT, and within FINDINGS --TEST –TESTCD.

#### Step3: Identify the Expected Variables

Follow same process as step 2, except now looking for expected variables. You should now have the minimum set of variables for your domain.

#### Step4: Identify the Permissible Variables

For permissible variables, as opposed to identify what all the permissible variables are, instead look at your source data to identify what has been captured, but not yet mapped to a required/expected variable in Step2 & 3 above. This enables you to focus on the permissible variables applicable to your study data.

#### Step5: Identify the Relationship Variables

There may then be variables that are captured, however do not fit into the required, expected or permissible core set of variables. These remaining variables would be mapped to a related domain (such as CO or SUPP--). See below figure 11 on linking a SUPP—and parent domain.

## EXAMPLES

Figure 7, 8 and 9 show examples of an INTERVENTION, EVENT and FINDING respectively. The annotations are color coded based on the 5 step process.

Step 1: Data Class Step 2: Required Step 3: Expected Step 4: Permissible Step 5: Relationship



|                                        |                              |                      | No relationship variables           |
|----------------------------------------|------------------------------|----------------------|-------------------------------------|
| ntervention                            | OMAIN = "CM"                 | CMSEQ =<br>Derived   | No expected variables               |
| STUDYID                                | JOINTAIN - CIVI              | BJID<br>Subject Page | Not submitted                       |
| Prior/Concomitant Mec                  | Ves. If Yes, complete below: | ot submitted         |                                     |
| Medication<br>(generic name preferred) | Dose Units                   | Route Frequency      | Date<br>(dd-mmm-yyyy) CMENRTPT      |
| CMTRT                                  | CMDOSE                       | CMROUTE              | Start Date CMSTDTC End Date CMENDTC |

FIGURE 8 – EVENTS EXAMPLE

| No relationship variables                       |                    |              | Events                      | Clinical Research  |
|-------------------------------------------------|--------------------|--------------|-----------------------------|--------------------|
| STUDYID                                         | USUBJID            |              |                             |                    |
| Protocol Stu                                    | udy Site           | Subject      | Not submitte<br>Page No.    | d<br>Repeat No.    |
|                                                 |                    |              | Visit Name<br>DOMAIN        | = 'AE'             |
| Adverse Event                                   | Not submitted      |              |                             | AESEQ = Derived    |
| Did the subject experience any adverse events?  | Start date/        | *Start time/ | NCLCTC                      |                    |
| Adverse Event                                   | End date           | (hh:mm)      | Ongoing Grade               | Severity           |
| AETERM                                          | AESTDTC<br>AEENDTC | AEENRTI      | AETOXGR                     | AESEV              |
| Causality                                       | Outcome            |              | Action taken with Study Dr. | Other Action Taken |
| AEREL                                           | AEOUT              |              |                             | None               |
| Serious Serious Criteria (check all that apply) |                    |              | AEACN                       | Medication given   |
| Yes Fatal                                       |                    | 1            |                             | Non-drug therapy   |
| AESER Requires hospitalization                  | AESDTH, AES        | CONG, AESH   | IOSP,                       | Hospitalization    |
| Life threatening                                | AESDIAB,AES        | LIFE, AESMI  | LE                          | AEACNOTH           |

FIGURE 9 – FINDINGS EXAMPLE

|                                                               | Findings                    | Clinical Research              |
|---------------------------------------------------------------|-----------------------------|--------------------------------|
| STUDYID     USUBJID       Protocol     Study Site     Subject | Not submitted<br>Page No. F | Repeat No.                     |
| Laboratory Tests - Screening                                  | it name<br>SITNUM DO        | DMAIN = 'LB                    |
| Lad ID: LBSPID                                                | LBS                         | EQ = Derived                   |
| Lab Name: LBNAM Lab Ad                                        | ldress: LBADD in SUP        | PLB                            |
| LBCAT Hematology Blood Chemistry Urinalysi                    | s                           |                                |
| Date of Sample Collection:                                    | ime of Sample Collection:   |                                |
|                                                               | LBCLSI                      | G = N in SUPPLB                |
| Laboratory Test                                               | Result Clinically           | G = Y in SUPPLB / Significant? |
| LBTEST LBTESTCD = Assigned                                    | LBORRES Ye                  | es No<br>es No                 |

## LINKING A SUPP-TO A PARENT DOMAIN

Figure 10 is an example of linking a SUPP—and parent domain. This is based on the example provided in Figure 9 above.

