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INTRODUCTION 

There exist relatively few books, especially in English, devoted to the 
analytic theory of numbers and virtually none suitable for use in an intro
ductory course or suitable for a first reading. This is not to imply that 
there are no excellent books devoted to some of the ideas and theorems of 
number theory. Mention must certainly be made of the pioneering and 
monumental work of Landau and in more recent years of the excellent books 
of Estermann, Ingham, Prachar, Vinogradoff and others. For the most part, 
however, these works are aimed at the specialist rather than at the general 
reader. No further apology therefore will be made for adding to the vast 
and growing list of mathematical treatises. 

The subject of analytic number theory is not very clearly defined and 
while the choice of topics included here is to some extent arbitrary, the 
topics themselves represent some important problems of number theory to 
which generations of outstanding mathematicians have contributed. 

The book is divided into five chapters. 

Chapter I. This is devoted to an old and famous theorem—that of Dirichlet 
on primes in an arithmetic progression. 

The chapter begins with some elementary considerations concerning the 
infinitude of primes and then lays the basis for the introduction of L-series. 
Characters are introduced and some of their properties derived and this is 
followed by some general theorems on ordinary Dirichlet series. A version 
of the classical proof of Dirichlet's theorem is then given with an analytic 
proof that L(l, x) * 0. The chapter ends with a definition of Dirichlet density 
and it is noted that the primes in the progression kn -f m have D.D. l/<p(k). 

Apart from the interest of the theorem itself, the methods and ideas 
introduced by Dirichlet have had an important influence on number theory 
as well as other branches of mathematics. The beginning reader would 
then do well to read this chapter in its entirety. 

Chapter II. This chapter is devoted to the prime number theorem and to 
certain auxiliary arithmetic functions arising in a natural way. The p. n. t . 
is first proved with a modest error term following the general idea of 
Riemann's proof as completed by Landau. This requires the development of 
some properties of the zeta function and the proof leads rather directly to 
K(X) (§ 5). It is then shown that the analysis becomes simpler if mean values 
and absolutely convergent integrals are introduced and then coupled with a 
Tauberian argument. At this stage, the error is improved to give the result 
of de la Vallee Poussin (§6B). The next step is to reduce further the analytic 
requirements and couple the discussion with a deeper Tauberian theorem. 
This is the Hardy-Littlewood proof (§6C). The final proof is that of Wiener, 
as simplified by Ikehara and Landau (§6D). Here the Tauberian element 
plays the primary role. Wieners proof completes the equivalence of <p(x)~x 

vii 
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with C(l + it) ± 0. 
The final section is devoted to other arithmetic functions and applications 

of the p. n.t . to their asymptotic properties (§7). 
The chapter is planned so as to give the reader a flexible program. He 

may wish to read the direct proof of 

(1) *{x) = \ix + 0{xe-«l°* X)l/l°) (§ 5) 
or of 

(2 ) <fix) = x + 0(xe-e{Xo* X)l/l°) (§ 6A) . 

He may read a proof of 

( 3 ) <f>2(x) = \x2 + 0(x*e-e(l°* x,I/2) (§ 6B) 

and then deduce that 
( 4 ) K{X) = li x + 0{xe-c{l°* X)1/2) . 
With a slight rearrangement he may read a proof of (4) directly. 

On the other hand, a direct reading of the Hardy-Littlewood or Wiener 
proof is possible. 

The material on arithmetic functions again allows a certain measure of 
latitude. 

Chapter III. This chapter is devoted to the theory of partitions. The 
chapter begins with proofs of some elementary results and the subsequent 
material is again arranged to provide options to the reader. It is first proved 
that 

(1) Pin) ~ — ! — ek*'* (A = KV(2/3)) 
4n\/3 

with the help of the little known but elegant proof of Uspensky (§2). Then 
Siegel's beautifully simple proof of 

(2) . ( - I ) = / f rfr) 
is given (§3). 

This is followed by the introduction of the modular transformation and it 
is proved that the set of modular transformations forms a group with two 
generators. This allows us to prove that 

where e is a 24th root of unity whose nature is as yet undetermined (§ 3). 
The next step is to give Rademacher's adaptation of Siegel's method to 

another derivation of (3) and an explicit determination of e in terms of 
Dedekind sums (§4). 

Finally, Rademacher's convergent series for p(n) is derived and proved (§6). 
The reader has 3 options. He may be content with a proof of (1) and (2) 

(§§ 2 and 3). He may wish to read a proof of (3) and follow this by a proof 
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of Rademacher's formula (§§ 3 and 6), or finally, he may wish to evaluate e 
in (3) and then read a proof of Rademacher's formula (§§4 and 6). 

Chapter IV. This chapter is devoted to Waring's problem for &th powers. 
The general plan is to discuss first the contribution from the major arc. 
This is followed by Weyl's estimate for trigonometric sums. No effort is 
made to present the deeper and much more difficult estimates of Vinogradoff. 
For those the interested reader may consult the excellent book of Vinogradoff. 

The asymptotic formula for the number of representations of n as a sum 
of s &th powers is proved to hold for 

(1) s ^ k2k + 1 (§6, Theorem 6.6) . 

This is then strengthened (§6, Theorem 6.7), with the help of a theorem of 
Hua to 

( 2 ) s ^ 2k + 1 

which for small values of k is superior to Vinogradoff's result. 
The next section is devoted to a discussion of Vinogradoff's upper bounds 

for G(k) (§7). 
With very little additional effort it is shown that (Theorem 7.3) 

( 3 ) G(k) = 0(k2 log k) 

and with further estimates on the minor arc, that (Theorem 7.6) 

( 4 ) G(k) = 0(k log k) . 

