An Introduction to Solid State Concepts PHYS 21103

Department of Physics, Instructional Labs

University of Chicago

Overview

Solid State Experiments in PHYS 211

- Electrical Resistivity
- Specific Heat
- Hall Effect in Semiconductors
- Optical Absorption Edge of Semiconductors
- Mössbauer Spectroscopy of ⁵⁷Fe

A pretty accurate representation of how one studies solid state physics

[Source: Solid State Physics Group, Department of Physics, University of Torino]

Overview

Band Structure

From energy levels to bands Conductors, insulators and semiconductors

Electrical Conduction

Free electrons Drift velocity and current Ohm's law

Lattice Vibrations

The Einstein solid The Debye model Phonons

Superconductivity

Band Structure

Band Structure

From energy levels to bands Conductors, insulators and semiconductors

Electrical Conduction

Free electrons Drift velocity and current Ohm's law

Lattice Vibrations

The Einstein solid The Debye model Phonons

Superconductivity

Sodium: Na (Z=11): $(1s)^2(2s)^2(2p)^6(3s)^1$

[Source: Wikimedia Commons]

Sodium: Na (Z=11): $(1s)^2(2s)^2(2p)^6(3s)^1$

Sodium: Na (Z=11): $(1s)^2(2s)^2(2p)^6(3s)^1$

[Source: Wikimedia Commons]

2 atoms at distance r [Source: Fig. 12.16, Modern Physics, Serway, Moses & Moyer, 2005]

Sodium: Na (Z=11): $(1s)^2(2s)^2(2p)^6(3s)^1$

(a) 2 atoms, (b) 6 atoms, (c) many atoms [Source: Fig. 12.16, *Modern Physics*, Serway, Moses & Moyer, 2005]

Band Structure: More Details

[Source: Fig. 3.7, Experiments in Modern Physics, Melissinos, 1966]

Band Structure: More Details

[Source: Fig. 3.7, Experiments in Modern Physics, Melissinos, 1966]

- Electrons fill the bands in the ground state up to the Fermi Level
- The highest band with electrons in the ground state is the Valence Band
- The lowest band with openings in the ground state is the **Conduction Band**

6 of 25

Band Structure: More Details

[Source: Fig. 3.6, Experiments in Modern Physics, Melissinos, 1966]

Note that in the ground state the valence band is **filled** and the conduction band is **empty**.

Band Structure: Conductors, Insulators and Semiconductors

[Source: Fig. 9.1, Introduction to Solid State Physics, 3rd Ed., Kittel, 1966]

- **INSULATORS**: the valence and conduction bands are separate with a large band gap (typically several eV or more)
- CONDUCTORS: the valence and conduction bands overlap
- **SEMICONDUCTORS**: the valence and conduction bands are separate in the ground state with a small band gap (typically 0.1-1 eV)

Electrical Conduction

Band Structure

From energy levels to bands Conductors, insulators and semiconductors

Electrical Conduction

Free electrons Drift velocity and current Ohm's law

Lattice Vibrations

The Einstein solid The Debye model Phonons

Superconductivity

Conduction: Introduction

- · Electrons in the valence band cannot move far from their nucleus
 - they are localized
 - insulators have no free electrons
- · Electrons in the conduction band are nearly free
 - they can move about the crystal
 - o it costs very little energy to excite electrons
 - free elections lead to conduction

[Source: Bonding in Metals and Semiconductors, http://chemwiki.ucdavis.edu/]

Conduction: Drift Velocity and Current

When an electric field is applied, electrons feel a force

$$\mathbf{F} = -e\mathbf{E}$$

They scatter with an average time τ between collisions and develop a **drift velocity**

$$\mathbf{v}_d = -e\mathbf{E}\tau/m$$

Therefore, we have a net current I and can define a current density,

$$\mathbf{j} = \mathbf{I}/A = -ne\mathbf{v_d} = ne^2\mathbf{E}\tau/m$$

where n is the number of free electrons per unit volume, and A is the cross sectional area of the material.

10 of 25

Conduction: Ohm's Law

Current density:

$$\mathbf{j} = \mathbf{I}/A = -ne\mathbf{v}_{\mathbf{d}} = ne^2 \mathbf{E}\tau/m$$

If we rearrange this, we find the fundamental form of Ohm's law,

$$\mathbf{j} = \sigma \mathbf{E} \text{ or } \mathbf{j} = \mathbf{E}/\rho$$

where

$$\sigma = ne^2 \tau / m$$
 is the conductivity

or

$$\rho = m/ne^2 \tau$$
 is the resistivity

Conduction: What causes scattering?

So far we have not mentioned what causes electrons to scatter.

It's not the ions!

- In a perfectly periodic crystal, there is no electron-ion scattering
- But electrons scatter off things which *break* the periodicity

Conduction: What causes scattering?

So far we have not mentioned what causes electrons to scatter.

It's not the ions!

