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Chapter 0

Introduction

This note presents an introduction to the Galerkin finite element method
(FEM), as a general tool for numerical solution of partial differential equa-
tions (PDEs). Iteration procedures and interpolation techniques are also
employed to derive basic a priori and a posteriori error estimates, necessary
for, e.g. solution properties, such as stability and convergence. Galerkin’s
method for solving a general differential equation (both PDEs and ODEs) is
based on seeking an approximate solution, which is

1. easy to differentiate and integrate

2. spanned by a set of nearly orthogonal basis functions in a finite-dimensional
space.

0.1 Preliminaries

• A differential equation is a relation between an unknown function u and
its derivatives u(k), 1 ≤ k ≤ N , where k and N are integers.

• If the function u(x) depends on only one variable (x ∈ R), then the equation
is called an ordinary differential equation, (ODE).

• The order of the differential equation is determined by the order of the
highest derivative of the function u that appears in the equation.

• If the function u(x, t) depends on more than one variable, and the derivative
with respect to more than one variable is present in the equation, then the
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8 CHAPTER 0. INTRODUCTION

differential equation is called a partial differential equation, (PDE), e.g.:

ut(x, t) − uxx(x, t) = 0 is a homogeneous PDE of second order,

whereas
uyy(x, y) + uxx(x, y) = f(x, y),

is a non-homogeneous PDE of second order.

• A solution to a differential equation is a function; e.g. u(x), u(t, x) or
u(x, y).

• In general the solution u cannot be expressed in terms of elementary func-
tions and numerical methods are the only way to solve the differential equa-
tion by constructing approximate solutions. Then the main question in here
is: how close is the approximate solution to the exact solution? and how and
in which environment does one measure this closeness? In which extent the
approximate solution preserves the physical quality of the exact solution?
These are some of the questions that we want to deal with in this notes.

• The linear differential equation of order n in time has the general form:

L(t, D)u = u(n)(t) + an−1(t)u
(n−1)(t) + . . .+ a1(t)u

′(t) + a0(t)u(t) = b(t),

where D = d/dt denotes the ordinary time derivative, and Dk = dk

dtk
, 1 ≤

k ≤ n. The corresponding linear differential operator is denoted by

L(t, D) =
dn

dtn
+ an−1(t)

dn−1

dtn−1
+ . . .+ a1(t)

d

dt
+ a0(t).

0.2 Trinities

To continue we introduce the so called trinities classifying the main ingredi-
ents involved in the process of modeling and solving problems in differential
equations, see Karl E .Gustafson [14] for details.

The usual three operators involved in differential equations are

Laplace operator ∆n =
∂2

∂x2
1

+
∂2

∂x2
2

+ . . .+
∂2

∂x2
n

, (0.2.1)

Diffusion operator
d

dt
− ∆n, (0.2.2)

D’Alembert operator � =
d2

dt2
− ∆n, (0.2.3)
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where we have the space variable x := (x1, x2, x3, . . . xn) ∈ Rn, the time
variable t ∈ R+ and ∂2/∂x2

i denotes the second partial derivative with respect
to xi. We also recall a first order operator: the gradient operator ∇n which
is a vector valued operator and is defined as follows:

∇n =
( ∂

∂x1

,
∂

∂x2

, . . . ,
∂

∂xn

)

.

Classifying the general second order PDEs in two dimensions

The usual three classes of second order partial differential equations are el-
liptic, parabolic and hyperbolic ones.

Second order PDEs with constant coefficients in 2-D:

Auxx(x, y)+2Buxy(x, y)+Cuyy(x, y)+Dux(x, y)+Euy(x, y)+Fu(x, y)+G = 0.

Here we introduce the discriminant d = AC − B2: a quantity that specifies
the role of the coefficients in determining the equation type.

Discriminant Type of equation Solution behavior

d = AC − B2 > 0 Elliptic stationary energy-minimizing

d = AC − B2 = 0 Parabolic smoothing and spreading flow

d = AC − B2 < 0 Hyperbolic a disturbance-preserving wave

Example 1. Here are the class of the most common equations:

Elliptic Parabolic Hyperbolic

Potential equation Heat equation Wave Equation

d2u

dx2
+
d2u

dy2
= 0

du

dt
− ∆u = 0

d2u

dt2
− ∆u = 0

uxx(x, y) + uyy(x, y) = 0 ut(t, x) − uxx(t, x) = 0 utt(t, x) − uxx(t, x) = 0

A = C = 1, B = 0 A = B = 0, C = −1 A = 1, B = 0, C = −1

d = AC − B2 = 1 > 0 d = AC −B2 = 0 d = AC − B2 = −1 < 0.
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Second order differential equations with variable coefficients in 2-D
In the variable coefficients case, one can only have a local classification.

Example 2. Consider the Tricomi operator of gas dynamics:

Lu(x, y) = yuxx + uyy.

Here the coefficient y is not a constant and we have A = y, B = 0, and
C = 1. Hence d = AC − B2 = y and consequently, e.g. the domain of
ellipticity is y > 0, and so on (see the Fig. below)

elliptic

parabolic
x

y

hyperbolic

Figure 1: Tricomi: an example of a variable coefficient classification.

•Summing up and generalizing to n space variables we have

Mathematical Surname Physical Classification

Quantity Named Type

∆n Laplacian Potential operator Elliptic
d

dt
− ∆n−1 Heat Diffusion operator Parabolic

� = d2

dt2
− ∆n−1 d’Alembertian Wave operator Hyperbolic
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The usual three types problems in differential equations

1. Initial value problems (IVP)

The simplest differential equation is u′(x) = f(x) for a < x ≤ b, but also
(u(x) + c)′ = f(x) for any constant c. To determine a unique solution a
specification of the initial value u(a) = u0 is generally required. For example
for f(x) = 2x, 0 < x ≤ 1, we have u′(x) = 2x and the general solution is
u(x) = x2 +c. With an initial value of u(0) = 0 we get u(0) = 02 +c = c = 0.
Hence the unique solution to this initial value problem is u(x) = x2. Likewise
for a time dependent differential equation of the second order (two time
derivatives) the initial values for t = 0, i.e., u(x, 0) and ut(x, 0) are generally
required. For a PDE such as the heat equation the initial value can be a
function of the space variable.

Example 3. The wave equation, on real line, associated with the given initial
data:







utt − uxx = 0, −∞ < x <∞ t > 0,

u(x, 0) = f(x), ut(x, 0) = g(x), −∞ < x <∞, t = 0.

2. Boundary value problems (BVP)

a. Consider the boundary value problems in R:

Example 4. The stationary heat equation:

−[a(x)u′(x)]′ = f(x), for 0 < x < 1.

To define a solution u(x) uniquely, the differential equation is comple-
mented by boundary conditions imposed at the boundaries x = 0 and
x = 1: for example u(0) = u0 and u(1) = u1, where u0 and u1 are given
real numbers.

b. Boundary value problems (BVP) in Rn:

Example 5. The Laplace equation in Rn, x = (x1, x2, . . . , xn):






∆nu =
∂2u

∂x2
1

+
∂2u

∂x2
2

+ . . .+
∂2u

∂x2
n

= 0, x ∈ Ω ⊂ R
n,

u(x, t) = f(x), x ∈ ∂Ω (boundary of Ω).
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Remark 1. In general, in order to obtain a unique solution for a (partial)
differential equation, one should supply as many data as the sum of highest
order (partial) derivatives involved in the equation. Thus in example 1, to
determine a unique solution for the potential equation uxx + uyy we need to
give 2 boundary conditions in the x-direction and another 2 in the y-direction,
whereas to determine a unique solution for the wave equation utt − uxx = 0,
it is necessary to supply 2 initial and 2 boundary conditions.

3. Eigenvalue problems (EVP)

Let A be a given matrix. The relation Av = λv, v 6= 0 is a linear equation
system where λ is an eigenvalue and v is an eigenvector.

Example 6. In the case of a differential equation; e.g. the equation of a
steady state vibrating string

−u′′(x) = λu(x), u(0) = u(π) = 0,

where λ is an eigenvalue and u(x) is an eigenfunction. u(0) = 0 and u(π) = 0
are boundary values.

The differential equation for a time dependent vibrating string with small
displacement, and fixed at the end points, is given by







utt(x, t) − uxx(x, t) = 0 0 < x < π t ≥ 0

u(0, t) = u(π, t) = 0, t ≥ 0, u(x, 0) = f(x) ut(x, 0) = g(x).

Using separation of variables, see also Folland [11], this equation can be split
into two eigenvalue problems: Insert u(x, t) = X(x)T (t) 6= 0 (a nontrivial
solution) into the differential equation to get

utt(x, t) − uxx(x, t) = X(t)T ′′(t) −X ′′(x)T (t) = 0. (0.2.4)

Dividing (0.2.4) by X(x)T (t) 6= 0 separates the variables, viz

T ′′(t)

T (t)
=
X ′′(x)

X(x)
= λ = C (independent of x and t ). (0.2.5)

Consequently we get 2 ordinary differential equations (2 eigenvalue problems):

X ′′(x) = λX(x), and T ′′(t) = λT (t). (0.2.6)
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The usual three types of boundary conditions

1. Dirichlet boundary condition (the solution is known at the boundary
of the domain),

u(x, t) = f(x), for x = (x1, x2, . . . , xn) ∈ ∂Ω, t > 0.

2. Neumann boundary condition (the derivative of the solution at the
direction of outward normal is given)

∂u

∂n
= n · grad(u) = n · ∇u = f(x), x =∈ ∂Ω

n = n(x) is the outward unit normal to ∂Ω at x ∈ ∂Ω, and

grad(u) = ∇u =
( ∂u

∂x1

,
∂u

∂x2

, . . . ,
∂u

∂xn

)

.

3. Robin boundary condition (a combination of 1 and 2),

∂u

∂n
+ k · u(x, t) = f(x), k > 0, x = (x1, x2, . . . , xn) ∈ ∂Ω.

Example 7. For u = u(x, y) we have n = (n1, n2), with |n| =
√

n2
1 + n2

2 = 1
and n · ∇u = n1ux + n2uy.

x

y

Ω

n = (n1, n2)

n2

n1

P

Figure 2: The domain Ω and its outward normal n at a point P ∈ ∂Ω.
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Example 8. Let u(x, y) = x2 + y2. We determine the normal derivative
of u in direction v = (1, 1). The gradient of u is the vector valued function
∇u = 2x·e1+2y·e2, where e1 = (1, 0) and e2 = (0, 1) are the unit orthonormal
basis in R2: e1 · e1 = e2 · e2 = 1 and e1 · e2 = e2 · e1 = 0. Note that
v = e1 + e2 = (1, 1) is not a unit vector. The normalized v is obtained viz
vn = v/|v|, i.e.

vn =
e1 + e2
|e1 + e2|

=
(1, 1)√
12 + 12

=
(1, 1)√

2
.

Thus with ∇u(x, y) = 2x · e1 + 2y · e2, we get

vn · ∇u(x, y) =
e1 + e2
|e1 + e2|

(2x · e1 + 2y · e2).

which gives

vn · ∇u(x, y) =
(1, 1)√

2
· [2x(1, 0) + 2y(0, 1)] =

(1, 1)√
2

· (2x, 2y) =
2x+ 2y√

2
.

Thus

vn · ∇u(1, 1) =
4√
2

= 2
√

2.

The usual three questions

I. In theory

1. Existence, at least one solution u

2. Uniqueness, either one solution or no solutions at all

3. Stability, continuous dependence of solutions to the data

Remark. A property that concerns behavior, such as growth or decay,
of perturbations of a solution as time increases is generally called a
stability property.

II. In applications

1. Construction, of the physical solution.

2. Regularity, how substitutable is the found solution.

3. Approximation, when an exact construction of the solution is im-
possible.
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Three general approaches to analyzing differential equations

1. Transformation to a simpler problem: The separation of variables tech-
nique to reduce the (PDEs) to simpler eigenvalue problems (ODEs). Also
called Fourier method, or solution by eigenfunction expansion (Fourier anal-
ysis).

2. The multiplier method: The multiplier method is a strategy for extracting
information by multiplying a differential equation by a suitable function and
then integrating. This usually is referred as variational formulation, or energy
method (subject of our study).

3. Green’s Function, fundamental singularities, or solution by integral equa-
tions (an advanced PDE course).
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Chapter 1

Polynomial approximation in
1d

Our objective is to present the finite element method as an approximation tech-
nique for solution of differential equations using piecewise polynomials. This
chapter is devoted to some necessary mathematical environments and tools as
well as a motivation for the unifying idea of using finite elements: A numerical
strategy arising from the need of changing a continuous problem into a discrete
one. The continuous problem will have infinitely many unknowns (if one asks for
u(x) at every x), and it cannot be solved exactly on a computer. Therefore it has
to be approximated by a discrete problem with finite number of unknowns. The
more unknowns we keep, the better will be the accuracy of the approximation
and greater the expences.

1.1 Overture

Below we shall introduce a few standard examples of classical equations and
some regularity requirements.

Ordinary differential equations (ODEs)
An initial value problem, (IVP), in population dynamics can be written as

u̇(t) = λu(t), 0 < t < 1 u(0) = u0, (1.1.1)

where u̇(t) = du
dt

and λ is a positive constant. For u0 > 0 this problem has the
increasing analytic solution u(t) = u0e

λ·t, which would blow up as t→ ∞.

17



18 CHAPTER 1. POLYNOMIAL APPROXIMATION IN 1D

Generally, we have u̇(t) = F (u(t), t), where u(t) ∈ Rn is a time dependent
vector in Rn , with u̇ = ∂u(t)/∂t ∈ Rn being its componentwise derivative
with respect to t ∈ R+. Thus u(t) = [u1(t), u2(t), . . . , un(t)]

T , u̇(t) =
[u′1(t), u

′
2(t), . . . , u

′
n(t)]T and

F : R
n × R

+ → R
n.

Partial differential equations (PDEs) in bounded domains
Let Ω be a bounded, convex, subset of the Eucledean space R

n. Below is an
example of a general boundary value problem in Ω ⊂ Rn with the
• Dirichlet boundary condition,







−∆u(x) + αb · ∇u(x) = f, x ∈ Ω ⊂ R
n,

u(x) = 0, x ∈ ∂Ω.
(1.1.2)

where α ∈ R, b = (b1, b2, . . . , bn) ∈ Rn and u : Rn → R is a real-valued

function with ∇u :=
(

∂u
∂x1
, ∂u

∂x2
, . . . , ∂u

∂xn

)

, ∆u = ∂2u
∂x2

1

+ ∂2u
∂x2

2

+ . . . + ∂2u
∂x2

n
,

and

b · ∇u = b1
∂u

∂x1

+ b2
∂u

∂x2

+ . . .+ bn
∂u

∂xn

.

The following Heat equation is an example of a boundary value problem with
• Neumann boundary condition

∂u

∂t
= ∆u, x ∈ Ω ⊂ R

k,
∂u

∂n
= 0,x ∈ ∂Ω, (1.1.3)

where n = (n1, n2, . . . , nk) is the outward unit normal to the boundary ∂Ω
at the point x ∈ ∂Ω, and

∂u

∂n
= n · ∇u. (1.1.4)

Regularity requirements for classical solutions

1) u ∈ C1 : every component of u has a continuous first order derivative.

2) u ∈ C1 : all first order partial derivatives of u are continuous.

3) u ∈ C2 : all partial derivatives of u of order 2 are continuous.

4) u ∈ C1
(

R+; C2(Ω)
)

: ∂u
∂t

and ∂2u
∂xi∂xj

, i, j = 1, 2, . . . , n are continuous.
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Remark 2. Note that, we tacitly understand that: u in 1) is a vector-valued
function of a single variable as in the example of, general, dynamical sys-
tem (1.1.1), whereas u in 2)-4) is a scalar (real-valued) function of several
variables.

• Numerical solutions of (IVP)

Example 9. A finite difference method.
We descritize the IVP (1.1.1) with explicit (forward) Euler method based on
a partition of the interval [0, T ] into N subintervals:

t0 = 0 t1 t2 t3 tN = T

and an approximation of the derivative by a difference quotient at each subin-
terval [tk, tk+1] as u̇(t) ≈ u(tk+1)−u(tk)

tk+1−tk
. Then an approximation of (1.1.1) is

given by

u(tk+1) − u(tk)

tk+1 − tk
= λ · u(tk), k = 0, 1, . . .N − 1, with u(0) = u0,

(1.1.5)
and thus, letting ∆tk = tk+1 − tk,

u(tk+1) =
(

1 + λ∆tk

)

u(tk). (1.1.6)

Starting with k = 0 and the data u(0) = u0, the solution u(tk) would, itera-
tively, be produced at the subsequent points: t1, t2, . . . , tN = T .
For a uniform partition, where all subintervals have the same length ∆t,
(1.1.6) would be

u(tk+1) =
(

1 + λ∆t
)

u(tk), k = 0, 1, . . . , N − 1. (1.1.7)

There are corresponding finite difference methods for PDE’s. Our goal, how-
ever, is to study the Galerkin’s finite element method. To this approach we
need to introduce some basic tools:

Finite dimensional linear space of functions defined on an interval
Below we give a list of some examples for finite dimensional linear spaces.
Some of these examples are studied in details in the interpolation chapter.
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I. P (q)(a, b) := { The space of polynomials in x of degree ≤ q, a ≤ x ≤ b}.
A possible basis for P (q)(a, b) would be {xj}q

j=0 = {1, x, x2, x3, . . . , xq}.
These are, in general, non-orthogonal polynomials and may be orthogo-
nalized by Gram-Schmidt procedure. The dimension of P q is therefore
q + 1.

II. An example of orthogonal bases functions, on (0, 1) or (−1, 1) are the
Legendre polynomials:

Pk(x) = (−1)k d
k

dxk
[xk(1 − x)k] or Pn(x) =

1

2nn!

dn

dxn
(x2 − 1)n,

respectively. The first four Legendre orthogonal polynomials on (−1, 1)
are as follows:

P0(x) = 1, P1(x) = x, P2(x) =
3

2
x2 − 1

2
, P3(x) =

5

2
x3 − 3

2
x.

III. Periodic orthogonal bases on [0, T ] are usually represented by trigono-
metric polynomials given by

TN :=
{

f(x)
∣
∣
∣f(x) =

N∑

n=0

[

an cos
(2π

T
nx

)

+ bn sin
(2π

T
nx

)]}

IV. A general form of bases functions on an interval are introduced in the
interpolation chapter: these are Lagrange bases {λi}q

i=0 ∈ P (q)(a, b)
associated to a set of (q + 1) distinct points ξ0 < ξ1 < . . . < ξq in (a, b)
determined by the requirement that

λi(ξj) =







1, i = j,

0, i 6= j
or λi(x) =

q
∏

j=1,(j 6=i)

x− ξj
ξi − ξj

.

A polynomial p ∈ P (q)(a, b), that has the value pi = p(ξi) at the nodes
x = ξi for i = 0, 1, . . . , q, expressed in terms of the corresponding
Lagrange basis is then given by

p(x) = p0λ0(x) + p1λ1(x) + . . .+ pqλq(x). (1.1.8)

Note that for each node point x = ξi we have associated a base function
λi(x), i = 0, 1, . . . , q. Thus we have q + 1 basis functions.
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Remark 3. Our goal is to approximate general functions, rather than
polynomials, by piecewise polynomials of Lagrange type. Then, for a
given function f the Lagrange coefficients in (1.1.8) will be replaced by
pi = f(ξi), 1 ≤ i ≤ q, and f(x) will be approximated by its Lagrange
interpolant, viz

f(x) ≈
q

∑

i=0

f(ξi)λi(x) := πqf(x). (1.1.9)

We shall illustrate this in the next examples.

Example 10. The linear Lagrange basis functions, q = 1, are given by
(see Fig. 1.1.)

λ0(x) =
ξ1 − x

ξ1 − ξ0
and λ1(x) =

x− ξ0
ξ1 − ξ0

. (1.1.10)

1

a ξ0 ξ1 b
x

λ0(x) λ1(x)

Figure 1.1: Linear Lagrange basis functions for q = 1.

Example 11. A typical application of Lagrange bases is in finding a
polynomial interpolant πqf ∈ P q(a, b) of a continuous function f(x) on
an interval [a, b]. The procedure is as follows:

Choose distinct interpolation nodes a = ξ0 < ξ1 < . . . < ξq = b and
define πqf(ξi) = f(ξi). Then πqf ∈ P (q)(a, b), definied as the sum
in (1.1.9), interpolates f(x) at the nodes {ξi}, i = 0, . . . , q and using
Lagrange’s formula (1.1.8), with pi = f(ξi), i = 0, 1, . . . , q, and x ∈
[a, b] yields

πqf(x) = f(ξ0)λ0(x) + f(ξ1)λ1(x) + . . .+ f(ξq)λq(x).
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For linear interpolant, i.e. q = 1, we only need 2 nodes and 2 basis
functions. Choosing ξ0 = a and ξ1 = b, in (1.1.10) we get the linear
interpolant

π1f(x) = f(a)λ0(x) + f(b)λ1(x),

where

λ0(x) =
b− x

b− a
and λ1(x) =

x− a

b− a
,

i.e.,

π1f(x) = f(a)
b− x

b− a
+ f(b)

x− a

b− a

a

π1f(x)

b
x

y

f(x)

Figure 1.2: The linear interpolant π1f(x) on a single interval.

V. We shall frequently use the space of continuous piecewise polynomials
on a partition of an interval into some subintervals. For example Th :
0 = x0 < x1 < . . . < xM < xM+1 = 1, with hj = xj − xj−1 and
j = 1, . . . ,M + 1, is a partition of [0, 1] into M + 1 subintervals.

Let V
(q)
h denote the space of all continuous piecewise polynomial func-

tions of degree ≤ q on Th. Obviously, V
(q)
h ⊂ P (q)(0, 1). Let also

◦
V

(q)

h = {v : v ∈ V
(q)
h , v(0) = v(1) = 0}.

Our motivation in introducing these function spaces is due to the fact
that these are function spaces, adequate in the numerical study of the
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x0 x2x1
x

y

xj−1 xj xM xM+1 = 1
h2 hj hM+1

Figure 1.3: Fig shows an example of
◦
V

(1)

h .

boundary value problems using finite element methods for approximat-
ing solutions with piecewise polynomials.

The standard basis for piecewise linears: Vh := V
(1)
h is given by the

so called linear hat-functions ϕj(x) with the property that ϕj(x) is a
piecewise linear function with ϕj(xi) = δij:

δij =







1, i = j,

0, i 6= j,
i.e. ϕj(x) =







x−xj−1

hj
xj−1 ≤ x ≤ xj

xj+1−x

hj+1
xj ≤ x ≤ xj+1

0 x /∈ [xj−1, xj+1].

x0 xj−2

1

x

y

xj−1 xj xj+1 xM xM+1
hj hj+1

ϕj(x)

Figure 1.4: Fig shows a general piecewise linear basis function ϕj(x).
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Vector spaces
To establish a framework we shall use some basic mathematical concepts:

Definition 1. A set of functions or vectors V is called a linear space, or a
vector space, if for all u, v ∈ V and all α ∈ R (real numbers), we have

(i) u+ αv ∈ V

(ii) u+ v = v + u

(iii) ∀u ∈ V, ∃ (−u) ∈ V such that u+ (−u) = 0.

(1.1.11)

Obseve that (iii) and (i), with α = 1 and v = (−u) implies that 0 (zero
vector) is an element of every vector space.

Definition 2 (Scalar product). A scalar product is a real valued operator on
V × V , viz (u, v) : V × V → R such that for all u, v, w ∈ V and all α ∈ R,

(i) 〈u, v〉 = 〈v, u〉, (symmetry)

(ii) 〈u+ αv, w〉 = 〈u, w〉+ α〈v, w〉, (bi-linearity).
(1.1.12)

Definition 3. A vector space W is called a scalar product space if W is
associated with a scalar product 〈·, ·〉, defined on W ×W .

The function spaces C([0, T ]), Ck([0, T ]), , P q, T q are examples of scalar
product spaces associated with usual scalar product defined by

〈u, v〉 =

∫ T

0

u(x)v(x)dx, (1.1.13)

Definition 4 (Orthogonality). Two, real-valued, functions u(x) and v(x) are
called orthogonal if 〈u, v〉 = 0. This orthogonality is also denoted by u ⊥ v.

Definition 5 (Norm). If u ∈ V then the norm of u, or the length of u,
associated with the above scalar product is defined by

‖u‖ =
√

〈u, u〉 = 〈u, u〉 1

2 =
(∫ T

0

|u(x)|2dx
) 1

2

. (1.1.14)

This norm is known as the L2-norm of u(x). There are other norms that we
will introduce later on.
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We also recall one of the most useful tools that we shall frequently use through
out this note: The Cauchy-Schwarz inequality,

|〈u, v〉| ≤ ‖u‖‖v‖. (1.1.15)

A simple proof of (1.1.15) is given by using

〈u− av, u− av〉 ≥ 0, with a = 〈u, v〉/‖v‖2.

