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1 Introduction

The goals of this chapter are to provide an introduction to three different
methods for formulating stochastic epidemic models that relate directly to
their deterministic counterparts, to illustrate some of the techniques for ana-
lyzing them, and to show the similarities between the three methods. Three
types of stochastic modeling processes are described: 1) a discrete time Markov
chain (DTMC) model, 2) a continuous time Markov chain (CTMC) model,
and 3) a stochastic differential equation (SDE) model. These stochastic pro-
cesses differ in the underlying assumptions regarding the time and the state
variables. In a DTMC model, the time and the state variables are discrete. In
a CTMC model, time is continuous, but the state variable is discrete. Finally,
the SDE model is based on a diffusion process, where both the time and the
state variables are continuous.

Stochastic models based on the well-known SIS and SIR epidemic models
are formulated. For reference purposes, the dynamics of the SIS and SIR
deterministic epidemic models are reviewed in the next section. Then the
assumptions that lead to the three different stochastic models are described
in Sects. 3, 4, and 5. The deterministic and stochastic model dynamics are
illustrated through several numerical examples. Some of the MatLab programs
used to compute numerical solutions are provided in the last section of this
chapter.

One of the most important differences between the deterministic and
stochastic epidemic models is their asymptotic dynamics. Eventually stochas-
tic solutions (sample paths) converge to the disease-free state even though
the corresponding deterministic solution converges to an endemic equilibrium.
Other properties that are unique to the stochastic epidemic models include
the probability of an outbreak, the quasistationary probability distribution,
the final size distribution of an epidemic and the expected duration of an
epidemic. These properties are discussed in Sect. 6. In Sect. 7, the SIS epi-
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demic model with constant population size is extended to one with a variable
population size and the corresponding SDE model is derived.

The chapter ends with a discussion of two well-known DTMC epidemic
processes that are not directly related to any deterministic epidemic model.
These two processes are chain binomial epidemic processes and branching
epidemic processes.

2 Review of Deterministic SIS and SIR Epidemic Models

In SIS and SIR epidemic models, individuals in the population are classified
according to disease status, either susceptible, infectious, or immune. The
immune classification is also referred to as removed because individuals are
no longer spreading the disease when they are removed or isolated from the
infection process. These three classifications are denoted by the variables S,
I, and R, respectively.

In an SIS epidemic model, a susceptible individual, after a successful con-
tact with an infectious individual, becomes infected and infectious, but does
not develop immunity to the disease. Hence, after recovery, infected individu-
als return to the susceptible class. The SIS epidemic model has been applied
to sexually transmitted diseases. We make some additional simplifying as-
sumptions. There is no vertical transmission of the disease (all individuals are
born susceptible) and there are no disease-related deaths. A compartmental
diagram in Fig. 1 illustrates the dynamics of the SIS epidemic model. Solid
arrows denote infection or recovery. Dotted arrows denote births or deaths.

     S        I

Fig. 1. SIS compartmental diagram.

Differential equations describing the dynamics of an SIS epidemic model
based on the preceding assumptions have the following form:

dS

dt
= − β

N
SI + (b + γ)I

dI

dt
=

β

N
SI − (b + γ)I,

(1)
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where β > 0 is the contact rate, γ > 0 is the recovery rate, b ≥ 0 is the
birth rate, and N = S(t) + I(t) is the total population size. The initial con-
ditions satisfy S(0) > 0, I(0) > 0, and S(0) + I(0) = N . We assume that the
birth rate equals the death rate, so that the total population size is constant,
dN/dt = 0. The dynamics of model (1) are well-known [25]. They are deter-
mined by the basic reproduction number. The basic reproduction number is
the number of secondary infections caused by one infected individual in an
entirely susceptible population [10, 26]. For model (1), the basic reproduction
number is defined as follows:

R0 =
β

b + γ
. (2)

The fraction 1/(b + γ) is the length of the infectious period, adjusted for
deaths. The asymptotic dynamics of model (1) are summarized in the following
theorem.

Theorem 1. Let S(t) and I(t) be a solution to model (1).

i) If R0 ≤ 1, then lim
t→∞

(S(t), I(t)) = (N, 0) (disease-free equilibrium).

ii) If R0 > 1, then lim
t→∞

(S(t), I(t)) =

(

N

R0
, N

(

1 − 1

R0

))

(endemic equilib-

rium).

In an SIR epidemic model, individuals become infected, but then develop
immunity and enter the immune class R. The SIR epidemic model has been
applied to childhood diseases such as chickenpox, measles, and mumps. A
compartmental diagram in Fig. 2 illustrates the relationship between the three
classes. Differential equations describing the dynamics of an SIR epidemic

     S       I      R

Fig. 2. SIR compartmental diagram.

model have the following form:
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dS

dt
= − β

N
SI + b(I + R)

dI

dt
=

β

N
SI − (b + γ)I (3)

dR

dt
= γI − bR,

where β > 0, γ > 0, b ≥ 0, and the total population size satisfies N =
S(t)+ I(t)+R(t). The initial conditions satisfy S(0) > 0, I(0) > 0, R(0) ≥ 0,
and S(0) + I(0) + R(0) = N . We assume that the birth rate equals the death
rate so that the total population size is constant, dN/dt = 0.

The basic reproduction number (2) and the birth rate b determine the dy-
namics of model (3). The dynamics are summarized in the following theorem.

Theorem 2. Let S(t), I(t), and R(t) be a solution to model (3).

i) If R0 ≤ 1, then lim
t→∞

I(t) = 0 (disease-free equilibrium).

ii) If R0 > 1, then

lim
t→∞

(S(t), I(t), R(t)) =

(

N

R0
,

bN

b + γ

(

1 − 1

R0

)

,
γN

b + γ

(

1 − 1

R0

))

(endemic equilibrium).

iii) Assume b = 0. If R0
S(0)

N
> 1, then there is an initial increase in the

number of infected cases I(t) (epidemic), but if R0
S(0)

N
≤ 1, then I(t)

decreases monotonically to zero (disease-free equilibrium).

The quantity R0S(0)/N is referred to as the initial replacement number,
the average number of secondary infections produced by an infected individual
during the period of infectiousness at the outset of the epidemic [25, 26].
Since the infectious fraction changes during the course of the epidemic, the
replacement number is generally defined as R0S(t)/N [25, 26]. In case iii) of
Theorem 2, the disease eventually disappears from the population but if the
initial replacement number is greater than one, the population experiences an
outbreak.

3 Formulation of DTMC Epidemic Models

Let S(t), I(t), and R(t) denote discrete random variables for the number of
susceptible, infected, and immune individuals at time t, respectively. (Cal-
ligraphic letters denote random variables.) In a DTMC epidemic model,
t ∈ {0, ∆t, 2∆t, . . .} and the discrete random variables satisfy

S(t), I(t), R(t) ∈ {0, 1, 2, . . . , N}.
The term “chain” (letter C) in DTMC means that the random variables are
discrete. The term “Markov” (letter M) in DTMC is defined in the next
section.
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3.1 SIS Epidemic Model

In an SIS epidemic model, there is only one independent random variable,
I(t), because S(t) = N −I(t), where N is the constant total population size.
The stochastic process {I(t)}∞t=0 has an associated probability function,

pi(t) = Prob{I(t) = i},

for i = 0, 1, 2, . . . , N and t = 0, ∆t, 2∆t, . . . ,where

N
∑

i=0

pi(t) = 1.

Let p(t) = (p0(t), p1(t), . . . , pN (t))T denote the probability vector associated
with I(t). The stochastic process has the Markov property if

Prob{I(t + ∆t)|I(0), I(∆t), . . . , I(t)} = Prob{I(t + ∆t)|I(t)}.

The Markov property means that the process at time t + ∆t only depends on
the process at the previous time step t.

To complete the formulation for a DTMC SIS epidemic model, the re-
lationship between the states I(t) and I(t + ∆t) needs to be defined. This
relationship is determined by the underlying assumptions in the SIS epidemic
model and is defined by the transition matrix. The probability of a transition
from state I(t) = i to state I(t + ∆t) = j, i → j, in time ∆t, is denoted as

pji(t + ∆t, t) = Prob{I(t + ∆t) = j|I(t) = i}.

When the transition probability pji(t + ∆t, t) does not depend on t, pji(∆t),
the process is said to be time homogeneous. For the stochastic SIS epidemic
model, the process is time homogeneous because the deterministic model is
autonomous.

To reduce the number of transitions in time ∆t, we make one more as-
sumption. The time step ∆t is chosen sufficiently small such that the number
of infected individuals changes by at most one during the time interval ∆t,
that is,

i → i + 1, i → i − 1 or i → i.

Either there is a new infection, a birth, a death, or a recovery during the time
interval ∆t. Of course, this latter assumption can be modified, if the time step
cannot be chosen arbitrarily small. In this latter case, transition probabilities
need to be defined for all possible transitions that may occur, i → i + 2,
i → i + 3, etc. In the simplest case, with only three transitions possible, the
transition probabilities are defined using the rates (multiplied by ∆t) in the
deterministic SIS epidemic model. This latter assumption makes the DTMC
model a useful approximation to the CTMC model, described in Sect. 4. The
transition probabilities for the DTMC epidemic model satisfy
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pji(∆t) =



























βi(N − i)

N
∆t, j = i + 1

(b + γ)i∆t, j = i − 1

1 −
[

βi(N − i)

N
+ (b + γ)i

]

∆t, j = i

0, j 6= i + 1, i, i− 1.

The probability of a new infection, i → i+1, is βi(N−i)∆t/N. The probability
of a death or recovery, i → i − 1, is (b + γ)i∆t. Finally, the probability of no
change in state, i → i, is 1 − [βi(N − i)/N + (b + γ)i]∆t. Since a birth of
a susceptible must be accompanied by a death, to keep the population size
constant, this probability is not needed in either the deterministic or stochastic
formulations.

To simplify the notation and to relate the SIS epidemic process to a birth
and death process, the transition probability for a new infection is denoted as
b(i)∆t and for a death or a recovery is denoted as d(i)∆t. Then

pji(∆t) =















b(i)∆t, j = i + 1
d(i)∆t, j = i − 1
1 − [b(i) + d(i)]∆t, j = i
0, j 6= i + 1, i, i− 1.

The sum of the three transitions equals one because these transitions represent
all possible changes in the state i during the time interval ∆t. To ensure that
these transition probabilities lie in the interval [0, 1], the time step ∆t must
be chosen sufficiently small such that

max
i∈{1,...,N}

{[b(i) + d(i)]∆t} ≤ 1.