- In a perfectly periodic crystal, there is no electron-ion scattering
- But electrons scatter off things which *break* the periodicity

The two main contributions to resistivity (and which set the time scale τ) are:

- scattering off defects
- scattering from lattice vibrations (phonons)

[Source: Morelli Research Group, Michigan State University,

egr.msu.edu/morelli-research]

Conduction: Where do we use this?

We will study conduction in:

- Electrical Resistivity
 - Resistivity of electrons in metals
 - Resistivity of electrons in semiconductors
- Hall Effect
 - Resistivity of electrons and holes in semiconductors
 - Mobility of electrons and holes in semiconductors
 - Magnetoresistance

Lattice Vibrations

Band Structure

From energy levels to bands Conductors, insulators and semiconductors

Electrical Conduction

Free electrons Drift velocity and current Ohm's law

Lattice Vibrations The Einstein solid The Debye model

Phonons

Superconductivity

14 of 25

Lattice Vibations: Introduction

The atoms in a solid arrange themselves in a periodic array known as a **lattice** or **crystal**.

[Source: Wikimedia Commons]

However, adding energy to the atoms makes them vibrate.

Lattice Vibrations: Einstein Solid

Albert Einstein proposed that these atoms vibrate independently

- particles are in a quantum harmonic potential around their equilibrium position
- all atoms vibrate with frequency $\boldsymbol{\omega}$

[Source: Hyperphysics]

Lattice Vibrations: Einstein Solid

Albert Einstein proposed that these atoms vibrate independently

- particles are in a quantum harmonic potential around their equilibrium position
- all atoms vibrate with frequency ω

[Source: Hyperphysics]

This model was only partly successful:

- Success! explained the Dulong-Petit Law (specific heat \rightarrow constant at high temperature)
- **Failure!** could not explain the T^3 -dependence of specific heat at low temperatures.

Lattice Vibrations: Debye Model

Peter Debye [Source: pubs.acs.org]

Peter Debye instead proposed that the atoms were connected by springs so that the crystal was a coupled oscillator.

- atoms do not vibrate independently
- frequencies are not equal (and not equally common)
- N atoms in 3 dimensions means 3N normal modes

Lattice Vibrations: Normal modes?

What are normal modes again?

Lattice Vibrations: Normal modes?

What are normal modes again?

Suppose we have three atoms (of mass m) connected by springs (of spring constant k) vibrating in one dimension:

Lattice Vibrations: Normal modes?

What are normal modes again?

We then will have 3 normal modes:

Lattice Vibrations: Debye Model

For the atoms of the Debye model:

- N atoms in 3 dimensions means 3N normal modes
- the number of modes increases as ω^2
- there is a maximum frequency the **Debye frequency** ω_D (because there are only 3N modes)

 $\hbar\omega_{\rm D} = k_{\rm B}\Theta_{\rm D}$

• we can also define the **Debye temperature**, Θ_D :

(a) Debye model density of states. (b) A realistic density of states.

[Source: Fig. 5-14, Introduction to Solid State Physics, 3rd Ed., Kittel, 1966]

Instead of picturing waves, we can think about particles.

The energy contained in a particular mode is given by the quantum harmonic oscillator energy,

$$E_n=(1/2+n)\hbar\omega,$$

where ω is the frequency of that mode and n describes the quantum energy state.

A vibrational mode can only gain or lose energy in discrete amounts, and these quanta of heat energy are called **phonons**.

A mode in the *n*th energy state is occupied by *n* phonons, each with energy $E_{\rho} = \hbar \omega$.

Lattice Vibrations: Where do we use this?

We will use the Debye Model in:

- Electrical Resistivity
 - Low and high temperature resistivity in metals
- Specific Heat
 - Low and high temperature specific heat in metals
- Mössbauer Effect
 - Used to explain the origins of the effect

We will use phonons in:

- Optical Absorption Edge
 - "Indirect" absorption in semiconductors involving both a photon and a phonon

Superconductivity

Band Structure

From energy levels to bands Conductors, insulators and semiconductors

Electrical Conduction

Free electrons Drift velocity and current Ohm's law

Lattice Vibrations

The Einstein solid The Debye model Phonons

Superconductivity

Superconductivity: Introduction

At very low temperatures, some metals undergo a transition from normal conductor to **superconductor**

- ZERO resistivity
- expulsion of magnetic field lines (the Meissner effect)

[Source: Wikimedia Commons]

Typical superconducting temperatures are $T_C \leq 10K$.

Superconductivity: Where do we use this?

We will observe superconductivity in:

- Electrical Resistivity
 - · Observe the drop to zero resistivity in niobium, vanadium and tantalum
- Specific Heat
 - Observe a discontinuity (and change in shape) in the specific heat of niobium
 - Measure the ratio of normal to superconducting specific heats

Good luck this quarter!

Heike Kamerlingh Onnes and Johannes van der Waals with the helium "liquefactor" in Leiden (1908)

[Source: Wikimedia Commons]