Then by the definition of the L2-norm and the symmetry property of the
scalar product we get

0 ≤ 〈u− av, u− av〉 = ‖u‖2 − 2a〈u, v〉 + a2‖v‖2

= ‖u‖2 − 2〈u, v〉
‖v‖4

‖v‖2.

Seting a = 〈u, v〉/‖v‖2 and rearranging the terms we get

〈u, v〉2
‖v‖2

≤ ‖u‖2,

which yields the desired result.

• Galerkin method for (IVP)
For a solution u of the initial value problem (1.1.1) we use test functions v,
in a certain vector space V , for which the integrals below are well-defined,

∫ T

0

u̇(t)v(t) dt = λ

∫ T

0

u(t)v(t) dt, ∀v ∈ V, (1.1.16)

or equivalently

∫ T

0

(

u̇(t) − λ u(t)
)

v(t)dt = 0, ∀v(t) ∈ V, (1.1.17)

i.e. (

u̇(t) − λ u(t)
)

⊥ v(t), ∀v(t) ∈ V. (1.1.18)

Definition 6. If w is an approximation of u in the problem (1.1.16), then

R
(

w(t)
)

:= ẇ(t) − λw(t) is called the residual error of w(t)
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In general for an approximate solution w we have ẇ(t) − λw(t) 6= 0,
otherwise w and u would satisfy the same equation and by the uniqueness
we would get the exact solution (w = u). Our requirement is instead that w
satisfies the equation (1.1.1) in average, or in other words we require that w
satisfies (1.1.18), i.e,

R
(

w(t)
)

⊥ v(t), ∀v(t) ∈ V. (1.1.19)

In our case the real solution belongs to C((0, T )), or better to

Hs(0, T ) := {f :

s∑

k=0

∫ T

0

(

∂kf/∂tk
)2

dt <∞}.

Hs is a subspace of C((0, T )) consisting of all function in L2(0, T ) having also
all their derivatives of order ≤ s in L2(0, T ). We look for a solution U(t) in
a finite dimensional subspace e.g. V (q). More specifically, we want to look at
an approximate solution U(t), called a trial function for (1.1.1) in the space
of piecewise polynomials of degree ≤ q:

V (q) = {U : U(t) = ξ0 + ξ1t+ ξ2t
2 + . . .+ ξqt

q}. (1.1.20)

Hence, to determine U(x) we need to determine the coefficients ξ0, ξ1, . . . ξq.
We refer to V (q) as the space of trial functions. Note that u(0) = u0 is given
and therefore we may take U(0) = ξ0 = u0. It remains to find the real num-
bers ξ1, . . . , ξq. These are coefficients of q linearly independent monomials
t, t2, . . . , tq. To this approach we define the test functions space:

◦
V

(q)

= {v ∈ V (q) : v(0) = 0}, (1.1.21)

in other words v can be written as v(t) = ξ1t+ ξ2t
2 + . . .+ ξqt

q. Note that

◦
V

(q)

= span[t, t2, . . . , tq]. (1.1.22)

For an approximate solution U we require that its residual R(U) satisfy the
orthogonality condition (1.1.19):

R
(

U(t)
)

⊥ v(t), ∀v(t) ∈
◦
V

(q)

.
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Thus the Galerkin method for (1.1.1) is formulated as follows:
Given u(0) = u0, find the approximate solution U(t) ∈ V (q), for (1.1.1) such
that (for simplicity we put T ≡ 1)

∫ 1

0

R
(

U(t)
)

v(t)dt =

∫ 1

0

(U̇(t) − λU(t))v(t)dt = 0, ∀v(t) ∈
◦
V

(q)

. (1.1.23)

Formally this can be obtained writing a wrong!!! equation by replacing u by
U ∈ V (q) in (1.1.1),







U̇(t) = λU(t), 0 < t < 1

U(0) = u0,
(1.1.24)

then, multiplying (1.1.24) by a function v(t) ∈
◦
V

(q)

from the test function
space and integrating over [0, 1].

Now since U ∈ V (q) we can write U(t) = u0 +
∑q

j=1 ξjt
j, then U̇(t) =

∑q
j=1 jξjt

k−1. Further we have
◦
V

(q)

is spanned by vi(t) = ti, i = 1, 2, . . . , q.

Inserting these representations for U, U̇ and v = vj , j = 1, 2, . . . , q in (1.1.22)
we get

∫ 1

0

(
q

∑

j=1

kξjt
j−1 − λu0 − λ

q
∑

j=1

ξjt
j
)

· tidt = 0, i = 1, 2, . . . , q, (1.1.25)

which can be rewritten as
∫ 1

0

( q
∑

j=1

(jξjt
i+j−1 − λ ξjt

i+j)
)

dt = λu0

∫ 1

0

tidt. (1.1.26)

Performing the integration (ξj:s are constants independent of t) we get

q
∑

j=1

ξj

[

j · t
i+j

i+ j
− λ

ti+j+1

i+ j + 1

]t=1

t=0
=

[

λ · u0
ti+1

i+ 1

]t=1

t=0
, (1.1.27)

or equivalently

q
∑

j=1

( j

i+ j
− λ

i+ j + 1

)

ξj =
λ

i+ 1
· u0 i = 1, 2, . . . , q, (1.1.28)
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which is a linear system of equations with q equations and q unknowns
(ξ1, ξ2, . . . , ξq); given in the matrix form as

AΞ = b, with A = (aij), Ξ = (ξj)
q
j=1, and b = (bi)

q
i=1. (1.1.29)

But the matrix A although invertible, is ill-conditioned, mostly because
{ti}q

i=1 does not form an orthogonal basis. We observe that for large i and j

the two last rows (columns) of A given by aij =
j

i+ j
− λ

i+ j + 1
, are very

close to each others resulting to extreme small values for the determinant of
A.
If we insist to use polynomial basis up to certain order, then instead of
monomials, the use of Legendre orthogonal polynomials would yield a diago-
nal (sparse) coefficient matrix and make the problem well conditioned. This
however, is a rather tedious task.

Galerkin’s method and orthogonal projection
Let u = (u1, u2, u3) ∈ R3 and assume that for some reasons we only have
u1 and u2 available. Letting x = (x1, x2, x3) ∈ R3, the objective, then is
to find U ∈ {x : x3 = 0}, such that (u − U) is as small as possible. For
orthogonal projection we have z · n = 0, for all z ∈ {x : x · n = 0, x3 = 0},
where n is the normal vector to the plane {(x1, x2, 0)}. Obviously in this
case U = (u1, u2, 0) and we have (u− U) ⊥ U .
Note that, if m < n, and um is the projection of u = (u1, u2, . . . , un−1, un)
on Rm, then um = (u1, u2, . . . , um, um+1 = 0, . . . , un = 0), and the Euclidean
distance: |u−um| =

√
u2

m+1 + u2
m+2 + . . .+ u2

n → 0 as m→ n. This meams
the obvious fact that the accuracy of the orthogonal projection will improve
by raising the dimension of the projection space.

• Galerkin method for (BVP)

We consider the Galerkin method for the following stationary (u̇ = du/dt =
0) heat equation in one dimension:







− d
dx

(

a(x) · d
dx
u(x)

)

= f(x), 0 < x < 1;

u(0) = u(1) = 0.
(1.1.30)

Let a(x) = 1, then we have

−u′′(x) = f(x), 0 < x < 1; u(0) = u(1) = 0. (1.1.31)
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x1

x2

x3

u = (u1, u2, u3)

U = (u1, u2, 0)

n = u− U

Figure 1.5: Example of a projection on R2.

Let now Th : 0 = x0 < x1 < . . . < xM < xM+1 = 1 be a partition of the
interval (0, 1) into the subintervals Ij = (xj−1, xj), with lengths |Ij| = hj =
xj − xj−1, j = 1, 2, . . . ,M . We define the finite dimensional space

V 0
h = {v ∈ C(0, 1) : v is piecewise linear function onTh, and v(0) = v(1) = 0},

with the bases functions {ϕj}M
j=1. Due to the fact that u is known at the

boundary points 0 and 1; it is not necessary to supply basis functions corre-
sponding to the values at x0 = 0 and xM+1 = 1.

Remark 4. If the Dirichlet boundary condition is given at only one of the
boundary points; say x0 = 0 and the other one satisfies, e.g. a Neumann
condition as

−u′′(x) = f(x), 0 < x < 1; u(0) = b0, u′(1) = b1, (1.1.32)

then the corresponding basis function ϕ0 will be unnecessary (no matter
whether b0 = 0 or b0 6= 0), whereas one needs to provide the half-base function
ϕM at xM+1 = 1 (dashed in the Fig below).

Now the Galerkin method for problem (1.1.31) (which is just the descrip-
tion of the orthogonality condition of the residual R(U) = −U ′′ − f to the
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x0 x1 x2

1

x

y

xj−1 xj xj+1 xM−1 xM xM+1

hj hj+1

ϕjϕ1 ϕM ϕM+1

Figure 1.6: General piecewise linear basis functions

test function space V 0
h ; i.e., R(U) ⊥ V 0

h ) is formulated as follows: Find the
approximate solution U(x) ∈ V 0

h such that

∫ 1

0

(−U ′′(x) − f(x))v(x)dx = 0, ∀v(x) ∈ V 0
h (1.1.33)

Observe that if U(x) ∈
◦
V h, then U ′′(x) is either equal to zero or is not a

well-defined function, in the latter case, the equation (1.1.33) does not make
sense, whereas for U ′′(x) = 0 and the data U(0) = U(1) = 0 we get the trivial
approximation U(x) ≡ 0. This however, is relevant only if f ≡ 0, but then
even u(x) ≡ 0 and we have a trivial case. If, however, we perform partial
integration then

−
∫ 1

0

U ′′(x)v(x)dx =

∫ 1

0

U ′(x)v′(x)dx− [U ′(x)v(x)]10 (1.1.34)

and since v(x) ∈
◦
V h; v(0) = v(1) = 0, we get

−
∫ 1

0

U ′′(x)v(x)dx =

∫ 1

0

U ′(x)v′(x) dx (1.1.35)

Now for U(x), v(x) ∈
◦
V h, U

′(x) and v′(x) are well-defined (except at the
nodes) and the equation (1.1.33) has a meaning.



1.1. OVERTURE 31

Hence, The Galerkin finite element method (FEM) for the problem (1.1.30)
is now reduced to: Find U(x) ∈ V 0

h such that

∫ 1

0

U ′(x)v′(x) dx =

∫ 1

0

f(x)v(x)dx, ∀v(x) ∈ V 0
h . (1.1.36)

We shall determine ξj = U(xj) the approximate values of u(x) at the node
points xj . To this end using basis functions ϕj(x), we may write

U(x) =

M∑

j=1

ξj ϕj(x) which implies that U ′(x) =

M∑

j=1

ξjϕ
′(x). (1.1.37)

Thus we can write (1.1.36) as

M∑

j=1

ξj

∫ 1

0

ϕ′
j(x) v

′(x)dx =

∫ 1

0

f(x)v(x)dx, ∀v(x) ∈ V 0
h . (1.1.38)

Since every v(x) ∈ V 0
h is a linear combination of the basis functions ϕj(x),

it suffices to try with v(x) = ϕi(x), for i = 1, 2, . . . ,M : That is to find ξj
(constants), 1 ≤ j ≤M such that

M∑

j=1

(∫ 1

0

ϕ′
i(x) · ϕ′

j(x)dx
)

ξj =

∫ 1

0

f(x)ϕi(x)dx, i = 1, 2, . . . ,M. (1.1.39)

This equation can be written in the equivalent matrix form as

Aξ = b. (1.1.40)

Here A is called the stiffness matrix and b the load vector:

A = {aij}M
i,j=1, aij =

∫ 1

0

ϕ′
j(x) · ϕ′

i(x)dx, (1.1.41)

b =











b1

b2

. . .

bM











, with bj =

∫ 1

0

f(x)ϕi(x)dx, and ξ =











ξ1

ξ2

. . .

ξM











. (1.1.42)
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To compute the entries aij of the stiffness matrix A, first we need to determine
ϕ′

j(x). Note that

ϕi(x) =







x−xi−1

hi
xi−1 ≤ x ≤ xi

xi+1−x
hi+1

xi ≤ x ≤ xi+1

0 else

=⇒ ϕ′
i(x) =







1
hi

xi−1 ≤ x ≤ xi

− 1
hi+1

xi ≤ x ≤ xi+1

0 else

Stiffness matrix A:
If |i− j| > 1, then ϕi and ϕj have disjoint non-overlapping supports,

evideltly, we hence

aij =

∫ 1

0

ϕ′
i(x) · ϕ′

j(x)dx = 0.

1

x

y

xj−2 xj−1 xj xj+1 xj+2

ϕj−1 ϕj+1

Figure 1.7: ϕj−1 and ϕj+1.

As for i = j: we have that

aii =

∫ xi

xi−1

( 1

hi

)2

dx+

∫ xi+1

xi

(

− 1

hi+1

)2

dx =

hi
︷ ︸︸ ︷
xi − xi−1

h2
i

+

hi+1

︷ ︸︸ ︷
xi+1 − xi

h2
i+1

=
1

hi

+
1

hi+1

.

It remains to compute aij for the case j = i+1: A straightforward calculation
(see the fig below) yields

ai,i+1 =

∫ xi+1

xi

(

− 1

hi+1

)

· 1

hi+1

dx = −xi+1 − xi

h2
i+1

= − 1

hi+1

. (1.1.43)



1.1. OVERTURE 33

1

x

y

xj−1 xj xj+1 xj+2

ϕj ϕj+1

Figure 1.8: ϕj and ϕj+1.

Obviousely ai+1,i = ai,i+1 = − 1
hi+1

.

To summarize, we have







aij = 0, if |i− j| > 1,

aii = 1
hi

+ 1
hi+1

, i = 1, 2, . . . ,M,

ai−1,i = ai,i−1 = − 1
hi
, i = 2, 3, . . . ,M.

(1.1.44)

Thus by symmetry we finally have the stiffness matrix for the stationary heat
conduction as:

A =














1
h1

+ 1
h2

− 1
h2

0 . . . 0

− 1
h2

1
h2

+ 1
h3

− 1
h3

0 0

0 . . . . . . . . . 0

. . . 0 . . . . . . − 1
hM

0 . . . 0 − 1
hM

1
hM

+ 1
hM+1














(1.1.45)
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With a uniform mesh, i.e. hi = h we get that

Aunif =
1

h
·

















2 −1 0 . . . . . . 0

−1 2 −1 0 . . . . . .

0 −1 2 −1 0 . . .

. . . . . . . . . . . . . . . 0

. . . . . . 0 −1 2 −1

0 . . . . . . 0 −1 2

















(1.1.46)

As for the components of the load vector b we have

bi =

∫ 1

0

f(x)ϕi(x) dx =

∫ xi

xi−1

f(x)
x− xi−1

hi
dx+

∫ xi+1

xi

f(x)
xi+1 − x

hi+1
dx.

• A finite difference approach To illustrate a finite difference approach
we reconsider the stationary heat equation (1.1.31):

−u′′(x) = f(x), 0 ≤ x ≤ 1; (1.1.47)

and motivate for its boundary conditions. The equation (1.1.47) is linear
for the unknown function u, with inhomogeneous term f . There is some
arbitrariness left in the problem, because any combination C +Dx could be
added to any solution. The sum would constitute another solution, since the
second derivative of C +Dx contributes nothing. Therefore the uncertainity
left by these two arbitrary constants C and D will be removed by adding a
boundary condition at each end point of the interval

u(0) = 0, u(1) = 0. (1.1.48)

The result is a two-point boundary-value problem, describing not a transient
but a steady-state phenomenon–the temperature distribution in a rode, for

example with ends fixed at
◦
0 and with a heat source f(x).

As our goal is to solve a discrete problem, we cannot accept more than a
finite amount of information about f , say it values at equally spaced points
x = h, x = 2h, . . . , x = nh. And what we compute will be approximate
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values u1, u2, . . . , un for the true solution u at these same points. At the
ends x = 0 and x = 1 = (n+ 1)h, we are already given the correct boundary
values u0 = 0, un+1 = 0.

The first question is, How do we replace the derivative d2u/dx2? Since
every derivative is a limit of difference quotients, it can be approximated by
a stopping at a finite stepsize, and not permitting h (or ∆x) to approach
zero. For du/dx there are several alternatives:

du

dx
≈ u(x+ h) − u(x)

h
or

u(x) − u(x− h)

h
or

u(x+ h) − u(x− h)

2h
.

The last, because it is symmetric about x, is the most accurate. For the
second derivative there is just one combination that uses the values at x and
x± h:

d2u

d2x
≈ u(x+ h) − 2u(x) + u(x− h)

h2
. (1.1.49)

It also has the merit of being symmetric about x. (1.1.49) is obtained using

d2u

d2x
≈ u′(x) − u′(x− h)

h
. (1.1.50)

Replacing the approximations u′(x) ≈ u(x+h)−u(x)
h

and u′(x−h) ≈ u(x)−u(x−h)
h

in (1.1.49) we get

d2u

d2x
≈ (u(x+ h) − u(x))/h− (u(x) − u(x− h))/h

h

=
u(x+ h) − 2u(x) + u(x− h)

h2
.

(1.1.51)

To repeat the right side approaches the true value of d2u/dx2 as h→ 0, but
have to stop at a positive h.

At a typical meshpoint x = jh, the differential equation −d2u/dx2 = f(x)
is now replaced by this discrete analogue (1.1.51); after multiplying by h2,

−uj+1 + 2uj − uj−1 = h2f(jh). (1.1.52)

There are n equations of exactly this form, for every value j = 1, 2, . . . , n.
The first and last equations include the expressions u0 and un+1, which are
not unknowns–Their values are the boundary conditions, and they are shifted
to the right side of the equation and contribute to the inhomogeneous terms
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(or at least, they might, if they were not known to be equal zero). It is
easy to understand (1.1.52) as a steady-state equation, in which the flows
(uj − uj+1) coming from the right and (uj − uj−1) coming from the left are
balanced by the loss h2f(jh) at the center.

The structure of the n equations (1.1.52) can be better visualized in
matrix form Au = b viz

















2 −1 0 . . . . . . 0

−1 2 −1 0 . . . . . .

0 −1 2 −1 0 . . .

. . . . . . . . . . . . . . . 0

. . . . . . 0 −1 2 −1

0 . . . . . . 0 −1 2

































u1

u2

u3

·
·
un

















= h2

















f(h)

f(2h)

f(3h)

·
·

f(nh)

















, (1.1.53)

which, once again, gives the structure of our uniform stifness matrix Aunif

given in (1.1.46).
So we conclude that, for this problem, the finite element and finite differ-

ence approximations are two equivalent approaches.

Remark 5. Unlike the matrix A for monomial approximation of IVP in
(1.1.28), A has more desirable structure, e.g. A is a sparse, tridiagonal and
symmetric matrix. This is due to the fact that the basis functions {ϕj}M

j=1 are
nearly orthogonal. The most important property of A is that it is positive
definite.

Definition 7. A matrix A is called positive definite if

∀η ∈ RM , η 6= 0, ηTAη > 0, i.e.

M∑

i,j=1

ηiaijηj > 0. (1.1.54)

We shall use the positive definiteness of A to argue that (1.1.40) is
uniquely solvable. To this approach we prove the following well-known result:

Proposition 1. If a square matrix A is positive definite then A is invertible
and hence Aξ = b has a unique solution.
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Proof. Suppose Ax = 0 then xTAx = 0, and since A is positive definite,
then x ≡ 0. Thus A has full range and we conclude that A is invertible.
Since A is invertible Aξ = b has a unique solution: ξ = A−1b.

Note however, that it is a bad idea to invert a matrix to solve the linear
equation system. Finally we illustrate an example of the positive-definiteness
argument for Aunif .

Example 12. Assume M = 2 and let U(x, y) =




x

y



 , then

UT AunifU = (x, y)




2 −1

−1 2








x

y



 = (x, y)




2x− y

−x+ 2y





= 2x2 − xy − xy + 2y2 = x2 + y2 + x2 − 2xy + y2

= x2 + y2 + (x− y)2 ≥ 0.

(1.1.55)

Thus Aunif is positive definite. Since UTAU = 0 only if x = y = 0 i.e.
U = 0.

Remark 6. For a boundary value problem with, e.g. inhomogeneous Dirich-
let boundary data, actually a direct approach would be with the test and trial
function spaces having different dimensions; test functions are zero at the

boundary: v ∈
◦
V h, trial function: u ∈ Vh (not necessarily zero at the bound-

ary). This would yield a linear equation system AΞ = b with a rectangular
matrix A instead of a quadratic one. Then to continue we use the least square
method and instead solve ATAΞ = AT b. The solution Ξ is approximate and
AΞ 6= b. Thus, the corresponding orthogonality condition of the residual to
the test function space is now r := (AΞ − b) ⊥ Cj, where Cj are columns in
A.

Summary: Roughly speaking, a systematic procedure for approximate so-
lution for a differential equations would involve the following steps:

1. We need to approximate functions by polynomials agreeing with the
functional values at certain points (nodes). This is the matter of Inter-
polation techniques which we shall introduce in the next chapter.
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2. The function f(x) is unknown and the elements of the vector b as well
as the integrals that represent the elements of the coefficient matrix
are of involve character, for example when approximating by higher
order polynomials and/or solving equations with variable coefficients.
Therefore we need to approximate different integrals over subintervals
of a partition. This may be done using Gauss quadrature rules. In
simple case one may use usual or composite midpoint-, trapezoidal-, or
Simpson’s-rules. In more involved cases one may employ Gauss quadra-
ture rules. We shall briefly introduce the idea of Gauss quadrature rule
in the next chapter.

3. Finally we end up with linear systems of equations (LSE) of type
(1.1.40). To solve LSE efficiently we may use exact Gauss - elimi-
nation or the iteration procedures as Gauss-Seidel, Gauss-Jacobi or
Over-relaxation methods. We discuss these concepts in the chapter of
the numerical linear algebra.
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1.2 Exercises

Problem 1. Use the method of least squares to solve the following systems
of linear equations.

a.







−x1 + x2 = 16

2x1 + x2 = −9

x1 − 2x2 = −12

b.







x1 + x2 = 3

−2x1 + 3x2 = 1

2x1 − x2 = 2

c.







x1 + 2x2 = 3

−2x1 + x2 = −4

x1 − 3x2 = −2

−x1 + x2 = −1

2x1 + x2 = 5

d.







x1 + x2 + x3 = 4

−x1 + x2 + x3 = 0

−x2 + x3 = 1

x1 + x3 = 2

e.







x1 + x2 + x3 = 7

x1 + x2 − x3 = −1

x1 − x2 + x3 = 1

x1 − x2 − x3 = 3

Problem 2. Determine the line y = b + ct that fits the following pairs of
data (t, y) best.

a.
t 1 2 3 4 5

y 1 5 2 7 10

b.
t 1 2 3 4 5

y 5 6 10 12 17
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c.
t 1 2 3 4 5

y 2 3 1 1 -2

Problem 3. Determine the parameters a and b such that the parabolic curve
y = ax2 + bx+ c fits the following values of x and y best in the least squares
sense.

a.
x -2 -1 0 1 2

y 2 1 1 2 3
b.

x -1 0 1 2

y 2 2 1 0

Problem 4. Let x be the solution of the least squares problem Ax ≈ b, where

A =











1 0

1 1

1 2

1 3











.

Let r − b − Ax be the corresponding residual. Which of the following three
vectors is a possible value for r?

a.











1

1

1

1











b.











−1

−1

1

1











c.











−1

1

1

−1











Problem 5. Set up and solve the linear least squares system Ax ≈ b for
fitting the model function f(t, x) = x1t + x2e

t to the three data points (1, 2)
(2, 3) and (3, 5).

Problem 6. True or false: At the solution to a linear least squares problem
Ax ≈ b, the residual vector r = b− Ax is orthogonal to the column space of
A.

Problem 7. We want to find a solution approximation U(x) to

−u′′(x) = 1, 0 < x < 1, u(0) = u(1) = 0,

using the ansatz U(x) = A sin πx+B sin 2πx.
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a. Calculate the exact solution u(x).

b. Write down the residual R(x) = −U ′′(x) − 1

c. Use the orthogonality condition

∫ 1

0

R(x) sin πnx dx = 0, n = 1, 2,

to determine the constants A and B.

d. Plot the error e(x) = u(x) − U(x).

Problem 8. Consider the boundary value problem

−u′′(x) + u(x) = x, 0 < x < 1, u(0) = u(1) = 0.

a. Verify that the exact solution of the problem is given by

u(x) = x− sinh x

sinh 1
.

b. Let U(x) be a solution approximation defined by

U(x) = A sin πx+B sin 2πx+ C sin 3πx,

where A, B, and C are unknown constants. Compute the residual function

R(x) = −U ′′(x) + U(x) − x.

c. Use the orthogonality condition

∫ 1

0

R(x) sin πnx dx = 0, n = 1, 2, 3,

to determine the constants A, B, and C.