The constants are more precisely determined. 
The last section is devoted to a discussion of the singular series and &th 

power Gauss sums. 
The reader has several options. He may read the account on the major 

arcs (§4), and then prove either (1), (2), (3) or (4) since they are essentially 
independent of one another. 

Chapter V. The class number of quadratic fields and the related problem 
of L functions with real characters are discussed here. 

The chapter begins by assuming an elementary knowledge of quadratic 
fields. The concept of class number h is introduced. It is shown that h is 
finite and that there exists a constant a such that 

ah = L(l, X) 
for a certain real character x-

The reader who is unacquainted with the theory of quadratic fields may 
take this as the definition of h and interpret subsequent results as theorems 
on L(l, x)> The next step is to sum the series L(l,*) and derive the Gauss-
Dirichlet formula for h. A mean value theorem for h(d) is then derived and 
proved. This necessitates an estimate for sums of characters. The chapter 
culminates in Siegel's proof that 

\ogh(d)R~$\og\d\ . 
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The reader may read §§ 1 to 3 and derive the Gauss-Dirichlet formula for 
h(d), then read §5 for the mean value of h(d) and proceed to §6 where 
Siegel's theorem is proved. He may on the other hand omit §§ 1 to 3 (except 
for the discussion of the Kronecker symbol) and proceed directly to §6 or 
be content to stop after reading §§ 4 and 5. 

The mathematical preparation required to read this book is relatively 
modest. The elements of number theory and algebra, especially group 
theory, are required. In addition, however, a good working knowledge of 
the elements of complex function theory and general analytic processes is 
assumed. The subject matter of the book is of varying difficulty and there 
is a tendency to leave more to the reader as the book progresses. The first 
chapter can be read with relative ease, the subsequent chapters require that 
they be read more and more "with pen in hand." 

It is a pleasure at this juncture to acknowledge my indebtedness during 
the writing of this book. First to the American Mathematical Society who 
through a contract with the Air Force Office of Scientific Research enabled 
me to devote a full year to its writing; to Professor R. Webber of the 
University of Toronto for his careful and critical reading of Chapters I and 
II. Many of his suggestions have been incorporated. To Professor C. L. 
Siegel for his generous help in the proof of Theorem 5.4 of Chapter V. 
Further the author wishes to thank Dr. Gordon Walker for recommending 
that the book be published in the American Mathematical Society's 
distinguished Survey Series. As to the mechanics of publication, the author 
is most grateful to Mrs. Ellen Burns and Mrs. Helen Striedieck for typing 
and other secretarial help and to Miss Ellen Swanson and her staff at the 
American Mathematical Society (especially S. Ramanujam) for preparing a 
chaotic manuscript for the printer. 

There is in addition an indebtedness of more abstract character which the 
author wishes to acknowledge. No devotee of the analytic theory of numbers 
can help but be influenced by the brilliant writings of Professors H. A. 
Rademacher, C. L. Siegel, I. M. Vinogradoff, and the late Professor G. H. 
Hardy. If the reader detects little originality in the present work, it stems 
merely from the fact that the work of these scholars can hardly be improved 
upon. It has indeed been the author's hope that some specialists whose 
knowledge is broader and whose understanding is deeper than his might 
have undertaken to write a book of the present type. Perhaps the short
comings of this work will induce them to do so. 

State College, Pennsylvania 
November, 1962 



NOTATION 

We make extensive use of the order notation (O, o, ~) in this book, and 
for the benefit of those readers who have not encountered it before, we give 
a brief summary of the definition and principal properties. The notation 
was first introduced by Bachmann in analytic theory of numbers and has by 
now made its way into general analytic processes. 

A. Big O. Let a be any real number including the possibilities ± oo. 
Let f(x) and g(x) be two functions defined in some neighborhood of a and 
suppose that g(x) > 0. We say that f(x) is "big O of g(x)" and we write 

fix) = 0(g(x)) , 

if there exists a constant K > 0 and a neighborhood N(a) of a such that 

\f(x)\ ^Kg(x) 

for all x in N(a). 
In particular, the notation 

Ax) = 0(1) 
means that f(x) is bounded in absolute value in a suitable neighborhood of a. 

EXAMPLES, (i) Suppose that a — 0. Then 

sin x = O(x) , x* = 0(x2) . 

(ii) If a = co, then 

s i n * = 0(1) , x= 0(xz) . 

Some simple properties follow at once. 
I. If Mx) = O(giix)), i = (1,2), then 

A(x) + Mx) = 0(gx{x) + g2(x)) , 
A(x)Mx) = 0(g{(x)g2(x)) . 

II. If c is a constant and 

Ax) = 0(g(x)) , 

then 

cf(x) = 0(g(x)) . 

The notation is frequently used with functions of more than one variable 
and here some care must be exercised in its use and interpretation. For 
example, we frequently encounter a function f(s) of the complex variable 
5 = a -}- // and write 

As) = 0(g(t)) ( / - o o ) . 

The constant K whose existence is implied by the O is dependent upon at 
xi 
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and the dependence may be such that K= K(a) is unbounded for a in some 
neighborhood. Sometimes the dependence of K on the auxiliary variables or 
parameters is explicitly stated and sometimes it is implied by the context. 

We use the notation for sequences as well—the sequences may be sequences 
of functions or sequences of real or complex numbers. For example, 

/(») = 0(g(n)) 
means that there exists a constant K and an integer N0 such that if n > N0, 
then 

\f(n)\ £Kg[n). 
To allow for greater flexibility and to use the O symbolism as effectively 
as possible, it is convenient to define 0{g(x)) standing by itself. By 0(g(x))t 
we shall mean the class of functions C{g) such that / e C(g) if and only if 

Ax) = 0(g(x)) . 

Thus in particular, 0(1) is the class of bounded functions. If 

C(g) c C(h) , 
we write 

0(g) = 0(h) . 