Applying the Markov property and the preceding transition probabilities,
the probabilities pi(t + ∆t) can be expressed in terms of the probabilities at
time t. At time t + ∆t,

pi(t+∆t) = pi−1(t)b(i−1)∆t+pi+1(t)d(i+1)∆t+pi(t)(1−[b(i)+d(i)]∆t) (4)

for i = 1, 2, . . . , N , where b(i) = βi(N − i)/N and d(i) = (b + γ)i.
A transition matrix is formed when the states are ordered from 0 to N . For

example, the (1, 1) element in the transition matrix is the transition proba-
bility from state zero to state zero, p00(∆t) = 1, and the (N + 1, N + 1)
element is the transition probability from state N to state N , pNN (∆t) =
1− [b+ γ]N∆t = 1− d(N)∆t. Denote the transition matrix as P (∆t). Matrix
P (∆t) is a (N + 1) × (N + 1) tridiagonal matrix given by
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0

B

B

B

B

B

B

B

B

B

B

B

@

1 d(1)∆t 0 · · · 0 0
0 1 − (b + d)(1)∆t d(2)∆t · · · 0 0
0 b(1)∆t 1 − (b + d)(2)∆t · · · 0 0
0 0 b(2)∆t · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · d(N − 1)∆t 0
0 0 0 · · · 1 − (b + d)(N − 1)∆t d(N)∆t
0 0 0 · · · b(N − 1)∆t 1 − d(N)∆t

1

C

C

C

C

C

C

C

C

C

C

C

A

,

where the notation (b+ d)(i) = [b(i)+ d(i)] for i = 1, 2, . . . , N . Matrix P (∆t)
is a stochastic matrix, i.e., the column sums equal one.

The DTMC SIS epidemic process {I(t)}∞t=0 is now completely formulated.
Given an initial probability vector p(0), it follows that p(∆t) = P (∆t)p(0).
The identity (4) expressed in matrix and vector notation is

p(t + ∆t) = P (∆t)p(t) = Pn+1(∆t)p(0), (5)

where t = n∆t.
Difference equations for the mean and the higher order moments of the

epidemic process can be obtained directly from the difference equations in (4).

For example, the expected value for I(t) is E(I(t)) =
∑N

i=0 ipi(t). Multiplying
equation (4) by i and summing on i leads to

E(I(t + ∆t)) =

N
∑

i=0

ipi(t + ∆t)

=

N
∑

i=1

ipi−1(t)b(i − 1)∆t +

N−1
∑

i=0

ipi+1(t)d(i + 1)∆t

+
N

∑

i=0

ipi(t) −
N

∑

i=0

ipi(t)b(i)∆t −
N

∑

i=0

ipi(t)d(i)∆t.

Simplifying and substituting the expressions βi(N − i)/N and (b+γ)i for b(i)
and d(i), respectively, yields

E(I(t + ∆t)) = E(I(t)) +

N
∑

i=1

pi−1(t)
β(i − 1)(N − [i − 1])

N
∆t

−
N−1
∑

i=0

pi+1(t)(b + γ)(i + 1)∆t

= E(I(t)) + [β − (b + γ)]∆tE(I(t)) − β

N
∆tE(I2(t)),

where E(I2(t)) =
∑N

i=0 i2pi(t) (see e.g., [8]). The difference equation for the
mean depends on the second moment. Difference equations for the second and
the higher order moments depend on even higher order moments. Therefore,
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these equations cannot be solved unless some additional assumptions are made
regarding the higher order moments. However, because E(I2(t)) ≥ E2(I(t)),
the mean satisfies the following inequality:

E(I(t + ∆t)) − E(I(t))

∆t
≤ [β − (b + γ)]E(I(t)) − β

N
E2(I(t)). (6)

As ∆t → 0,

dE(I(t))

dt
≤ [β − (b + γ)]E(I(t)) − β

N
E2(I(t))

=
β

N
[N − E(I(t))] E(I(t)) − (b + γ)E(I(t)) (7)

The right side of (7) is the same as the differential equation for I(t) in (1),
if, in equation (1), I(t) and S(t) are replaced by E(I(t)) and N − E(I(t)),
respectively. The differential inequality implies that the mean of the random
variable I(t) in the stochastic SIS epidemic process is less than the solution
I(t) of the deterministic differential equations in (1).

Some properties of the DTMC SIS epidemic model follow easily from
Markov chain theory [6, 47]. States are classified according to their connect-
edness in a directed graph or digraph. The digraph of the SIS Markov chain
model is illustrated in Fig. 3, where i = 0, 1, . . . , N are the infected states. The

 0  1  2 N

Fig. 3. Digraph of the stochastic SIS epidemic model.

states {0, 1, . . . , N} can be divided into two sets consisting of the recurrent
state, {0}, and the transient states, {1, . . . , N}. The zero state is an absorb-
ing state. It is clear from the digraph that beginning from state 0 no other
state can be reached; the set {0} is closed. In addition, any state in the set
{1, 2, . . . , N} can be reached from any other state in the set, but the set is not
closed because p01(∆t) > 0. For transient states it can be shown that elements

of the transition matrix have the following property [6, 47]: Let P n = (p
(n)
ij ),

where p
(n)
ij is the (i, j) element of the nth power of the transition matrix, P n,

then
lim

n→∞
p
(n)
ij = 0

for any state j and any transient state i. The limit of Pn as n → ∞ is a
stochastic matrix; all rows are zero except the first one which has all ones.
From the relationship (5) and Markov chain theory, it follows that

lim
t→∞

p(t) = (1, 0, . . . , 0)T ,
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where t = n∆t. The preceding result implies, in the DTMC SIS epidemic
model, the population approaches the disease-free equilibrium (probability
of absorption is one), regardless of the magnitude of the basic reproduction
number. Compare this stochastic result with the asymptotic dynamics of the
deterministic SIS epidemic model (Theorem 1). Because this stochastic result
is asymptotic, the rate of convergence to the disease-free equilibrium can be
very slow. The mean time until the disease-free equilibrium is reached (ab-
sorption) depends the initial conditions and the parameter values, but can
be extremely long (as shown in the numerical example in the next section).
The expected duration of an epidemic (mean time until absorption) and the
probability distribution conditioned on nonabsorption are discussed in Sect. 6.

3.2 Numerical Example

A sample path or stochastic realization of the stochastic process {I(t)}∞t=0 for
t ∈ {0, ∆t, 2∆t, . . .} is an assignment of a possible value to I(t) based on the
probability vector p(t). A sample path is a function of time, so that it can
be plotted against the solution of the deterministic model. For illustrative
purposes, we choose a population size of N = 100, ∆t = 0.01, β = 1, b = 0.25,
γ = 0.25 and an initial infected population size of I(0) = 2. In terms of the
stochastic model,

Prob{I(0) = 2} = 1.

In this example, the basic reproduction number is R0 = 2. The deterministic
solution approaches an endemic equilibrium given by Ī = 50.

Three sample paths of the stochastic model are compared to the determin-
istic solution in Fig. 4. One of the sample paths is absorbed before 200 time
steps (the population following this path becomes disease-free) but two sam-
ple paths are not absorbed during 2000 time steps. These latter sample paths
follow more closely the dynamics of the deterministic solution. The horizontal
axis is the number of time steps ∆t. For ∆t = 0.01 and 2000 time steps, the
solutions in Fig. 4 are graphed over the time interval [0, 20]. Each sample path
is not continuous because at each time step, t = ∆t, 2∆t, . . . , the sample path
either stays constant (no change in state with probability 1− [b(i)+ d(i)]∆t),
jumps down one integer value (with probability d(i)∆t), or jumps up one
integer value (with probability b(i)∆t). For convenience, these jumps are con-
nected with vertical line segments. Each sample path is continuous from the
right but not from the left.

The entire probability distribution, p(t), t = 0, ∆t, . . ., associated with
this particular stochastic process can be obtained by applying (5). A Mat-
Lab program is provided in the last section that generates the probability
distribution as a function of time (Fig. 5). Note that the probability distribu-
tion is bimodal, part of the distribution is at zero and the remainder of the
distribution follows a path similar to the deterministic solution. Eventually,
the probability distribution at zero approaches one. This bimodal distribu-
tion is important; the part of the distribution that does not approach zero (at
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Fig. 4. Three sample paths of the DTMC SIS epidemic model are graphed with the
deterministic solution (dashed curve). The parameter values are ∆t = 0.01, N = 100,
β = 1, b = 0.25, γ = 0.25, and I(0) = 2.

time step 2000) is known as the quasistationary probability distribution (see
Sect. 6.2).

3.3 SIR Epidemic Model

Let S(t), I(t), and R(t) denote discrete random variables for the number
of susceptible, infected, and immune individuals at time t, respectively. The
DTMC SIR epidemic model is a bivariate process because there are two in-
dependent random variables, S(t) and I(t). The random variable R(t) =
N −S(t)−I(t). The bivariate process {(S(t), I(t))}∞t=0 has a joint probability
function given by

p(s,i)(t) = Prob{S(t) = s, I(t) = i}.

This bivariate process has the Markov property and is time-homogeneous.
Transition probabilities can be defined based on the assumptions in the

SIR deterministic formulation. First, assume that ∆t can be chosen sufficiently
small such that at most one change in state occurs during the time interval
∆t. In particular, there can be either a new infection, a birth, a death, or a
recovery. The transition probabilities are denoted as follows:

p(s+k,i+j),(s,i)(∆t) = Prob{(∆S, ∆I) = (k, j)|(S(t), I(t)) = (s, i)},
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Fig. 5. Probability distribution of the DTMC SIS epidemic model. Parameter values
are the same as in Fig. 4.

where ∆S = S(t + ∆t) − S(t). Hence,

p(s+k,i+j),(s,i)(∆t) =







































βis/N∆t, (k, j) = (−1, 1)
γi∆t, (k, j) = (0,−1)
bi∆t, (k, j) = (1,−1)
b(N − s − i)∆t, (k, j) = (1, 0)
1 − βis/N∆t
− [γi + b(N − s)]∆t, (k, j) = (0, 0)

0, otherwise

(8)

The time step ∆t must be chosen sufficiently small such that each of the tran-
sition probabilities lie in the interval [0, 1]. Because the states are now ordered
pairs, the transition matrix is more complex than for the SIS epidemic model
and its form depends on how the states (s, i) are ordered. However, apply-
ing the Markov property, the difference equation satisfied by the probability
p(s,i)(t + ∆t) can be expressed in terms of the transition probabilities,

p(s,i)(t + ∆t) = p(s+1,i−1)(t)
β

N
(i − 1)(s + 1)∆t + p(s,i+1)(t)γ(i + 1)∆t

+p(s−1,i+1)(t)b(i + 1)∆t + p(s−1,i)(t)b(N − s + 1 − i)∆t

+p(s,i)(t)

(

1 −
[

β

N
is + γi + b(N − s)

]

∆t

)

. (9)
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The digraph associated with the SIR Markov chain lies on a two-dimensional
lattice. It is easy to show that the state (N, 0) is absorbing (p(N,0),(N,0)(∆t) =
1) and that all other states are transient. Thus, asymptotically, all sample
paths eventually are absorbed into the disease-free state (N, 0). Compare this
result to the deterministic SIR epidemic model (Theorem 2).

Difference equations for the mean and higher order moments can be de-
rived from (9) as was done for the SIS epidemic model, e.g., E(S(t)) =
∑N

s=0 sp(s,i)(t) and E(I(t)) =
∑N

i=0 ip(s,i)(t). However, these difference equa-
tions cannot be solved directly because they depend on higher order moments.