Problem 9. Let U(x) = ξ0φ0(x) + ξ1φ1(x) be a solution approximation to

−u′′(x) = x− 1, 0 < x < π, u′(0) = u(π) = 0,

where ξi, i = 0, 1, are unknown coefficients and

φ0(x) = cos
x

2
, φ1(x) = cos

3x

2
.
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a. Find the analytical solution u(x).

b. Define the approximate solution residual R(x).

c. Compute the constants ξi using the orthogonality condition

∫ 1

0

R(x)φi(x) dx = 0, i = 0, 1,

i.e., by projecting R(x) onto the vector space spanned by φ0(x) and φ1(x).

Problem 10. Use the projection technique of the previous exercises to solve

−u′′(x) = 0, 0 < x < π, u(0) = 0, u(π) = 2,

assuming that U(x) = A sin x+B sin 2x+ C sin 3x+ 2
π2x

2.



Chapter 2

Polynomial Interpolation in 1d

2.1 Preliminaries

We recall the idea of polynomial interpolation. Consider a real-valued func-
tion f , defined on an interval I = [a, b], and a partition

Th : a = x0 < x1 < . . . < xM+1 = b,

of I into M + 1 subintervals Ij = [xj−1, xj ], j = 1, . . . ,M + 1.

Definition 8. An interpolant πqf of f on the partition Th is a piecewise poly-
nomial function of degree ≤ q, having the nodal values at xj , j = 1, . . . ,M+1,
coinciding with those of f : πqf(xj) = f(xj) .

Here are some simple examples:

Linear interpolation on an interval. We start with the unit interval
I = [0, 1], without any partitions, and a function f : [0, 1] → R, which is
Lipschitz continuous. We let q = 1 and seek the linear interpolation of f on
I, i.e. π1f ∈ P1, such that π1f(0) = f(0) and π1f(1) = f(1). Thus we seek
the constants C0 and C1 in the following representation of π1f ∈ P1,

π1f(x) = C0 + C1x, x ∈ I, (2.1.1)

where

π1f(0) = f(0) =⇒ C0 = f(0),

π1f(1) = f(1) =⇒ C0 + C1 = f(1) =⇒ C1 = f(1) − f(0).
(2.1.2)

43
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Inserting C0 and C1 in (2.1.1) it follows that

π1f(x) = f(0)+
(

f(1)−f(0)
)

x = f(0)(1−x)+f(1)x := f(0)λ0(x)+f(1)λ1(x).

In other words π1f(x) is represented in two different basis:

π1f(x) = C0+C1x = C0·1+C1·x, with {1, x} as the set of basis functions

and

π1f(x) = f(0)(1−x)+f(1)x, with {1−x, x} as the set of basis functions.

Note that the functions λ0(x) = 1−x and λ1(x) = x are linearly independent.
Since we can easily see that, if

0 = α0(1 − x) + α1x = α0 + (α1 − α0)x, x ∈ I, (2.1.3)

then
x = 0 =⇒ α0 = 0

x = 1 =⇒ α1 = 0

}

=⇒ α0 = α1 = 0. (2.1.4)

1

f(x)

π1f(x)

1

λ0(x) = 1 − x

λ1(x) = x

Figure 2.1: Linear interpolation and basis functions for q = 1.

Remark 7. Note that if we define a scalar product on Pk(a, b) by

(p, q) =

∫ b

a

p(x)q(x) dx, ∀p, q ∈ Pk(a, b), (2.1.5)

then neither {1, x} nor {1 − x, x} are orthogonal in the interval [0, 1]. For

example, (1, x) :=
∫ 1

0
1 · x dx = [x2

2
] = 1

2
6= 0.
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Now it is natural to ask the following question.

Ouestion 1. What will be the error, if one approximates f(x) by π1f(x)?
In other words: what is f(x) − π1f(x) =?

To answer this question, we need to have a measuring instrument to quantify
the difference. Grafically (geometrically), the deviation of f(x) from π1f(x)
(from at being linear) depends on the curvature of f(x), i.e. on how curved
f(x) is. In other words how large is f ′′(x) on say (a, b)? To this end below
we introduce some measuring environments for vectors and functions:

Definition 9 (Vector norm). Let x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Rn be
two column vectors. We define the scalar product of x and y by

〈x,y〉 = xTy = x1y1 + · · ·+ xnyn,

and the vector norm for x: ‖x‖ as

‖x‖ =
√

〈x,x〉 =
√

x2
1 + · · ·+ x2

n.

Lp(a, b)-norm: Assume that f is a real valued function such that the inte-
grals as well as the max on the right hand sides below are well-defined. Then
we define the Lp-norm (1 ≤ p ≤ ∞) of f as

Lp-norm ‖f‖Lp(a,b) =
(∫ b

a

|f(x)|pdx
)1/p

, 1 ≤ p <∞,

L∞-norm ‖f‖L∞(a,b) = max
x∈[a,b]

|f(x)|.

Now, we want to see how far can one answer the question 1 in the Lp-norm
environment?

Theorem 1. (L∞-error estimates for the linear interpolation in an interval)
Assume that f ′′ ∈ L∞[a, b]. Then, for q = 1, i.e. only 2 interpolation
nodes (the end-points of the interval), there are interpolation constants, ci,
independent of the function f(x) and the interval [a, b] such that

(1) ‖π1f − f‖L∞(a,b) ≤ ci(b− a)2‖f ′′‖L∞(a,b)

(2) ‖π1f − f‖L∞(a,b) ≤ ci(b− a)‖f ′‖L∞(a,b)

(3) ‖(π1f)′ − f ′‖L∞(a,b) ≤ ci(b− a)‖f ′′‖L∞(a,b).
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Proof. Note that every linear function on [a, b] can be written as a linear
combination of the basis functions λa(x) and λb(x) where

λa(x) =
x− b

a− b
and λb(x) =

x− a

b− a
. (2.1.6)

We point out that linear combinations of λa(x) and λb(x) gives the basis
functions {1, x}:

λa(x) + λb(x) = 1, aλa(x) + bλb(x) = x. (2.1.7)

Now, π1f(x) is a linear function connecting the two points (a, f(a)) and
(b, f(b)),

1

a

π1f(x)

b

f(x)

a b
x

λa(x) = b−x
b−a

λb(x) = x−a
b−a

λa(x) + λb(x) = 1

Figure 2.2: Linear Lagrange basis functions for q = 1.

which can be represented by

π1f(x) = f(a)λa(x) + f(b)λb(x). (2.1.8)

By the Taylor’s expansion for f(a) and f(b) about x we can write

f(a) = f(x) + (a− x)f ′(x) +
1

2
(a− x)2f ′′(ηa), ηa ∈ [a, x]

f(b) = f(x) + (b− x)f ′(x) +
1

2
(b− x)2f ′′(ηb), ηb ∈ [x, b].

(2.1.9)

Inserting f(a) and f(b) from (2.1.9) in (2.1.8), it follows that

π1f(x) =[f(x) + (a− x)f ′(x) +
1

2
(a− x)2f ′′(ηa)]λa(x)+

+[f(x) + (b− x)f ′(x) +
1

2
(b− x)2f ′′(ηb)]λb(x).
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Rearranging the terms and using (2.1.7) (the identity (a − x)λa(x) + (b −
x)λb(x) = 0) we get

π1f(x) = f(x)[λa(x) + λb(x)] + f ′(x)[(a− x)λa(x) + (b− x)λb(x)]+

+
1

2
(a− x)2f ′′(ηa)λa(x) +

1

2
(b− x)2f ′′(ηb)λb(x) =

= f(x) +
1

2
(a− x)2f ′′(ηa)λa(x) +

1

2
(b− x)2f ′′(ηb)λb(x),

and consequently

|π1f(x) − f(x)| =
∣
∣
∣
1

2
(a− x)2f ′′(ηa)λa(x) +

1

2
(b− x)2f ′′(ηb)λb(x)

∣
∣
∣. (2.1.10)

Now, for a ≤ x ≤ b we have (a − x)2 ≤ (a − b)2 and (b − x)2 ≤ (a −
b)2, furthermore λa(x) ≤ 1, λb(x) ≤ 1. Finally, by the definition of the
maximum norm f ′′(ηa) ≤ ‖f ′′‖L∞(a,b), f

′′(ηb) ≤ ‖f ′′‖L∞(a,b). Thus (2.1.10)
can be estimated as

|π1f(x)−f(x)| ≤ 1

2
(a−b)2 ·1·‖f ′′‖L∞(a,b)+

1

2
(a−b)2 ·1·‖f ′′‖L∞(a,b), (2.1.11)

and hence

|π1f(x) − f(x)| ≤ (a− b)2‖f ′′‖L∞(a,b) with ci = 1. (2.1.12)

The other two estimates are proved similarly.

Theorem 1 can be proved in a more general setting, for an arbitrary subin-
terval of I = (a, b), in Lp-norm, 1 ≤ p ≤ ∞. This, general version ( concisly
stated below as Theorem 2), is the mainly used Lp-interpolation error esti-
mate. The proof is however, just a scaling of the argument used in the proof
of Theorem 1.

Remark 8. For a uniform partition Th : a = x0 < x1 < x2 < . . . < xn <
xn+1 = b of the interval [a, b] with mesh parameter h = |xj+1 − xj |, j =
0, 1, . . . , n, it is customary to denote the interpolation function by πhv(x)
rather than πqv(x). Here the subindex h refers to the mesh size h, and not
to the degree of interpolating polynomial q. The degree q and the meaning of
the notation used for the interpolant will be clear from the context.
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Theorem 2. Let πhv(x) be the piecewise linear interpolant of the function
v(x) on the partition Th. That is πhv(xj) = v(xj), for j = 0, 1, . . . , N +
1. Then, assuming that v is sufficiently regular (v ∈ C2(a, b)), there are
interpolation constants ci such that

‖πhv − v‖Lp
≤ ci‖h2v′′‖Lp

, p = 1, 2, . . . ,∞, (2.1.13)

‖(πhv)
′ − v′‖Lp

≤ ci‖hv′′‖Lp
, (2.1.14)

‖πhv − v‖Lp
≤ ci‖hv′‖Lp

. (2.1.15)

For p = ∞ this is just the previous theorem, applied to each subinterval. Note
that for a uniform mesh we have h constant and therefore in this case h can
be written outside the norms on the right hand sides..

Proof. This is a straightforward generalization of the proof of the Theorem
1 and left as an excercise.

Below we review a simple piecewise linear interpolation procedure on a
partition of an interval:

Vector space of piecewise linear functions on an interval. Given
I = [a, b], let Th : a = x0 < x1 < x2 < . . . < xn < xn+1 = b be a
partition of I into subintervals Ij = (xj−1, xj) of length hj = |Ij| := xj−xj−1;
j = 1, 2, . . . , N . Let

Vh := {v|v is continuous piecewise linear function onTh}, (2.1.16)

then Vh is a vector space with the, previously introduced hat functions:
{ϕj}N

j=0 as basis functions. Note that ϕ0(x) and ϕN(x) are left and right
half-hat functions, respectively. It is easy to show that every function in Vh

is a linear combination of ϕjs:

Lemma 1. We have that

∀v ∈ Vh; v(x) =

N∑

j=0

v(xj)ϕj(x), =⇒
(

dimVh = N + 1
)

. (2.1.17)

Proof. Both left and right hand side are continuous piecewise linear functions.
Thus it suffices to show that they have the same nodal values: Let x = xj

then

RHS =v(x0)ϕ0(xj) + v(x1)ϕ1(xj) + . . .+ v(xj−1)ϕj−1(xj)

+ v(xj)ϕj(xj) + v(xj+1)ϕj+1(xj) + . . .+ v(xN)ϕN(xj)

=v(xj) = LHS,

(2.1.18)
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where we have used the fact that ϕ is piecewise linear and ϕi(xj) = δij.

Definition 10. Assume that f is a Lipschitz continuous function in [a, b].
Then the continuous piecewise linear interpolant of f is defined by

πhf(xj) = f(xj), j = 0, 1, . . . , N. (2.1.19)

Or, alternatively:

πhf(x) =
N∑

j=0

f(xj)ϕj(x), x ∈ [a, b].

Note that for each interval Ij , j = 1, . . . , N , we have that

(i) πhf(x) is linear on Ij , =⇒ πhf(x) = c0 + c1x on Ij .

(ii) πhf(xj−1) = f(xj−1) and πhf(xj) = f(xj).

x0 x1 x2

f(x)πhf(x)

xj xN−1 xN

x

Figure 2.3: Piecewise linear interpolant πhf(x) of f(x).

Now using (i) and (ii) we get the equation system






πhf(xj−1) = c0 + c1xj−1 = f(xj−1)

πhf(xj) = c0 + c1xj = f(xj)
=⇒







c1 =
f(xj)−f(xj−1)

xj−xj−1

c0 =
−xj−1f(xj)+xjf(xj−1)

xj−xj−1
,

Consequently we may write






c0 = f(xj−1)
xj

xj−xj−1
+ f(xj)

−xj−1

xj−xj−1

c1x = f(xj−1)
−x

xj−xj−1
+ f(xj)

x
xj−xj−1

.
(2.1.20)
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Hence for xj−1 ≤ x ≤ xj , j = 1, 2, . . . , N

πhf(x) = c0 + c1x = f(xj−1)
xj − x

xj − xj−1
+ f(xj)

x− xj−1

xj − xj−1

= f(xj−1)λj−1(x) + f(xj)λj(x),

where λj−1(x) and λj(x) are the piecewise linear basis functions on Ij :

1

a xj−1 xj b
x

λj−1(x) =
xj−x

xj−xj−1

λj(x) =
x−xj−1

xj−xj−1

Figure 2.4: Linear Lagrange basis functions for q = 1 on the subinterval Ij.

We generalize the above procedure and introduce Lagrange interpolation
bases functions:

2.2 Lagrange interpolation

Consider P q(a, b); the vector space of all polynomials of degree ≤ q on the
interval (a, b), and the basis functions 1, x, x2, . . . , xq for P q.

Definition 11 (Cardinal functions). Lagrange basis is the set of polynomials
{λi}q

i=0 ⊂ P q(a, b) associated to the (q + 1) distinct points, a = x0 < x1 <
. . . < xq = b, in (a, b) and determined by the requirement that λi(xj) = 1 for
i = j, and 0 otherwise, i.e. for x ∈ (a, b),

λi(x) =
(x− x0)(x− x1) . . . (x− xi−1) ↓ (x− xi+1) . . . (x− xq)

(xi − x0)(xi − x1) . . . (xi − xi−1) ↑ (xi − xi+1) . . . (xi − xq)
. (2.2.1)



2.2. LAGRANGE INTERPOLATION 51

By the arrows ↓ , ↑ in (2.2.1) we want to emphasize that λi(x) =
∏

j 6=i

( x− xj

xi − xj

)

does not contain the singular factor
x− xi

xi − xi

. Hence

λi(xj) =
(xj − x0)(xj − x1) . . . (xj − xi−1)(xj − xi+1) . . . (xj − xq)

(xi − x0)(xi − x1) . . . (xi − xi−1)(xi − xi+1) . . . (xi − xq)
= δij ,

and λi(x), i = 1, 2, . . . , q, is a polynomial of degree q on (a, b) with

λi(xj) = δij =







1 i = j

0 i 6= j.
(2.2.2)

Example 13. Let q = 2, then we have a = x0 < x1 < x2 = b, where

i = 1, j = 2 ⇒ δ12 = λ1(x2) =
(x2 − x0)(x2 − x2)

(x1 − x0)(x1 − x2)
= 0

i = j = 1 ⇒ δ11 = λ1(x1) =
(x1 − x0)(x1 − x2)

(x1 − x0)(x1 − x2)
= 1.

A polynomial p ∈ P q(a, b) with the values pi = p(xi) at the nodes xi,
i = 0, 1, . . . , q, can be expressed in terms of the corresponding Lagrange
basis as

p(x) = p0λ0(x) + p1λ1(x) + . . .+ pqλq(x). (2.2.3)

Using (2.2.2), p(xi) = p0λ0(xi)+ p1λ1(xi)+ . . . piλi(xi)+ . . .+ pqλq(xi) = pi.
Recall that in the previous chapter, introducing examples of finite dimen-
sional linear spaces, we did construct Lagrange basis functions for q = 1:
λ0(x) = (x − ξ1)/(ξ0 − ξ1) and λ1(x) = (x − ξ0)/(ξ1 − ξ0), for an arbitrary
subinterval (ξ0, ξ1) ⊂ (a, b).

Below we want to compare the Lagrange polynomial of degree q with
another well-known polynomial: namely the Taylor polynomial of degree q.

Definition 12 (Taylor’s Theorem). Suppose that the function f is q+1-times
continuously differentiable at the point x0 ∈ (a, b). Then, f can be expressed
by a Taylor expansion about x0 as

f(x) = Tqf(x0) +Rqf(x0), (2.2.4)
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where

Tqf(x) = f(x0)+f ′(x0)(x−x0)+
1

2
f ′′(x0)(x−x0)

2 + . . .+
1

q!
f (q)(x0)(x−x0)

q,

is the Taylor polynomial of degree q, approximating f about x = x0 and

Rqf(x) =
1

(q + 1)!
f (q)(ξ)(x− x0)

q+1, (2.2.5)

is the remainder term, where ξ is a point between x0 and x.

For a continuous function f(x) on [a, b], we define the Lagrange interpolation
polynomial πqf ∈ P q(a, b), corresponding to the Taylor poynomial Tqf(x).

Definition 13. Let a ≤ ξ0 < ξ1 < . . . < ξq ≤ b, be q+1 distinct interpolation
nodes on [a, b]. Then πqf ∈ P q(a, b) interpolates f(x) at the nodes ξi, if

πqf(ξi) = f(ξi), i = 0, 1, . . . , q (2.2.6)

and the Lagrange’s formula (2.2.3) for πqf(x) reads as

πqf(x) = f(ξ0)λ0(x) + f(ξ1)λ1(x) + . . .+ f(ξq)λq(x), a ≤ x ≤ b.

Example 14. For q = 1, and considering the whole interval we have only

the nodes a and b. Recall that λa(x) =
x− b

a− b
and λb(x) =

x− a

b− a
, thus as we

see in the introduction to this chapter

π1f(x) = f(a)λa(x) + f(b)λb(x). (2.2.7)

Theorem 3. We have the following interpolation error estimates

|f(x) − Tqf(x0)| = Rq(f) ≤ 1

(q + 1)!
(x− x0)

q+1 · | max
x∈[a,b]

f (q+1)(x)|,

for the Taylor interpolation which is of order q + 1 near x = x0; and

|f(x) − πqf(x)| ≤ 1

(q + 1)!

q
∏

i=0

|x− xi| · max
a≤x≤b

|f (q+1)(x)|,

for the Lagrange interpolation error which is of order 1 at each node point
x0, x1, . . . , xq.
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Proof. The Taylor part is well known from elementary calculus. As for the
Lagrange interpolation error we note that at the node points xi we have that
f(xi) − πqf(xi) = 0, for i = 0, 1, . . . , q. Since f(xi)− πqf(xi) has q + 1 zeros
in [a, b], hence there is a function g(x) defined on [a, b] such that

f(x) − πqf(x) = (x− x0)(x− x1) . . . (x− xq)g(x). (2.2.8)

To determine g(x), we define an auxiliary function ϕ by setting

ϕ(t) := f(t) − πqf(t) − (t− x0)(t− x1) . . . (t− xq)g(x). (2.2.9)

Note that g(x) is independent of t. Further, the function ϕ(t) = 0 at the
nodes, xi, i = 0, . . . q as well as for t = x, i.e. ϕ(x0) = ϕ(x1) = . . . =
ϕ(xq) = ϕ(x) = 0. Thus ϕ(t) has (q + 2) roots in the interval [a, b]. Now by
the Generalized Rolle’s theorem (see below), there exists a point ξ ∈ [a, b]
such that ϕ(q+1)(ξ) = 0. Taking the (q+1)-th derivative of the function ϕ(t),
with respect to t, we get

ϕ(q+1)(t) = f (q+1)(t) − 0 − (q + 1)!g(x), (2.2.10)

where we use the fact that deg(πqf(x)) = q, (t − x0)(t − x1) . . . (t − xq) =
tq+1 + αtq + . . ., (for some constant α), and g(x) is independent of t. Thus

0 = ϕ(q+1)(ξ) = f (q+1)(ξ) − (q + 1)!g(x), (2.2.11)

and we have

g(x) =
f (q+1)(ξ)

(q + 1)!
. (2.2.12)

Hence, inserting g from (2.2.12) in (2.2.8), we get the error in Lagrange
interpolation as

E(x) = f(x) − πqf(x) =
f (q+1)(ξ)

(q + 1)!

q
∏

i=0

(x− xi), (2.2.13)

and the proof is complete.

Theorem 4 (Generalized Rolle’s theorem). If a function u(x) ∈ Cq+1(a, b)
has (q + 2) roots, x0, x1, . . . , xq, x, in a closed interval [a, b], then there is a
point ξ ∈ (a, b), generated by x0, x1, . . . , xq, x, such that u(q+1)(ξ) = 0.
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In the approximation procedure of solving differential equations we en-
countered matrices with entries being the integrals of products of basis func-
tions. Except some special cases (see calculations for A and Aunif in the pre-
vious chapter), these integrals are not elementary and can only be computed
approximately. Below we briefly review some of these numerical integration
techniques.

2.3 Numerical integration, Quadrature rule

We want to approximate the integral I =
∫ b

a
f(x)dx where, on each subinter-

val, we approximate f using piecewise polynomials of degree d. We denote
the approximate value by Id. To this end we assume, without loss of gen-
erality, that f(x) > 0 is continuous on the interval [a, b], then the integral

I =
∫ b

a
f(x)dx can be interpreted as the area of the domain under the curve

y = f(x); limited by x-axis and the lines x = a and x = b. we shall approxi-
mate this area using the values of f at certain points as follows.

Simple midpoint rule. Uses midpoint a+b
2

of [a, b], i.e. only f
(

a+b
2

)

. This

means that f is approximated by the constant function (polynomial of degree

0) P0(x) = f
(

a+b
2

)

and the area under the curve y = f(x) by

I =

∫ b

a

f(x)dx ≈ (b− a)f
(a+ b

2

)

. (2.3.1)

This is the general idea of the simple midpoint rule. To prepare for the
generalizations, if we denote x0 = a and x1 = b and assume that the length
of interval is h, then

I ∼ I0 = h · f(a+
h

2
). (2.3.2)

Simple trapezoidal rule. We use two endpoints a and b, i.e, f(a) and f(b).
Here f is approximated by the linear function (polynomial of degree 1) P1(x)

passing through the points
(

a, f(a)
)

and
(

b, f(b)
)

and the area under the

curve y = f(x) by

I =

∫ b

a

f(x)dx ≈ (b− a)
f(a) + f(b)

2
. (2.3.3)
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a = x0

f(b)

a+ h/2 b = x1

f(a)

P0(x)f(x+ h/2)

x

Figure 2.5: Midpoint approximationI0 of the integral I =
∫ x1

x0
f(x)dx.

This is the area of the trapezoidal between the lines y = 0, x = a and x = b
and under P1(x), and therefore is refereed as the simple trapezoidal rule.
Once again, for the purpose of generalization, we let x0 = a, x1 = b and
assume that the length of interval is h, then (2.3.3) can be written as

I ∼ I1 = h · f(a) +
h[f(a + h) − f(a)]

2
= h

f(a) + f(a+ h)

2
. (2.3.4)

a = x0

f(b)P1(x)

b = x1 = a+ h

f(a)

x

Figure 2.6: Trapezoidal approximation I1 of the integral I =
∫ x1

x0
f(x)dx.

Simple Simpson’s rule. Here we use two endpoints a and b, and the midpoint
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a+b
2

, i.e. f(a), f(b), and f
(

a+b
2

)

. In this case the area under y = f(x) is

approximated by the area under the graph of the second degree polynomial

P2(x) with P2(a) = f(a), P2

(
a+b
2

)

= f
(

a+b
2

)

, and P2(b) = f(b). To de-

termine P2(x) we may use Lagrange interpolation functions for q = 2: let
x0 = a, x1 = (a + b)/2 and x2 = b, then

P2(x) = f(x0)λ0(x) + f(x1)λ1(x) + f(x2)λ2(x), (2.3.5)

where 





λ0(x) = (x−x1)(x−x2)
(x0−x1)(x0−x2)

,

λ1(x) = (x−x0)(x−x2)
(x1−x0)(x1−x2)

,

λ2(x) = (x−x0)(x−x1)
(x2−x0)(x2−x1)

.

(2.3.6)

Thus

I =

∫ b

a

f(x)dx ≈
∫ b

a

f(x)P2(x) dx =

2∑

i=0

f(xi)

∫ b

a

λi(x) dx. (2.3.7)

Now we can easily compute the integrals

∫ b

a

λ0(x) dx =

∫ b

a

λ2(x) dx =
b− a

6
,

∫ b

a

λ1(x) dx =
4(b− a)

6
. (2.3.8)

Hence

I =

∫ b

a

f(x)dx ≈ b− a

6
[f(x0) + 4f(x1) + f(x2)]. (2.3.9)

This is the basic idea behind the simple Simpson’s rule. For the generalization
purpose, due to the fact that in this approximation we are using 2 intervals
(a, a+b

2
) and (a+b

2
, b), it is more appropriate to assume an interval of length

2h. Then, (2.3.9) can be written as

I =

∫ b

a

f(x)dx ≈ h

3
[f(x0) + 4f(x1) + f(x2)]. (2.3.10)
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a = x0

f(b)

a+ h/2 b = x1

f(x)

P2(x)

f(a)

x

Figure 2.7: Simpson’s rule I2 approximating the integral I =
∫ x1

x0
f(x)dx.

