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Overview

Solid State Experiments in PHYS 211

• Electrical Resistivity

• Specific Heat

• Hall Effect in Semiconductors

• Optical Absorption Edge of
Semiconductors

• Mössbauer Spectroscopy of 57Fe A pretty accurate representation of how one studies solid state physics

[Source: Solid State Physics Group, Department of Physics, University
of Torino]
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Band Structure: An Example

Sodium: Na (Z=11): (1s)2(2s)2(2p)6(3s)1

[Source: Wikimedia Commons]
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Band Structure: An Example

Sodium: Na (Z=11): (1s)2(2s)2(2p)6(3s)1

[Source: Wikimedia Commons]

2 atoms at distance r
[Source: Fig. 12.16, Modern Physics, Serway, Moses & Moyer, 2005]
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Band Structure: An Example

Sodium: Na (Z=11): (1s)2(2s)2(2p)6(3s)1

(a) 2 atoms, (b) 6 atoms, (c) many atoms
[Source: Fig. 12.16, Modern Physics, Serway, Moses & Moyer, 2005]
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Band Structure: More Details

[Source: Fig. 3.7, Experiments in Modern Physics, Melissinos, 1966]
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Band Structure: More Details

[Source: Fig. 3.7, Experiments in Modern Physics, Melissinos, 1966]

• Electrons fill the bands in the ground state up to the Fermi Level

• The highest band with electrons in the ground state is the Valence Band

• The lowest band with openings in the ground state is the Conduction
Band
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Band Structure: More Details

[Source: Fig. 3.6, Experiments in Modern Physics, Melissinos, 1966]

Note that in the ground state the valence band is filled and the conduction
band is empty.
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Band Structure: Conductors, Insulators and
Semiconductors

[Source: Fig. 9.1, Introduction to Solid State Physics, 3rd Ed., Kittel, 1966]

• INSULATORS: the valence and conduction bands are separate with a
large band gap (typically several eV or more)

• CONDUCTORS: the valence and conduction bands overlap

• SEMICONDUCTORS: the valence and conduction bands are separate
in the ground state with a small band gap (typically 0.1-1 eV)
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Conduction: Introduction

• Electrons in the valence band cannot move far from their nucleus
◦ they are localized
◦ insulators have no free electrons

• Electrons in the conduction band are nearly free
◦ they can move about the crystal
◦ it costs very little energy to excite electrons
◦ free elections lead to conduction

[Source: Bonding in Metals and Semiconductors, http://chemwiki.ucdavis.edu/]
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Conduction: Drift Velocity and Current

When an electric field is applied, electrons
feel a force

F = −eE

They scatter with an average time τ between
collisions and develop a drift velocity

vd = −eEτ/m

Therefore, we have a net current I and can define a current density,

j = I/A = −nevd = ne2Eτ/m

where n is the number of free electrons per unit volume, and A is the cross
sectional area of the material.
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Conduction: Ohm’s Law

Current density:

j = I/A = −nevd = ne2Eτ/m

If we rearrange this, we find the fundamental form of Ohm’s law,

j = σE or j = E/ρ

where

σ = ne2τ/m is the conductivity

or

ρ = m/ne2τ is the resistivity
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Conduction: What causes scattering?

So far we have not mentioned what causes electrons to scatter.

It’s not the ions!

• In a perfectly periodic crystal,
there is no electron-ion scattering

• But electrons scatter off things
which break the periodicity

12 of 25



Conduction: What causes scattering?

So far we have not mentioned what causes electrons to scatter.

It’s not the ions!

• In a perfectly periodic crystal,
there is no electron-ion scattering

• But electrons scatter off things
which break the periodicity

The two main contributions to
resistivity (and which set the time
scale τ) are:

• scattering off defects

• scattering from lattice vibrations
(phonons)

[Source: Morelli Research Group, Michigan State University,

egr.msu.edu/morelli-research]
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Conduction: Where do we use this?