3.4 Numerical Example

Three sample paths of the DTMC SIR model are compared to the solution
of the deterministic model in Fig. 6. In this example, ∆t = 0.01, N = 100,
β = 1, b = 0, γ = 0.5, and (S(0), I(0)) = (98, 2). In the stochastic model,

Prob{(S(0), I(0)) = (98, 2)} = 1.

The basic reproduction number and the initial replacement number are both
greater than one; R0 = 2 and R0S(0)/N = 1.96. According to Theorem 2 part
iii), there is an epidemic (an increase in the number of cases). The epidemic
is easily seen in the behavior of the deterministic solution. Each of the three
sample paths also illustrate an epidemic curve.

4 Formulation of CTMC Epidemic Models

The CTMC epidemic processes are defined on a continuous time scale, t ∈
[0,∞), but the states S(t), I(t), and R(t) are discrete random variables, i.e.,

S(t), I(t), R(t) ∈ {0, 1, 2, . . . , N}.

4.1 SIS Epidemic Model

In the CTMC SIS epidemic model, the stochastic process depends on the
collection of discrete random variables {I(t)}, t ∈ [0,∞) and their associated
probability functions p(t) = (p0(t), . . . , pN (t))T , where

pi(t) = Prob{I(t) = i}.

The stochastic process has the Markov property, that is,

Prob{I(tn+1)|I(t0), I(t1), . . . , I(tn)} = Prob{I(tn+1)|I(tn)}

for any sequence of real numbers satisfying 0 ≤ t0 < t1 < · · · < tn < tn+1.
The transition probability at time tn+1 only depends on the most recent time
tn.
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Fig. 6. Three sample paths of the DTMC SIR epidemic model are graphed with the
deterministic solution (dashed curve). The parameter values are ∆t = 0.01, N = 100,
β = 1, b = 0, γ = 0.5, S(0) = 98, and I(0) = 2.

The transition probabilities are defined for a small time interval ∆t. But
in a CTMC model, the transition probabilities are referred to as infinitesimal
transition probabilities because they are valid for sufficiently small ∆t. There-
fore, the term o(∆t) is included in the definition [limt→∞(o(∆t)/∆t) = 0].
The infinitesimal transition probabilities are defined as follows:

pji(∆t) =



























β

N
i(N − i)∆t + o(∆t), j = i + 1

(b + γ)i∆t + o(∆t), j = i − 1

1 −
[

β

N
i(N − i) + (b + γ)i

]

∆t + o(∆t), j = i

o(∆t), otherwise,

Because ∆t is sufficiently small, there are only three possible changes in states:

i → i + 1, i → i − 1, or i → i.

Using the same notation as for the DTMC model, let b(i) denote a birth (new
infection) and d(i) denote a death or recovery. Then

pji(∆t) =















b(i)∆t + o(∆t), j = i + 1
d(i)∆t + o(∆t), j = i − 1
1 − [b(i) + d(i)]∆t + o(∆t), j = i
o(∆t), otherwise.
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Applying the Markov property and the infinitesimal transitional proba-
bilities, a continuous time analogue of the transition matrix can be defined.
Instead of a system of difference equations, a system of differential equations
is obtained. Assume Prob{I(0) = i0} = 1. Then pi,i0(∆t) = pi(∆t) and

pi(t + ∆t) = pi−1(t)b(i − 1)∆t + pi+1(t)d(i + 1)∆t

+ pi(t)(1 − [b(i) + d(i)]∆t) + o(∆t).

These equations are the same as the DTMC equations (4), except o(∆t) is
added to the right side. Subtracting pi(t), dividing by ∆t, and letting ∆t → 0,
leads to

dpi

dt
= pi−1b(i − 1) + pi+1d(i + 1) − pi[b(i) + d(i)] (10)

for i = 1, 2, . . . , N and dp0/dt = p1d(1). These latter equations are known as
the forward Kolmogorov differential equations [47]. In matrix notation, they
can be expressed as

dp

dt
= Qp, (11)

where p(t) = (p0(t), . . . , pN(t))T and matrix Q is defined as follows:

Q =























0 d(1) 0 · · · 0
0 −[b(1) + d(1)] d(2) · · · 0
0 b(1) −[b(2) + d(2)] · · · 0
0 0 b(2) · · · 0
...

...
...

...
...

0 0 0 · · · d(N)
0 0 0 · · · −d(N)























,

b(i) = βi(N−i)/N and d(i) = (b+γ)i. Matrix Q is referred to as the infinites-
imal generator matrix or simply the generator matrix [6, 47], More generally,
the differential equations dP/dt = QP are known as the forward Kolmogorov
differential equations, where P ≡ (pji(t)) is the matrix of infinitesimal tran-
sition probabilities. It is interesting to note that the transition matrix P (∆t)
of the DTMC model and the generator matrix Q are related as follows:

Q = lim
∆t→0

P (∆t) − I

∆t
.

The generator matrix Q has a zero eigenvalue with corresponding eigen-
vector (1, 0, . . . , 0)T . The remaining eigenvalues are negative or have negative
real part. This can be seen by applying Gershgorin’s circle theorem and the
fact that the submatrix Q̃ of Q, where the first row and the first column
are deleted, is nonsingular [43]. Therefore, limt→∞ p(t) = (1, 0, 0, . . . , 0)T .
Eventual absorption occurs in the CTMC SIS epidemic model. Compare this
stochastic result with Theorem 1.
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Differential equations for the mean and higher order moments of I(t) can
be derived from the differential equations (11). As was shown for the DTMC
epidemic model, the differential equations (10) can be multiplied by i, then
summed over i. However, we present an alternate method for obtaining the
differential equations for the mean and higher order moments using generating
functions. Either the probability generating function (pgf) or the moment
generating function (mgf) can be used to derive the equations. The pgf for
I(t) is defined as

P(θ, t) = E(θI(t)) =

N
∑

i=0

pi(t)θ
i

and the mgf as

M(θ, t) = E(eθI(t)) =

N
∑

i=0

pi(t)e
iθ.

We use the mgf to derive the equations because the method of derivation
is simpler than with the pgf. In addition, the moments of the distribution
corresponding to I(t) can be easily calculated from the mgf,

∂kM

∂θk

∣

∣

∣

∣

θ=0

= E(Ik(t))

for k = 1, . . . , n.
First, we derive a differential equation satisfied by the mgf. Multiplying

the equations in (10) by eiθ and summing on i, leads to

∂M

∂t
=

N
∑

i=0

dpi

dt
eiθ

= eθ

N
∑

i=1

pi−1e
(i−1)θb(i − 1) + e−θ

N−1
∑

i=0

pi+1e
(i+1)θd(i + 1)

−
N

∑

i=0

pie
iθ[b(i) + d(i)].

Simplifying and substituting βi(N − i)/N and (b + γ)i for b(i) and d(i), re-
spectively, yields

∂M

∂t
= β(eθ − 1)

N
∑

i=1

ipie
iθ + (b + γ)(e−θ − 1)

N
∑

i=1

ipie
iθ

− β

N
(eθ − 1)

N
∑

i=1

i2pie
iθ.

The summations in the previous expression can be replaced with ∂M/∂θ or
∂2M/∂θ2 so that the following second order partial differential equation is
obtained for the mgf:
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∂M

∂t
= [β(eθ − 1) + (b + γ)(e−θ − 1)]

∂M

∂θ
− β

N
(eθ − 1)

∂2M

∂θ2
. (12)

Bailey [13] derives a general expression for the partial differential equation
satisfied by the mgf (and also the pgf) based on the infinitesimal transition
probabilities for the process.

The partial differential equation for the mgf, equation (12), is used to
obtain an ordinary differential equation satisfied by the mean of I(t). Differ-
entiating the equation (12) with respect to θ and evaluating at θ = 0 yields
an ordinary differential equation satisfied by the mean E(I(t)),

dE(I(t))

dt
= [β − (b + γ)]E(I(t)) − β

N
E(I2(t)).

Because the differential equation for the mean depends on the second mo-
ment, it cannot be solved directly, but as was shown for the DTMC SIS
epidemic model in (7), the mean of the stochastic SIS epidemic model is less
than the deterministic solution. The differential equations for the second mo-
ment and for the variance depend on higher order moments. These higher
order moments are often approximated by lower order moments by making
some assumptions regarding their distributions (e.g., normality or lognormal-
ity), referred to as moment closure techniques (see e.g., [27, 34]). Then these
differential equations can be solved to give approximations for the moments.

4.2 Numerical Example

To numerically compute a sample path of a CTMC model, we need to use
the fact that the interevent time has an exponential distribution. This follows
from the Markov property. The exponential distribution has what has been
called the “memoryless property”.

Assume I(t) = i. Let Ti denote the interevent time, a continuous random
variable for the time to the next event given the process is in state i. Let Hi(t)
denote the probability the process remains in state i for a period of time t.
Then Hi(t) = Prob{Ti > t}. It follows that

Hi(t + ∆t) = Hi(t)pii(∆t) = Hi(t)(1 − [b(i) + d(i)]∆t) + o(∆t).

Subtracting Hi(t) and dividing by ∆t, the following differential equation is
obtained:

dHi

dt
= −[b(i) + d(i)]Hi.

Since Hi(0) = 1, the solution to the differential equation is Hi(t) = exp(−[b(i)+
d(i)]t). Therefore, the interevent time Ti is an exponential random variable
with parameter b(i) + d(i). The cumulative distribution of Ti is

Fi(t) = Prob{Ti ≤ t} = 1 − exp(−[b(i) + d(i)]t)
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[6, 47].
The uniform random variable on [0, 1] can be applied for numerical com-

putation of the interevent time. Let U be a uniform random variable on [0, 1].
Then

Prob{F−1
i (U) ≤ t} = Prob{Fi(F

−1
i (U)) ≤ Fi(t)}

= Prob{U ≤ Fi(t)} = Fi(t)

The interevent time Ti, given I(t) = i, satisfies

Ti = F−1
i (U) = − ln(1 − U)

b(i) + d(i)
= − ln(U)

b(i) + d(i)
.

In Fig. 7, three sample paths for the CTMC SIS epidemic model are com-
pared to the deterministic solution. Parameter values are b = 0.25, γ = 0.25,
β = 1, N = 100, and I(0) = 2. For the stochastic model,

Prob{I(0) = 2} = 1.

The basic reproduction number is R0 = 2. One sample path in Fig. 7 is ab-
sorbed rapidly (the population following this path becomes disease-free). The
sample paths for the CTMC model are not continuous for the same reasons
given for the DTMC model. With each change, the process either jumps up
one integer value (with probability b(i)/[b(i) + d(i)]) or jumps down one in-
teger value (with probability d(i)/[b(i) + d(i)]). Sample paths are continuous
from the right but not from the left. Compare the sample paths in Fig. 7 with
the three sample paths in the DTMC SIS epidemic model in Fig. 4.

4.3 SIR Epidemic Model

A derivation similar to the SIS epidemic model can be applied to the SIR
epidemic model. The difference, of course, is that the SIR epidemic process is
bivariate, {(S(t), I(t))}, where R(t) = N − S(t) − I(t). Assumptions similar
to those for the DTMC SIR epidemic model (8) apply to the CTMC SIR epi-
demic model, except that o(∆t) is added to each of the infinitesimal transition
probabilities.