Obviously these approximations are less accurate for large interval [a, b]
and/or oscillatory functions f . Following the Riemann’s idea we can use these
rules, instead of for the whole interval [a, b], for an appropriate partition of
[a, b] on each subinterval. Then we get the generalized versions composite
rules based on the following algorithm:

General algorithm. To approximate the integral

I =

∫ b

a

f(x)dx,

we use the following steps

(i) Divide the interval [a, b], uniformly, into N subintervals

a = z0 < z1 < z2 < . . . < zN−1 < zN = b. (2.3.11)

(ii) Write the integral as

∫ b

a

f(x)dx =

∫ z1

z0

f(x) dx+ . . .+

∫ zN

zN−1

f(x) dx =

N∑

k=1

∫ zk

zk−1

f(x) dx.

(2.3.12)

(ii) For each subinterval Ik := [zk−1, zk], k = 1, 2, . . . , N , apply the very
same integration rule. Then we have the following generalizations.
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(M) Composite midpoint rule: approximates f by the constants (that are
the values of f at the midpoint of the subinterval) on each subinterval:
Let

h = |IN | =
b− a

N
, x̄k =

zk−1 + zk

2
, k = 1, 2, . . . , N,

then using the simple midpoint rule for the interval Ik := [zk−1, zk], we
have ∫ zk

zk−1

f(x) dx ≈
∫ zk

zk−1

f(x̄k) dx = hf(x̄k). (2.3.13)

Summing over k = 1, 2, . . . , N , we get

∫ b

a

f(x)dx ≈
N∑

k=1

hf(x̄k) = h[f(x̄1) + . . .+ f(x̄N)] := mN . (2.3.14)

(T) Composite trapezoidal rule: Simple trapezoidal rule on Ik yields
∫ zk

zk−1

f(x) dx ≈
∫ zk

zk−1

f(x̄k) dx =
h

2
[f(zk−1) + f(zk)]. (2.3.15)

Summing over k = 1, 2, . . . , N , we have

∫ b

a

f(x)dx ≈
N∑

k=1

h

2
[f(zk−1) + f(zk)]

=
h

2
[f(z0) + 2f(z1) + . . .+ 2f(zk−1) + f(zk)] := tN .

(2.3.16)

(S) Composite Simpson’s rule: (Quadratic approximation on each subin-
terval). Recall that this corresponds to a quadrature rule based on
piecewise quadratic interpolation using the endpoints and midpoint of
each subinterval. Thus, this time we use the simple Simpson’s rule on
each subinterval Ik = [zk−1, zk] using the points zk−1,

zk−1+zk

2
and zk:

∫ zk

zk−1

f(x) dx ≈ h

3

[

f(zk−1) + 4f
(zk−1 + zk

2

)

+ f(zk)
]

. (2.3.17)

To proceed we use the following identification on each subinterval Ik,
k = 1, . . . , k,

x2k−2 = zk−1, x2k−1 =
zk−1 + zk

2
:= z̄k, x2k = zk. (2.3.18)
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a = x0

z0

x1

z̄1

x2

z1

x2k−2

z2k−1

x2k−1

z̄k

x2k

zk

x2N

zN = b

Figure 2.8: Identification of subintervals for composite Simpson’s rule

Thus summing (2.3.17) over k and using the above identification, we
finally obtain the composite Simpson’s rule viz,

∫ b

a

f(x)dx ≈
N∑

k=1

h

3

[

f(zk−1) + 4f
(zk−1 + zk

2

)

+ f(zk)
]

=

N∑

k=1

h

3

[

f(x2k−2) + 4f(x2k−1) + f(x2k)
]

=
h

3

[

f(x0) + 4f(x1) + 2f(x2) + 4f(x3) + 2f(x4)

+ . . .+ 2f(x2N−2) + 4f(x2N−1) + f(x2N )
]

:= SN .

(2.3.19)

Here is the starting procedure where the numbers in the brackets indicate
the actual coefficient on each subinterval. For instance the end of interval
1 :z1 = x2 coincides with the start of interval 2, yielding to the add-up
[1] + [1] = 2 as the coefficient of f(x2). A resonance which is repeated for
each interior node zk. k = 1, . . . , N − 1.

Remark 9. The rules (M), (T) and (S) use values of the function at equally
spaced points. These are not always the best approximation methods. Below
we introduce an optimal method:
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x0

[1]

x1

[4]

x2

[1] + [1]

x3

[4]

x4

[1]

Figure 2.9: Identification of subintervals for composite Simpson’s rule

2.3.1 Gauss quadrature rule

This is to choose the points of evolution in an optimal manner, not at equally
spaced points. We demonstrate this rule through an example viz:

Problem: Choose the nodes xi ∈ [a, b], and coefficients ci, 1 ≤ i ≤ n such
that, for an arbitrary function f , the following error is minimal:

∫ b

a

f(x)dx−
n∑

i=1

cif(xi) for an arbitrary function f(x). (2.3.20)

Solution. There are 2n unknowns in (2.3.20) consisting of n nodes xi and n
coefficients ci. Therefore we need 2n equations. Thus if f were a polynomial,
optimal choice of our parameters yields a quadrature rule (2.3.20) which is
exact for polynomials of degree ≤ 2n− 1.

Example 15. Let n = 2 and [a, b] = [−1, 1]. Then the coefficients are c1 and
c2 and the nodes are x1 and x2. Thus optimal choice of these 4 parameters
should yield that the approximation

∫ 1

−1

f(x)dx ≈ c1f(x1) + c2f(x2), (2.3.21)

is indeed exact for f(x) replaced by polynomials of degree ≤ 3. Thus we
replace f by a polynomial of the form f(x) = Ax3 + Bx2 + Cx + D and
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require equality in (2.3.21). Thus to determine the coefficients c1, c2 and the
nodes x1, x2, in an optimal way, it suffices to use the above approximation
as equality when f is replaced by the basis functions for polynomials of degree
3: 1, x, x2 and x3. Consequently we get the equation system

∫ 1

−1

1dx = c1 + c2 and we get [x]1−1 = 2 = c1 + c2

∫ 1

−1

xdx = c1 · x1 + c2 · x2 and
[x2

2

]1

−1
= 0 = c1 · x1 + c2 · x2

∫ 1

−1

x2dx = c1 · x2
1 + c2 · x2

2 and
[x3

3

]1

−1
=

2

3
= c1 · x2

1 + c2 · x2
2

∫ 1

−1

x3dx = c1 · x3
1 + c2 · x3

2 and
[x4

4

]1

−1
= 0 = c1 · x3

1 + c2 · x3
2,

(2.3.22)

which, although nonlinear, has the solution presented below:







c1 + c2 = 2

c1x1 + c2x2 = 0

c1x
2
1 + c2x

2
2 = 2

3

c1x
3
1 + c2x

3
2 = 0

=⇒







c1 = 1

c2 = 1

x1 = −
√

3
3

x2 =
√

3
3

(2.3.23)

Thus the approximation

∫ 1

−1

f(x)dx ≈ c1f(x1) + c2f(x2) = f
(

−
√

3

3

)

+ f
(
√

3

3

)

, (2.3.24)

is exact for polynomials of degree ≤ 3.

Example 16. Let f(x) = 3x2 + 2x + 1. Then
∫ 1

−1
(3x2 + 2x + 1)dx =

[x3 + x2 + x]1−1 = 4, and we can easily check that f(−
√

3/3) + f(
√

3/3) = 4,
which is also the exact value of the integral.

Generalized Gauss quadrature. To generalize Gauss quadrature rule
Legendre polynomials are used: Choose {Pn}∞n=0 such that

(1) For each n, Pn is a polynomial of degree n.



62 CHAPTER 2. POLYNOMIAL INTERPOLATION IN 1D

(2) Pn ⊥ Pm if m < n⇐⇒
∫ 1

−1
Pn(x)Pm(x)dx = 0

The Legendre polynomial can be obtained through formula:

Pk(x) = (−1)k d
k

dxk
(xk(1 − x)k), or Pn(x) =

2

2nn!dxn
(x2 − 1)n,

Here are a few first Legendre polynomials:

P0(x) = 1, P1(x) = x, P2(x) =
3

2
x2 − 1

2
, P3(x) =

5

2
x3 − 3

2
x, . . . ,

The roots of Legendre polynomials are distinct, symmetric and the correct
choices as quadrature points, i.e. they are giving the points xi, 1 ≤ i ≤ n, as
the roots of the n-th Legendre polynomial. (p0 = 1 is an exception).

Example 17. Roots of the Legendre polynomial as quadrature points:

P1(x) = x = 0.

P2(x) =
3

2
x2−1

2
= 0, gives x1,2 = ±

√
3

3
. (compare with the result above).

P3(x) =
5

2
x3 − 3

2
x = 0, gives x1 = 0, x2,3 = ±

√

3

5
.

Theorem 5. Suppose that xi, i = 1, 2, . . . , n, are roots of n-th Legendre
polynomial Pn and that

ci =

∫ 1

−1

n∏

j=1
j 6=i

( x− xj

xi − xj

)

dx, where

n∏

j=1
j 6=i

( x− xj

xi − xj

)

is the Lagrange basis.

If f(x) is a polynomial of degree < 2n, then

∫ 1

−1

f(x)dx ≡
n∑

i=1

cif(xi).

Proof. Consider a polynomial R(x) of degree < n. Rewrite R(x) as (n− 1)
Lagrange polynomials with nodes at the roots of the n-th Legendre polyno-
mial Pn. This representation of R(x) is exact, since the error is

E(x) =
1

n!
(x−x1)(x−x2) . . . (x−xn)R(n)(ξ), where R(n)(ξ) ≡ 0. (2.3.25)
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Further we have R(x) =

n∑

i=1

n∏

j=1
j 6=i

( x− xj

xi − xj

)

R(xi), so that

∫ 1

−1

R(x)dx =

∫ 1

−1

[ n∑

i=1

n∏

j=1
j 6=i

( x− xj

xi − xj

)

R(xi)
]

dx

=
∑

i=1

[ ∫ 1

−1

n∏

j=1
j 6=i

( x− xj

xi − xj

)

dx
]

R(xi).

(2.3.26)

Moreover
∫ 1

−1

R(x)dx =

n∑

i=1

ciR(xi) (2.3.27)

Now consider a polynomial, P (x), of degree < 2n. Dividing P (x) by the n-th
Legendre polynomial Pn(x), we get

P (x) = Q(x) × Pn(x) +R(x), degQ(x) < n, degR(x) < n, (2.3.28)

and ∫ 1

−1

P (x)dx =

∫ 1

−1

Q(x)Pn(x)dx+

∫ 1

−1

R(x)dx. (2.3.29)

Since Q(x) ⊥ Pn(x), ∀Q(x) with degree< n, thus using (2.3.28) it follows
that

∫ 1

−1

Q(x)Pn(x)dx = 0 =⇒
∫ 1

−1

P (x)dx =

∫ 1

−1

R(x)dx. (2.3.30)

Then xi’s are roots of Pn(x), thus Pn(xi) = 0 and we can use (2.3.28) to
write

P (xi) = Q(xi)Pn(xi) +R(xi) = R(xi). (2.3.31)

Now using (2.3.27) we obtain that
∫ 1

−1

P (x)dx =

∫ 1

−1

R(x)dx =

n∑

i=1

ciR(xi) =

n∑

i=1

ciP (xi). (2.3.32)

Summing up:
∫ 1

−1

P (x)dx =

n∑

i=1

ciP (xi), (2.3.33)

and the proof is complete.
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2.4 Exercises

Problem 11. Use the expressions λa(x) = b−x
b−a

and λb(x) = x−a
b−a

to show that

λa(x) + λb(x) = 1, aλa(x) + bλb(x) = x.

Give a geometric interpretation by plotting, λa(x), λb(x), λa(x) + λb(x),
aλa(x), bλb(x) and aλa(x) + bλb(x).

Problem 12. Let f : [0.1] → R be a Lipschitz continuous function. De-
termine the linear interpolant πf ∈ P(0, 1) and plot f and πf in the same
figure, when

(a) f(x) = x2, (b) f(x) = sin(πx).

Problem 13. Determine the linear interpolation of the function

f(x) =
1

π2
(x− π)2 − cos2(x− π

2
), −π ≤ x ≤ π.

where the interval [−π, π] is divided to 4 equal subintervals.

Problem 14. Assume that w′ ∈ L1(I). Let x, x̄ ∈ I = [a, b] and w(x̄) = 0.
Show that

|w(x)| ≤
∫

I

|w′|dx. (2.4.1)

Problem 15. Assume that v interpolates ϕ, at the points a and b.

h

v

ϕ

a
x

b
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Show, using (2.4.1) that

(i) |(ϕ− v)(x)| ≤
∫

I

|(ϕ− v)′| dx,

(ii) |(ϕ− v)′(x)| ≤
∫

I

|(ϕ− v)′′| dx =

∫

I

|ϕ′′| dx,

(iii) max
I

|ϕ− v| ≤ max
I

|h2ϕ′′|,

(iv)

∫

I

|ϕ− v| dx ≤
∫

I

|h2ϕ′′| dx,

(v) ‖ϕ− v‖I ≤ ‖h2ϕ′′‖I and ‖h−2(ϕ− v)‖I ≤ ‖ϕ′′‖I ,

where ‖w‖I =
(∫

I

w2 dx
)1/2

is the L2(I)-norm.

Problem 16. Use, in the above problem

v′ =
ϕ(b) − ϕ(a)

h
=

1

h

∫ b

a

ϕ′dx (ϕ′ is constant on I),

and show that

(vi) |(ϕ− v)(x)| ≤ 2

∫

I

|ϕ′| dx,

(vii)

∫

I

h−1|ϕ− v| dx ≤ 2

∫

I

|ϕ′| dx and ‖h−1(ϕ− v)‖ ≤ 2‖ϕ′‖I .

Problem 17. Let now v(t) be the constant interpolant of ϕ on I.

v

ϕ

xa b
-
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Show that ∫

I

h−1|ϕ− v| dx ≤
∫

I

|ϕ′| dx. (2.4.2)

Problem 18. Show that

Pq(a, b) := {p(x)|p(x) is a polynomial of degree ≤ q},
is a vector space but

P q(a, b) := {p(x)|p(x) is a polynomial of degree = q},
is not! a vector space.

Problem 19. Compute formulas for the linear interpolant of a continuous
function f through the points a and (b+a)/2. Plot the corresponding Lagrange
basis functions.

Problem 20. Prove the following interpolation error estimate:

||Π1f − f ||L∞(a,b) ≤
1

8
(b− a)2||f ′′||L∞(a,b).

Hint: Use Theorem 5.1 from PDE Lecture Notes.

Problem 21. Compute and graph π4

(

e−8x2

)

on [−2, 2], which interpolates

e−8x2

at 5 equally spaced points in [−2, 2].

Problem 22. Write down a basis for the set of piecewise quadratic polyno-
mials W

(2)
h on a partition a = x0 < x1 < x2 < . . . < xm+1 = b of (a, b) into

subintervals Ii = (xi−1, xi), where

W
(q)
h = {v : v|Ii

∈ Pq(Ii), i = 1, . . . , m+ 1}
Problem 23. Prove that

∫ x1

x0

f ′
(x1 + x0

2

)(

x− x1 + x0

2

)

dx = 0.

Problem 24. Prove that
∣
∣
∣

∫ x1

x0

f(x) dx− f
(x1 + x0

2

)

(x− x0)
∣
∣
∣

≤ 1

2
max
[x0,x1]

|f ′′|
∫ x1

x0

(

x− x1 + x0

2

)2

dx ≤ 1

24
(x1 − x0)

3 max
[x0,x1]

|f ′′|.

Hint: Use Taylor expansion of f about x = x1+x2

2
.



Chapter 3

Linear System of Equations

This chapter is devoted to numerical solution of the linear system of equations
of type Ax = b ⇔ x = A−1b. To this approach we shall review the well-
known direct method of Gauss elimination and then continue with some
more efficient iterative methods. Numerical linear algebra is undoubtedly
the most applied tool in the computational aspects of almost all disciplines.

3.1 Direct methods

Consider the general form of an n× n linear system of equations given by

Ax = b⇔
n∑

j=1

aijxj = bi, i = 1, . . . , n, or







a11x1 + a12x2 + . . .+ a1nxn = b1

a21x1 + a22x2 + . . .+ a2nxn = b2

. . .

an1x1 + an2x2 + . . .+ annxn = bn.

We introduce the enlarged n× (n+ 1) coefficient matrix A by

A :=











a11 a12 . . . a1n b1

a21 a22 . . . a2n b2

. . . . . . . . . . . . . . .

an1 an2 . . . ann bn











, (3.1.1)

67
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where the coefficient matrix A is the first n columns in A. Note that to
solve the equation system Ax = b t is a bad idea to calculate A−1 and then
multiply by b. However, if A is an upper (or lower) triangular, i.e. aij = 0
for i > j (or i < j), and A is invertible, then we can solve x using the back
substitution method:







a11x1 + a12x2 + . . .+ a1nxn = b1

a22x2 + . . .+ a2nxn = b2

. . . . . . . . .

. . . . . . . . .

an−1,n−1xn−1 + an−1,nxn = bn−1

annxn = bn,

(3.1.2)

yields 





x1 =
1

a11
[b1 − a12x2 − . . .− a1nxn]

. . . . . . . . .

. . . . . . . . .

xn−1 =
1

an−1,n−1
[bn−1 − an−1,nxn]

xn =
bn
ann

.

(3.1.3)

• Number of operations. Additions and subtractions are not considered
as time consuming operations, therefore we shall count only the number of
multiplications and divisions.
• The number of multiplications to solve xn from (3.1.3) are zero and the
number of divisions is one.
• To solve xn−1 we need one multiplication and one division.
• To solve x1 we need (n− 1) multiplication and one division.
Thus to solve the linear system of equations given by (3.1.2) we shall need

1 + 2 + . . .+ (n− 1) =
n(n− 1)

2
:=

n2

2
+Q(n),

multiplications, where Q(n) is a remainder of order n, and n divisions.
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•Gaussian elimination method. The Gauss elimination method is based
on the following obvious facts expressing that: a linear system is not changed
under elementary row operations. These are

(i) interchanging two equations

(ii) adding a multiple of one equation to another

(iii) multiplying an equation by a nonzero constant.

Before continuing with the Gauss elimination procedure we recall the simple
3 × 3 dimensional uper triangular matrix U , lower triangular matrix L and
diagonal matrix D.

U =








a b c

0 d e

0 0 f







, L =








a 0 0

g d 0

h i f







, D =








a 0 0

0 d 0

0 0 f







.

The Gauss elimination procedure relay on the elementary row operations
and converts the coefficient matrix of the linear equation system to an upper
triangular matrix. To this end, we start from the first row of the coefficient
matrix of the equation system and using elementary row operations eliminate
the elements ai1, i > 1, under a11 (make ai1 = 0).

The equation system corresponding to this newly obtained matrix Ã with
elements ãij, ãi1 = 0, i > 1, has the same solution as the original one. We
repeat the same procedure of the elementary row operations to eliminate the
elements ai2, i > 2, from the matrix Ã. Continuing in this way, we thus
obtain an upper triangular matrix U with corresponding equation system
equivalent to the original system (has the same solution). Below we shall
illustrate this procedure through an example:

Example 18. Solve the equation system:







2x1 + x2 + x3 = 2

4x1 − x2 + 3x3 = 0

2x1 + 6x2 − 2x3 = 10.

(3.1.4)
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In the coefficient matrix:

A =








2 1 1 | 2

4 −1 3 | 0

2 6 −2 | 10







, (3.1.5)

we have that a11 = 2, a21 = 4, and a31 = 2. We introduce the multipliers
mi1, i > 1 by letting

m21 =
a21

a11
=

4

2
= 2 m31 =

a31

a11
=

2

2
= 1. (3.1.6)

Now we multiply the first row by m21 and then subtract it from row 2 and
replace the result in row 2:








2 1 1 | 2

4 −1 3 | 0

2 6 −2 | 10








·(−2)

=⇒








2 1 1 | 2

0 −3 1 | −4

2 6 −2 | 10








(3.1.7)

Similarly we multiply the first row by m31 = 1 and subtract it from row 3 to
get 






2 1 1 | 2

0 −3 1 | −4

0 5 −3 | 8







. (3.1.8)

In this setting we have ã22 = −3 and ã32 = 5, and

Ã =








2 1 1

0 −3 1

0 5 −3







. (3.1.9)

Now let m32 = ã32/ã22 = −5/3, then multiplying the second row in Ã by m32

and subtracting the result from row 3 yields







2 1 1 | 2

0 −3 1 | −4

0 0 −4

3
| 4

3







, (3.1.10)
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where we have obtained the upper triangular matrix

U =








2 1 1

0 −3 1

0 0 −4

3







. (3.1.11)

The new equivalent equation system is now






2x1 + x2 + x3 = 2

−3x2 + x3 = −4

−4

3
x3 = 4

3

(3.1.12)

with the obvious solution x1 = 1, x2 = 1 and x3 = −1 which, as we can verify
is also the solution of the original equation system (3.1.4)

Definition 14. We define the lower triangular matrices:

L1 =








1 0 0

−m21 1 0

−m31 0 1







, L2 =








1 0 0

0 1 0

0 −m32 1








and L =








1 0 0

m21 1 0

m31 m32 1







.

The matrices L1, L2 and L3 are unite (ones on the diagonal) lower triangular
3 × 3-matrices with the property that

L = (L2L1)
−1 = L−1

1 L−1
2 , and A = LU. (3.1.13)

• LU factorization of the matrix A

We generalize the above procedure for the 3 × 3 linear system of equations
to n× n. We have then A = LU , where L is a unite lower triangular matrix
and U is an upper triangular matrix obtained from A by Gauss elimination.
To solve the system Ax = b we let now y = Ux, and first solve Ly = b by
forward substitution (from the first row to the last) and obtain the vector
y, then using y as the known right hand side finally we solve Ux = y by
backward substitution (from the last row to the first) and get the solution x.
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Example 19. Following our previous example m21 = 2, m31 = 1 and m32 =
−5/3, consequently

L1 =








1 0 0

−2 1 0

−1 0 1







, L2 =








1 0 0

0 1 0

0
5

3
1








and L =








1 0 0

2 1 0

1 −5

3
1







.

Thus

L1A =








1 0 0

−2 1 0

−1 0 1















2 1 1

4 −1 3

2 6 −2








=








2 1 1

0 −3 1

0 5 −3








= Ã,

which corresponds to the first two elementary row operations in Gaussian
elimination. Further

L2L1A =








1 0 0

0 1 0

0
5

3
1















2 1 1

0 −3 1

0 5 −3








=








2 1 1

0 −3 1

0 0 −4

3








= U,

which corresponds to the last (third) elementary row operation performed in
the previous example.

In general case we have the following result:

Proposition 2. The n× n unit lower triangular L is given by

L = (Ln−1Ln−2 . . . L1)
−1,

where Li, i = 1, . . . , n−1 are the corresponding n×n row-operation matrices,
viz example above. For n = 3 we have (L2L1)

−1 = L, where

L =








1 0 0

m21 1 0

m31 m32 1







,

and mij are the multipliers defined above.
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Thus Ax = b ⇐⇒ (LU)x = b ⇐⇒ L(Ux) = b. As we outlined above we
let y = Ux and solve Ly = b to obtain y. Then with such obtained y we
solve x from Ux = y. We illustrate this procedure through our example:

Example 20. In our example we have that

L =








1 0 0

2 1 0

1 −5

3
1








and b =








2

0

10







.

• Ly = b yields the system of equations








1 0 0

2 1 0

1 −5

3
1















y1

y2

y3








=








2

0

10








⇐⇒







y1 = 2

2y1 + y2 = 0

y1 −
5

3
y2 + y3 = 10.

Using forward substitution we get y1 = 2, y2 = −4, y3 = 4/3. Further with

U =








2 1 1

0 −3 1

0 0 −4

3








and y =








2

−4
4

3







,

• Ux = y yields








2 1 1

0 −3 1

0 0 −4

3















x1

x2

x3








=








2

−4
4

3








⇐⇒







2x1 + x2 + x3 = 2

− 3x2 + x3 = −4

−4

3
x3 =

4

3
.

Using backward substitution, we get the solution viz x1 = 1, x2 = 1, x3 = −1.
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Theorem 6 (Cholesky’s method). Let A be a symmetric matrix, (aij = aji),
then the following statements are equivalent:

(i) A is positive definite.

(ii) The eigenvalues of A are positive.

(iii) Sylvester’s criterion det(∆k) > 0 for k = 1, 2, . . . , n, where

∆k =








a11 . . . a1k

. . . . . . . . .

ak1 . . . akk







.