The reader will readily adapt himself to the mathematical anarchy in which 
the symbol of equality is used for a relation which is not symmetric. 
Surprisingly enough, this almost never leads to confusion! We define the 
sum and product of two O's. By 

0(g) + 0(h) 

we mean the class of functions C consisting of sums f 4- A where ) \ e C(g) 
and f2 e C(h). Similarly with 0(g)0(h). In addition to a finite sum, we often 
take an infinite sum of O's. 

The following examples will illustrate some of the points. 
(i) If 

Ax) = x sin (\,'x) , 

then, as x-> oo, 

f(x) = 0(x)0(l) = 0(x) = 0(x log x) . 

Note carefully that although 

0(x) = 0(x log x) , 
0(x log*) * 0(x)\ 

(ii) If f(x) = x cos x c <,],*x) 4- x sin x log"9 x, then, as .r- > oo, 

f(x) = 0(xe-M*x)) + 0(x log"9 x) 
= 0(x log"9 x) = 0(x) . 

(iii) If 5 = a + //, and 
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As) = X ^ . 
n - l W* 

then, as / —• oo, 

7(5)- f 0(11-') 

= 0(1) , 

if <J > 1. However the constant implied by the O depends on a in a critical 
manner. 

B. Little o. Suppose that f(x) and g{x) are defined in a neighborhood of 
a, and suppose that g(x) > 0. Then we say that f(x) is "li t t le oof g(x)" and 
we write 

fix) = o(flfU)) 
if 

lim - ^ U o . 

In a similar manner, we define "little o" for sequences. We write 

An) = o(g(n)) 

if 

l i m ^ 4 = 0 . 
»-~ flf(M) 

It is easily seen that if 

fi = o(9i) (i = l , 2 ) , 

then 
/ 1 / 2 = o(flfiflr2) • 

As for "big O," we define o{g) as the class of functions D(g) with the 
property that / e D if and only if / = 0(0). Then we can define 

o(g) + o(h) and o(g)o(h) . 

If D(flf) c £>(/?), we write 

o(g) = O(/J) . 

If C(#) is the class of functions which are 0(g), and C(g) c />(/*), we write 

0(g) = o(h) . 

Thus we encounter statements of the following types: 
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/ = 9i + Qz 

= 0(flf,) + O(0f4) 

= 0(05) - 0(fl[8) 

and 
/ = O ( 0 1 ) + O(01) 

= o(08) + 0(04) 

= 0(05) • 

C. Asymptotic equality. Finally we define ~ . I f / a n d g are two functions 
defined in a neighborhood of a, we say that / is asymptotic to g and write 

if 

lim £- = 1 . 
* -« g 

The definition applies to both functions of real or complex variables and to 
sequences. The relation is evidently symmetric and transitive. 
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The gamma function and the Mellin transform. Though there are many 
equivalent definitions of the gamma function, one of the most convenient 
starting points is the Weierstrass product formula. For all 5, we define 

(1) r(s) n^i\ n) 

where y is Euler's constant, ;- = lim^oo (J.Z--11/w — logN). We show that 
this is analytic for all s. 

THEOREM A.l. The product 

sey* ft (l + — V s / n 

n=l\ U I 

represents an analytic function of s for all values of s. 

PROOF. Let k be arbitrary and suppose that \s\ < k/2. Then for n > k, 

,og(i + i)--L 
\ n J n 2 n2 + 3 w3 

n \ 
s 

1 n + 
,s 
n + ) 

\s\ s\2 / , 1 1 \ 
4«< *~ 2 n2 

It follows that 

and therefore 

(2) 

2 log ( i + -*.)_•£- 1 °° kz 

^ y I 4" = 0(1), 
Z n-A:{ l ft 

£ (log(i + i)_-L) 
fc+i \ V ft/ « / 

is an absolutely and uniformly convergent series of analytic functions which 
is therefore itself analytic. Consequently its exponential 

is analytic; hence 

(3) 

fi (l + -)e"/n 

' T n ( i + - > - ' • 
n - l \ ft/ 

is analytic for \s\ <\k. However, k was arbitrarily chosen and therefore 
(3) is analytic for all s. 

From this definition of f(s), we see that \II\s) has zeros at 5 = 0, —1, —2, 
353 
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• • •, and therefore that F(s) itself is analytic everywhere except for poles at 
0, - 1 , - 2 , . . . . 

THEOREM A.2. 

(4) m = I nfi + -Y(i + - Y \ 
s n -i \ nj\ n ) 

the formula being valid except for 5 = 0, —1, —2, 

PROOF. The proof is a straightforward consequence of (1): 
- J - = s lim [exp s( I - - log m)] f l (1 + - V / n 

= 5 lim m- jj(i + ±)=s lim i f (1 + I V ' f l ( l + - ) 
m-oo n - 1 \ W / m-*oo n - i \ fl) n - l \ ft/ 

= 5iimn(i + i r ( i + -i)(i + IY. 

Since (1 + l//>*)8-> 1, the proof is complete. 
Two important corollaries follow. 

THEOREM A.3. 

( 5 ) F(s) = lim ^ n
( ; ? ~ 1 } i 77 »* • 

n-oo 5(S + 1) ••• (S + W — 1) 
PROOF. From (4), 

I (s) = — lim TT —7— T—— ) = — l i m » TT 
5 n-oo A: -1 V & ) \ k + S ) S n^oo k-1 \ k + S 

= — lim n 
5 n-.cc (5 + 1)(5 + 2) ••• (S + W - 1) " 

The next corollary exhibits F(s) as an interpolation formula for 5!. 

THEOREM A.4. 