For the bivariate process, a joint probability function is associated with
each pair of random variables (S(t), I(t)), p(s,i)(t) = Prob{(S(t), I(t)) =
(s, i)}. A system of forward Kolmogorov differential equations can be derived,

dp(s,i)

dt
= p(s+1,i−1)

β

N
(i − 1)(s + 1) + p(s,i+1)γ(i + 1)

+p(s−1,i+1)b(i + 1) + p(s−1,i)b(N − s + 1 − i)

−p(s,i)

[

β

N
is + γi + b(N − s)

]

.
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Fig. 7. Three samples paths of the CTMC SIS epidemic model are graphed with the
deterministic solution (dashed curve). The parameter values are b = 0.25, γ = 0.25,
β = 1, N = 100, and I(0) = 2. Compare with Fig. 4.

These differential equations are the limiting equations (as ∆t → 0) of the
difference equations in (9). Differential equations for the mean and higher
order moments can be derived. However, as was true for the other epidemic
processes, they do not form a closed system, i.e., each successive moment
depends on higher order moments. Moment closure techniques can be applied
to approximate the solutions to these moment equations [27, 34].

The SIR epidemic process is Markovian and time homogeneous. In addi-
tion, the disease-free state is an absorbing state. In Sect. 6.3, we discuss the
final size of the epidemic, which is applicable to the deterministic and stochas-
tic SIR epidemic model in the case R0 > 1 and b = 0 (Theorem 2, part iii)).

5 Formulation of SDE Epidemic Models

Assume the time variable is continuous, t ∈ [0,∞) and the states S(t), I(t),
and R(t) are continuous random variables, that is,

S(t), I(t),R(t) ∈ [0, N ].
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5.1 SIS Epidemic Model

The stochastic SIS epidemic model depends on the number of infectives,
{I(t)}, t ∈ [0,∞), where I(t) has an associated probability density function
(pdf), p(x, t),

Prob{a ≤ I(t) ≤ b} =

∫ b

a

p(x, t)dx.

The stochastic SIS epidemic model has the Markov property, i.e.,

Prob{I(tn) ≤ y|I(t0), I(t1), . . . , I(tn−1)} = Prob{I(tn) ≤ y|I(tn−1)}

for any sequence of real numbers 0 ≤ t0 < t1 < · · · < tn−1 < tn. Denote the
transition pdf for the stochastic process as

p(y, t + ∆t; x, t),

where at time t, I(t) = x, and at time t + ∆t, I(t + ∆t) = y. The process is
time homogeneous; the transition pdf does not depend on t but does depend
on the length of time, ∆t. The stochastic process is referred to as a diffusion
process if it is a Markov process in which the infinitesimal mean and variance
exist. The stochastic SIS epidemic model is a time homogeneous, diffusion
process. The infinitesimal mean and variance are defined next.

For the stochastic SIS epidemic model, it can be shown that the pdf sat-
isfies a forward Kolmogorov differential equation. This equation is a second
order partial differential equation [6, 21], a continuous analogue of the for-
ward Kolmogorov differential equations for the CTMC model in (10). Assume
Prob{I(0) = i0} = 1 and let p(i, i0; t) = p(i, t) = pi(t). Then the system of
differential equations in (10) can be expressed as a finite difference scheme in
the variable i with ∆i = 1,

dpi

dt
= pi−1b(i − 1) + pi+1d(i + 1) − pi[b(i) + d(i)]

= −
{pi+1[b(i + 1) − d(i + 1)] − pi−1[b(i − 1) − d(i − 1)]}

2∆i

+
1

2

{pi+1[b(i + 1) + d(i + 1)] − 2pi[b(i) + d(i)] + pi−1[b(i − 1) + d(i − 1)]}

(∆i)2
.

Let i = x, ∆i = ∆x and pi(t) = p(x, t). The limiting form of the preceding
equation (as ∆x → 0) is the forward Kolmogorov differential equation for
p(x, t):

∂p(x, t)

∂t
= − ∂

∂x
{[b(x) − d(x)]p(x, t)} +

1

2

∂2

∂x2
{[b(x) + d(x)] p(x, t)} .

Substituting b(x) = βx(N − x)/N and d(x) = (b + γ)x yields

∂p(x, t)

∂t
=

∂

∂x

{[

β

N
x(N − x) − (b + γ)x

]

p(x, t)

}
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+
1

2

∂2

∂x2

{[

β

N
x(N − x) + (b + γ)x

]

p(x, t)

}

.

The coefficient in the first term on the right side of the preceding equation,
[βx(N − x)/N − (b + γ)x], is the infinitesimal mean and the coefficient in
the second term, [βx(N − x)/N + (b + γ)x], is the infinitesimal variance.
More generally, the forward Kolmogorov differential equations are expressed
in terms of the transition probabilities, p(y, s; x, t). To solve the differential
equation requires boundary conditions for x = 0, N and initial conditions for
t = 0. An explicit solution is not possible because of the nonlinearities. We
derive a SDE that is much simpler to solve numerically and whose solution is
a sample path of the stochastic process.

A SDE for the SIS epidemic model can be derived from the CTMC SIS
epidemic model [5]. The assumptions in the CTMC SIS epidemic model are
restated in terms of ∆I = I(t + ∆t) − I(t). Assume

Prob{∆I = j|I(t) = i} =















b(i)∆t + o(∆t), j = i + 1
d(i)∆t + o(∆t), j = i − 1
1 − [b(i) + d(i)]∆t + o(∆t), j = i
o(∆t), j 6= i + 1, i − 1, i

In addition, assume that ∆I has an approximate normal distribution for small
∆t. The expectation and the variance of ∆I are computed.

E(∆I) = b(I)∆t − d(I)∆t + o(∆t)

= [b(I) − d(I)]∆t + o(∆t) = µ(I)∆t + o(∆t).

V ar(∆I) = E(∆I)2 − [E(∆I)]2

= b(I)∆t + d(I)∆t + o(∆t)

= [b(I) + d(I)]∆t + o(∆t) = σ2(I)∆t + o(∆t),

where the notation means b(I) = βi(N − i)/N and d(I) = (b + γ)i given
that I(t) = i. Because the random variable ∆I is approximately normally
distributed, ∆I(t) ∼ N(µ(I)∆t, σ2(I)∆t),

I(t + ∆t) = I(t) + ∆I(t)

≈ I(t) + µ(I)∆t + σ(I)
√

∆t η,

where η ∼ N(0, 1).
The difference equation I(t+∆t) = I(t)+µ(I)∆t+σ(I)

√
∆t η is Euler’s

method applied to the following Itô SDE:

dI
dt

= µ(I) + σ(I)
dW

dt
,

where W is the Wiener process, W (t + ∆t) − W (t) ∼ N(0, ∆t) [21, 31, 32].
Euler’s method converges to the Itô SDE provided the coefficients, µ(I) and
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σ(I), satisfy certain smoothness and growth conditions [31, 32]. The coef-
ficients for the stochastic SIS epidemic model are µ(I) = b(I) − d(I) and
σ(I) =

√

b(I) + d(I), where

b(I) =
β

N
I(N − I) and d(I) = (b + γ)I.

Substituting these values into the Itô SDE gives the SDE SIS epidemic model,

dI
dt

=
β

N
I(N − I) − (b + γ)I +

√

β

N
I(N − I) + (b + γ)I dW

dt
. (13)

From the Itô SDE, it can be seen that when I(t) = 0, dI/dt = 0. The disease-
free equilibrium is an absorbing state for the Itô SDE.

We digress briefly to discuss the Wiener process {W (t)}, t ∈ [0,∞). The
Wiener process depends continuously on t, W (t) ∈ (−∞,∞). It is a diffusion
process, but has some additional nice properties. The Wiener process has
stationary, independent increments, that is, the increments ∆W depend only
on ∆t. They are independent of t and the value of W (t):

∆W = W (t + ∆t) − W (t) ∼ N(0, ∆t).

Two sample paths of a Wiener process are graphed in Fig. 8.
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Fig. 8. Two sample paths of a Wiener process.
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The notation dW (t)/dt is only for convenience because sample paths of
W (t) are continuous but nowhere differentiable [12, 21]. The Itô SDE (13)
should be expressed as a stochastic integral equation but the SDE notation is
standard.

5.2 Numerical Example

Three sample paths of the SDE SIS epidemic model are graphed in Fig. 9.
The parameter values are b = 0.25, γ = 0.25, β = 1, and N = 100. The initial
condition is I(0) = 2. For the stochastic model the pdf for the initial condition
is p(x, 0) = 2δ(x − 2), where δ(x) is the Dirac delta function. The basic
reproduction number is R0 = 2, so that the deterministic solution approaches
the endemic equilibrium Ī = 50. The MatLab program which generated these
sample paths is given in the last section. Compare the sample paths of the
Itô SDE in Fig. 9 with those for the DTMC and the CTMC models in Figs. 4
and 7. The sample paths for the Itô SDE are continuous, whereas the sample
paths of the DTMC and the CTMC models are discontinuous.
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Fig. 9. Three sample paths of the SDE SIS epidemic model are graphed with the
deterministic solution (dashed curve). The parameter values are b = 0.25, γ =
0.25, β = 1, N = 100, I(0) = 2. Compare with Figs. 4 and 7.
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5.3 SIR Epidemic Model

A derivation similar to the Itô SDE for the SIS epidemic model can be applied
to the bivariate process {(S(t), I(t))} [5, 6]. Similar assumptions are made
regarding the change in the random variables, ∆S and ∆I, as in the transition
probabilities for the DTMC and CTMC models. In addition, we assume that
the change in these random variables is approximately normally distributed.
To simplify the derivation, we assume there are no births, b = 0, in the SIR
epidemic model.

Let ∆X(t) = (∆S, ∆I)T . Then the expectation of ∆X(t) to order ∆t is

E(∆X(t)) =







− β

N
SI

β

N
SI − γI






∆t.

The covariance matrix of ∆X(t) is V (∆X(t)) = E(∆X(t)[∆X(t)]T ) −
E(∆X(t))E(∆X(t))T ≈ E(∆X(t)[∆X(t)]T ) because the elements in the sec-
ond term are o([∆t]2). Then the covariance matrix of ∆X(t) to order ∆t is

V (∆X(t)) =







β

N
SI − β

N
SI

− β

N
SI β

N
SI + γI






∆t

[5, 6]. The random vector X(t + ∆t) can be approximated as follows:

X(t + ∆t) = X(t) + ∆X(t) ≈ X(t) + E(∆X(t)) +
√

V (∆X(t)). (14)

Because the covariance matrix is symmetric and positive definite, it has a
unique square root B

√
∆t =

√
V [43]. The system of equations (14) are an

Euler approximation to a system of Itô SDEs. For sufficiently smooth coef-
ficients, the solution X(t) of (14) converges to the solution of the following
system of Itô SDEs:

dS
dt

= − β

N
SI + B11

dW1

dt
+ B12

dW2

dt
dI
dt

=
β

N
SI − γI + B21

dW1

dt
+ B22

dW2

dt

where W1 and W2 are two independent Wiener processes and B = (Bij)
[31, 32].