(iv) A = LLT where L is lower triangular and has positive diagonal ele-
ments. (Cholesky’s factorization)

We do not give a proof of this theorem. The interested reader is referred to
literature in algebra and matrix theory.

3.2 Iterative method

Instead of solving Ax = b directly, we consider iterative solution methods
based on computing a sequence of approximations x(k), k = 1, 2, . . . such
that

lim
k→∞

x(k) = x or lim
k→∞

‖x(k) − x‖ = 0, for some norm.

Thus consider the general n × n linear system of equations Ax = b where
both the coefficient matrix A and the vector b have real entries,

Ax = b⇐⇒







a11x1+ a12x2 . . . +a1nxn = b1

. . . . . . . . . . . . . . .

an−1,1x1+ . . . . . . +an−1,nxn = bn−1

an1x1+ . . . . . . +annxn = bn.

(3.2.1)
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For the system (3.2.1) we shall introduce the two main iterative methods. •
Jacobi iteration: Assume that aii 6= 0, then







x1 = − 1

a11

[a12x2 + a13x3 + . . .+ a1nxn − b1]

xn−1 = − 1

an−1,n−1

[an−1,1x1 + an−1,2x2 + . . .+ an−1,nxn − bn−1]

xn = − 1

ann
[an1x1 + an2x2 + . . .+ an,nxn − bn].

Given an initial approximation for the solution:

x(0) = (x
(0)
1 = c1, x

(0)
2 = c2, . . . , x

(0)
n = cn),

the iteration steps are given by







x
(k+1)
1 = − 1

a11
[a12x

(k)
2 + a13x

(k)
3 + . . .+ a1nx

(k)
n − b1]

x
(k+1)
2 = − 1

a22

[a21x
(k)
1 + a23x

(k)
3 + . . .+ a2nx

(k)
n − b2]

. . .

x(k+1)
n = − 1

ann
[an1x

(k)
1 + an2x

(k)
2 + . . .+ an,n−1x

(k)
n−1 − bn]

Or in compact form in Jacobi coordinates:







∑n
j=1 aijxj = bi ⇐⇒ aiixi = −

∑n
j=1
j 6=i

aijxj + bi,

aiix
(k+1)
i = −∑n

j=1
j 6=i

aijx
(k)
j + bi.

(3.2.2)

Convergence criterion

Jacobi gives convergence to the exact solution if A is diagonally dominant.

|aii| >
n∑

j=1
j 6=i

|aij | i = 1, 2, . . . , n.
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Problem 25. Show that A =








4 2 1

1 5 1

0 1 3








is diagonally dominant.

Note, the Jacobi method needs less operations than Gauss elimination.

Example 21. Solve Ax = b where A =




2 −1

−1 2



 and b =




1

1



.

A is diagonally dominant and the matrix equation Ax = b is equivalent to
the linear equation system







2x1 − x2 = 1

−x1 + 2x2 = 1.
(3.2.3)

We choose zero initial values for x1 and x2, i.e. x
(0)
1 = 0 and x

(0)
2 = 0 and

build the Jacobi iteration system






2x
(k+1)
1 = x

(k)
2 + 1

2x
(k+1)
2 = x

(k)
1 + 1,

(3.2.4)

where k is the iteration step. Then we have







2x
(1)
1 = x

(0)
2 + 1

2x
(1)
2 = x

(0)
1 + 1

with the solution







x
(1)
1 =

1

2

x
(1)
2 =

1

2
.

(3.2.5)

In the next iteration step:







2x
(2)
1 = x

(1)
2 + 1

2x
(1)
2 = x

(1)
1 + 1

⇒







2x
(2)
1 =

1

2
+ 1

2x
(2)
2 = 1

2

⇒







x
(2)
1 =

3

4

x
(2)
2 = 3

4

(3.2.6)

Continuing we have obviously lim
k→∞

x
(k)
i = xi, i = 1, 2, where x1 = x2 = 1.

Below we have a few first iterations giving the corresponding x
(k)
1 and x

(k)
2

values
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k x
(k)
1 x

(k)
2

0 0 0

1 1/2 1/2

2 3/4 3/4

3 7/8 7/8

Now if we use the maximum norm: ‖ek‖∞ := max
i=1,2

|x(k)
i − xi|, then

‖e0‖∞ = max(|x(0)
1 − x1|, |x(0)

2 − x2|) = max
(∣
∣
∣0 − 1

∣
∣
∣,

∣
∣
∣0 − 1

∣
∣
∣

)

= 1

‖e1‖∞ = max(|x(1)
1 − x1|, |x(1)

2 − x2|) = max
(∣
∣
∣
1

2
− 1

∣
∣
∣,

∣
∣
∣
1

2
− 1

∣
∣
∣

)

=
1

2

‖e2‖∞ = max(|x(2)
1 − x1|, |x(2)

2 − x2|) = max
(∣
∣
∣
3

4
− 1

∣
∣
∣,

∣
∣
∣
3

4
− 1

∣
∣
∣

)

=
1

4

‖e3‖∞ = max(|x(3)
1 − x1|, x(3)

2 − x2|) = max
(∣
∣
∣
7

8
− 1

∣
∣
∣,

∣
∣
∣
7

8
− 1

∣
∣
∣

)

=
1

8

In this way ‖ek+1‖∞ =
1

2
‖ek‖∞, where ek is the error for step k, k ≥ 0.

Iterating we get that for the k-the Jacobi iteration the convergence rate is
(1

2

)k

:

‖ek‖∞ =
1

2
‖ek−1‖∞ =

(1

2

)2

‖ek−2‖∞ = . . . =
(1

2

)k

‖e0‖∞ =
(1

2

)k

.
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• Gauss-Seidel Method
Give an initial approximation of the solution

x =
(

x
(0)
1 , x

(0)
2 , . . . , x(0)

n

)

,

then using the fact that the first row in the k-th Jacobi iteration gives x
(k+1)
1

and in the i+1-th row we have already computed values for x
(k+1)
1 , . . . , x

(k+1)
i

on the right hand sides of the first i rows. The idea with the Gauss-Seidel
method is that, in the same iteration step, simultaneously use this computed
values. More specifically the Gauss-Seidel iteration steps are given by:







x
(k+1)
1 =

−1

a11

[a12x
(k)
2 + a13x

(k)
3 + . . .+ a1nx

(k)
n − b1]

x
(k+1)
2 =

−1

a22
[a21x

(k+1)
1 + a23x

(k)
3 + . . .+ a2nx

(k)
n − b2]

. . .

x
(k+1)
n−1 =

−1

an−1,n−1

[a(n−1),1x
(k+1)
1 + . . .+ a(n−1),n−2x

(k+1)
n−2 + a(n−1),nx

(k)
n − bn−1]

x(k+1)
n =

−1

ann
[an1x

(k+1)
1 + an2x

(k+1)
2 + . . .+ an,n−1x

(k+1)
n−1 − bn].

Or in a compact way in Gauss-Seidel coordinates.

Ax = b ⇐⇒
n∑

j=1

aijxj = bi ⇐⇒
i∑

j=1

aijxj +
n∑

j=1+1

aijxj = bi. (3.2.7)

Therefore the iterative forms for the Gauss-Seidel is given by






∑i
j=1 aijx

(k+1)
j = −

∑n
j=i+1 x

(k)
j + bi ⇐⇒

aiix
(k+1)
i = −

∑i−1
j=1 aijx

(k+1)
j −

∑n
j=i+1 aijx

(k)
j + bi.

(3.2.8)

Example 22. We consider the same example as above: Ax = b with

A =




2 −1

−1 2



 , x =




x1

x2



 , b =




1

1



 .
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Recall the Jacobi iteration system






2x
(k+1)
1 = x

(k)
2 + 1

2x
(k+1)
2 = x

(k)
1 + 1.

(3.2.9)

The corresponding Gauss-seidel iteration system reads as follows






2x
(k+1)
1 = x

(k)
2 + 1

2x
(k+1)
2 = x

(k+1)
1 + 1

(3.2.10)

We choose the same initial values for x1 and x2 as in the Jacobi iterations,
i.e. x

(0)
1 = 0, and x

(0)
2 = 0. Now the first equation in (3.2.10):

2x
(1)
1 = x

(0)
2 + 1 =⇒ x

(1)
1 =

1

2
.

Inserting this value of x
(1)
1 = 1

2
in the second equation in (3.2.10) yields

2x
(1)
2 = x

(1)
1 + 1 =⇒ 2x

(1)
2 =

1

2
+ 1 =⇒ x

(1)
2 =

3

4
.

Below we list a few first iteration steps for this Gauss-Seidel approach:

k x
(k)
1 x

(k)
2

0 0 0

1 1/2 3/4

2 7/8 15/16

3 31/32 63/64

Obviously lim
k→∞

x
(k)
1 = lim

k→∞
x

(k)
2 = 1. Now with ‖ek‖∞ = max

i=1,2
|x(k)

i − xi|, we

get the successive iteration errors:

‖e1‖∞ = max(|x(1)
1 − x1|, |x(1)

2 − x2|) = max
(∣
∣
∣
1

2
− 1

∣
∣
∣,

∣
∣
∣
3

4
− 1

∣
∣
∣

)

=
1

2

‖e2‖∞ = max
(∣
∣
∣
7

8
− 1

∣
∣
∣,

∣
∣
∣
15

16
− 1

∣
∣
∣

)

==
1

8
, ‖e3‖∞ = max

( 1

32
,

1

64

)

=
1

32
.
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Thus for the Gauss-Seidel iteration ‖ek+1‖∞ =
1

4
‖ek‖∞, where ek is the error

for step k, and hence we can conclude that the Gauss-Seidel method converges
faster than the Jacobi method:

‖ek‖∞ =
1

4
‖ek−1‖∞ =

(1

4

)2

‖ek−2‖∞ = · · · =
(1

4

)k

‖e0‖∞ =
(1

4

)k

.

• The successive over-relaxation method (S.O.R.).
The S.O.R. method is a modified version of the Gauss-Seidel iteration. The
iteration procedure is given by

x
(k+1)
i = (1 − ω)x

(k)
i +

ω

aii

[

bi −
i−1∑

j=1

aijx
(k+1)
j −

n∑

j=i+1

aijx
(k)
j

]

(3.2.11)

For ω > 1 the method is called an over-relaxation method and if 0 < ω < 1,
it is referred as an under-relaxation method.
S.O.R. coordinates:

aiix
(k+1)
i = aiix

(k)
i − ω

( i−1∑

j=1

aijx
(k+1)
j +

n∑

j=i+1

aijx
(k)
j − bi

)

(3.2.12)

• Abstraction of iterative methods
In our procedures we have considered Ax = b and x = Bx+C as equivalent
linear equation systems, where B is the iteration matrix and xk+1 = Bxk+C.

Potential advantages of iteration methods over direct methods: they are
(i) Faster (depends on B, accuracy is required)
(ii) Less memory is required (Sparsity of A can be preserved.)

Questions:
(Q1) For a given A, what is a good choice for B?
(Q2) When does xk → x?
(Q3) What is the rate of convergence?

The error at step k is ek = xk −x and that of step (k+1) is ek+1 = xk+1 −x.
Then we have ek+1 = xk+1−x = (Bxk +C)−(Bx−C) = B ·(xk − x)

︸ ︷︷ ︸

ek

= Bek.

Iterating, we have

ek = Bek−1 = B · Bek−2 = B · B · Bek−3 = B4ek−4 = . . . = Bkek−k = Bk e0.
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Thus we have shown that ek = Bke0. Let now

L =











0 . . . . . . 0

a21 0 . . . 0

. . . . . . . . . . . .

an1 . . . an,n−1 0











, U =











0 a12 . . . a1n

. . . . . . . . . . . .

. . . . . . 0 an−1,n

0 . . . . . . 0











and

D =











a11 0 . . . 0

0 a22 0 . . .

. . . . . . . . . . . .

0 . . . 0 ann











,

then A = L+D + U , which is a splitting of A. Now we can rewrite Ax = b
as (D + D + U)x = b then Dx = −(L + U)x + b, and we may reformulate
the iterative methods as follows:

Jacobi’s method

Dxk+1 = −(L+ U)xk + b⇒ BJ = −D−1(L+ U),

where BJ is the Jacobi’s iteration matrix.

Example 23. Write the linear system in the matrix form x = BJx+ C







2x1 − x2 = 1

−x1 + 2x2 = 1
⇒







x1 =
1

2
x2 +

1

2

x2 =
1

2
x1 +

1

2

which in the matrix form is




x1

x2



 =




0 1

2

1
2

0








x1

x2



 +





1
2

1
2



 , where

x =




x1

x2



 , BJ =




0 1

2

1
2

0



 and C =





1
2

1
2



 .
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Example 24. Determine the same BJ by the formula BJ = −D−1(L+ U),

A =




2 −1

−1 2



 , L =




0 0

−1 0



 , U =




0 −1

0 0



 , D =




2 0

0 2





We can easily see that

D−1 =





1
2

0

0 1
2



 ,

and thus

BJ = −D−1(L+ U) =






−1

2
0

0 −1

2









0 −1

−1 0



 =






0
1

2
1

2
0




 .

Gauss-Seidel’s method

As above we write Ax = b as (L+D+U)x = b but now we choose (L+D)x =
−Ux+b. Similar to the previous procedure we have (L+D)xk+1 = −Uxk +b,
and then BGS = −(L+D)−1U , where BGS is Gauss-Seidel’s iteration matrix.

Relaxation

Gauss-Seidel gives that (L + D)x = −Ux + b, thus the iteration procedure
is:

Dxk+1 = Dxk − [Lxk+1 + (D + U)xk − b].

where ω is the Relaxation parameter, ω = 1 gives the Gauss-seidel iteration.
Now we have that

(ωL+D)xk+1 = [(1 − ω)D − ωU ]xk + ωb,

thus the Relaxation iteration matrix is:

Bω = (ωL+D)−1[(1 − ω)D − ωU ].
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3.3 Exercises

Problem 26. Illustrate the LU factorization for the matrix

A =








1 3 2

−2 −6 1

2 5 7







.

Problem 27. Solve A4x = b for

A =




−1 2

2 −3



 b =




144

−233





Problem 28. Find the unique the LDU factorization for the matrix

A =








1 1 −3

0 1 1

3 −1 1







.

Problem 29. Show that every orthogonal 2 × 2 matrix is of the form

A1 =




c s

−s c



 or A2 =




c s

s −c



 ,

where c2 + s2 = 1

Problem 30. Solve the following system



4 −1

−1 4








u1

u2



 =




1

−3





using 3 iterations of the following methods using a starting value of u0 =
(0, 0)T .

(a) Jacobi Method.
(b) Gauss-Seidel Method.
(c) Optimal SOR (you must compute the optimal value of ω = ω0 first).
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Chapter 4

Two-points BVPs

In this chapter we focus on finite element approximation procedure for the two
point boundary value problems (BVPs) of Dirichlet, Neumann and mixed type.
For each PDE we formulate a corresponding variational formulation(VF) and a
minimization problem (MP) and prove that to solve the boundary value problem
is equivalent to the (VF) which in turn is equivalent to solve a minimization
problem (MP), i.e,

(BV P ) ⇐⇒ (V F ) ⇐⇒ (MP ).

We also prove a priori and a posteriori error estimates for BVPs.

4.1 A Dirichlet problem

Assume a horizontal elastic bar that occupies the interval I := [0, 1], is fixed
at the end-points. Let u(x) denote the displacement at a point x ∈ I, and
a(x) be the modulus of elasticity and f(x) a load function, then one can
show that u satisfies the following boundary value problem for the Poisson’s
equation

(BV P )1







−
(

a(x)u′(x)
)′

= f(x), 0 < x < 1,

u(0) = u(1) = 0.
(4.1.1)

We assume that a(x) is piecewise continuous in (0, 1), bounded for 0 ≤ x ≤ 1
and a(x) > 0 for 0 ≤ x ≤ 1.

85
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Let v(x) and its derivative v′(x), x ∈ I, be square integrable functions, that
is: v, v′ ∈ L2(0, 1), and set

H1
0 =

{

v(x) :

∫ 1

0

[v(x)2 + v′(x)2]dx <∞, v(0) = v(1) = 0
}

. (4.1.2)

The variational formulation (VF) for (BVP)1 is obtained by multiplying the
equation by a function v(x) ∈ H1

0 (0, 1) and integrating over (0, 1):

−
∫ 1

0

[a(x)u′(x)]′v(x)dx =

∫ 1

0

f(x)v(x)dx. (4.1.3)

By partial integration we get

−
[

a(x)u′(x)v(x)
]1

0
+

∫ 1

0

a(x)u′(x)v′(x)dx =

∫ 1

0

f(x)v(x)dx. (4.1.4)

Now since v(0) = v(1) = 0 we have

∫ 1

0

a(x)u′(x)v′(x)dx =

∫ 1

0

f(x)v(x)dx. (4.1.5)

Thus the variational formulation for the problem (4.1.1) is as follows:
Find u(x) ∈ H1

0 such that

(VF)1

∫ 1

0

a(x)u′(x)v′(x)dx =

∫ 1

0

f(x)v(x)dx, ∀v(x) ∈ H1
0 . (4.1.6)

In other words we have that if u satisfies (BVP)1 (4.1.1), then u also satisfies
the (VF)1, (4.1.5) above. We write this as (BVP)1 =⇒ (VF)1. Now the
question is whether the reverse implication is through, i.e. if which conditions
can we deduce the reverse implication (VF)1 =⇒ (BVP)1? It appears that
this question has an affirmative answer and the two problems are indeed
equivalent. We prove this observation in the following theorem.

Theorem 7. u satisfies (BVP)1 ⇐⇒ u satisfies (VF)1.

Proof. We have already shown (BVP)1 =⇒ (VF)1. It remains to show that
(VF)1 =⇒ (BVP)1. Integrating by parts on the left hand side in (4.1.5) and
using v(0) = v(1) = 0 we come back to

−
∫ 1

0

[a(x)u′(x)]′v(x)dx =

∫ 1

0

f(x)v(x)dx, ∀v(x) ∈ H1
0 (4.1.7)
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which can also be written as
∫ 1

0

[

−
(

a(x)u′(x)
)′

− f(x)
]

v(x)dx = 0, ∀v(x) ∈ H1
0 . (4.1.8)

We claim that (4.1.8) implies

−
(

a(x)u′(x)
)′

− f(x) ≡ 0, ∀x ∈ (0, 1). (4.1.9)

If our claim is not true!, then there exists at least one ξ ∈ (0, 1), such that

−
(

a(ξ)u′(ξ)
)′

− f(ξ) 6= 0, (4.1.10)

where we may assume, without loss of generality, that

−
(

a(ξ)u′(ξ)
)′

− f(ξ) > 0 (or < 0). (4.1.11)

Thus, assuming that f ∈ C(0, 1) and a ∈ C1(0, 1), by continuity, ∃δ > 0,
such that in a δ-neighborhood of ξ,

g(x) := −
(

a(x)u′(x)
)′

− f(x) > 0, for x ∈ (ξ − δ, ξ + δ). (4.1.12)

Now we take v(x) in (4.1.8) as a hat function, v∗(x) > 0 on (ξ−δ, ξ+ δ) and

0

1

x

y

ξ − δ ξ ξ + δ

v∗(x)

1

g(x)

Figure 4.1: The hat function v∗(x) over the interval (ξ − δ, ξ + δ).

we have v∗(x) ∈ H1
0 and

∫ 1

0

[

−
(

a(x)u′(x)
)′

− f(x)
]

︸ ︷︷ ︸

>0

v∗(x)
︸ ︷︷ ︸

>0

dx > 0, which

contradicts (4.1.8), thus our claim is true and the proof is complete.
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Corollary 1. (i) If both f(x) and a(x) are continuous and a(x) is differ-
entiable, i.e. f ∈ C(0, 1) and a ∈ C1(0, 1), then (BVP) and (VF) have the
same solution.
(ii) If a(x) is discontinuous, then (BVP) is not always well-defined but (VF)
has meaning. Therefore (VF) covers a larger set of data than (BVP).

4.2 Minimization problem

For the problem (4.1.1), i.e. our (BVP)1






−
(

a(x)u′(x)
)′

= f(x), 0 < x < 1,

u(0) = u(1) = 0.
(4.2.1)

we formulate a minimization problem (MP) as follows:

Problem 31. Find u ∈ H1
0 such that F (u) ≤ F (w), ∀w ∈ H1

0 , where F (w)
is the total energy of w(x) given by

F (w) =
1

2

∫ 1

0

a(w′)2dx

Internal energy

−
∫ 1

0

fwdx

Load potential

(4.2.2)

Theorem 8. The minimization problem above is equivalent to variational
formulation (V F )1,

(MP ) ⇐⇒ (V F ) i.e.

F (u) ≤ F (w), ∀w ∈ H1
0 ⇐⇒

∫ 1

0

au′v′dx =

∫ 1

0

fvdx, ∀v ∈ H1
0 . (4.2.3)

Proof. (⇐=) For w ∈ H1
0 we let v = w − u, then v ∈ H1

0 and

F (w) = F (u+ v) =
1

2

∫ 1

0

a
(

(u+ v)′
)2

dx−
∫ 1

0

f(u+ v)dx =

=
1

2

∫ 1

0

2au′v′dx

︸ ︷︷ ︸

(i)

+
1

2

∫ 1

0

a(u′)2dx

︸ ︷︷ ︸

(ii)

+
1

2

∫ 1

0

a(v′)2dx

−
∫ 1

0

fudx

︸ ︷︷ ︸

(iii)

−
∫ 1

0

fvdx.

︸ ︷︷ ︸

(iv)
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but (i) + (iv) = 0, since by (VF)1

∫ 1

0

au′v′dx =

∫ 1

0

fvdx. Further by

definition of the functional F we have (ii) + (iii) = F (u). Thus

F (w) = F (u) +
1

2

∫ 1

0

a(x)(v′(x))2dx, (4.2.4)

and since a(x) > 0 we have F (w) > F (u).
(=⇒) Let now F (u) ≤ F (w) and set g(ε, w) = F (u + εv), then g has a

minimum at ε = 0. In other words g′(ε, w)
∣
∣
∣
ε=0

= 0. We have

g(ε, w) = F (u+ εv) =
1

2

∫ 1

0

a
(

(u+ εv)′
)2

dx−
∫ 1

0

f(u+ εv)dx =

=
1

2

∫ 1

0

{a(u′)2 + aε2(v′)2 + 2aεu′v′}dx−
∫ 1

0

fudx− ε

∫ 1

0

fvdx.

Now we compute the derivative g′ε(ε, w).

g′ε(ε, w) =
1

2
{2aε(v′)2 + 2au′v′}dx−

∫ 1

0

fvdx (4.2.5)

and g′ε

∣
∣
∣
(ε=0)

= 0, yields

∫ 1

0

au′v′dx−
∫ 1

0

fvdx = 0, (4.2.6)

which is the variational formulation. Thus we conclude that F (u) ≤ F (w) =⇒
(VF)1 and the proof is complete.

We summarize the two theorems in short as

Corollary 2.
(BV P )1 ⇐⇒ (V F )1 ⇐⇒ (MP ).

4.3 A mixed Boundary Value Problem

Obviously changing the boundary conditions would require changes in the
variational formulation. This can be, e.g. seen in formulating the (VF)
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corresponding to the following mixed boundary value problem

(BVP)2







−
(

a(x)u′(x)
)′

= f(x), 0 < x < 1

u(0) = 0, a(1)u′(1) = g1 6= 0.
(4.3.1)

We multiply the equation by a suitable function v(x) with v(0) = 0 and
integrate over the interval (0, 1) to obtain

−
∫ 1

0

[a(x)u′(x)]′v(x)dx =

∫ 1

0

f(x)v(x)dx. (4.3.2)

By partial integration we get, as before, that

−[a(x)u′(x)v(x)]10 +

∫ 1

0

a(x)u′(x)v′(x)dx =

∫ 1

0

f(x)v(x)dx (4.3.3)

Using the boundary data v(0) = 0 and a(1)u′(1)v(1) = g1v(1) we get

∫ 1

0

a(x)u′(x)v′(x)dx =

∫ 1

0

f(x)v(x)dx+ g1v(1), ∀v ∈ H̃1
0 , (4.3.4)

where

H̃1
0 = {v(x) :

∫ 1

0

[v(x)2 + v′(x)2]dx <∞, such that v(0) = 0}. (4.3.5)

Then (4.3.4) yields the variational formulation: Find u ∈ H̃1
0 such that

(VF)2

∫ 1

0

a(x)u′(x)v′(x)dx =

∫ 1

0

f(x)v(x)dx+ g1v(1), ∀v ∈ H̃1
0

Now we want to show that

Theorem 9. (BVP)2 ⇐⇒ (VF)2

Proof. (=⇒) This part is trivial and already proved along the above lines.
(⇐=) To prove that a solution of the variational problem (VF)2 is also a

solution of the two-point boundary value problem (BVP)2 we have to show

(i) the solution satisfies the differential equation
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(ii) the solution satisfies the boundary conditions

We start with (V F )2 and perform a reversed order partial integration to get

∫ 1

0

a(x)u′(x)v′(x)dx = [a(x)u′(x)v(x)]10 −
∫ 1

0

[a(x)u′(x)]′v(x) dx. (4.3.6)

Since v(0) = 0, we get

∫ 1

0

a(x)u′(x)v′(x)dx = a(1)u′(1)v(1) −
∫ 1

0

[a(x)u′(x)]′vdx (4.3.7)

Thus the variational formulation (VF)2 can be written as

−
∫ 1

0

[a(x)u′(x)]′vdx+ a(1)u′(1)v(1) =

∫ 1

0

f(x)v(x)dx+ g1v(1). (4.3.8)

The equation (4.3.8) is valid for every v(x) ∈ H̃1
0 (0, 1), including a test func-

tion v(x) with v(0) = v(1) = 0 as in the Dirichlet problem: −(au′)′ =
f, u(0) = u(1) = 0. This is simply because H1

0 (0, 1) ⊂ H̃1
0 (0, 1). Conse-

quently choosing v(1) = 0 (4.3.8) is reduced to

−
∫ 1

0

[a(x)u′(x)]′vdx =

∫ 1

0

f(x)v(x)dx, ∀v(x) ∈ H1
0 (4.3.9)

Now as in the case of the Dirichlet problem (4.3.9) gives the differential
equation in (4.3.1) and hence claim (i) is through.