FIGURE 10 – LINKING SUPP- TO A PARENT DOMAIN

| Family                                   |                |                                                  |                         |                 |   |       |     |                          |                      | Clinical                                                                     | Clinical Research |                         |                               |           |        |                      |          |          |          |
|------------------------------------------|----------------|--------------------------------------------------|-------------------------|-----------------|---|-------|-----|--------------------------|----------------------|------------------------------------------------------------------------------|-------------------|-------------------------|-------------------------------|-----------|--------|----------------------|----------|----------|----------|
|                                          |                |                                                  |                         |                 |   |       | P   | aren                     | t                    |                                                                              |                   |                         |                               |           |        |                      |          | Ch       | uild –   |
| STUDVID                                  | DOM            | AIN                                              | 119                     |                 |   | RSED  |     | RTESTCD                  |                      | RTEST                                                                        |                   | LRCA                    | т                             | VISIT     |        | VISITNU              |          | LRADD    | I BCI SI |
| PROT123                                  | 1B             | PBC                                              | 1112                    | 3-001-001       |   | 10000 | 611 | R                        | AL R                 | UMIN                                                                         | 1                 | THEMIST                 | TRY                           | SCREEN    | ING    | ASTRO                | 1 30     | RUDAPEST | Y        |
| PR0T123                                  | LB             | PBC                                              | 1112                    | 3.001.001       | + |       |     | R                        | AL R                 | IIMIN                                                                        |                   | THEMIS                  | TRY                           | RY WEEK 1 |        |                      | 2 25     | BUDAPEST | N        |
| PB0T123                                  | LB             | PBC                                              | 1112                    | 3-001-001       | + | 3     | AL  | B                        | AL R                 | IIMIN                                                                        |                   | CHEMIS                  | TRY WEEK 2                    |           |        | 3 21                 | BUDAPEST | N        |          |
| PB0T123                                  | LB             | PBC                                              | 1112                    | 3-001-001       | + | 4     | AL  | B                        | AL R                 | LIMIN                                                                        | 0                 | CHEMIS                  | TRY END OF ST                 |           | ST     |                      | 4 17     | BUDAPEST | N        |
| PROT123<br>PROT123<br>PROT123<br>PROT123 | LB<br>LB<br>LB | PROT123-0<br>PROT123-0<br>PROT123-0<br>PROT123-0 | 01-00<br>01-00<br>01-00 | )1<br>)1<br>)1  |   | Î     | 234 | ALB<br>ALB<br>ALB<br>ALB | ALBU<br>ALBU<br>ALBU | LBUMIN CHEMISTRY<br>LBUMIN CHEMISTRY<br>LBUMIN CHEMISTRY<br>LBUMIN CHEMISTRY |                   | ISTRY<br>ISTRY<br>ISTRY | WEEK 1<br>WEEK 2<br>END OF ST |           | 2      | 2 25<br>3 21<br>4 17 |          | nt = LI  |          |
| Link via LBSEQ                           |                |                                                  |                         |                 |   |       |     |                          |                      |                                                                              |                   |                         |                               |           |        |                      |          |          |          |
| STUDYID                                  | RDOMAI         | N IDVAR                                          |                         | <b>IDVARVAL</b> |   | QNA   | м   | QLABEL                   |                      | QVAL                                                                         | . 1               | QORIG                   |                               | QEVAL     |        |                      |          |          |          |
| PROT123                                  | LB             | LBSEQ                                            | 1                       | ·               |   | LBAD  | DL  | ab Address.              |                      | BUDAPE                                                                       | ST                | CRF                     | INVE                          | STIGATO   | R      |                      |          |          |          |
| PROT123                                  | LB             | LBSEQ                                            | 2                       |                 |   | LBAD  | DL  | ab Address               | -                    | BUDAPE                                                                       | ST                | CRF                     | INVE                          | STIGATO   | R      |                      |          |          |          |
| PROT123                                  | LB             | LBSEQ                                            | 3                       |                 |   | LBAD  | DL  | ab Address               | BUDAPEST             |                                                                              | ST                | CRF                     | INVESTIGATOR                  |           | R      | Ch                   | i14 -    | STIDI    | DID      |
| PROT123                                  | LB             | LBSEQ                                            | 4                       |                 |   | LBAD  | DL  | .ab Address              | BUDAPEST             |                                                                              | ST                | CRF                     | INVESTIGATOR                  |           | CI     | nu –                 | SOLI     |          |          |
| PR01123                                  | LB             | LBSEQ                                            | 1                       | •               |   | LBCLS | 5 0 | Jin Sign                 | -                    | Y                                                                            | -                 | URF                     | INVE                          | STIGATO   | H      |                      |          |          |          |
| PR01123                                  | LB             | LESEQ                                            | 2                       |                 |   | LBCL  |     | Jin Sign<br>Ya Giao      | _                    | N                                                                            | -                 | CDF                     | INVE                          | STIGATO   | H<br>D |                      |          |          |          |
| PR01123                                  | LD             | LESEQ                                            | 3                       |                 |   | LECUS |     | , in sign<br>Yin Sian    |                      | N                                                                            |                   | CDE                     | INVE<br>INVE                  | STIGATO   |        |                      |          |          |          |
| rho1123                                  | LD             | LUSEQ                                            | 4                       |                 | _ | LOUL  |     | an ayn                   |                      |                                                                              | _                 | unir                    | THEY'L                        |           | n      |                      |          |          |          |