5.4 Numerical Example

Three sample paths of the SDE SIR epidemic model are graphed with the
deterministic solution in Fig. 10. The parameter values are ∆t = 0.01, β = 1,
b = 0, γ = 0.5, and N = 100 with initial condition I(0) = 2. The ba-
sic reproduction number and initial replacement number are R0 = 2 and
R0S(0)/N = 1.96, respectively. Compare the sample paths in Fig. 10 with
the sample paths for the DTMC SIR epidemic model in Fig. 6.



24 Linda J. S. Allen

0 5 10 15 20
0

5

10

15

20

25

30

35

Time

N
um

be
r 

of
 In

fe
ct

iv
es

Fig. 10. Three sample paths of the SDE SIR epidemic model are graphed with the
deterministic solution (dashed curve). The parameter values are ∆t = 0.01, β = 1,
b = 0, γ = 0.5, N = 100, and I(0) = 2. Compare with Fig. 6.

6 Properties of Stochastic SIS and SIR Epidemic Models

In the next subsections, we concentrate on some of the properties of these
well-known stochastic epidemic models that distinguish them from their deter-
ministic counterparts. Four important properties of stochastic epidemic model
include the following: probability of an outbreak, quasistationary probability
distribution, final size distribution of an epidemic and expected duration of
an epidemic. Each of these properties depend on the stochastic nature of the
process.

6.1 Probability of an Outbreak

An outbreak occurs when the number of cases escalates. A simple random
walk model (DTMC) or a linear birth and death process (CTMC) on the
set {0, 1, 2, . . .} can be used to estimate the probability of an outbreak. For
example, let X(t) be the random variable for the position at time t on the set
{0, 1, 2, . . .} in a random walk model. State 0 is absorbing and the remaining
states are transient. If X(t) = x, then in the next time interval, there is either
a move to the right x → x+1 with probability p or a move to the left, x → x−1
with probability q, with the exception of state 0, where there is no movement
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(p + q = 1). In the random walk model, either the process approaches state 0
or approaches infinity. The probability of absorption into state 0 depends on
p, q, and the initial position. Let X(t) = x0 > 0, then it can be shown that

lim
t→∞

Prob{X(t) = 0} =







1, if p ≤ q
(

q

p

)x0

, if p > q
(15)

(e.g., [6, 13, 45]).
The identity (15) is also valid for a linear birth and death process in a

DTMC or CTMC model, where b and d are replaced by λi and µi, where i is
the position. In the linear birth an death process, the infinitesimal transition
probabilities satisfy

pi+j,i(∆t) =







λi∆t + o(∆t), j = 1
µi∆t + o(∆t), j = −1
1 − (λ + µ)i∆t + o(∆t), j = 0.

The identity (15) holds with λ replacing p and µ replacing q. The probability of
absorption is one if λ ≤ µ. But if λ > µ the probability of absorption decreases
to (µ/λ)x0 . In this latter case, the probability of population persistence is
1 − (µ/λ)x0 . This identity can be used to approximate the probability of an
outbreak in the DTMC and CTMC SIS and SIR epidemic models, where
population persistence can be interpreted as an outbreak. The approximation
improves the larger the population size N and the smaller the initial number
of infected individuals.

Suppose the initial number of infected individuals i0 is small and the popu-
lation size N is large. Then the ‘birth’ and ‘death’ functions in an SIS epidemic
model are given by

Birth = b(i) =
β

N
i(N − i) ≈ βi

and
Death = d(i) = (b + γ)i.

Applying the identity (15) and the preceding approximations for the birth and
death functions leads to the approximation µ/λ = (b + γ)/β = 1/R0, that is,

Prob{I(t) = 0} ≈







1, if R0 ≤ 1
(

1

R0

)i0

, if R0 > 1
.

Therefore, the probability of an outbreak is

Probability of an Outbreak ≈







0, if R0 ≤ 1

1 −
(

1

R0

)i0

, if R0 > 1
. (16)
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The estimates in (16) apply to the stochastic SIS and SIR epidemic models
only for a range of times, t ∈ [T1, T2]. In the stochastic epidemic models,
eventually limt→∞ Prob{I(t) = 0} = 1 because zero is an absorbing state.
The range of times for which the estimate (16) holds can be quite long when
N is large and i0 is small (see Fig. 5). In Fig. 5, N = 100, R0 = 2, and
i0 = 2, so that applying (16) leads to the estimate for the probability of no
outbreak as (1/2)2 = 1/4. The value 1/4 is very close to the mass of the
distribution concentrated at zero, Prob{I(t) = 0}. In Fig. 11, Prob{I(t) = 0}
for the DTMC SIS epidemic model is graphed for different values of R0. There
is close agreement between the numerical values and the estimate (1/R0)

i0

when i0 = 1, 2, 3 [(1/R0)
i0 = 0.5, 0.25, 0.125].
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Fig. 11. Graphs of Prob{I(t) = 0} for R0 = 2, N = 100, and Prob{I(0) = i0} = 1,
i0 = 1, 2, 3.

6.2 Quasistationary Probability Distribution

Because the zero state in the stochastic SIS epidemic models is absorbing, the
unique stationary distribution approached asymptotically by the stochastic
process is the disease-free equilibrium. However, as seen in the previous sec-
tion and in Fig. 5, prior to absorption, the process approaches what appears to
be a stationary distribution that is different from the disease-free equilibrium.
This distribution is known as the quasistationary probability distribution (first
investigated in the 1960s [18]). The quasistationary probability distribution
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can be obtained from the distribution conditioned on nonextinction (i.e., con-
ditional on the disease-free equilibrium not being reached).

Let the distribution conditioned on nonextinction for the CTMC SIS epi-
demic model be denoted as q(t) = (q1(t), . . . , qN (t))T . Then qi(t) is the prob-
ability I(t) = i given that I(s) > 0 for t > s (the disease-free equilibrium has
not been reached by time t), i.e.,

qi(t) = Prob{I(t) = i|I(s) > 0, t > s},

i = 1, 2, . . . , N . Because the zero state is absorbing, the probability Prob{I(s) >
0, t > s} = 1 − p0(t). Therefore,

qi(t) =
pi(t)

1 − p0(t)
, i = 1, 2, . . . , N. (17)

The forward Kolmogorov differential equations for pi given in (10) can be used
to derive a system of differential equations for the qi.

Differentiating the expression for qi in (17) with respect to t and applying
the identity for dpi/dt in (10) leads to

dqi

dt
=

dpi/dt

1 − p0
+ (b + γ)q1

pi

1 − p0

for i = 1, 2, . . . , N . In matrix notation, the system of differential equations
for q = (q1, . . . , qN )T are similar to the forward Kolmogorov differential equa-
tions,

dq

dt
= Q̃q + (b + γ)q1q,

where matrix Q̃ is the same as matrix Q in (11) with the exception that the
first row and column deleted. Matrix Q̃ is



















−[b(1) + d(1)] d(2) · · · 0
b(1) −[b(2) + d(2)] · · · 0
0 b(2) · · · 0
...

...
...

...
0 0 · · · d(N)
0 0 · · · −d(N)



















,

where b(i) = βi(N − i)/N and d(i) = (b + γ)i.
Now, the quasistationary probability distribution can be defined. The

quasistationary probability distribution is the stationary distribution (time-
independent solution) q∗ = (q∗1 , . . . , q∗N )T satisfying

Q̃q∗ = −(b + γ)q∗1q∗. (18)

Although q∗ cannot be solved directly from the system of equations (18), it
can be solved indirectly via an iterative scheme (see e.g., [38, 39]).
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The quasistationary distribution is related to the eigenvalues of the orig-
inal matrix Q, where dp/dt = Qp. The solution to the forward Kolmogorov
differential equations (11) satisfy

p(t) = v0 + v1e
r1t + · · · + vNerN t,

where v0 = (1, 0, 0, . . . , 0)T [28, 38, 39]. Since matrix Q is the same as Q̃, with
the first row and column deleted, the vector v1 = (−1, q∗1 , q∗2 , . . . , q∗N )T is an
eigenvector of Q corresponding to the eigenvalue r1 = −(b + γ)q∗1 , that is,

Qv1 = r1v1

so that

p(t) = (1, 0, 0, . . . , 0)T + (−1, q∗1 , q∗2 , . . . , q∗N )T er1t + · · · + vNerN t.

N̊assell discusses two approximations to the quasistationary probability
distribution [38, 39, 40]. One approximation assumes d(1) = 0. For this ap-
proximation, the system of differential equations for q simplify to

dq

dt
= Q1q, (19)

where

Q1 =



















−b(1) d(2) · · · 0
b(1) −[b(2) + d(2)] · · · 0
0 b(2) · · · 0
...

...
...

...
0 0 · · · d(N)
0 0 · · · −d(N)



















.

System (19) has a unique stable stationary distribution, p1 = (p1
1, . . . , p

1
N )T ,

where Q1p
1 = 0. Because matrix Q1 is tridiagonal, p1 has an explicit solution

given by

p1
i = p1

1

(N − 1)!

i(N − i)!

(R0

N

)i−1

, i = 2, . . . , N,

p1
1 =

[

N
∑

k=1

(N − 1)!

k(N − k)!

(R0

N

)k−1
]−1

.

[8, 38, 39, 40] A simple recursion formula can be easily applied to find this
approximation:

p1
i+1 =

b(i)

d(i + 1)
p1

i

with the property that
∑N

i=1 p1
i = 1. The exact quasistationary distribution

and the first approximation (for the DTMC and the CTMC epidemic models)
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Fig. 12. Exact quasistationary distribution and the first approximation to the qua-
sistationary distribution for R0 = 1.5, 2, and 3 when N = 50.

are graphed for different values of R0 in Fig. 12. Note that the agreement be-
tween the exact quasistationary distribution and the approximation improves
as R0 increases. In addition, note that the mean values are close to the stable
endemic equilibrium of the deterministic SIS epidemic model.

The second approximation to the quasistationary probability distribution
replaces d(i) by d(i − 1). Then the differential equations for q simplify to

dq

dt
= Q2q,

where

Q2 =



















−b(1) d(1) · · · 0
b(1) −[b(2) + d(1)] · · · 0
0 b(2) · · · 0
...

...
...

...
0 0 · · · d(N − 1)
0 0 · · · −d(N)



















.

The stable stationary solution is the unique solution p2 to Q1p
2 = 0. An

explicit solution for p2 is given by
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p2
i = p2

1

(N − 1)!

(N − i)!

(R0

N

)i−1

, i = 2, . . . , N,

p2
1 =

[

N
∑

k=1

(N − 1)!

(N − k)!

(R0

N

)k−1
]−1

(see [8, 38, 39, 40]).

6.3 Final Size of an Epidemic

In the SIR epidemic model, eventually the epidemic ends. Of interest is the
total number of cases during the course of the epidemic, i.e., the final size
of the epidemic. If the epidemic is short term and involves a relatively small
population, it is reasonable to assume that there are no births nor deaths.
In addition, at the beginning of the epidemic, we assume all individuals are
either susceptible or infected, R(0) = 0. The initial population size is N =
S(0) + I(0). Then the final size of the epidemic is the number of susceptible
individuals that become infected during the epidemic plus the initial number
infected.