On the other hand (4.3.9) is just the equation in (4.3.1) multiplied by a
test function v and integrated over (0, 1), so (4.3.9) is equally valid for v ∈
H̃1

0 (0, 1). Now inserting (4.3.9) in (4.3.8) we also get g1v(1) = a(1)u′(1)v(1),
which choosing v(1) 6= 0, e.g. v(1) = 1, gives that g1 = a(1)u′(1) and the
proof is complete.

Remark 10. i) The Dirichlet boundary conditions is called the essential
boundary condition and is strongly imposed in the test function space:
Enforced explicitly to the trial and test functions in (VF).

ii) The Neumann and Robin Boundary conditions are called the natural
boundary conditions and are automatically satisfied in (VF), therefore
are weakly imposed.
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4.4 The finite element method. (FEM)

Let Th = {0 = x0 < x1 < . . . < xM < xM+1 = 1} be a partition of 0 ≤ x ≤ 1
into subintervals Ik = [xk−1, xk] and hk = xk − xk−1 Define the piecewise

x0 = 0 x1 x2 xk−1 xk xM xM+1 = 1
x

hk

constant function h(x) = xk − xk−1 = hk for x ∈ Ik. Let now C
(

I, P1(Ik)
)

denote the set of all continuous piecewise linear functions on Th (continuous
in whole I, linear on each subinterval Ik), and define

V
(0)
h = {v : v ∈ C

(

I, P1(Ik)
)

, v(0) = v(1) = 0} (4.4.1)

Note that V
(0)
h is a subspace of

H1
0 = {v(x) :

∫ 1

0

[v(x)2+v′(x)2]dx <∞, and v(0) = v(1) = 0}. (4.4.2)

A cG(1) (continuous Galerkin of degree 1) finite element formulation for our

Dirichlet boundary value problem (BVP) is given by: Find uh ∈ V
(0)
h such

that

(FEM)

∫ 1

0

a(x)u′h(x)v
′(x)dx =

∫ 1

0

f(x)v(x)dx, ∀v ∈ V
(0)
h . (4.4.3)

Now the purpose is to make estimate of error arising in approximating the
solution for (BV P ) by the functions in V

(0)
h . To this end we need to introduce

some measuring environment for the error. Recall the definition of Lp-norms

Lp-norm ‖v‖Lp
=

(∫ 1

0

|v(x)|pdx
)1/p

, 1 ≤ p <∞

L∞-norm ‖v‖L∞
= sup

x∈[0,1]

|v(x)|

Weighted L2-norm ‖v‖a =
(∫ 1

0

a(x)|v(x)|2dx
)1/2

, a(x) > 0

Energy-norm ‖v‖E =
(∫ 1

0

a(x)|v′(x)|2dx
)1/2

Note that ‖v‖E = ‖v′‖a.
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‖v‖E describes the elastic energy for an elastic string modeled for our Dirich-
let boundary value problem (BVP).

4.5 Error estimates in the energy norm

There are two types of error estimates: An a priori error estimate depends
on the exact solution u(x) and not on the approximate solution uh(x). In
such estimates the error analysis are performed theoretically and before com-
putations. An a posteriori error estimate where the error depends on the
residual,i.e, the difference between the left and right hand side in the equa-
tion when the exact solution u(x) is replaced by the approximate solution
uh(x). A posteriori error estimates can be derived after that the approximate
solution is computed.

Below first we shall prove a general theorem which shows that the finite
element solution is the best approximate solution for either of our Dirichlet
problem in the energy norm.

Theorem 10. Let u(x) be a solution of the Dirichlet boundary value problem

BVP







−
(

a(x)u′(x)
)′

= f(x), 0 < x < 1

u(0) = 0 u(1) = 0.
(4.5.1)

and uh(x) its finite element element approximation given by (4.4.3). Then
we have

‖u− uh‖E ≤ ‖u− v‖E, ∀v(x) ∈ V
(0)
h . (4.5.2)

This means that the finite element solution uh ∈ V
(0)
h is the best approxima-

tion of the solution u by functions in V
(0)
h .

Proof. Recall the variational formulation associated to the problem (4.4.1):

(VF)

∫ 1

0

a(x)u′(x)v′(x)dx =

∫ 1

0

f(x)v(x)dx, ∀v ∈ H1
0 . (4.5.3)
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We take an arbitrary v ∈ V
(0)
h , then by the definition of the energy norm

‖u− uh‖2
E =

∫ 1

0

a(x)(u′ − u′h)
2(x)dx

=

∫ 1

0

a(x)
(

u′(x) − u′h(x)
)(

u′(x)−v′(x) + v′(x)
︸ ︷︷ ︸

=0

−u′h(x)
)

dx

=

∫ 1

0

a(x)
(

u′(x) − u′h(x)
)(

u′(x) − v′(x)
)

dx

+

∫ 1

0

a(x)
(

u′(x) − u′h(x)
)(

v′(x) − u′h(x)
)

dx

(4.5.4)

Now since v−uh ∈ V
(0)
n ⊂ H1

0 , we have by the variational formulation (4.5.3)

∫ 1

0

a(x)u′(x)
(

v′(x) − u′h(x)
)

dx =

∫ 1

0

f
(

v(x) − uh(x)
)

, (4.5.5)

with its finite element counterpart, see (4.4.3),

∫ 1

0

a(x)u′h(x)
(

v′(x) − u′h(x)
)

dx =

∫ 1

0

f
(

v(x) − uh(x)
)

. (4.5.6)

Subtracting these two relations the last line of the estimate (4.5.4) above
vanishes, so we end up with

‖u− uh‖2
E =

∫ 1

0

a(x)[u′(x) − u′h(x)][u
′(x) − v′(x)]dx

=

∫ 1

0

a(x)
1

2 [u′(x) − u′h(x)]a(x)
1

2 [u′(x) − v′(x)]dx

≤
(∫ 1

0

a(x)[u′(x) − u′h(x)]
2dx

) 1

2
(∫ 1

0

a(x)[u′(x) − v′(x)]2dx
) 1

2

= ‖u− uh‖E · ‖u− v‖E,

(4.5.7)

where, in the last estimate, we used Cauchy-Schwartz inequality. Thus

‖u− uh‖E ≤ ‖u− v‖E , (4.5.8)

and the proof is complete.
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Next step is to show that there exists a function v(x) ∈ V
(0)
h such that

‖u−v‖E is not too large. The function that we shall study is v(x) = πhu(x):
the piecewise linear interpolant of u(x), introduced in chapter 2. Recall the
interpolation error estimate in Lp-norms:

Theorem 11. (i) Let 0 = x0 < x1 < x2 < . . . < xM < xM+1 = 1 be a
partition of [0, 1] and h = (xj+1 − xj), j = 0, 1, . . . ,M

(ii) Let πhv(x) be the piecewise linear interpolant of v(x).
Then there is an interpolation constant ci such that

‖πhv − v‖Lp
≤ ci‖h2v′′‖Lp

1 ≤ p ≤ ∞ (4.5.9)

‖(πhv)
′ − v′‖Lp

≤ ci‖hv′′‖Lp
(4.5.10)

‖πhv − v‖Lp
≤ ci‖hv′‖Lp

. (4.5.11)

Theorem 12 (An apriori error estimate). Let u and uh be the solutions of the
Dirichlet problem (BVP) and the finite element problem (FEM), respectively.
Then there exists an interpolation constant Ci , depending only on a(x), such
that

‖u− uh‖E ≤ Ci‖hu′′‖a. (4.5.12)

Proof. According to our general above we have

‖u− uh‖E ≤ ‖u− v‖E, ∀v ∈ V
(0)
h . (4.5.13)

Now since πhu(x) ∈ V
(0)
h , we may take v = πhu(x) in (4.5.13) and use, e.g.

the second estimate in the interpolation theorem to get

‖u− uh‖E ≤ ‖u− πhu‖E = ‖u′ − (πhu)
′‖a

≤ Ci‖hu′′‖a = Ci

(∫ 1

0

a(x)h2(x)u′′(x)2 dx
)1/2

,
(4.5.14)

which is the desired result.

Remark 11. Now if the objective is to divide (0,1) into a fixed, finite, num-
ber of subintervals, then one can use the proof of theorem 8.3: to obtain
an optimal (a best possible) partition of (0,1); in the sense that: whenever
a(x)u′′(x) gets large we compensate by making h(x) smaller. This, however,
requires that the exact solution u(x) is known. Now we want to study a pos-
teriori error analysis, where instead of the unknown value of u(x), we use the
known computed values of the approximate solution.
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Theorem 13 (a posteriori error estimate). There is an interpolation constant
ci depending only on a(x) such that the error in finite element approximation
of the Dirichlet boundary value problem (BVP) (4.5.1) satisfies

‖e(x)‖E ≤ ci
(
∫ 1

0

1

a(x)
h2(x)R2[uh(x)]dx

) 1

2

, (4.5.15)

where e(x) = u(x) − uh(x), note that e ∈ H1
0 .

Proof. By the definition of the energy norm we have

‖e(x)‖2
E =

∫ 1

0

a(x)[e′(x)]2dx =

∫ 1

0

a(x)[u′(x) − u′h(x)]e
′(x)dx

=

∫ 1

0

a(x)u′(x)e′(x)dx−
∫ 1

0

a(x)u′h(x)e
′(x)dx

(4.5.16)

Since e ∈ H1
0 the variational formulation (VF) gives that

∫ 1

0

a(x)u′(x)e′(x)dx =

∫ 1

0

f(x)e(x)dx. (4.5.17)

Thus we have

‖e(x)‖2
E =

∫ 1

0

f(x)e(x)dx−
∫ 1

0

a(x)u′h(x)e
′(x)dx. (4.5.18)

Adding and subtracting the interpolant πhe(x) and πhe
′(x) to e and e′ in the

integrands above yields

‖e(x)‖2
E =

∫ 1

0

f(x)[e(x) − πhe(x)]dx+

∫ 1

0

f(x)πhe(x)dx

︸ ︷︷ ︸

(i)

−
∫ 1

0

a(x)u′h(x)[e
′(x) − πhe

′(x)]dx−
∫ 1

0

a(x)u′h(x)πhe
′(x)dx

︸ ︷︷ ︸

(ii)

.

Since uh(x) is a solution of the (FEM) (4.4.3) and πhe(x) ∈ V
(0)
h we have

−(ii) + (i) = 0. Hence

‖e(x)‖2
E =

∫ 1

0

f(x)[e(x) − πhe(x)]dx−
∫ 1

0

a(x)u′h(x)[e
′(x) − πhe

′(x)]dx

=

∫ 1

0

f(x)[e(x) − πhe(x)]dx−
M∑

k=1

∫ xk

xk−1

a(x)u′h(x)[e
′(x) − (πhe

′(x)]dx.
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Now, for the integrals in the sum above, we integrate by parts over each
subinterval (xk−1, xk):

−
∫ xk

xk−1

a(x)u′h(x)
︸ ︷︷ ︸

g(x)

(e′(x) − πhe
′(x))

︸ ︷︷ ︸

F ′(x)

dx = [P.I.] =

= −
[

a(x)u′h(x)
︸ ︷︷ ︸

g(x)

(e(x) − πhe(x))
︸ ︷︷ ︸

F (x)

]xk

xk−1

+

∫ xk

xk−1

(a(x)u′h(x))
′

︸ ︷︷ ︸

g′(x)

(e(x) − πhe(x))
︸ ︷︷ ︸

F (x)

dx

Since e(xk) = πhe(xk), k = 0, 1 . . . ,M , where xk:s are the interpolation
nodes we have F (xk) = F (xk−1) = 0, and thus

−
∫ xk

xk−1

a(x)u′h(x)(e
′(x)− πhe

′(x))dx =

∫ xk

xk−1

(

a(x)u′h(x)
)′

(e(x)− πhe(x))dx.

Hence summing over k, we get

−
∫ 1

0

a(x)u′h(x)[e
′(x) − πhe

′(x)]dx =

∫ 1

0

[a(x)u′h(x)]
′(e(x) − πhe(x))dx,

and therefore

‖e(x)‖2
E =

∫ 1

0

f(x)[e(x) − πhe(x)]dx+

∫ 1

0

[a(x)u′h(x)]
′(e(x) − πhe(x))dx

=

∫ 1

0

{f(x) + [a(x)u′h(x)]
′}(e(x) − πhe(x))dx,

Let now R(uh(x)) = f(x) + (a(x)u′h(x))
′, i.e. R(uh(x)) is the residual error,

which is a well-defined function except in the set {xk}, since (a(xk)u
′
x(xk))

′

are not defined. Thus we can get the following estimate

‖e(x)‖2
E =

∫ 1

0

R(uh(x))(e(x) − πhe(x))dx =

=

∫ 1

0

1
√

a(x)
h(x)R(uh(x)) ·

√

a(x)
(e(x) − πhe(x)

h(x)

)

dx

≤
(∫ 1

0

1

a(x)
h2(x)R2(uh(x))dx

) 1

2
(∫ 1

0

a(x)
(e(x) − πhe(x)

h(x)

)2

dx
) 1

2

,

where we have used Cauchy Schwarz inequality. Now recalling the definition
of the weighted L2-norm we have,

∥
∥
∥
e(x) − πhe(x)

h(x)

∥
∥
∥

a
=

(∫ 1

0

a(x)
(e(x) − πhe(x)

h(x)

)2

dx
) 1

2

. (4.5.19)
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To estimate (4.5.19) we use the third interpolation estimate for e(x) in a
subinterval and get

∥
∥
∥
e(x) − πhe(x)

h(x)

∥
∥
∥

a
≤ ci‖e′(x)‖a = ci‖e(x)‖E. (4.5.20)

Thus

‖e(x)‖2
E ≤

(∫ 1

0

1

a(x)
h2(x)R2(uh(x))dx

) 1

2 · ci‖e(x)‖E, (4.5.21)

and the proof is complete.

Adaptivity
Below we briefly outline the adaptivity procedure based on the a posteriori
error estimate which uses the approximate solution and which can be used for
mesh-refinements. Loosely speaking this predicts local mesh refinement, i.e.
indicates changing the length of the interval h(x) in the regions (subintervals)
which is necessary. More concretely the idea is as follows: Assume that one
seeks an error bound less that a given error tolerance TOL:

‖e(x)‖E ≤ TOL. (4.5.22)

Then one may use the following steps as a mesh refinement strategy:

(i) Make an initial partition of the interval

(ii) Compute the corresponding FEM solution uh(x) and residual R(uh(x)).

(iii) If ‖e(x)‖E > TOL refine the mesh in the places for which
1

a(x)
R2(uh(x))

is large and perform the steps (ii) and (iii) again.
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4.6 Exercises

Problem 32. Consider the two-point boundary value problem

−u′′ = f, 0 < x < 1; u(0) = u(1) = 0. (4.6.1)

Let V = {v : ‖v‖ + ‖v′‖ <∞, v(0) = v(1) = 0}.
a. Use V to derive a variational formulation of (4.6.1).

b. Discuss why V is valid as a vector space of test functions.

c. Classify whether the following functions are admissible test functions or
not:

sin πx, x2, x ln x, ex − 1, x(1 − x).

Problem 33. Assume that u(0) = u(1) = 0, and that u satisfies

∫ 1

0

u′v′ dx =

∫ 1

0

fv dx,

for all v ∈ V = {v : ‖v‖ + ‖v′‖ <∞, v(0) = v(1) = 0}.
a. Show that u minimizes the functional

F (v) =
1

2

∫ 1

0

(v′)2 dx−
∫ 1

0

fv dx. (4.6.2)

Hint: F (v) = F (u+ w) = F (u) + . . . ≥ F (u).

b. Prove that the above minimization problem is equivalent to

−u′′ = f, 0 < x < 1; u(0) = u(1) = 0.

Problem 34. Consider the two-point boundary value problem

−u′′ = 1, 0 < x < 1; u(0) = u(1) = 0. (4.6.3)

Let Th : xj = j
4
, j = 0, 1, . . . , 4, denote a partition of the interval 0 < x < 1

into four subintervals of equal length h = 1/4 and let Vh be the corresponding
space of continuous piecewise linear functions vanishing at x = 0 and x = 1.

a. Compute a finite element approximation U ∈ Vh to (4.6.3).

b. Prove that U ∈ Vh is unique.
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Problem 35. Consider once again the two-point boundary value problem

−u′′ = f, 0 < x < 1; u(0) = u(1) = 0.

a. Prove that the finite element approximation U ∈ Vh to u satisfies

‖(u− U)′‖ ≤ ‖(u− v)′‖,

for all v ∈ Vh.

b. Use this result to deduce that

‖(u− πhu)
′‖ ≤ C‖hu′′‖, (4.6.4)

where C is a constant and πhu a piecewise linear interpolant to u.

Problem 36. Consider the two-point boundary value problem

−(au′)′ = f, 0 < x < 1,

u(0) = 0, a(1)u′(1) = g1,
(4.6.5)

where a > 0 is a positive function and g1 is a constant.

a. Derive the variational formulation of (4.6.5).

b. Discuss how the boundary conditions are implemented.

Problem 37. Consider the two-point boundary value problem

−u′′ = 0, 0 < x < 1; u(0) = 0, u′(1) = 7. (4.6.6)

Divide the interval 0 ≤ x ≤ 1 into two subintervals of length h = 1
2

and let Vh

be the corresponding space of continuous piecewise linear functions vanishing
at x = 0.

a. Formulate a finite element method for (4.6.6).

b. Calculate by hand the finite element approximation U ∈ Vh to (4.6.6).

Study how the boundary condition at x = 1 is approximated.

Problem 38. Consider the two-point boundary value problem

−u′′ = 0, 0 < x < 1; u′(0) = 5, u(1) = 0. (4.6.7)
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Let Th : xj = jh, j = 0, 1, . . . , N, h = 1/N be a uniform partition of the
interval 0 < x < 1 into N subintervals and let Vh be the corresponding space
of continuous piecewise linear functions.

a. Use Vh to formulate a finite element method for (4.6.7).

b. Compute the finite element approximation U ∈ Vh assuming N = 3.

Problem 39. Consider the problem of finding a solution approximation to

−u′′ = 1, 0 < x < 1; u′(0) = u′(1) = 0. (4.6.8)

Let Th be a partition of the interval 0 < x < 1 into two subintervals of equal
length h = 1

2
and let Vh be the corresponding space of continuous piecewise

linear functions.

a. Find the exact solution to (4.6.8) by integrating twice.

b.Compute a finite element approximation U ∈ Vh to u if possible.

Problem 40. Consider the two-point boundary value problem

−((1 + x)u′)′ = 0, 0 < x < 1; u(0) = 0, u′(1) = 1. (4.6.9)

Divide the interval 0 < x < 1 into 3 subintervals of equal length h = 1
3

and
let Vh be the corresponding space of continuous piecewise linear functions
vanishing at x = 0.

a. Use Vh to formulate a finite element method for (4.6.9).

b. Verify that the stiffness matrix A and the load vector b are given by

A =
1

2








16 −9 0

−9 20 −11

0 −11 11







, b =








0

0

1







.

c. Show that A is symmetric tridiagonal, and positive definite.

d. Derive a simple way to compute the energy norm ‖U‖2
E, defined by

‖U‖2
E =

∫ 1

0

(1 + x)U ′(x)2 dx,

where U ∈ Vh is the finite element solution approximation.
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Problem 41. Consider the two-point boundary value problem

−u′′ = 0, 0 < x < 1; u(0) = 0, u′(1) = k(u(1) − 1). (4.6.10)

Let Th : 0 = x0 < x1 < x2 < x3 = 1, where x1 = 1
3

and x1 = 2
3

be a partition
of the interval 0 ≤ x ≤ 1 and let Vh be the corresponding space of continuous
piecewise linear functions, which vanish at x = 0.

a. Compute a solution approximation U ∈ Vh to (4.6.10) assuming k = 1.

b. Discuss how the parameter k influence the boundary condition at x = 1.

Problem 42. Consider the finite element method applied to

−u′′ = 0, 0 < x < 1; u(0) = α, u′(1) = β,

where α and β are given constants. Assume that the interval 0 ≤ x ≤ 1
is divided into three subintervals of equal length h = 1/3 and that {ϕj}3

0 is
a nodal basis of Vh, the corresponding space of continuous piecewise linear
functions.

a. Verify that the ansatz

U(x) = αϕ0(x) + ξ1ϕ1(x) + ξ2ϕ2(x) + ξ3ϕ3(x),

yields the following system of equations

1

h








−1 2 −1 0

0 −1 2 −1

0 0 −1 1


















α

ξ1

ξ2

ξ3











=








0

0

β







. (4.6.11)

b. If α = 2 and β = 3 sgow that (4.6.11) can be reduced to

1

h








2 −1 0

−1 2 −1

0 −1 1















ξ1

ξ2

ξ3








=








−2h−1

0

3







.

c. Solve the above system of equations to find U(x).
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Problem 43. Compute a finite element solution approximation to

−u′′ + u = 1; 0 ≤ x ≤ 1, u(0) = u(1) = 0, (4.6.12)

using the continuous piecewise linear ansatz U = ξ1ϕ1(x) + ξ2ϕ2(x) where

ϕ1(x) =







3x, 0 < x < 1
3

2 − 3x, 1
3
< x < 2

3
,

0, 2
3
< x < 1

ϕ2(x) =







0, 0 < x < 1
3

3x− 1, 1
3
< x < 2

3
.

3 − 3x, 2
3
< x < 1

Problem 44. Consider the following eigenvalue problem

−au′′ + bu = 0; 0 ≤ x ≤ 1, u(0) = u′(1) = 0, (4.6.13)

where a, b > 0 are constants. Let Th : 0 = x0 < x1 < . . . < xN = 1,
be a non-uniform partition of the interval 0 ≤ x ≤ 1 into N intervals of
length hi = xi − xi−1, i = 1, 2, . . . , N and let Vh be the corresponding space
of continuous piecewise linear functions. Compute the stiffness and mass
matrices.
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Chapter 5

Scalar Initial Value Problem

Consider the following ordinary differential equation (ODE)

(DE)

(IV)







u̇(t) + a(t)u(t) = f(t), 0 < t ≤ T

u(0) = u0

(5.0.1)

where f(t) is the source term and u̇(t) =
du

dt
. Here a(t) is a bounded function.

For a(t) ≥ 0 (5.0.1) is called a parabolic problem, while a(t) > 0 yields a
dissipative problem. Below first we give a few analytic aspects

5.1 Fundamental solution and stability

Theorem 14 (Fundamental solution). The solution for the ODE (5.0.1) is
given by

u(t) = u0 · e−A(t) +

∫ t

0

e−(A(t)−A(s))f(s)ds, (5.1.1)

where A(t) =
∫ t

0
a(s)ds is the integrating factor.

Proof. Multiplying the (DE) by the integrating factor eA(t) we get

u̇(t)eA(t) + Ȧ(t)eA(t)u(t) = eA(t)f(t), i.e.
d

dt
[u(t)eA(t)] = eA(t)f(t),

where we used that a(t) = Ȧ(t). Integrating over (0, t) yields
∫ t

0

d

ds
[u(s)eA(s)]ds =

∫ t

0

eA(s)f(s)ds⇐⇒ u(t)eA(t)−u(0)eA(0) =

∫ t

0

eA(s)f(s)ds.