(6) r(s + i) = sr(s). 
/w particular, if s is a positive integer, 

(7) r (s + 1) = s! . 
PROOF. Again from (4), 

T(5) s + 1 « - n - i \ n) \ n ) \ n) \ n) 
s
Tnm ft(1 +1)MJ^V) 
1 m-00 n=i V n ) \n + s + 1/ 5 + 

5 = l i m (m + i) ft ( * + s ) = s lim nt + l g _ 
5 + 1 m-oo n - 1 \ W + S + 1 / « - o e m + 5 + 1 

The next result is a functional relation which establishes a connection 
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with the circular functions. 

THEOREM A.5. 

(8) r(s)ra - 5) = - * 
sinrcs 

PROOF. From the definition (1), 

wi-j) = 4 n ( i + -Ye1" n (i - -YV"- = - ± ft (i - 4Y1. 
S n = l \ YlJ n-l \ flj 52 n-l \ » / 

On the other hand, the Weiers t rass product for (sin7rs)/7rs is n~=i (1 — s2ln2), 
and therefore 

(9) /w(-s) = -- i - s5 _7r 
s sin xs s sin TT5 

From (6), however, 

r ( l - 5 ) = - s r ( - 5 ) , 

and the theorem follows from (9). 
In part icular , if s = J, 

r(h)2 = x, r ( i ) = ± v* , 

but from the definition, T(J) > 0, and therefore 

(10) r(J) = V*. 

We prove Legendre 's duplication formula in the following: 

THEOREM A.6. 

(11) r(2s) = ; T 1 / 2 2 2 " l r ( s ) F ( s + i ) . 

PROOF. The proof s ta r t s from (5) of Theorem A.3. 

r<9c\ ( 2 w - l ) ! ( 2 » ) * 
F{2S) = I S 2s(25 + 1) - - - (2s + 2» - 1) ' 

and therefore 

22"lr(s)r(s + 4) 
r(2s) 

2 ,- i((w - l)!)V<+!/2(25)(25 4-1) - - • (2s 4- In - 1) = lim 
— (2n)u(2n - l)!s(s + 1) • • • (s + n - l)(s + J)(s + | ) • • • (s + J + n - 1) 
. 22n~l((n - l)!)2n1/2(25)(2s + 1) • • • (2s + 2n - 1) 

»™ 25(25 + 2) • • • (25 + 2n - 2)(2s + l)(2s -f 3) • • • (25 + 2w - l)(2w - 1)! 

= lim t «» x ; " = lim ?(*) (say). 
n-»oo ( 2 « — 1 ) ! n-oo 
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We notice that the right-hand side is independent of s. Hence its value 
may be determined by giving s some convenient value. For example, we 
let s — i , then 

\im<p(n) = r(^W =r(l) = V*, 
n-oo / (1) 

by (10). This observation completes the proof. 
We can convert r(s) into what is, perhaps, a more familiar integral 

formula. 

THEOREM A.7. Ifs = o + it, and a > 0, then 

(12) f(s)= \~e-xx'~ldx. 

PROOF. Because 

we can expect that 

e~x = lim (l - *X 
n-oo \ n ) 

*5'"HX1-i)v" ,*f 

will converge to the integral in (12). On the other hand, we evaluate r(s, n) 
explicitly. In fact, if it = xln, then 

r(s,n) = n9 T (1 - u)nu'~l du 

If n is an integer > 0, we integrate by parts n times and an easy calculation 
gives 

r(s, ») = „ • . . * . JLzl i I u9+%-1 du 
s s + 1 s + " 1 x 

<13) n'nl 
n - 1 Jo 

s(s + 1) ••• (5 + n- l )(s -f n) 

T h u s on the one hand, the right-hand side of (13) converges to T(s) by 
Theorem A.3. On the other hand, it remains to show that r(s, n) converges 
to the integral in (12). Th i s is seen as follows: 

lim l\~ e-'x'-'dx - r(s, n)\ = lim \ \ U* ~ ( l - - V ) x8~ldx + ( V v 1 * / * ! 

= lim (jl + j2) . 
n-»oo 

Since a > 0, the integral in (12) converges and therefore limn^oo j2 = 0. To 
show that ;'i tends to 0, we notice that the sequence (1 — x/n)n converges to 
e~x from below while (1 + x!n)n converges to ex also from below; therefore 
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o s . - - ( . - £ ) - a . - { i - , - ( i - i ) - } 

- i > -(>-!)•('•1)"}-- { ' - ( - -7)"! 
2 2 - x 

n2 n 

Consequently, 

/'=°(i)S>"y+,^=o(i)=o(i )-
This completes the proof. 

The integral of Theorem A.6 is valid only for a > 0; we derive a contina-
tion of the integral of (12) which is valid for all s (we bypass the singular
ities of r(s)). 

THEOREM A.8. If c<<? denotes a path ivhich starts at 00, circles the origin in a 
counter-clockwise direction and returns to 00, then 

(14) r(s) = - - 5 ^ f ( - trle-1 dt . 
2i sin rts y& 

PROOF. The proof incorporates the principle of the so-called Hankel 
transform. Let D be a contour which starts at a on the real axis, circles 

3 
the origin in a counter-clockwise direction and returns to a. We consider 
the integral 

f (-urle-udu , 

with a > 0 and 5 not an integer. The many-valued function ( — u)''1 = 
exp[(s — 1) log ( — it)] is made precise by choosing that branch of the logarithm 
which is real when it < 0; that is to say, on D, — x ^ arg (— u) ^ 71. We 
transform D itself into a path which starts at a, proceeds along the real axis 
to a point d, circles the origin counter-clockwise by a circle of radius 5 and 
returns to a along the lower part of the real axis. On the upper part of 
the real axis, we have 

arg(-w) = -7T , 

so that 

(15) ( - K ) - 1 = exp [(s - 1) log ( - i/)] = exp [(5 - 1)(- ni + log u)] = w -V , 7 r ( ' ~ n 

and on the lower part, by the same reasoning, 
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(16) ( - « r l = u8-leilt{a-l) . 