## CDISC SDTM COMPLIANCE

:

Once you have gone followed the 5 step thinking process, you are now ready to start physically mapping to SDTM.

However, once you have completed your mapping, how will you confirm that the SDTM datasets you have produced actually conform to the SDTM, and the SDTM Implementation Guide? Well, there is a number of ways to validate SDTM mappings, but one of the tools most frequently used is the OpenCDISC Validator.

The OpenCDISC validator provides a method for checking conformance and compliance of mappings against the SDTM Implementation Guide.

OpenCDISC defines issues within 3 severities (see figure 11), and 9 categories (see figure 12).



## FIGURE 11 – OPENCDISC SEVERITIES

As a rule, errors should be resolved, and all warnings and notices should be at least reviewed and verified.

Sometimes errors are justifiable, for example they are due to underlying data issues (e.g. the study is ongoing, and the database is not yet clean). You can refer to a poster created for the PhUSE FDA conference in March 2012 for some further examples of these (see reference below).



### FIGURE 12 – OPENCDISC CATEGORIES

Examples of the 9 categories are shown below in Figure 13, also displaying the Severity of each check.

#### FIGURE 13

| Rule ID | Message                                                           | Description                                                                                                                                       | Category            | Severity |
|---------|-------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|----------|
| CT0034  | Value for SEX not found in SEX controlled<br>terminology codelist | Variable values should be populated with terms found in 'Sex' (C66731) CDISC controlled<br>terminology codelist                                   | Terminology         | Error    |
| SD0002  | NULL value in variable marked as Required                         | Required variables (where Core attribute is 'Req') cannot be NULL for any records                                                                 | Presence            | Error    |
| SD0003  | Invalid ISO 8601 value                                            | Dates and times of day must conform to the ISO 8601 international standard                                                                        | Format              | Error    |
| SD0005  | Duplicate SEQ                                                     | The value of Sequence Number (SEO) variable must be unique for each record within a subject                                                       | Consistency         | Error    |
| SD0012  | Day of Start is after the Day of End                              | Study Day of Start of Event, Exposure or Observation (STDY) must be less or equal to Study<br>Day of End of Event, Exposure or Observation (ENDY) | Limit               | Error    |
| SD0056  | SDTM Required variable not found                                  | Variables described in SDTM as Required must be included in the dataset                                                                           | Metadata            | Error    |
| SD0062  | Incompatible data source                                          | Domain table must have a valid format (e.g., SAS transport (XPORT) v.5 or text-delimited)                                                         | System              | Error    |
| SD0064  | Invalid subject                                                   | All Subjects (USUBJID) must be present in Demograpics (DM) domain                                                                                 | Cross-<br>reference | Error    |
| SD1041  | Values ofCAT andSCAT are identical                                | Values of Category (CAT) and Subcategory (SCAT) variables should not be identical                                                                 | Data Quality        | Warning  |

There are ~250 checks currently reported from the OpenCDISC validator.

You can learn about the OpenCDISC validator, and download the tool (for free!) by visiting their website (see reference below).

### CONCLUSION

The purpose of this paper is to give a high level introduction to the SDTM Fundamentals, and using simple examples provide a foundation to a new comer. This paper does not replace reading - understanding CDISC documentation, or any individual company training courses.

SDTM v1.2 & SDTM I.G. v3.1.2 was used as a basis for this paper, always refer to the CDISC website for most recent versions.

### REFERENCES

CDISC Website: <u>http://www.cdisc.org/</u> OpenCDISC: <u>http://www.opencdisc.org/</u> PHUSE FDA Poster March 2012: <u>http://www.phuse.eu/download.aspx?type=cms&docID=3965</u>

## **CONTACT INFORMATION**

Your comments and questions are valued and encouraged. Contact the author at:

Jennie Mc guirk ICON Email: jennie.mcguirk@iconplc.com



**Clinical Research** 

Brand and product names are trademarks of their respective companies.