105
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Now since A(0) = 0 and u(0) = u0 we get the desired result

u(t) = u0 · e−A(t) +

∫ t

0

e−(A(t)−A(s))f(s)ds. (5.1.2)

Theorem 15 (Stability estimates). Using the fundamental solution we can
derive the following stability estimates:

(i) If a(t) ≥ α > 0, then |u(t)| ≤ e−αt|u0| +
1

α
(1 − e−αt) max

0≤s≤t
|f(s)|

(ii) If a(t) ≥ 0 (i.e. α = 0 the parabolic case), then

|u(t)| ≤ |u0| +
∫ t

0

|f(s)|ds or |u(t)| ≤ |u0| + ‖f‖L1
(5.1.3)

Proof. (i) For a(t) ≥ 0, ∀t > 0, we have that A(t) =

∫ t

0

a(s)ds is non-

decreasing and A(t) − A(s) ≥ 0, ∀t > s. For a(t) ≥ α > 0 we have A(t) =
∫ t

0

a(s)ds ≥
∫ t

0

α · ds = αt. Further

A(t) − A(s) =

∫ t

s

a(r) dr ≥ α(t− s). (5.1.4)

Thus e−A(t) ≤ e−αt and e−(A(t)−A(s)) ≤ e−α(t−s). Hence using (5.1.2) we get

u(t) ≤ u0 · e−αt +

∫ t

0

e−α(t−s) max
0≤s≤t

|f(s)|ds, (5.1.5)

which after integration gives that

|u(t)| ≤ e−αt|u0| + max
0≤s≤t

|f(s)|
[ 1

α
e−α(t−s)

]s=t

s=0

|u(t)| ≤ e−αt|u0| +
1

α
(1 − e−αt) max

0≤s≤t
|f(s)|.

(ii) Let α = 0 in (5.1.5) then |u(t)| ≤ |u0| +

∫ t

0

|f(s)|ds, and the proof is

complete.

Remark 12. Recall that we refer to the set of functions where we seek the
approximate solution as the trial space and the space of functions used for
the orthogonality condition, as the test space.
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5.2 Galerkin finite element methods (FEM)

for IVP

To start, for discretization in time we shall introduce some general class of
piecewise polynomial test and trial functions. However, in most of our studies
in this notes we shall restrict ourselves to two simple cases:
• cG(1), continuous Galerkin of degree 1: In this case the trial functions
are piecewise linear and continuous while the test functions are piecewise
constant and discontinuous, i.e. unlike the cG(1) for BVP, here the trial and
test functions are indifferent spaces.
• dG(0), Discontinuous Galerkin of degree 0: Here both the trial and test
functions are piecewise constant and discontinuous, i.e. like the cG(1) for
BVP they are in the same space of functions, however, they are of one lower
degree (piecewise constant) and discontinuous.
Generally we have
• gG(q), Global Galerkin of degree q: Formulated for our initial value prob-
lem (5.0.1) as follows: Find U ∈ Pq(0, T ) with U(0) = u0 such that

∫ T

0

(U̇ + aU)vdt =

∫ T

0

fv dt, ∀v ∈ Pq(0, T ), with v(0) = 0, (5.2.1)

where v := {t, t2, . . . , tq} := span[t, t2, . . . , tq].
• cG(q), Continuous Galerkin of degree q: Find U ∈ Pq(0, T ) with U(0) =
u0 such that

∫ T

0

(U̇ + aU)vdt =

∫ T

0

fvdt, ∀v ∈ Pq−1(0, T ), (5.2.2)

where now v := {1, t, t2, . . . , tq−1}.
Note the difference between the two test function spaces above.

Example 25. Consider cG(q) with q = 1 then tq−1 = t0 = 1 and v ≡ 1, thus

∫ T

0

(U̇ + aU)vdt =

∫ T

0

(U̇ + aU)dt = U(T ) − U(0) +

∫ T

0

aU(t)dt (5.2.3)

But U(t) is a linear function through U(0) and the unknown quantity U(T ),
thus

U(t) = U(T )
t

T
+ U(0)

T − t

T
, (5.2.4)
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inserting U(t) in (5.2.3) we get

U(T ) − U(0) +

∫ T

0

a
(

U(T )
t

T
+ U(0)

T − t

T

)

dt =

∫ T

0

f dt. (5.2.5)

which gives us U(T ) and consequently, through (5.2.4) and a given U(0),
U(t). Using this idea we can formulate:
• The cG(1) Algorithm for the partition Tk of [0, T ] to subintervals Ik =
(tk−1, tk].

(1) Given U(0) = U0, apply (5.2.5) to (0, t1] and compute U(t1). Then
using (5.2.4) one gets automatically U(t), ∀t ∈ [0, t1].

(2) Assume that U is computed in all the successive intervals (tk−1, tk], k =
0, 1, n− 1.

(3) Compute U(t) for t ∈ (tn−1, tn].

This is done through applying (5.2.5) to the interval (tn−1, tn], instead
of (0, T ]: i.e. with Un := U(tn) and Un−1 := U(tn−1),

Un − Un−1 +

∫ tn

tn−1

a
( t− tn−1

tn − tn−1
Un +

tn − t

tn − tn−1
Un−1

)

dt =

∫ tn

tn−1

fdt.

Now since Un−1 is known we can calculate Un and then U(t), t ∈ (tn−1, tn]
is determined by the nth-version of the relation formula (5.2.4):

U(t) = Un
t

tn
+ Un−1

tn − t

tn
.

Global forms

•Continuous Galerkin cG(q): Find U(t) ∈ V
(q)
k , such that U(0) = U0

and ∫ tn

0

(U̇ + aU)wdt =

∫ tn

0

fwdt, ∀w ∈ W
(q−1)
k , (5.2.6)

V
(q)
k = {v : v continuous piecewise polynomials of degree q on Tk},

W
(q−1)
k = {w : w discontinuous piecewise polynomials of degree q−1 on Tk}.
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•Discontinuous Galerkin dG(q): Find U(t) ∈ Pq(0, T ) such that
∫ T

0

(U̇ + aU)vdt+ a(U(0) − u(0))v(0) =

∫ T

0

fvdt, ∀v ∈ Pq(0, T ). (5.2.7)

This approach gives up the requirement that U(t) satisfies the initial condi-
tion. Instead, the initial condition is represented by U(0) − u(0) 6= 0.

In the sequel we shall use the following notation:
Let v±n = lim

s→0+
v(tn ± s) and [vn] = v+

n − v−n is the jump in v(t) at time t.

tn−1 tn tn+1
t

kn

v−n

[vn]

v+
n

◦ •

◦ •

Figure 5.1: The jump [vn] and the right and left limits v±

Then dG(q) reads as follows: For n = 1, . . . , N find U(t) ∈ Pq(tn−1, tn) such
that
∫ tn

tn−1

(U̇ + aU)vdt+ U+
n−1v

+
n−1 =

∫ tn

tn−1

fvdt+ U−
n−1v

+
n−1, ∀v ∈ Pq(tn−1, tn).

(5.2.8)
Let q = 0, then v ≡ 1 is the only base function and we have U(t) = Un =
U+

n−1 = U−
n on In = (tn−1, tn] and U̇ ≡ 0. Thus for q = 0 (5.2.8) gives the

dG(0) formulation: For n = 1, . . . , N find piecewise constants Un such that
∫ tn

tn−1

aUndt+ Un =

∫ tn

tn−1

fdt+ Un−1. (5.2.9)

Finally summing over n in (5.2.8), we get the global dG(q) formulation: Find

U(t) ∈W
(q)
k , with U−

0 = u0 such that

N∑

n=1

∫ tn

tn−1

(U̇ + aU)wdt+

N∑

n=1

[Un−1]w
+
n−1 =

∫ tN

0

fwdt, ∀w ∈W
(q)
k . (5.2.10)
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5.3 An a posteriori error estimate for cG(1)

•The continuous problem Recall the initial value problem

u̇(t) + a(t)u(t) = f(t), ∀t ∈ (0, T ), u(0) = u0. (5.3.1)

Let us rewrite (5.3.1) in a general variational form

∫ T

0

(u̇+ au)vdt =

∫ T

0

fvdt,

for all test functions v. Integrating by parts we get the equivalent equation

u(T )v(T )− u(0)v(0) +

∫ T

0

u(t)
(

− v̇(t) + av(t)
)

dt =

∫ T

0

fvdt. (5.3.2)

If we now choose v to be the solution of the dual problem:

−v̇ + av = 0, in (0, T ), (5.3.3)

then (5.3.2) is simplified to

u(T )v(T ) = u(0)v(0) +

∫ T

0

fvdt, ∀v(t) ∈ P q(0, T ). (5.3.4)

In other words choosing v to be the solution of the dual problem (5.3.3) we
may get the final value u(T ) of the solution directly coupled to the initial
value u(0) and the data f . This type of representation will be crucial in, e.g.
a posteriori error analysis as in the proof of the next theorem.
The Dual problem for (5.3.1) is formulated as follows: Find ϕ(t) such that







−ϕ̇(t) + a(t)ϕ(t) = 0, tN > t ≥ 0

ϕ(tN ) = eN , eN = uN − UN = u(tN) − U(tN ).
(5.3.5)

Note that (5.3.5) runs backward in time starting at time t = tN .
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x

y

u(t) problem

ϕ(t) problem
0 T

Theorem 16. For N = 1, 2, . . . the cG(1) solution U(t) satisfies

|eN | ≤ S(tN) · max
[0,tN ]

|k r(U)|, (5.3.6)

where k = kn = |In| for t ∈ In = (tn−1, tn) is the time step and r(U) =
U̇ + aU − f is the residual error. Further S(tN), specified below, is the
stability factor satisfying the quantitative bound

S(tN) :=

∫ tN
0

|ϕ̇|dt
eN

≤







eλ tN , if |a(t)| ≤ λ, ∀t
1, if a(t) ≥ 0, ∀t

(5.3.7)

Proof. Let e(t) = u(t) − U(t). Using the dual problem −ϕ̇(t) + a(t)ϕ(t) = 0
we can write

e2N = e2N + 0 = e2N +

∫ tN

0

e(−ϕ̇+ aϕ) dt, (5.3.8)

and by partial integration we get
∫ tN

0

e(−ϕ̇ + a(t)ϕ)dt = [−e(t)ϕ(t)]tN0 +

∫ tN

0

ėϕ dt+

∫ tN

0

eaϕ dt

= − e(tN )
︸ ︷︷ ︸

=eN

ϕ(tN )
︸ ︷︷ ︸

=eN

+

∫ tN

0

(ė+ ae)ϕdt = −e2N +

∫ tN

0

(ė+ ae)ϕdt,

where evaluating the boundary term we used e(0) = 0. Note that

ė(t) + a(t)e(t) = u̇(t) − U̇(t) + a(t)u(t) − a(t)U(t),

and since f(t) = u̇(t) + a(t)u(t) we observe that

ė(t) + a(t)e(t) = f(t) − U̇(t) − a(t)U(t) := −r(U), (5.3.9)

where the last equality is just the definition of the residual: r(U) = U̇+aU−
f . Consequently we get the error representation formula:

e2N = −
∫ tN

0

r(U(t))ϕ(t)dt. (5.3.10)
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To continue we use the interpolant πkϕ = 1
kn

∫

In
ϕ(s)ds of ϕ and write

e2N = −
∫ tN

0

r(U)(ϕ(t) − πkϕ(t))dt+

∫ tN

0

r(U)πkϕ(t)dt. (5.3.11)

Now from the discrete variational formulation:
∫ tN

0

(U̇ + aU)πkϕ(t)dt =

∫ tN

0

fπkϕ(t)dt (5.3.12)

we have the Galerkin orthogonality relation

∫ tN

0

r(U)πkϕ(t)dt = 0. (5.3.13)

Thus the final form of the error representation formula is

e2N = −
∫ tN

0

r(U)(ϕ(t) − πkϕ(t))dt. (5.3.14)

Now applying the interpolation error to the function ϕ in the interval In, |In| =
kn we have ∫

In

|ϕ− πkϕ|dt ≤ kn

∫

In

|ϕ̇|dt. (5.3.15)

This would yield the estimate

∫ tN

0

|ϕ− πkϕ|dt =
N∑

n=1

∫

In

|ϕ− πkϕ|dt ≤
N∑

n=1

kn

∫

In

|ϕ̇|dt (5.3.16)

Let now |v|J = max
t∈J

|v(t)|, then using (5.3.16) and the final form of the error

representation formula (5.3.14) we have that

|eN |2 ≤
N∑

n=1

|r(U)|In
· kn

∫

In

|ϕ̇|dt ≤ max
1≤n≤N

(kn|r(U)|In
)

∫ tN

0

|ϕ̇|dt.

Now since
∫ tN
0

|ϕ|dt = |eN | · S(tN), (see the definition of S(tN )), we finally
get

|eN |2 ≤ |eN |S(tN) max
[0,tN ]

(k|r(U)|). (5.3.17)

This completes the proof of the first assertion of the theorem.
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To prove the second assertion, we claim that:

|a(t)| ≤ λ, 0 ≤ t ≤ tN =⇒ |ϕ(t)| ≤ eλ tN |eN |, 0 ≤ t ≤ tN (5.3.18)

|a(t)| ≥ 0, ∀t =⇒ |ϕ(t)| ≤ |eN |, ∀t ∈ [0, tN ]. (5.3.19)

To prove this claim let s = tN − t, (t = tN − s) and define ψ(s) = ϕ(tN − s),
then using the chain rule

dψ

ds
=
dψ

dt
· dt
ds

= −ϕ̇(tN − s). (5.3.20)

The dual problem is now reformulated as find ϕ(t) such that

−ϕ̇(tN − s) + a(tN − s)ϕ(tN − s) = 0. (5.3.21)

The corresponding problem for ψ(s):







dψ(s)

ds
+ a(tN − s)ψ(s) = 0, tN > s ≥ 0

ψ(0) = ϕ(tN) = eN , eN = uN − UN = u(tN) − U(tN ),

has the fundamental solution ψ(s) = CeA(tN−s), where ψ(0) = eN implies
that C = e−A(tN )eN and thus ψ(s) = eN e

−A(tN )eA(tN−s) = eN e
A(t)−A(tN ).

Now inserting back in the relation ψ(s) = ϕ(t), tN − s = t, we get

ϕ(t) = eN · eA(t)−A(tN ), and ϕ̇(t) = eN · a(t)eA(t)−A(tN ). (5.3.22)

Now the proof of both assertion in the claims are easily followed:

(a) For |a(t)| ≤ λ, we have

|ϕ(t)| = |eN |e
R t

tN
a(s)ds ≤ |eN |emaxt |a(t)|(tN−t) ≤ |eN |eλ·tN (5.3.23)

(b) For |a(t)| ≥ 0, we have

|ϕ(t)| = |eN |e
R tN
0

a(s)ds ≤ |eN |emint a(t)(t−tN ) (5.3.24)

and since (t− tN) < 0 we get that |ϕ(t)| ≤ |eN |.
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Now we return to the estimates for S(tN). Note that for a(t) ≥ 0 we have
using the second relation in (5.3.22) that

∫ tN

0

| ˙ϕ(t)|dt = |eN |
∫ tN

0

a(t)eA(t)−A(tN )dt = |eN | · [eA(t)−A(tN )]tN0

= |eN | ·
(

1 − eA(0)−A(tN )
)

≤ 1,

which gives that S(tN) =

∫ tN
0

| ˙ϕ(t)|dt
|eN |

≤ 1.

As for the case |a(t)| ≤ λ, we use again (5.3.22): ϕ̇(t) = a(t)eN ·eA(t)−A(tN )

and write

|ϕ̇(t)| ≤ λ|eN |eA(t)−A(tN ) = λ|eN |e
R t

tN
a(s)ds ≤ λ|eN |eλ(tN−t). (5.3.25)

Integrating over (0, tN) we get

∫ tN

0

|ϕ̇(t)|dt ≤ |eN |
∫ tN

0

λeλ(tN−t)dt = |eN |
[

− eλ(tN−t)
]tN

0
= |eN |(−1 + eλtN ),

which gives that S(tN ) ≤ (−1 + eλ·tN ) ≤ eλ·tN , and completes the proof of
the second assertion.

Theorem 17 ( Convergence order O(k2)). For N = 1, 2, . . . and with SN as
in the previous theorem, the error for cG(1) solution U(t) satisfies

|eN | ≤ S(tN) max
[0,tN ]

∣
∣
∣k2 (aU − f)

∣
∣
∣. (5.3.26)

Proof. Using the orthogonality [g(t)− πkg(t)] ⊥ (constants) ∀g(t), and since
U̇(t) is constant on IN we have that

∫ tN
0
U̇(ϕ−πkϕ)dt = 0. Thus using error

representation formula (5.3.14) yields

e2N = −
∫ tN

0

r(U)[ϕ(t) − πkϕ(t)]dt =

∫ tN

0

(f − aU − U̇)(ϕ− πkϕ)dt

=

∫ tN

0

(f − aU)(ϕ− πkϕ)dt−
∫ tN

0

U̇(ϕ− πkϕ)dt

= −
∫ tN

0

(aU − f)(ϕ− πkϕ)dt.



5.3. AN A POSTERIORI ERROR ESTIMATE FOR CG(1) 115

Vh
πkg(t)

g(t) g(t) − πkg(t)

Figure 5.2: Orthogonality: (g(t) − πkg(t)) ⊥ (constants) ∀g(t).

Similarly using the fact that πk(aU − f) is a constant we get

∫ tN

0

πk(aU − f)(ϕ− πkϕ)dt = 0. (5.3.27)

Consequently we can write

e2N = −
∫ tN

0

(

(aU − f) − πk(aU − f)
)

(ϕ− πkϕ)dt. (5.3.28)

Now using the above theorem and the interpolation error estimate we get

|eN | ≤ S(tN) ·
∣
∣
∣k|(aU − f) − πk(aU − f)|

∣
∣
∣
[0,tN ]

≤ S(tN) ·
∣
∣
∣k2 d

dt
(aU − f)

∣
∣
[0,tN ]

.

(5.3.29)
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5.4 A dG(0) a posteriori error estimate

Theorem 18. For N = 1, 2, . . ., the dG(0) solution U(t) satisfies

|u(tN) − UN | ≤ S(tN)|kR(U)|[0,tN ], UN = U(tN ) (5.4.1)

where

R(U) =
|UN − UN−1|

kn
+ |f − aU | for tN−1 < t ≤ tN . (5.4.2)

Proof. The proof uses similar techniques as in the cG(1) case. Note that
here the residual error includes jump terms and since dual problem satisfies
−ϕ̇(t) + a(t)ϕ(t) = 0, we can write

e2N = e2N +

N∑

n=1

∫ tn

tn−1

e[−ϕ̇(t) + a(t)ϕ(t)]dt = [PI] =

= e2N +
N∑

n=1

(∫ tn

tn−1

(ė+ ae)ϕ(t)dt− [eϕ]tntn−1

)

= e2N +

N∑

n=1

∫ tn

tn−1

(f − aU)ϕdt−
N∑

n=1

[eϕ]tntn−1
,

(5.4.3)

where in the last relation we use ė + ae = u̇ − U̇ + au − aU = f − aU and
also the fact that U = constant U̇ = 0. We rewrite the last sum as follows

N∑

n=1

(eϕ)tn
tn−1

=
N∑

n=1

(

e(t−n )ϕ(t−n ) − e(t+n−1)ϕ(t+n−1)
)

= {for a given functiong; g(t−n ) = g−n , g(t
+
n−1) = g+

n−1}

=

N∑

n=1

(e−nϕ
−
n − e+n−1ϕ

+
n−1) = (e−1 ϕ

−
1 − e+0 ϕ

+
0 ) + (e−2 ϕ

−
2 − e+1 e

+
1 )

+ . . .+ (e−N−1ϕ
−
N−1 − e+N−2ϕ

+
N−2) + (e−Nϕ

−
N − e+N−1ϕ

+
N−1).

To continue for i = 1, . . . N − 1, we write ϕ−
i = (ϕ−

i − ϕ+
i + ϕ+

i ), then

−
N∑

n=1

(eϕ)tn
tn−1

= −e−Nϕ−
N + e+0 ϕ

+
0 − e−1 (ϕ−

1 − ϕ+
1 + ϕ+

1 ) + e+1 ϕ
+
1

− e−2 (ϕ−
2 − +ϕ+

2 + ϕ+
2 ) + e+2 ϕ

+
2 . . .

− e−N−1(ϕ
−
N−1 − ϕ+

N−1 + ϕ+
N−1) + e+N−1ϕ

+
N−1,
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where a general i-th term can be rewritten as

− e−i (ϕ−
i − ϕ+

i + ϕ+
i ) + e+i ϕ

+
i = −e−i ϕ−

i + −e−i ϕ+
i − e−i ϕ

+
i + e+i ϕ

+
i

= e−i (ϕ+
i − ϕ−

i ) + ϕ+
i (e+i − e−i ) = e−i [ϕi] + ϕ+

i [ei],

with [g] = g+ − g− representing the jump. Hence we have

−
N∑

n=1

(eϕ)|tntn−1
= −e2N + e+0 ϕ

+
0 +

N−1∑

n=1

[en]ϕ+
n +

N−1∑

n=1

e−n [ϕn]. (5.4.4)

Inserting in (5.4.3) we get that

e2N = e2N +

N∑

n=1

∫ tn

tn−1

(f − aU)ϕdt−
N∑

n=1

[eϕ]tntn−1

= e2N +
N∑

n=1

∫ tn

tn−1

(f − aU)ϕdt− e2N + e+0 ϕ
+
0 +

N−1∑

n=1

[en]ϕ+
n +

N−1∑

n=1

[ϕn]e
−
n =

= {ϕn, un smooth ⇒ [ϕn] = 0, [un] = 0}

= e+0 ϕ
+
0 +

N∑

n−1

∫ tn

tn−1

(f − aU)ϕdt+
N−1∑

n=1

[en]ϕ+
n = {[un] = 0 ⇒ [en] = [−Un]}

=

N∑

n=1

(∫ tn

tn−1

(f − aU)ϕdt− [Un−1]ϕ
+
n−1

)

=

= {Galerkin} =

N∑

n=1

∫ tn

tn−1

{(f − aU)(ϕ− πkϕ) − [Un−1](ϕ− πkϕ)+
n−1}dt.

Now to continue we just follow the previous theorem.

•Adaptivity for dG(0)
To guarantee that the dG(0) approximation U(t) satisfies

|eN | = |u(tn) − U(tn)| ≤ TOL, (TOL is a given tolerance) (5.4.5)

we seek to determine the time step kn so that

S(tN ) max
t∈In

|knR(U)| = TOL, n = 1, 2, . . . , N. (5.4.6)
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•An adaptivity algorithm

(i) Compute Un from Un−1 using a predicted step kn, for example

∫ tn

tn−1

aUndt+ Un =

∫ tn

tn−1

fdt+ Un−1. (5.4.7)

(ii) Compute |kR(U)|In
:= max

n
|knR(U)| and follow the chart:

Is (5.4.6) valid
for this kn?

YES!
—−→

Accept the solution Un

and go to the next time step

NO!
∣
∣
∣

Recompute (5.4.6)
with a smaller kn

5.5 A priori error analysis

•The discontinuous Galerkin method dG(0).
The dG(0) method for u̇ + au = f , a=constant, is formulated as follows:
Find U = U(t), t ∈ In, such that

∫ tn

tn−1

U̇dt+ a

∫ tn

tn−1

Udt =

∫

In

fdt. (5.5.1)

Note that U(t) = Un is constant for t ∈ In. Let Un = U(tn), Un−1 = U(tn−1)
and kn = tn − tn−1, then

∫ tn

tn−1

U̇dt+ a

∫ tn

tn−1

Udt = U(tn) − U(tn−1) + aknUn = Un − Un−1 + aknUn.

Hence with a given initial data u(0) = u0, the equation (5.5.1) is written as

Un − Un−1 + aknUn =

∫

In

fdt n = 1, 2, . . . U0 = u0. (5.5.2)

For the exact solution u(t) of u̇+ au = f , the same procedure yields

u(tn) − u(tn−1) + knaun(t) =

∫

In

fdt+ knaun(t) − a

∫ tn

tn−1

u(t)dt, (5.5.3)
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where we have moved the term a
∫ tn

tn−1
u(t)dt to the right hand side and add

knaun(t) to both sides. Thus from (5.5.2) and (5.5.3) we have that

(1 + kna)Un(t) = Un−1(t) +

∫

In

fdt,

(1 + kna)un(t) = un−1(t) +

∫

In

fdt+ knaun(t) − a

∫ tn

tn−1

u(t)dt.

(5.5.4)

Let now en = un − Un and en−1 = un−1 − Un−1 then (5.5.3) − (5.5.2) yields

en = (1 + kna)
−1(en−1 + ρn) (5.5.5)

where ρn := knaun(t)− a

∫ tn

tn−1

u(t)dt. Thus in order to estimate the error en

we need an iteration procedure and an estimate of ρn.