On the circle, write 

- u = 8ei9 , 

and then by (15) and (16) 

f ( - u)-le'udu = ( V ^ - ' V - V r f K + \"ei*{'-l)u'-le-udu 
nj\ JD Jot J5 

+ T (dei9)9-le*ic"$+ialn9)dei9id6 . 

The first and second integrals combine to give 

— 2i sin 7rs \ u*~le~udu , 

while the third integral clearly tends to 0 as d —> 0. Consequently, from (17) 

\ (— u)8~le~~udu = — 2/ sin ns \ u8~le~udu . 

This relation holds for all a > 0. We let a —> oo and we let ^ be the 
"limit" of the path D, then 

In other words, 

( - u)9~le~udu = - 2/ sin ns \ u'~le~udu . 

F(s) = - ^ r 4 ( ( - u)-le-du , 
2i sin rcs J<r 

as was to be proved. 
The importance of this representation stems from the fact that since & 

does not pass through the origin, the integral is a single-valued and analytic 
function of s for all s. The restriction a > 0 is no longer necessary. The 
formula (14) holds for all s except for s = 0, ± 1, ± 2, • ••. 

The next theorems concern the asymptotic behavior of P(s). We prove 
first a somewhat debased form of Stirling's formula. 

THEOREM A.9. / / N is an integer, then there exists a constant c such that 

(18) log AH = ^ log n = (N + ~) log TV - N + c + O (j^) . 

PROOF. We use the Euler-MacLaurin formula, 

J log » =-J-log AT + [N\ogxdx+[N X~[x]~~^dx 
Qm *** 2 Ji Ji x 

= ^-logN-h NlogN- N+ \N x~~[x]~^ dx. 
2 Ji x 
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On the other hand, if we put 

<p(x) =\ (u - [u] - — j du , 

then because the integrand has period 1 and <p(2) = <p(l) = 0, it follows that 
(p(x) is bounded, in fact, 

\<p(x)\ ^ i . 
If now we integrate by parts the integral in (19), we get 

Ji u N Ji x 

= mi+ [•£%. &-.[-*$. * 
N Ji x ) N x 

We have used the fact that \?<p(x)lx2 converges and have denoted its value 
by c. This proves the theorem. 

We pass to the general case. 

THEOREM A. 10. There exists an absolute constant a such that if s is not on 
the negative real axis, i.e., 

(20) -7r + < 5 ^ a r g s ^ 7 r - < 5 , 

for d > 0, then 

(21) log r(s) = (s - j \ log s - s + a + O ( - j - ) . (s * 0) 

PROOF. By definition, 

log r(s) = lim { I ( - - log (l + -))} - r s - log s 
(22) *— {n-i\n \ n])\ 

{ N ^ N N \ 

I I log (n + s) + 2 log w V — ys . 
n - l n n^0 n=l J 

We apply the Euler-MacLaurin formula to the second sum: 

£ log (n + s) = i- log (N + s) + -i- logs + ("log (* + s)rf* + (**""[x] "" ^tf* 
n = 0 2 2 Jo Jo X + S 

(23) = i l o g ( A T + 5) + (~ - sVogs + s + (N+s)\og(N+s) 

-(N+s) + ["x~[x]~*dx. 
Jo X + S 

Accordingly, if we use (18) and the fact, proved previously Chapter II, 



360 APPENDIX A 

Theorem 2.4, that 

Z±- = \ogN+r + o(±-), 

we get from (22) and (23) 

log r(s) =(s- -y) 1 0^ 5 + c 

+ lim \s (log N - log (N + s)) + N (log AT - log (N + s)) 
(24) ^ ~ l 

+ ±(\ogN-\og(N+s)) - \N x-W-% dx\ 
2 Jo x + s J 

\ 2 / J0 * + s 

As in the previous theorem, we integrate the integral in (24) by parts: 

r- X . M , ^ = p - y W /f- dr \ 
Jo X + S Jo U + 5)2 VJo AT2 + 2*<7 + I 5 1 2 / 

= o ([~ ^ ^ 
VJo x2 + 2x\ 5 | c o s a r g 5 + \s\2J 

= o f r ^ "i 
VJo r - 2 j t | s | c o s < > + |s I 2 / ' 

where we have used the fact (which follows from (20)) that cos args 
^ — cos3. The substitution x'\s\ = it gives 

dx 
x — 2x \s\ coso + \s\" V I 5 | / Jo u2 - 2u cos o + 1 \ I s I / ' 

as required. 
As a corollary, we deduce an important result concerning the behavior of 

r(a + it) for fixed a and large /. 

THEOREM A.11. / / 

//zew /or S0/>/<? constant K, and for \t\ > 1, 
(25) / > + //) | = K \t ri/2e~* </2 (l + O (^j)) , 

the constant implied by O depending only on ai and a2. 

PROOF. From (21) of Theorem A.9, 

(26) log r(a + it) = (a + it - 1 ) log (a + //) - (<x + //) + <* + O (yy- ) , 

but 
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log (a + it) = log (a2 + t2)l/2 + /arc tan— ; 
a 

hence 

(27) .<& (U + it - 1 ) log (a + «A = (a - i - ) log (<r2 + /2)1/2 - / arc tan L . 

On the other hand, 

log (<x2 + f) - log /* = log ( l + ( | ) ! ) = O (jj = O ( £ ) , 

that is, 

(28) log (a2 + t2)± = log | /1 + O (jA . 