We will study conduction in:

• Electrical Resistivity
◦ Resistivity of electrons in metals
◦ Resistivity of electrons in semiconductors

• Hall Effect
◦ Resistivity of electrons and holes in semiconductors
◦ Mobility of electrons and holes in semiconductors
◦ Magnetoresistance
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Lattice Vibations: Introduction

The atoms in a solid arrange themselves in a periodic array known as a
lattice or crystal.

[Source: Wikimedia Commons]

However, adding energy to the atoms makes them vibrate.
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Lattice Vibrations: Einstein Solid

Albert Einstein proposed that these atoms vibrate independently

• particles are in a quantum
harmonic potential around their
equilibrium position

• all atoms vibrate with frequency ω

[Source: Hyperphysics]
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Lattice Vibrations: Einstein Solid

Albert Einstein proposed that these atoms vibrate independently

• particles are in a quantum
harmonic potential around their
equilibrium position

• all atoms vibrate with frequency ω

[Source: Hyperphysics]

This model was only partly successful:

• Success! – explained the Dulong-Petit Law (specific heat → constant
at high temperature)

• Failure! – could not explain the T 3-dependence of specific heat at low
temperatures.
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Lattice Vibrations: Debye Model

Peter Debye [Source: pubs.acs.org ]

Peter Debye instead proposed that the atoms were
connected by springs so that the crystal was a
coupled oscillator.

• atoms do not vibrate independently

• frequencies are not equal (and not equally
common)

• N atoms in 3 dimensions means 3N normal modes
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Lattice Vibrations: Normal modes?

What are normal modes again?
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Lattice Vibrations: Normal modes?

What are normal modes again?

Suppose we have three atoms (of mass m) connected by springs (of spring
constant k) vibrating in one dimension:
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Lattice Vibrations: Normal modes?

What are normal modes again?

We then will have 3 normal modes:
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Lattice Vibrations: Debye Model

For the atoms of the Debye model:

• N atoms in 3 dimensions means 3N normal modes

• the number of modes increases as ω2

• there is a maximum frequency – the Debye frequency – ωD (because
there are only 3N modes)

• we can also define the Debye temperature, ΘD :

~ωD = kBΘD

(a) Debye model density of states. (b) A realistic density of states.

[Source: Fig. 5-14, Introduction to Solid State Physics, 3rd Ed., Kittel, 1966]
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Lattice Vibrations: Phonons

Instead of picturing waves, we can think about particles.

The energy contained in a particular mode is given by the quantum
harmonic oscillator energy,

En = (1/2 + n)~ω,

where ω is the frequency of that mode and n describes the quantum energy
state.

A vibrational mode can only gain or lose energy in discrete amounts, and
these quanta of heat energy are called phonons.

A mode in the nth energy state is occupied by n phonons, each with energy
Ep = ~ω.
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Lattice Vibrations: Where do we use this?

We will use the Debye Model in:

• Electrical Resistivity
◦ Low and high temperature resistivity in metals

• Specific Heat
◦ Low and high temperature specific heat in metals

• Mössbauer Effect
◦ Used to explain the origins of the effect

We will use phonons in:

• Optical Absorption Edge
◦ “Indirect” absorption in semiconductors involving both a photon and a

phonon
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Superconductivity: Introduction

At very low temperatures, some metals undergo a transition from normal
conductor to superconductor

• ZERO resistivity

• expulsion of magnetic field lines (the Meissner effect)

[Source: Wikimedia Commons]

Typical superconducting temperatures are TC ≤ 10K .
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Superconductivity: Where do we use this?

We will observe superconductivity in:

• Electrical Resistivity
◦ Observe the drop to zero resistivity in niobium, vanadium and tantalum

• Specific Heat
◦ Observe a discontinuity (and change in shape) in the specific heat of

niobium
◦ Measure the ratio of normal to superconducting specific heats
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Good luck this quarter!

Heike Kamerlingh Onnes and Johannes van der Waals with the helium “liquefactor” in Leiden (1908)

[Source: Wikimedia Commons]
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