In the deterministic model, the final size of the epidemic can be computed
directly from the differential equations (3) (see introductory chapter by F.
Brauer). Integrating the differential equation dI/dS = −1 + Nγ/βS, leads to

I(t) + S(t) = I(0) + S(0) +
Nγ

β
ln

S(t)

S(0)
.

Letting t → ∞,

S(∞) = I(0) + S(0) +
Nγ

β
ln

S(∞)

S(0)
.

The final size of the epidemic is

R(∞) = N − S(∞).

The final sizes in the deterministic SIR epidemic model are summarized in
Table 1 when I(0) = 1 and γ = 1 for various values of R0 and N .

In the stochastic SIR epidemic model there is a distribution associated
with the final size of the epidemic. Let (s, i) denote the ordered pairs of values
for the susceptible and infected individuals in the CTMC model. The epidemic
ends when I(t) reaches zero. When the epidemic ends, the random variable
for the number of susceptible individuals ranges from 0 to N −I(0) = N − i0.
In particular, the set {(s, 0)}N−i0

s=0 is absorbing,

lim
t→∞

N−i0
∑

s=0

p(s,0)(t) = 1.
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Table 1. Final size of an epidemic when γ = 1 and I(0) = 1 for the deterministic
SIR epidemic model.

R0 N
20 100 1000

0.5 1.87 1.97 2.00
1 5.74 13.52 44.07
2 16.26 80.02 797.15
5 19.87 99.31 993.03
10 20.00 100.00 999.95

Daley and Gani [17] discuss two different methods to compute the probabil-
ity distribution associated with the final size. The simpler method, originally
developed by Foster [20], depends on the embedded Markov chain, that is, the
DTMC model associated with the CTMC model. To apply this method, the
transition matrix for the embedded Markov chain needs to be computed. This
requires computing the probability of a transition between the states (s, i),
where the states lie in the set {(s, i) : s = 0, 1, . . . , N ; i = 0, 1, . . . , N − s}. In
the embedded Markov chain for the final size, the times between transitions
are not important, only the probabilities.

For example, suppose N = 3, then the states in the transition matrix are

(s, i) ∈ {(3, 0), (2, 0), (1, 0), (0, 0), (2, 1), (1, 1), (0, 1), (1, 2), (0, 2), (0, 3)}, (20)

i.e., there are 10 ordered pairs of states. There are only two types of transi-
tions, either an infected individual recovers, (s, i) → (s, i− 1) or a susceptible
individual becomes infected, (s, i) → (s−1, i+1). In the first type of transition,
an infected individual recovers with probability

ps =
γi

γi + (β/N)is
=

γ

γ + (β/N)s
, s = 0, 1, 2.

In the second type of transition, a susceptible individual becomes infected with
probability 1 − ps. If the 10 states are ordered as in (20), then the transition
matrix for the embedded Markov chain is a 10× 10 matrix with the following
form:
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T =













































1 0 0 0 0 0 0 0 0 0
0 1 0 0 p2 0 0 0 0 0
0 0 1 0 0 p1 0 0 0 0
0 0 0 1 0 0 p0 0 0 0
− − − − − − − − − −
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 p1 0 0
0 0 0 0 0 0 0 0 p0 0
− − − − − − − − − −
0 0 0 0 1 − p2 0 0 0 0 0
0 0 0 0 0 1 − p1 0 0 0 p0

− − − − − − − − − −
0 0 0 0 0 0 0 1 − p1 0 0













































The upper left 4 × 4 corner of matrix T is the identity matrix because these
are the four absorbing states. The first four rows are the transitions into these
four absorbing states. Matrix T is a stochastic matrix, whose column sums
equal one (note that p0 = 1). Given the initial distribution for the states p(0),
then the distribution for the final size can be found from the first four entries
of limt→∞ T tp(0) (the remaining entries are zero). However, it is not necessary
to compute the limit as t → ∞, since the limit converges by time t = 2N − 1.
For this example, it is straightforward to compute the final size distribution.
The final size is either 1,2, or 3 with corresponding probabilities p2, p2

1(1−p2)
and (1 − p2

1)(1 − p2), respectively. In Fig. 13, there are graphs of three final
size distributions for different values of R0 when γ = 1, Prob{I(0) = 1} = 1,
and N = 20.

When R0 is less than one or very close to one, then the final size distri-
bution is skewed to the right, but if R0 is much greater than one, then the
distribution is skewed to the left. The average final sizes for the stochastic
SIR when N = 20 and N = 100 are listed in Table 2. Compare the values in
Table 2 to those in Table 1. For values of R0 less than one or much greater
than one, the average final sizes for the stochastic SIR epidemic model are
closer to the values of the final sizes for the deterministic model.

Table 2. Average final size of an epidemic when γ = 1, b = 0, and Prob{I(0) =
1} = 1 for the stochastic SIR epidemic model.

R0 N
20 100

0.5 1.76 1.93
1 3.34 6.10
2 8.12 38.34
5 15.66 79.28
10 17.98 89.98
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Fig. 13. Distribution for the final size of an epidemic for three different values of
R0 when γ = 1, N = 20, and Prob{I(0) = 1} = 1.

6.4 Expected Duration of an Epidemic

The duration of an epidemic corresponds to the time until absorption, i.e., the
time T until I(T ) = 0. For the stochastic SIS epidemic model, the probability
of absorption is one, regardless of the value of R0. However, depending on
the initial number infected, i, the population size N , and the value of R0, the
time until absorption can be very short or very long. Here, we derive a system
of equations that can be solved to find the expected time until absorption for
a stochastic SIS epidemic model.

Let Ti denote the random variable for the time until absorption and let

τi = E(Ti)

denote the expected time until absorption beginning from an initial infected
population size of i, i = 0, 1, . . . , N . Let the higher order moments for the
time until absorption be denoted as

τr
i = E(T r

i ),

i = 0, 1, . . . , N . Note that τ0 = 0 = τr
0 . Then, considered as a birth and death

process, the mean time until absorption in the DTMC SIS epidemic model
satisfies the following difference equation:



34 Linda J. S. Allen

τi = b(i)∆t(τi+1 + ∆t) + d(i)∆t(τi−1 + ∆t)

+ (1 − [b(i) + d(i)]∆t)(τi + ∆t), i = 1, . . . , N (21)

The CTMC SIS epidemic model satisfies the same relationship as equations
(21), except that a term o(∆t) is added to the right side of each equation.
Simplifying the equations in (21) leads to a system of difference equations for
the expected duration of an epidemic (for both the CTMC and the DTMC
models)

d(i)τi−1 − [b(i) + d(i)]τi + b(i)τi+1 = −1

where b(i) = i(N − i)(βi/N) and d(i) = (b + γ)i [7, 33]. Similar difference
equations apply to the higher order moment τr

i in the CTMC SIS epidemic
model:

d(i)τr
i−1 − [b(i) + d(i)]τr

i + b(i)τr
i+1 = −rτr−1

i

[7, 22, 41, 42].
The mean and higher order moments can be expressed in matrix form. Let

τ = (τ1, τ2, . . . , τN )T , τr = (τr
1 , τr

2 , . . . , τr
N )T and τ1 = τ . Then

Dτ = −1 and Dτr = −rτr−1.

where 1 = (1, . . . , 1)T and

D =











−[b(1) + d(1)] b(1) 0 · · · 0 0
d(2) −[b(2) + d(2)] b(2) · · · 0 0

...
...

...
...

...
...

0 0 0 · · · d(N) −d(N)











.

Matrix D is nonsingular because it is irreducibly diagonally dominant [43].
Hence, the solutions τ and τr are unique.

A solution for the expected time until absorption, based on a system of
SDEs, can be derived also [7]. The relationship satisfied by τ follows from the
backward Kolmogorov differential equations. Let τ(y) denote the expected
time until absorption beginning from an infected population size of y ∈ (0, N).
Then it can be shown that τ(y) is the solution to the following boundary value
problem:

[b(y) − d(y)]
dτ(y)

dy
+

[b(y) + d(y)]

2

d2τ(y)

dy2
= −1, (22)

where

τ(0) = 0 and
dτ(y)

dy

∣

∣

∣

∣

y=N

= 0,

b(y) = (N − y)(βy/N) and d(y) = (b + γ)y in the SDE SIS epidemic model
[7].

It is interesting to note that if the derivatives in the boundary value prob-
lem for τ(y) in (22) are approximated by finite difference formulas, then the
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difference equations for τi, given in (21), for the CTMC and DTMC epidemic
models are obtained [7]. For y ∈ [i, i + 1], let

dτ(y)

dy
≈ τi+1 − τi−1

2
,

where τi = τ(i) and τi+1 = τ(i + 1). In addition, let

d2τ(y)

dy2
≈ τi+1 − 2τi + τi−1.

With these approximations, the boundary value problem for τ(y) in (22) is
approximated by the difference equations for τi in (21).

The expected duration of an SIS epidemic can be calculated from the
solution to the equations (21) or (22). Allen and Allen [7] compare the mean
and the variance for the time until population extinction for the three different
types of stochastic formulations considered here. However, their population
model is logistic growth (similar to the SIS epidemic model).

As an example, consider the expected duration for an SIS epidemic, based
on the DTMC or CTMC model. Because the DTMC and CTMC models
satisfy the same set of equations for the expected duration, these results apply
to both models. With a population size of N = 25 and either R0 = 2 or
R0 = 1.5. The solution τ = −D−11 is graphed in Fig. 14. If the population
size is increased to N = 50 or N = 100 with the same value for R0 = 1.5, the
expected duration for large i increases to τi ≈ 160 and τi ≈ 3, 500, respectively.
At population sizes of N = 50 and N = 100 but a basic reproduction of
R0 = 2, the expected duration for large i is much larger, τi ≈ 25, 000 and
τi ≈ 2.6× 108, respectively. Of course, the expected duration depends on the
particular time units of the model. For example, if the time units are days,
then τi ≈ 160 ≈ 5.3 months and τi ≈ 25, 000 ≈ 68.5 years. This latter estimate
is much longer than a reasonable epidemiological time frame, implying that
the disease does not die out but persists. Hence, for these examples, when
N ≥ 100 and R0 ≥ 2, if the outbreak begins with a sufficient number of
infected individuals, then the results for the stochastic SIS epidemic are in
close agreement with the predictions of the deterministic SIS epidemic model:
the disease becomes endemic.

7 Epidemic Models with Variable Population Size

Suppose the population size N is not constant but varies according to some
population growth law. To formulate an epidemic model, an assumption must
be made concerning the population birth and death rates which depend on
the population size N . Here, we assume, for simplicity, that the birth rate and
death rates have a logistic form,
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Fig. 14. Expected duration of an SIS epidemic with a population size of N = 25;
R0 = 1.5 (b = 1/3, γ = 1/3 and β = 1) and R0 = 2 (b = 1/4, γ = 1/4 and β = 1).