Moreover, because 

t . * <x f .T/2 if / > 0 , arc tan — 4- arc tan — = 1 ' 
a / \ -;r/2 if / < 0 , 

it follows that 

arc tan — = ± — — arc tan — = ± —- — — + O ( — ) a 2 t 2 t \t / 

on expanding the arc tan in a power series. This, together with (27) and 

(28) gives us 

(29) &Uo+ it - I ) log (a + «)} = (* - i ) l o g \t\ - - | U | + a + o ( - | j j - ) . 

Therefore from (29), 
log \r(a + it)\ = (a - | ) log \t\ - J | / | + a + O J j T j ) , 

or 

\r(o + it)\ = K\trl/2e-«ltl/2 e0{l/ltl) 

= /fi/r-1/v* ie i""(i+°(^))-
Actually, it can be shown that K — ^/2rc but we never need this fact. 

Finally, concerning the gamma function, we prove 

THEOREM A.12. The residue of T(s) at the pole s = — k is (— \flk\. 

PROOF. The residue at s = — k is 

lim (5 + k) r(s) , 
8-+-k 

which, by Theorem A.3, is 
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l i m (5 + *) l i m — - ^ L 
«-»• * n-oo s(s + 1) • • • (s + n) 

= lim lim nln°(s + k) 
,__* n^ S(5 + i) . . . (5 + k - l)(s + k)(s + k + 1) • • • (s + «) 

= l im l im 
-A 5(S + 1) • • • (S + k ~ 1)(S + * + 1) • • • (S + ») 

= l i m w!« * 

n _ ( _ W ( _ * + i) . . . ( _ l)(l)(2) • - • ( » - * ) 

l im w! (-1)* 
k\ nk-(n-k)\ 

( - 1)* r n(n-l) --(n-k + l) ( - 1)* 
l im 

We are now in a position to prove Mellin's formula which was stated 
without proof and used in §6, Chapter II. 

THEOREM A.13. / / c > 0, then 

(30) 
_ 1 fc"io< 

2ni ) e - i c , f(s)x- ds 

PROOF. The formula is, so to speak, an inversion of formula (12) of 
Theorem A.6. The proof uses contour integration. The right-hand side is 

(31) 
1 Ce^iT 

lim ~ V I r(s)x~$ ds . 
r-oo 2xi ) c - i T 

- n ™ + iT 

. „__ 

-n-7j--»T 

c + iT 

c-iT 

We consider the contour shown in the diagram. Then 
-1/2-tT 

2ni ]c-iT X 27r/ )c-iT 
ra iT (32) 

+ • 

S - n - l / 2 - t T 1 f - n - 1 / 2 , tT 

r(s)X-'ds + —!-T- ns)x-, 
c-iT &KI J-n-l/2-iT r(s)x 8ds + sum of the residues 

•i t—1/2-T iT 
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The integrand has simple poles at s = 0, — 1, • • •, — w, and the residue at 
s = — k is (— 1)V/*!. We call the integrals in (32) IltI2fI3t respectively. 
Then 

1 Cc+iT n / 1 \ * 

(33) - ^ - r{s)x"ds = A + /, + /,+ I -^Tr-x* . 

It remains to show that Ix, I2, h converge to 0 as n, T~> oo. We consider 
first 73; 7i is treated in the same way: 

1 fe+tr 1 re 
/, = — V r(s)x-8ds = — V l / > + iT)x-°-xTdo 

,OA\ Am J _ n - l / 2 + i r **tt J - n - 1 / 2 

= o((' e-"|ri/,|Tri/,*~'<kV 

by Theorem A.l l . The integral in (34), however, is 

05) °t r" Win*-1" login*- J|-0(1) asr-*°°-
We have therefore shown that. 

(36) -±- r(s)*-<fc = I - ^ - r 2 - xk + r(s)x-ds . 
Aftl J c - t o o * = 0 # J _ n _ l / 2 _ t o o 

It remains to show that the integral on the right converges to 0 as n-> oo. 
Indeed 

(37) S - n - l / 2 + too poo / 1 \ 

r(s)x"ds = r(-n-4- + it) xn+1/2-"dt. Using the functional equation for T(s) in the integrand on the right, we 
find 

(38) /^ » 2 + * < ; - ( _ B _ i + ( 7 ) . . . ( _ i + l7) -o^ (M + 1), ) . 

Then using (25), we get from (37) and (38), 

-"(s:.w^*)^(j;w-) 
The constants implied by the O are independent of n and *. On the other 
hand 

(40) IHh") dt = 0(1) . 

Letting n-* oo, the assertion of the theorem follows from (39) and (40). 
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The functional equations of the functions C(5) and L(s,x)» In Theorem 3.5, 
of Chapter I, we showed that C(s) is analytic for a > 0 except for a simple 
pole at 5 = 1 . We shall show here that C(s) is a meromorphic function whose 
only singularity is at 5 = 1 and moreover that it satisfies a relatively simple 
functional equation. 

In addition, the same ideas applied to L(s,x) show that L(s,x) for x =*= Xi> 
is entire and satisfies a similar type of functional equation. 

The proof for the zeta function stems from Riemann. The starting point 
is the gamma function. Since 

(i) r ( ! ) = jV/'/2 -ldt, *>o, 
we replace / by nrfu and find directly that 

( 2) x"'1 rf±\n"=[ V " 1 V"-l<& 
therefore 

( 3) !(s) = ;T< /2r(-0C(s) = j " n | e-Htuu«l-ldu , 

the interchange of integration and summation being clearly justified. 
Riemann's object in (3) is to introduce the function 

n = l 

-xr u 

which is closely allied to the function 

(4) *(«)= I e 
r = — oo 

which is an elliptic function satisfying the simple functional equation 

(5) 0(u) = -±-o(—\. 
Vu \ u ) 

The integral in (3) is well behaved for a > 0 but for a ^ 0, trouble occurs 
in the neighborhood of the lower end point. The object of (5) is to improve 
matters. Before proceeding therefore, we study in more detail the function 
0(u) defined in (4) or rather a slight generalization of it. 

We consider the function 

(6) ¥(zta)= I e-*{n+*)2r , 

for real a and r > 0. The series converges absolutely. It is our first object 
to prove the following 

364 
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THEOREM B.l. 

(7) V(r,a) = ^ - I e 
•y X n - — oo 

-itn2/T-2itina 

The formula tvill then hold by analytic continuation for all r such that 
&(T)>0. 

PROOF. The left-hand side of (7) is 

^ — nn T—2itna6r-itob2T 
2. " 

n - — oo 

We are therefore required to prove that 

(8) I e -itn<-T-2njt<*T e ^ ^-itn2/r-2itin<» 

VT 
I e~ 

Our natural recourse is Cauchy's theorem and the calculus of residues. In 
fact if z is the complex variable x + iy, then the function 

(9) /U) 
-itz2t—2itot>zr 

e:*" - 1 

has simple poles at z — 0, ± 1, ± 2, • • • with residue 

(10) 1 -r.rLT-2itra,T 

2ni 

at the simple pole z = r. 
We consider the rectangle '& in the z plane with vertices at N + % ± i, 

(N++)+i 

-(N+i)-i 

[(4) ( 
V 

("3)" 1 
J l 

( I ) 

N + j + i 

(2) 

N + ^ - i 

— (7V+ J) ± i where TV is a positive integer. We label the segments of the 
path (1), (2), (3), (4). By Cauchy's theorem, we get from (9) and (10), 

(11) 
-xrz2-2xa7z 

W e 1 
dz = I e~Kn2T-

The integrals along the vertical sides (2) and (4) are o(l) as N->oo. Along 
(2), z = N + \ + iy, and a simple calculation shows that for some constant c 

(12) S £,-x:z2-2Tcxrz /CI 

,.,*7=»rr*-0(L-
I e~2ity.e2iri^y+l/2) I IT*) 

= 0 ( T ^ T T H (1) 
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A similar argument holds for the integral along (4). Thus letting N—> oo, 
we conclude from (11) and (12) that 

(13) 2^*(r, a) = \~~X f(z)dz- P * f(z)dz , 
J —oo —i J —oo f t 

the integrals being absolutely convergent as a simple calculation will show. 
Since along the path in the first integral of (13) 

\f*i*\ = f*> 1, 
it follows that 

oo 1 

the series converging uniformly and therefore 

(14) [~ l f(z)dz= £ f~ * e-*r'*-u«"r-ni)dz. 
J - o o - i n - - l J -oo- i 

A similar argument shows that 

(15) (~" f(z)dz= I p * 1
 e-*T**-uzi*T-ni) dz m 

On the other hand, completing the square in zf we get 

S oo±i r 

£ - * T *;«~nt/T,2 J 2 = g*T(a»-ni/T)2l e'^^du , 
-oo±i JZ 

where the path L is along a line parallel to the real axis with imaginary 
part fi (say). Applying Cauchy's theorem again to the rectangle with vertices 
± W, ± W + ifx (with real W) we find as W-> oo 

(17) ( e~*ru2du = [°° e~m%du . 

Thus since 

(18) T e-™ldu = -j— • >/* = -y~ , 

we get from (13), (14), (15), (16), (17), (18) 

e***rW(T, a) = — - f ^ ( - - » « ' / T ) 2 

_ —I ^ * T » 2 y g-*n2/T-2iei»« 
\ / V n--oo 

and this is what we set out to prove. 
Several corollaries follow readily. 

THEOREM B.2. 

(19) W(T, a) = - i - 2 e-«n2'* cos2Kna . 
-y/f tl = - oo 
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PROOF. The proof is an immediate consequence of (7) and the fact that 

£-*n2/T $\n2nn<x , 

is an odd function in n, for then the series 

£ £T**2/T sin 2nna 
n ~ — oo 

must vanish. 
If we specialize a, we get at once 

THEOREM B.3. / / 

W(T,O) = 0(T), 

then 

(20) , W = _ L , ( J _ ) . 

If we differentiate both sides of (19) with respect to a, we get 

THEOREM B.4. 

(21) £ (n + a)6r*T(" + ")2 = —y- £ ne~n2*lr sin (2ma) . 

PROOF. The proof follows from the uniform convergence of both sides in 
a. 

For dealing with the L functions, we shall require series similar to the 
above but involving characters. Let x be a primitive character modulo k. 
Two cases arise in a natural way. In the first place x(~ 1) = ± 1; we 
therefore consider 

Case (i). Suppose that 

(22) X(- 1) = 1 . 
We define 

(23) 4>(T, X) = 2 £ x(n)e-*n2*/k 

and shall show that </>{T, X) satisfies a functional equation. 
In fact since 

X{n)e-«n2rlk 

is, by (22), an even function of n and since x(0) = 0, we get 

(24) <P(T,X)= £ xWe-*n2*ik. 
n = — oo 

We break the summation in (24) into residue classes modulo k by putting 
n — mk + r, and we get 
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(25) 4'(r, x) = I X(r) f «-«<-•'/*•** = f z( r)y (fa-,-£) , 
r^-0 m^-oo r - 0 \ # / 

where W(kv, rjk) is defined by (6). 
If we apply (19) to W(kz, rlk), we find from (25) 

0(r, X) = 2 Jt(r) — ^ 7 - I e-*m2/*T cos - ^ 2 * 
r = 0 v ( « * / m-^-oo ft 

(Of.) 

= —77TT- 2 * *m ,kT 2 x(r)cos—— . 

On the other hand, since *( — 1) = 1, and therefore x(& — n) = xM and since 
sin (2nm(k — n)/k) = — sin (2xmnlk), it follows that 

(27) 2 x(r) sin ^ i l = 0 . 