λ(N) = bN and µ(N) = b
N2

K
,

respectively. Then the total population size satisfies the logistic differential
equation

dN

dt
= λ(N) − µ(N) = bN

(

1 − N

K

)

,

where K > 0 is the carrying capacity. There are many functional forms that
can be chosen for the birth and death rates [7]. Their choice should depend
on the dynamics of the particular population being modeled. For example, in
animal diseases (e.g., rabies in canine populations [37, 46] and hantavirus in
rodent populations [2, 3, 9, 44]), logistic growth is assumed, then the choice
of λ(N) and µ(N) depends on whether the births and deaths are density-
dependent. For human diseases, a logistic growth assumption may not be
very realistic.

A deterministic SIS epidemic model is formulated for a population satis-
fying the logistic differential equation. Again, for simplicity, we assume there
are no disease-related deaths and no vertical transmission of the disease; all
newborns are born susceptible. Then the deterministic SIS epidemic model
has the form:
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dS

dt
=

S

N
(λ(N) − µ(N)) − β

N
SI + (b + γ)I

dI

dt
= − I

N
µ(N) +

β

N
SI − γI,

(23)

where S(0) > 0 and I(0) > 0. It is straightforward to show that the solution
to this system of differential equations depends on the basic reproduction
number R0 = β/(b + γ).

Theorem 3. Let S(t) and I(t) be a solution to model (23).

i) If R0 ≤ 1, then lim
t→∞

(S(t), I(t)) = (K, 0).

ii) If R0 > 1, then lim
t→∞

(S(t), I(t)) = (K/R0, K(1 − 1/R0)).

Stochastic epidemic models for each of the three types (CTMC, DTMC,
and SDE models) can be formulated. Because S(t)+ I(t) = N(t), the process
is bivariate. We derive a SDE model and compare the graph of a sample path
for the stochastic model to the solution of the deterministic model.

Let S(t) and I(t) be continuous random variables for the number of sus-
ceptible and infected individuals at time t,

S(t), I(t) ∈ [0,∞).

Then, applying the same methods as for the SDE SIS and SIR epidemic models
[5, 6],

dS
dt

=
S
N (λ(N ) − µ(N )) − β

N SI + (b + γ)I + B11
dW1

dt
+ B12

dW2

dt

dI
dt

= − I
N µ(N ) +

β

N SI − γI + B21
dW1

dt
+ B22

dW2

dt
,

where B = (Bij) is the square root of the following covariance matrix:







S
N (λ(N ) + µ(N )) +

β

N SI + (b + γ)I − β

N SI − γI

− β

N SI − γI I
N µ(N ) +

β

N SI + γI






.

The variables W1 and W2 are two independent Wiener processes. The absorb-
ing state for the bivariate process is total population extinction, N = 0.

7.1 Numerical Example

As might be anticipated, the variability in the population size results in an
increase in the variability in the number of infected individuals. As an ex-
ample, let β = 1, γ = 0.25 = b, and K = 100. Then the basic reproduction
number is R0 = 2. The SDE SIS epidemic model with constant population



38 Linda J. S. Allen

(a)

0 5 10 15 20
0

20

40

60

80

100

120

140

Time

N
um

be
r 

of
 In

fe
ct

iv
es

Total Size ↓

Infected Size ↓

(b)

0 5 10 15 20
0

20

40

60

80

100

120

140

Time

N
um

be
r 

of
 In

fe
ct

iv
es

Total Size ↓

Infected Size ↓

Fig. 15. The SDE SIS epidemic model (a) with constant population size, N = 100
and (b) with variable population size, N (t). The parameter values are β = 1, γ =
0.25 = b, K = 100, and R0 = 2.
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size, N = 100, is compared to the SDE SIS epidemic model with variable pop-
ulation size, N (t), in Fig. 15. One sample path of the SDE epidemic model is
graphed against the deterministic solution.

More realistic stochastic epidemic models can be derived based on their
deterministic formulations. Excellent references for a variety of recent deter-
ministic epidemic models include the books by Anderson and May [10], Brauer
and Castillo-Chavez [15], Diekmann and Heesterbeek [19], and Thieme [48]
and the review articles by Hethcote [26] and Brauer and van den Driessche
[16].

In this chapter, the simplest types of epidemic models were chosen as
an introduction to the methods of derivation for various types of stochas-
tic models (DTMC, CTMC, and SDE models). In many cases these three
stochastic formulations produce similar results, if the time step ∆t is small
[7]. There are advantages numerically in applying the discrete time approx-
imations (DTMC model and the Euler approximation to the SDE model)
in that the discrete simulations generally have a shorter computational time
than the CTMC model. Mode and Sleeman [36] discuss some computational
methods in stochastic processes in epidemiology. The most important consid-
eration in modeling, however, is to choose a model that best represents the
demographics and epidemiology of the population being modeled.

We conclude this chapter with a discussion of some well-known stochastic
epidemic models that are not based on any deterministic epidemic model.

8 Other Types of DTMC Epidemic Models

Two other types of DTMC epidemic models are discussed briefly that are not
directly related to any deterministic epidemic model. These models are chain
binomial epidemic models and epidemic branching processes.

8.1 Chain Binomial Epidemic Models

Two well-known DTMC models are the Greenwood and the Reed-Frost mod-
els. These models were developed to help understand the spread of disease
within a small population such as a household. They are referred to as chain
binomial epidemic models because a binomial distribution is used to determine
the number of new infectious individuals. The Greenwood model developed
in 1931, was named after its developer [23]. The Reed-Frost model, developed
in 1928, was named for two medical researchers, who developed the model for
teaching purposes at John’s Hopkins University. It wasn’t until 1952 that the
Reed-Frost model was published [1, 17].

Let St and It be discrete random variables for the number of susceptible
and infected individuals in the household at time t. Initially, the models as-
sume that there are I0 = i0 ≥ 1 infected individuals and S0 = s0 susceptible
individuals. The progression of the disease is followed by keeping track of the
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number of susceptible individuals over time. At time t, infected individuals are
in contact with all the susceptible members of the household to whom they
may spread the disease. However, it is not until time t + 1 that susceptible
individuals who have contracted the disease are infectious. The period of time
from t to t + 1 is the latent period and the infectious period is contracted
to a point. Only at time t can the infectious individuals It infect susceptible
members St. After that time, they are no longer infectious. It follows that the
newly infectious individuals at time t + 1 satisfy

St+1 + It+1 = St.

These models are bivariate Markov chain models that depend on the two
random variables, St and It, {(St, It)}.

The models of Greenwood and Reed-Frost differ in the assumption regard-
ing the probability of infection. Suppose there are a total of It = i infected
individuals at time t. Let pi be the probability that a susceptible individual
does not become infected at time t. The Greenwood model assumes that pi = p
is a constant and the Reed-Frost model assumes that pi = pi. For each model,
the transition probability from state (st, it) to (st+1, it+1) is assumed to have a
binomial distribution. Sample paths are denoted as {s0, s1, . . . , st−1, st}. The
epidemic stops at time t when st−1 = st because there are no more infectious
individuals to spread the disease, it = st−1 − st = 0.

Greenwood Model

In the Greenwood model, the random variable St+1 is a binomial random
variable that depends on St and p, St+1 ∼ b(St, p). The probability of a
transition from (st, it) to (st+1, it+1) depends only on st, st+1, and p. It is
defined as follows:

pst+1,st
=

(

st

st+1

)

pst+1(1 − p)st−st+1 .

The conditional mean and variance of St+1 and It+1 are given by

E(St+1|St) = pSt, E(It+1|St) = (1 − p)St

and
Var(St+1|St) = p(1 − p)St = Var(It+1|St).

Four sample paths of the Greenwood model when s0 = 6 and i0 = 1 are il-
lustrated in Fig. 16. Applying the preceding transition probabilities, it is clear
that the sample path {6, 6} occurs with probability p6,6 = p6 and the sample
path {6, 5, 5} occurs with probability p6,5p5,5 = 6p10(1 − p). The probability
distributions associated with the size and the duration of epidemics in the
chain binomial models can be easily defined, once the probability distribution
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Fig. 16. Four sample paths for the Greenwood chain binomial model when s0 = 6
and i0 = 1 : {6, 6}, {6, 5, 5}, {6, 4, 3, 2, 1, 1}, and {6, 2, 1, 0, 0}.

associated with each sample path are determined. The discrete random vari-
able W = S0 −St is the size of the epidemic and the discrete random variable
T is the length of the path, e.g., if {s0, s1, . . . , st−1, st}, then T = t.

Table 3 summarizes the probabilities associated with the Greenwood and
Reed-Frost epidemic models when s0 = 3 and i0 = 1 (see [17]).

Table 3. Sample paths, size T , and duration W for the Greenwood and Reed-Frost
models when s0 = 3 and i0 = 1.

Sample Paths Duration Size Greenwood Reed-Frost
{s0, . . . , st−1, st} T W Model Model

3 3 1 0 p3 p3

3 2 2 2 1 3(1 − p)p4 3(1 − p)p4

3 2 1 1 3 2 6(1 − p)2p4 6(1 − p)2p4

3 1 1 2 2 3(1 − p)2p2 3(1 − p)2p3

3 2 1 0 0 4 3 6(1 − p)3p3 6(1 − p)3p3

3 2 0 0 3 3 3(1 − p)3p2 3(1 − p)3p2

3 1 0 0 3 3 3(1 − p)3p 3(1 − p)3p(1 + p)
3 0 0 2 3 (1 − p)3 (1 − p)3

Total 1 1
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Reed-Frost Model

In the Reed-Frost model, the random variable St+1 is binomially distributed
and satisfies St+1 ∼ b(St, p

It). The probability of a transition from (st, it) to
(st+1, it+1) is defined as follows:

p(s,i)t+1,(s,i)t
=

(

st

st+1

)

(pit)st+1(1 − pit)st−st+1 .

The conditional mean and and variance associated with St+1 are

E(St+1|(St, It)) = Stp
It , E(It+1|(St, It)) = St(1 − pIt)

and
Var(St+1|(St, It)) = St(1 − pIt)pIt = Var(It+1|(St, It)).

The Greenwood and Reed-Frost models differ when It > 1 for t > 0 (see Ta-
ble 3). For additional information on the Greenwood and Reed-Frost models,
and epidemics among households consult Ackerman et al. [4], Ball and Lyne
[14], and Daley and Gani [17].

8.2 Epidemic Branching Processes

Branching processes can be applied to epidemics. We illustrate with a simple
example of a Galton-Watson branching processes. Let It be the number of
new cases at time t. We assume during the time interval t to t + 1 that
new infectious individuals are generated by contacts between the new cases at
time t and the susceptible population. Suppose each infected individual infects
on the average R0 susceptible individuals. In a Galton-Watson process, the
simplifying assumption is that each infected individual is independent from
all other infected individuals.

Let {pk}∞k=0 be the probabilities associated with the number of new infec-
tions per infected individual. Then the probability generating function (pgf)
for the the number of new infections is

f(t) =
∞
∑

k=0

pktk

with mean f ′(1) = R0.
An important result from the theory of branching processes states that

the probability of extinction (probability the epidemic eventually ends),
limt→∞ Prob{It = 0}, depends on the pgf f(t). If 0 ≤ p0 + p1 < 1 and
R0 > 1, then there exists a unique fixed point q ∈ [0, 1) such that f(q) = q.
The assumption 0 ≤ p0 + p1 < 1 guarantees that there is a positive probabil-
ity of infecting more than one individual. It is the value of q and the initial
number of infected individuals in the population that determine the proba-
bility of extinction. The next theorem summarizes the main result concerning
the probability of extinction. For a proof of this result and extensions, please
consult the references [6, 24, 29, 30, 35, 45].
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Theorem 4. Suppose the pgf f(t) satisfies 0 ≤ f(0) + f ′(0) < 1 and
Prob{I0 = i0} = 1, where i0 > 0.

i) If R0 ≤ 1, then lim
t→∞

Prob{It = 0} = 1.

ii) If R0 > 1, then lim
t→∞

Prob{It = 0} = qi0 , where q is the unique fixed point

in [0, 1) such that f(q) = q.

As a consequence of this theorem, the probability the epidemic persists in the
population (the disease becomes endemic) is 1 − qi0 , provided R0 > 1.

Antia et al. [11] assume that the number of cases It follows a Poisson dis-
tribution with mean R0. The pgf of a Poisson probability distribution satisfies

f(t) =

∞
∑

k=0

exp(−R0)
Rk

0

k!
tk = exp(−R0(1 − t)).

Applying Theorem 4, we can estimate the probability the disease becomes
endemic. If R0 > 1, the fixed point of f satisfies

q = exp(−R0(1 − q)).

For example, if R0 = 1.5 and Prob{I0 = 1} = 1, then 1 − q = 0.583, but if
Prob{I0 = 2} = 1, then 1 − q2 = 0.826. If R0 = 2 and Prob{I0 = 2} = 1,
then 1 − q2 = 0.959.

9 MatLab Programs

The following three MatLab programs were used to generate sample paths
and the probability distribution associated with the stochastic SIS epidemic
model. MatLab Program # 1 computes the probability distribution for the
DTMC SIS epidemic model. MatLab Programs # 2 and # 3 compute sample
paths associated with CTMC and SDE SIS epidemic models, respectively.

% MatLab Program # 1

% Discrete Time Markov Chain

% SIS Epidemic Model

% Transition Matrix and Graph of Probability Distribution

clear all

set(gca,’FontSize’,18);

set(0,’DefaultAxesFontSize’,18);

time=2000;

dtt=0.01; % Time step

beta=1*dtt;

b=0.25*dtt;

gama=0.25*dtt;
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N=100; % Total population size

en=50; % plot every enth time interval

T=zeros(N+1,N+1); % T is the transition matrix, defined below

v=linspace(0,N,N+1);

p=zeros(time+1,N+1);

p(1,3)=1; % Two individuals initially infected.

bt=beta*v.*(N-v)/N;

dt=(b+gama)*v;

for i=2:N % Define the transition matrix

T(i,i)=1-bt(i)-dt(i); % diagonal entries

T(i,i+1)=dt(i+1); % superdiagonal entries

T(i+1,i)=bt(i); % subdiagonal entries

end

T(1,1)=1;

T(1,2)=dt(2);

T(N+1,N+1)=1-dt(N+1);

for t=1:time

y=T*p(t,:)’;

p(t+1,:)=y’;

end

pm(1,:)=p(1,:);

for t=1:time/en;

pm(t+1,:)=p(en*t,:);

end

ti=linspace(0,time,time/en+1);

st=linspace(0,N,N+1);

mesh(st,ti,pm);

xlabel(’Number of Infectives’);

ylabel(’Time Steps’);

zlabel(’Probability’);

view(140,30);

axis([0,N,0,time,0,1]);

% Matlab Program # 2

% Continuous Time Markov Chain

% SIS Epidemic Model

% Three Sample Paths and the Deterministic Solution

clear

set(0,’DefaultAxesFontSize’, 18);

set(gca,’fontsize’,18);

beta=1;

b=0.25;

gam=0.25;

N=100;
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init=2;

time=25;

sim=3;

for k=1:sim

clear t s i

t(1)=0;

i(1)=init;

s(1)=N-init;

j=1;

while i(j)>0 & t(j)<time

u1=rand; % uniform random number

u2=rand; % uniform random number

a=(beta/N)*i(j)*s(j)+(b+gam)*i(j);

probi=(beta*s(j)/N)/(beta*s(j)/N+b+gam);

t(j+1)=t(j)-log(u1)/a;

if u2 <= probi

i(j+1)=i(j)+1;

s(j+1)=s(j)-1;

else

i(j+1)=i(j)-1;

s(j+1)=s(j)+1;

end

j=j+1;

end

plot(t,i,’r-’,’LineWidth’,2)

hold on

end

% Matlab Program # 3

% Stochastic Differential Equation

% SIS Epidemic Model

% Three Sample Paths and the Deterministic Solution

clear

beta=1;

b=0.25;

gam=0.25;

N=100;

init=2;

dt=0.01;

time=25;

sim=3;

for k=1:sim

clear i, t

j=1;
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i(j)=init;

t(j)=dt;

while i(j)>0 & t(j)<25

mu=beta*i(j)*(N-i(j))/N-(b+gam)*i(j);

sigma=sqrt(beta*i(j)*(N-i(j))/N+(b+gam)*i(j));

rn=randn; % standard normal random number

i(j+1)=i(j)+mu*dt+sigma*sqrt(dt)*rn;

t(j+1)=t(j)+dt;

j=j+1;

end

plot(t,i,’r-’,’Linewidth’,2);

hold on

end

% Euler’s method applied to the deterministic SIS model.

y(1)=init;

for k=1:time/dt

y(k+1)=y(k)+dt*(beta*(N-y(k))*y(k)/N-(b+gam)*y(k));

end

plot([0:dt:time],y,’k--’,’LineWidth’,2);

axis([0,time,0,80]);

xlabel(’Time’);

ylabel(’Number of Infectives’);

hold off
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15. Brauer, F., Castillo-Chávez, C.: Mathematical Models in Population Biology
and Epidemiology. Springer, New York, Berlin, and Heidelberg (2001)

16. Brauer, F., van den Driessche, P.: Some directions for mathematical epidemi-
ology. In: S. Ruan, S., Wolkowicz, G. S. K., Wu, J. (eds) Dynamical Systems
and Their Applications to Biology. Fields Institute Communications 36, AMS,
Providence, RI, pp. 95–112 (2003)

17. Daley, D. J., Gani, J.: Epidemic Modelling An Introduction. Cambridge Studies
in Mathematical Biology, Vol. 15. Cambridge Univ. Press, Cambridge (1999)

18. Darroch, J. N., Seneta, E: On quasi-stationary distributions in absorbing
continuous-time finite Markov chains. J. Appl. Prob., 4, 192–196 (1967)

19. Diekmann, O., Heesterbeek, J. A. P.: Mathematical Epidemiology of Infec-
tious Diseases: Model building, Analysis and Interpretation. John Wiley & Sons
(2000)

20. Foster, F. G.: A note on Bailey’s and Whittle’s treatment of a general stochastic
epidemic. Biometrika, 42, 123–125 (1955)

21. Gard, T. C.: Introduction to Stochastic Differential Equations. Marcel Dekker,
Inc., New York and Basel (1988)

22. Goel, N. S., Richter-Dyn, N.: Stochastic Models in Biology. Academic Press,
New York (1974).

23. Greenwood, M.: On the statistical measure of infectiousness. J. Hyg. Cambridge
31, 336–351 (1931)

24. Harris, T. E.: The Theory of Branching Processes. Springer-Verlag, Berlin
(1963)

25. Hethcote, H. W.: Qualitative analyses of communicable disease models. Math.
Biosci. 28, 335–356 (1976)

26. Hethcote, H. W.: The mathematics of infectious diseases. SIAM Review, 42,
599–653 (2000)

27. Isham, V.: Assessing the variability of stochastic epidemics. Math. Biosci., 107,
209–224 (1991)

28. Jacquez, J. A., Simon,C. P.: The stochastic SI epidemic model with recruitment
and deaths I. Comparison with the closed SIS model. Math. Biosci., 117, 77–125
(1993)

29. Jagers, P.: Branching Processes with Biological Applications. Wiley, London
(1975)

30. Kimmel, M., Axelrod, D. E.: Branching Processes in Biology. Springer, New
York, Berlin, Heidelberg (2002)

31. Kloeden, P. E., Platen, E.: Numerical Solution of Stochastic Differential Equa-
tions. Springer-Verlag, New York (1992)



48 Linda J. S. Allen

32. Kloeden, P. E., Platen, E., Schurz, H.: Numerical Solution of SDE through
Computer Experiments. Springer-Verlag, Berlin (1997)

33. Leigh, E. G., The average lifetime of a population in a varying environment. J.
Theor. Biol., 90, 213–219 (1981)

34. Lloyd, A. L.: Estimating variability in models for recurrent epidemics: assessing
the use of moment closure techniques. Theor. Pop. Biol., 65, 49–65 (2004)

35. Mode, C. J.: Multitype Branching Processes. Elsevier, New York (1971)
36. Mode, C. J. Sleeman, C. K.:. Stochastic Processes in Epidemiology. HIV/AIDS,

Other Infectious Diseases and Computers. World Scientific, Singapore, New Jer-
sey (2000)

37. Murray, J. D., Stanley, E. A., Brown, D. L.: On the spatial spread of rabies
among foxes. Proc. Roy. Soc. Lond. B, 229, 111-150 (1986)

38. N̊asell, I.: The quasi-stationary distribution of the closed endemic SIS model.
Adv. Appl. Prob., 28, 895–932 (1996)

39. N̊asell, I.: On the quasi-stationary distribution of the stochastic logistic epi-
demic. Math. Biosci., 156, 21–40 (1999)

40. N̊asell, I.: Endemicity, persistence, and quasi-stationarity. In: Castillo-Chavez,
C., Blower, S., van den Driessche, P., D. Kirschner, D., Yakubu, A. -A. (eds)
Mathematical Approaches for Emerging and Reemerging Infectious Diseases An
Introduction. Springer-Verlag, New York, pp. 199–227 (2002)

41. Nisbet, R. M., Gurney, W. S. C.: Modelling Fluctuating Populations. Wiley,
Chichester, New York, Brisbane, Toronto, and Singapore (1982)

42. Norden, R. H.: On the distribution of the time to extinction in the stochastic
logistic population model. Adv. Appl. Prob., 14, 687–708 (1982)

43. Ortega, J. M.: Matrix Theory a Second Course. Plenum Press, New York (1987)
44. Sauvage, F., Langlais, M., Yoccoz, N. G.,. Pontier, D.: Modelling hantavirus in

fluctuating populations of bank voles: the role of indirect transmission on virus
persistence. J. Anim. Ecology, 72, 1–13 (2003)

45. Schinazi, R. B.: Classical and Spatial Stochastic Processes. Birkhäuser, Boston
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