Accordingly from (26) and (27), 

(28) 0(r, x) = - — V ~ 2 <r*mV*r 2 ztr)^"1"'* . 
\ / ( ^ r ) m--co r - 0 

The inner sum, however, is the familiar Gaussian sum 

G(m,X) = I X(r)e2*imr/k . 
r -0 

By Theorem 4.12, 

(29) G(m,x) = x(»i)G(l,X) 

and therefore from (27), (28) and (29), 

0(^ ) = 4 - ^ T T ^ 2 x{m)e-*'>k*. 

Consequently we get 

THEOREM B.5. / / </>(T,X) is defined by (23) ««<:/ G(l, x) *s a Gaussian sum, 
then 

For simplicity, we put 

then, by Theorem 4.13, Chapter V, we get 

(32) Nx„=JG(k2)i = i. 

Moreover, since 
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G(l, x) = I x(r)e^r/k = I x(r)e-2*tr/k = G(l, X) . 

because x(— 1) = !• Therefore it follows that 

i(Z> = «(x) • 
Thus by (32), 

1 
(33) e(x) 

«(Z) 

Cas£ (ii). x(— 1) = — 1. In this case we modify the function </>(T, X) for 
later application. Let 

(34) ^i(r,z) = 2 I nx(n)e-***ik; 

then exactly as in Case (i), we show using (21) that 
oo 1 oo k 

0i(r, X)= I nxW)e-«nl'rlk = . ; 2 me(-*^ik)r j z ( r )^i«r/* 

where 

In this case because *(— 1) = — 1. 

S O B = I x(r)e-2*ir/k = - 2 z(r)c"'r/* = - G(l, * ) . 
r = 0 r •-- 0 

Therefore 

and since as above 
Ui(x)l = l , 

we get 

(36) .Ai) = J - . 

We return to proofs of the functional equations for C(s) and L(s, *). 

THEOREM B.6. If 

(37) «s) = i r - " r ( - | - ) C(s) 

then £(s) «'s regular for all s except for simple poles at s = 0, s = 1. £(s) satisfies 
the functional equation £(s) = £(1 — s). 
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PROOF. We had from (3), 

where 

o>(u) = 2 *r*n2,t . 

We break the interval of integration 

(38) Hs) = T a>(u)u9/2~ldu + P w(u)ut/2-ldu . 

In the first integral we replace « by 1/w, and find from (38), 

(39) «s) = [~<*> (-£-) K-^-'rfu + P w(u)u9lt'ldu . 

Now 

1 + 2w(u) = 0(w) 
and using Theorem B.3, we get 

(40) l + 2a,(«) = ^ ( l - f 2 « , ( i - ) ) . 

Inserting o>(l/w) from (40) in the first integral of (39), we deduce, on performing 
the simple integrations, 

(41) fls) = - L j - -L + (" o>(u)(u'/2 + W
(1")/2) ^ . 

s — 1 s Ji w 
The integral in (41) is regular for all 5 and the right-hand side is clearly 
invariant on replacing s by 1 - s. This completes the proof. 

We turn to the functional equation for L(s, x) for x a primitive character 
modulo k. The argument is much the same as the one we used for ?(s). 
Naturally there are added complications but we have prepared for these. 

We consider again 2 cases. 
Case (i). x( — 1) = 1- We start from the gamma function and get 

GF ays *-"*"* 
and therefore using (23), 

«s, x) = ( f )""'V ( | ) Us, X) = j ~ It x{u)e-^"u-'^du 

(42) =l[y(u,x)u'/l-ldu 
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We apply (30) to the first integral of (42) after replacing u by l/«, 

(43) «,, X) = ^L\^(urx)u-^^- + \ (" *«, z ) « ' ^ . 
2 Ji « 2 Ji « 

The integrals on the right of (43) are regular for all s and therefore so is 
£(s, x)- Moreover 

«i - *.»=*p r « « . Z ) « , / 2 ^ + 1 r #«. z)« , ,- , / t—. 
2 Ji u 2 Ji w 

Using (33), however, it follows that 
e(x) 6 ( l - s , x ) = ?(s,x). 

C#S£ (ii). x(— 1) = — 1. In this case we start from 

Then it follows that 

Ms, X) - ( y ) r ( — ) L(5f x) = j \Q Hu, X)u — , 

where ^i(w, x) is defined by (34). We break the interval of integration as 
before and apply (35) and deduce 

Si(s,x) = £^\~4>i(u,x)u-°/2du + 1 ( > ! ( « , Z)«- ( 1- } /V«. 

Again the right-hand side is regular in 5 and using (36), we deduce 

(44) ?i(s,x) = * i ( x U i d - s , x ) . 
We combine these two into the same 

THEOREM B.7. If x is a primitive character modulo k which is nonprincipal', 

={\ 0 i/*(-l) = l 

and 

(45) to, X) = (j)",,+a"2 r ( - 4 ^ ) -̂(s, z), 

then f(s, z) 2S an entire function of s and satisfies the functional equation 

S(s, X) = etoKU - 5, X) 

where 

\G(\,x) 

«(Z) =< 
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In the particular case when xM — X*(n) = (din) , we have by Theorem 
4.17 

M v \ - < M d l i f d < 0 ' U{lfX)~\Vd ifd>0 
Therefore in either case , 

(46) e(x) = 1 . 

COROLLARY 1. If a — 0, the function L(s, x) vanishes for s = 0, —2, —4, 
If a = I, L(s, x) vanishes for s — — 1, —3, —5, 

PROOF. We showed that L(s, x) is analytic for a ^ 8 > 0. The poles of 
F((s + a)/2) must be cancelled by zeros of L(s, x). 

If x is n o t primitive, we reduce the case to the primitive one by using 
Theorem 4.7 of Chapter V. 
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