Lemma 2. We have that

|ρn| ≤
1

2
|a||kn|2 max

In

|u̇(t)| (5.5.6)

Proof. Recalling the definition we have ρn = knaun(t) − a
∫ tn

tn−1
u(t)dt. Thus

|ρn| ≤ |a||kn|
∣
∣
∣un − 1

|kn|

∫

In

udt
∣
∣
∣. (5.5.7)

Using a Taylor expansion of the integrand u(t) about tn, viz

u(t) = un + u̇(ξ)(t− tn), for some ξ, tn−1 < ξ < tn (5.5.8)

we get that

|ρn| ≤ |a||kn|
∣
∣
∣un − 1

kn

∫

In

[un + u̇(ξ)(t− tn)]dt
∣
∣
∣

≤ |a||kn|
∣
∣
∣un − 1

kn

knun − 1

kn

u̇(ξ)
[(t− tn)2

2

]tn

tn−1

∣
∣
∣

= |a||kn|
∣
∣
∣ − 1

kn
u̇(ξ)

[

0 − k2
n

2

]∣
∣
∣ = |a||kn|

∣
∣
∣ − 1

kn
u̇(ξ)

k2
n

2

∣
∣
∣ = |a||kn|2

1

2
|u̇(ξ)|.

Thus we have the following final estimate for ρn,

|ρn| ≤
1

2
|a||kn|2 max

In

|u̇(t)| (5.5.9)
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To simplify the estimate for en we split, and gather, the proof of technical
details in the following lemma:

Lemma 3. For kn|a| ≤ 1/2, n ≥ 1 we have that

(i) (1 − kn|a|)−1 ≤ e2kn|a|.

(ii) Let τn = tN − tn−1 then |eN | ≤
1

2

N∑

n=1

(e2|a|τn |a|kn) max
1≤n≤N

kn|u̇|In.

(iii)
N∑

n=1

e2|a|τn |a|kn ≤ e

∫ tN

0

|a|e2|a|τdτ .

We postpone the proof of this lemma and first show that using these
results we can obtain a bound for the error eN (our main result) viz,

Theorem 19. If kn|a| ≤ 1
2
, n ≥ 1 then the error of the dG(0) approximation

U satisfies

|u(tN) − U(tN )| = |eN | ≤
e

4

(

e2|a|tN − 1
)

max
1≤n≤N

kn|u̇(t)|In
. (5.5.10)

Proof. Using the estimates (ii) and (iii) of the above lemma we have that

|eN | ≤
1

2

N∑

n=1

(e2|a|τn |a|kn) max
1≤n≤N

kn|u̇|In
≤ 1

2

(

e

∫ tN

0

|a|e2|a|τdτ
)

max
1≤n≤N

kn|u̇|In

=
1

2
e
[e2|a|τ

2

]tN

0
· max

1≤n≤N
kn|u̇(t)|In

=
e

4

(

e2|a|tN − 1
)

max
1≤n≤N

kn|u̇(t)|In
.

Note that the stability constant
e

4

(

e2|a|tN − 1
)

may grow depending on

|a| and tN , and then this result may not be satisfactory at all.
Now we return to the proof of our technical results:

Proof of Lemma 3. (i) For 0 ≤ x := kn|a| ≤ 1/2, we have that 1/2 ≤ 1−x <
1 and 0 < 1 − 2x ≤ 1. We can now multiply both side of the first claim:

1

1 − x
< e2x by 1 − x ≥ 1/2 > 0 to obtain the equivalent relation

f(x) := (1 − x)e2x > 1. (5.5.11)
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Note that since f(0) = 1 and f ′(x) = (1− 2x)e2x > 0 the relation (5.5.11) is
valid.
(ii) We recall that en = (1 + kna)

−1(en−1 + ρn). To deal with the coefficient
(1 + kna)

−1 first we note that (1 + kna)
−1 ≤ (1 − kna)

−1 if a ≥ 0. Thus

(1 + kn|a|)−1 ≤ (1 − kn|a|)−1, a ∈ R. Further the assumption kn|a| ≤
1

2
for

n ≥ 1, combined with (i), implies that (1 − kn|a|)−1 ≤ e2kn|a|, n ≥ 1. Thus

|eN | ≤
1

1 − kN |a|
|eN−1| +

1

1 − kN |a|
|ρN | ≤ |eN−1| · e2kN |a| + |ρN | · e2kN |a|.

(5.5.12)
Relabeling, e.g. N to N − 1 we get

|eN−1| ≤ |eN−2| · e2kN−1|a| + |ρN−1| · e2kN−1|a| = e2kN−1|a|
(

|eN−2| + |ρN−1|
)

,

which, inserting in (5.5.12) gives that

|eN | ≤ e2kN |a|e2kN−1|a|
(

|eN−2| + |ρN−1|
)

+ |ρN | · e2kN |a|. (5.5.13)

Similarly we have |eN−2| ≤ e2kN−2|a|
(

|eN−3|+ |ρN−2|
)

. Now iterating (5.5.13)

and using the fact that e0 = 0 we get,

|eN | ≤e2kN |a|e2kN−1|a|e2kN−2|a||eN−3| + e2kN |a|e2kN−1|a|e2kN−2|a||ρN−2|
+ e2kN |a|e2kN−1|a||ρN−1| + |ρN | · e2kN |a| ≤ · · · ≤

≤e2|a|
PN

n=1
kn|e0| +

N∑

n=1

e2|a|
PN

m=n km |ρn| =

N∑

n=1

e2|a|
PN

m=n km |ρn|.

Recalling (5.5.6) (Lemma 2): |ρn| ≤
1

2
|a||kn|2 max

In

|u̇(t)|. Thus

|eN | ≤
N∑

n=1

e2|a|
PN

m=n km
1

2
|a||kn|2 max

In

|u̇(t)|. (5.5.14)

Note that

N∑

m=n

km = (tn−tn−1)+(tn+1−tn)+(tn+2−tn+1)+. . .+(tN −tN−1) = tN −tn−1.
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Hence we have shown the assertion (ii) of the lemma, i.e.

|eN | ≤
N∑

n=1

e2|a|(tN−tn−1) 1

2
|a||kn|2 max

In

|u̇(t)| =
1

2

N∑

n=1

(e2|a|τn |a|kn) max
1≤n≤N

kn|u̇|In
.

(iii) To prove this part we note that

τn = tN − tn−1 = (tN − tn) + (tn − tn−1) = τn+1 + kn, (5.5.15)

and since |a|kn ≤ 1/2 we have 2|a|τn = 2|a|τn+1 + 2|a|kn ≤ 2|a|τn+1 + 1.
Further for τn+1 ≤ τ ≤ τn, we can write

e2|a|τn · kn =

∫ τn

τn+1

e2|a|τndτ ≤
∫ τn

τn+1

e(2|a|τn+1+1)dτ

=

∫ τn

τn+1

e1 · e2|a|τn+1dτ ≤ e

∫ τn

τn+1

e2|a|τdτ.

(5.5.16)

Multiplying (5.5.16) by |a| and summing over n we get

N∑

n=1

e2|a|τn |a|kn ≤ e
( N∑

n=1

∫ τn

τn+1

e2|a|τdτ
)

|a|

= e

∫ τ1

τN+1

e2|a|τ |a|dτ = e

∫ tN

0

|a|e2|a|τdτ,
(5.5.17)

which is the desired result and the proof is complete. �

5.6 The parabolic case (a(t) ≥ 0)

We state and proof the basic estimate of this case

Theorem 20. Consider the dG(0) approximation U for u̇ + au = f , with

a(t) ≥ 0. Assume that kj |a|Ij
≤ 1

2
, ∀j, then we have the error estimates

|u(tN) − UN | ≤







3e2λtN max
0≤t≤tN

|ku̇| if |a(t)| ≤ λ

3 max
0≤t≤tN

|ku̇| if a(t) ≥ 0.
(5.6.1)
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Sketch of the proof. Let e = u− U = (u− πku) + (πku− U) := ẽ+ ē, where

ẽ is the interpolation error with πku being the L2-projection into W
(0)
k . To

estimate ē, we shall use the following discrete dual problem (DDP):

Find Φ ∈W
(0)
k , such that for n = N,N − 1, . . . , 1.

(DDP )







∫ tn

tn−1

(−Φ̇ + a(t)Φ)vdt− [Φn]vn = 0, ∀v ∈W
(0)
k

Φ+
N = ΦN+1 = (πku− U)N :≡ ēN .

(5.6.2)

Let now v = e, then

|ēN |2 =
N∑

n=1

∫ tn

tn−1

(−Φ̇ + a(t)Φ)ēdt−
N−1∑

n=1

[Φn]ēn + ΦN ēN . (5.6.3)

We now use ē = (πku− U) = (πku− u+ u− U) and write (5.6.3) as

|eN |2 =

N∑

n=1

∫ tn

tn−1

[−Φ̇ + a(t)Φ](πku− u+ u− U)UT

−
N−1∑

n=1

[Φn](πku− u+ u− U)n + ΦN (πku− u+ u− U)N .

Using Galerkin orthogonality we replace u by U . Therefore the total contri-
bution from the terms with the factor u − U is identical to zero. Thus due
to the fact that Φ̇ = 0 on each subinterval, we have the error representation
formula:

|eN |2 =
N∑

n=1

∫ tn

tn−1

(−Φ̇ + a(t)Φ)(πku− u)dt−
N−1∑

n=1

[Φn](πku− u)n + ΦN(πku− u)N

=

∫ tN

0

(a(t)Φ)(u− πku) dt+

N−1∑

n=1

[Φn](u− πku)n − ΦN (u− πku)N .

To continue we shall need the following results:

Lemma 4. If |a(t)| ≤ λ, ∀t ∈ (0, tN) and kj |a|Ij
≤ 1

2
, j = 1, 2, . . . , N , then

the solution of the discrete dual problem satisfies

(i) |Φn| ≤ e2λ(tN−tn−1)|ēN |.
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(ii)

N−1∑

n=1

|[Φn]| ≤ e2λtN |ēN |.

(iii)

N∑

n=1

∫ tn

tn−1

a(t)|Φn|dt ≤ e2λtN |ēN |.

(iv) If a(t) ≥ 0 then

Max
(

|Φn|,
N−1∑

n=1

|[Φn]|,
N∑

n=1

∫ tn

tn−1

a(t)|Φn| dt
)

≤ |ēN |.

Proof. We show the last estimate (iv), (the proofs of (i)-(iii) are similar to
that of the stability factor in the previous theorem). Consider the discrete
dual problem with v ≡ 1:

(DDP )







∫ tn

tn−1

(−Φ̇ + a(t)Φ)dt− [Φn] = 0,

ΦN+1 = (πku− U)N :≡ ēN .

(5.6.4)

For dG(0) this becomes

(DDP )







−Φn+1 + Φn + Φn

∫ tn
tn−1

a(t) = 0, n = N,N − 1, . . . , 1

ΦN+1 = ēN , Φn = Φ|In
.

(5.6.5)
By iterating we get

Φn =
N∏

j=n

(

1 +

∫

Ij

a(t)dt
)−1

ΦN+1 (5.6.6)

For a(t) ≥ 0 we have
(

1 +
∫

Ij
a(t)dt

)−1

≤ 1, thus (5.6.6) implies that

|Φn| ≤ ΦN+1 = |ēN |. (5.6.7)

Further we have using (5.6.6) that

Φn−1 =
N∏

j=n−1

(

1 +

∫

Ij

a(t)dt
)−1

ΦN+1 =
(

1 +

∫

In−1

a(t)dt
)−1

Φn ≤ Φn
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which implies that

[Φn] = Φ+
n − Φ−

n = Φn+1 − Φn ≥ 0. (5.6.8)

Thus

N∑

n=1

|[Φn]| = ΦN+1 − ΦN + ΦN − ΦN−1 + . . .+ Φ2 − Φ1

= ΦN+1 − Φ1 ≤ ΦN+1 ≤ |ēN |.
(5.6.9)

Finally in the discrete equation:

∫ tn

tn−1

(−Φ̇ + a(t)Φ)vdt− [Φn]vn = 0, ∀v ∈W
(0)
k (5.6.10)

we have v ≡ 1 and Φ̇ ≡ 0 for the dG(0). Hence (5.6.10) can be rewritten as

∫ tn

tn−1

a(t)Φndt = [Φn]. (5.6.11)

Summing over n, this gives that

N∑

n=1

∫ tn

tn−1

a(t)Φndt ≤
N∑

n=1

[Φn] ≤ |ēn|. (5.6.12)

Combining (5.6.7), (5.6.9), and (5.6.12) the proof of (iv) is now complete.

•Quadrature rule for f : Assume that a=constant. Then the error rep-
resentation formula, combining dG(0), with the quadrature role for f is as
follows:

e2N =
N∑

n=1

(∫ tn

tn−1

(f − aU)(ϕ− πkϕ)dt− [Un−1](ϕ− πkϕ)+
n−1

+

∫ tn

tn−1

fπkϕdt− (fπkϕ)nkn

︸ ︷︷ ︸

quadrature error

) (5.6.13)
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where for the endpoint-rule ḡn = g(tn), whereas for the midpoint-rule ḡn :=

g(t(n−1/2)). We also define the weak stability factor S̃(tN ) :=

∫ tN
0

|ϕ|dt
|eN |

, where

ϕ is the solution of the dual problem

−ϕ̇ + aϕ = 0, for tN > t ≥ 0 ϕ(tN ) = eN .

Note that πkϕ is piecewise constant and
∫

In

|πkϕ(t)|dt ≤
∫

In

|ϕ(t)|dt.

We can prove the following relations between the two stability factors:

S̃(tN) ≤ tN(1 + S(tN)).

Note that if a > 0 is sufficiently small, then S̃(tN) >> S(tN).

Theorem 21 (The modified a posteriori estimate for dG(0)). The dG(0)
approximation U(t) computed using quadrature on terms involving f satisfies
for N = 1, 2, . . .

|u(tn) − Un| ≤ S(tn)|kR(U)|(0,tN ) + S̃(tN)Cj |kjf (j)|(0,tN ), (5.6.14)

where

R(U) =
|Un − Un−1|

kn
+ |f − aU |, on In (5.6.15)

and j = 1 for the rectangle rule, j = 2 for the midpoint rule, C1 = 1, C2 =
1
2
, f (1) = ḟ and f (2) = f̈ .

5.6.1 Short summary of error estimates

In this part we shall derive some short variants for the error estimates above

Lemma 5. Let U be the cG(1) approximation of u satisfying the initial value
problem

u̇+ u = f, t > 0, u(0) = u0. (5.6.16)

Then we have that

|(u− U)(T )| ≤ max
[0,T ]

|k(f − U̇ − U)|, (5.6.17)

where k is the time step.
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Proof. The error e = u− U satisfies Galerkin orthogonality:
∫ T

0

(ė+ e)vdt = 0, for all piecewise constants v(t). (5.6.18)

Let ϕ satisfy the dual equation

−ϕ̇+ ϕ = 0, t < T, ϕ(T ) = e(T ). (5.6.19)

Then we have that ϕ(t) = e(T ) · et−T : Note that integrating −ϕ̇ + ϕ = 0
gives ∫

ϕ̇

ϕ
dt =

∫

1 · dt =⇒ lnϕ = t+ C. (5.6.20)

Let now C = lnC1, then (5.6.20) can be written as

lnϕ− lnC1 = ln
ϕ

C1
= t =⇒ ϕ(t) = C1 · et. (5.6.21)

Finally, since ϕ(T ) = e(T ) we have that

C1 · eT = e(T ), i.e. C1 = e(T ) · e−T =⇒ ϕ(t) = e(T ) · et−T . (5.6.22)

To continue we have using −ϕ̇+ ϕ = 0,

|e(T )|2 = e(T ) · e(T ) +

∫ T

0

e(−ϕ̇+ϕ)dt = e(T ) · e(T )−
∫ T

0

eϕ̇ dt+

∫ T

0

eϕdt.

Note that integration by parts gives
∫ T

0

eϕ̇dt = [e · ϕ]Tt=0 −
∫ T

0

ėϕdt = e(T )ϕ(T ) − e(0)ϕ(0) −
∫ T

0

ėϕdt.

Using ϕ(T ) = e(T ), and e(0) = 0, we thus have

|e(T )|2 = e(T ) · e(T ) − e(T ) · e(T ) +

∫ T

0

ėϕ dt+

∫ T

0

eϕ dt =

∫ T

0

(ė+ e)ϕdt

=

∫ T

0

(ė+ e)(ϕ− v)dt =

∫ T

0

(

u̇+ u
︸ ︷︷ ︸

=f

−U̇ − U
)

(ϕ− v)dt.

We have that U̇ + U − f := r(U), is the residual and

|e(T )|2 = −
∫ T

0

r(U) · (ϕ− v)dt ≤ max
[0,T ]

|k · r(U)|
∫ T

0

1

k
|ϕ− v|dt. (5.6.23)
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Recall that ∫

I

h−1|ϕ− v|dx ≤
∫

I

|ϕ′|dx. (5.6.24)

Further −ϕ̇ + ϕ = 0 implies ϕ̇ = ϕ, and ϕ(t) = e(T ) · et−T . Thus

|e(T )|2 ≤ max
[0,T ]

|k · r(U)|
∫ T

0

|ϕ̇|dt = max
[0,T ]

|k · r(U)|
∫ T

0

|ϕ(t)| dt

≤ max
[0,T ]

|kr(U)|e(T )|
∫ T

0

et−Tdt,

(5.6.25)

and since
∫ T

0

et−Tdt = [et−T ]T0 = e0 − e−T = 1 − e−T ≤ 1, T > 0,

we finally end up with the desired result

|e(T )| ≤ max
[0,T ]

|k · r(U)|.

Problem 45. Generalize the Lemma to the problem u̇ + au = f , with a =
positive constant.

Is the statement of Lemma 1 valid for u̇− u = f?

Problem 46. Study the dG(0)-case for u̇+ au = f, a > 0

Lemma 6. Let u̇ + u = f, t > 0. Show for the cG(1)-approximation U(t)
that

|(u− U)(T )| ≤ max
[0,T ]

|k2ü|T. (5.6.26)

Sketchy proof, via the dual equation. Let ϕ be the dual solution satisfying

ϕ̇+ ϕ = 0, t < T, ϕ(T ) = e(T ).

We compute the error at time T , viz

|e(T )|2 = |Θ(T )|2 = Θ(T )ϕ(T ) +

∫ T

0

Θ̄(−Φ̇ + Φ)

︸ ︷︷ ︸

=0

dt =

∫ T

0

(Θ̇ + Θ)Φ̄dt

= −
∫ T

0

(ρ̇+ ρ)Φ̄ dt = −
∫ T

0

ρ · Φ̄ dt ≤ max
[0,T ]

|k2ü|
∫ T

0

|Φ̄| dt

≤ max
[0,T ]

|k2ü| · T · |e(T )|.
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Here ρ = u− û,Θ = û− U and Φ is cG(1)-approximation of φ such that
∫ T

0
v(−Φ̇ + Φ) dt = 0 for all piecewise constant v(t). Furthermore û is

the piecewise linear interpolant of u and w̄ = is the piecewise constant mean
value.

5.7 Exercises

Problem 47. (a) Derive the stiffness matrix and load vector in piecewise
polynomial (of degree q) approximation for the following ODE in population
dynamics,







u̇(t) = λu(t), for 0 < t ≤ 1,

u(0) = u0.

(b) Let λ = 1 and u0 = 1 and determine the approximate solution U(t), for
q = 1 and q = 2.

Problem 48. Consider the initial value problem

u̇(t) + a(t)u(t) = f(t), 0 < t ≤ T, u(0) = u0.

Show that for a(t) > 0, and for N = 1, 2, . . . , the piecewise linear approxi-
mate solution U for this problem satisfies the a posteriori error estimate

|u(tN) − UN | ≤ max
[0,tN ]

|k(U̇ + aU − f)|, k = kn, for tn−1 < t ≤ tn.

Problem 49. Consider the initial value problem:

u̇(t) + au(t) = 0, t > 0, u(0) = 1.

a) Let a = 40, and the time step k = 0.1. Draw the graph of Un :=
U(nk), k = 1, 2, . . . , approximating u using (i) explicit Euler, (ii) implicit
Euler, and (iii) Crank-Nicholson methods.

b) Consider the case a = i, (i2 = −1), having the complex solution u(t) = e−it

with |u(t)| = 1 for all t. Show that this property is preserved in Cranck-
Nicholson approximation, (i.e. |Un| = 1 ), but NOT in any of the Euler
approximations.
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Problem 50. Consider the initial value problem

u̇(t) + au(t) = 0, t > 0, u(0) = u0, (a = constant).

Assume a constant time step k and verify the iterative formulas for dG(0)
and cG(1) approximations U and Ũ , respectively: i.e.

Un =
( 1

1 + ak

)n

u0, Ũn =
(1 − ak/2

1 + ak/2

)n

u0.

Problem 51. Let U be the cG(1) approximation of u satisfying the initial
value problem

u̇+ au = f, t > 0, u(0) = u0.

Let k be the time step and show that for a = 1,

|(u− U)(T )| ≤ min
(

||k(f − U̇ − U)||L∞[0,T ], T ||k2ü||L∞[0,T ]

)

.

Problem 52. Consider the scalar boundary value problem

u̇(t) + a(t)u(t) = f(t), t > 0, u(0) = u0.

(a) Show that for a(t) ≥ a0 > 0, we have the stability estimate

|u(t)| ≤ e−a0t

(

|u0| +
∫ t

0

ea0s|f(s)| ds
)

(b) Formulate the cG(1) method for this problem, and show that the con-
dition 1

2
a0k > −1, where k is the time step, guarantees that the method is

operational, i.e. no zero division occurs.

(c) Assume that a(t) ≥ 0, f(t) ≡ 0, and estimate the quantity
R T

0
|u̇| dt

|u0| .

Problem 53. Consider the initial value problem (u = u(x, t))

u̇+ Au = f, t > 0; u(t = 0) = u0.

Show that if there is a constant α > 0 such that

(Av, v) ≥ α||v||2, ∀v,
then the solution u of the initial value problem satisfies the stability estimate

||u(t)||2 + α

∫ t

0

||u(s)||2 ds ≤ ||u0||2 +
1

α

∫ t

0

||f(s)||2 ds.



Chapter 6

The heat equation in 1d

In this chapter we focus on some basic stability and finite element error
estimates for the one-space dimensional heat equation. A general discussion
on classical heat equation can be found in our Lecture Notes in Fourier
Analysis. We start our study considering an example of an initial boundary
value problem with mixed boundary conditions. Higher dimensional case
is considered in forthcoming lecture notes based on the present one. Here
we consider an example of an initial boundary value problem for the heat
equation, viz

(IBV P )







u̇− u′′ = f(x), 0 < x < 1, t > 0,

u(x, 0) = u0(x), 0 < x < 1,

u(0, t) = ux(1, t) = 0, t > 0,

(6.0.1)

where we have used the following differentiation notation in the 1 −D case:

u̇ := ut =
∂u

∂t
, u′ := ux =

∂u

∂x
, u′′ := uxx =

∂2u

∂x2
.

Note that the partial differential equation in (6.0.1) containing three deriva-
tives yields three degrees of freedom and therefore, to determine a unique
solution, it is necessary to supply three data: here two boundary condition
associated to two spatial derivatives (in u′′) and an initial condition cor-
responding to the time derivative (u̇). To have an idea we formulate an
example, viz

131
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u(x, t)

x

t

u0(x)

tn−1

tn

Figure 6.1: A decreasing temperature profile

Problem 54. Give physical meaning to the IBVP (6.0.1) where f = 20−u.

solution: Heat conduction with

u(x, t) = temperature at x at time t.

u(x, 0) = u0(x), the initial temperature at time t = 0.

u(0, t) = 0, fixed temperature at time x = 0.

u′(1, t) = 0, isolated boundary at x = 1 (no hear flux).

f = 20 − u, heat source, in this case a control system to force u⇒ 20.

6.1 Stability estimates

In this part we shall derive a general stability estimate for the mixed IBVP
above, prove a 1−D version of the Poincare inequality and then derive some
homogeneous stability estimates.

Theorem 22. The IBVP (6.0.1) satisfies the stability estimates

||u(·, t)|| ≤ ||u0|| +
∫ t

0

||f(·, s)|| ds, (6.1.1)

||ux(·, t)||2 ≤ ||u′0||2 +

∫ t

0

||f(·, s)||2 ds. (6.1.2)
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Proof. Multiply the equation in (6.0.1) by u and integrate over (0, 1) to get

∫ 1

0

u̇u dx−
∫ 1

0

u′′u dx =

∫ 1

0

fu dx. (6.1.3)

Integrating by parts we get

1

2

d

dt

∫ 1

0

u2 dx+

∫ 1

0

(u′)2 dx− u′(1, t)u(1, t) + u′(0, t)u(0, t) =

∫ 1

0

fu dx,

and using the boundary conditions and the Cauchy-Schwartz inequality we
end up with

||u|| d
dt
||u||+ ||u′||2 =

∫ 1

0

fu dx ≤ ||f ||||u||. (6.1.4)

Consequently

||u|| d
dt
||u|| ≤ ||f ||||u||, and thus

d

dt
||u|| ≤ ||f ||. (6.1.5)

Integrating over time we get

||u(·, t)|| − ||u(·, 0)|| ≤
∫ t

0

||f || ds, (6.1.6)

which gives (6.1.1). To prove (6.1.2) we multiply the differential equation by
u̇ and integrate over (0, 1) to obtain

∫ 1

0

(u̇)2 dx−
∫ 1

0

u′′u̇ dx = ||u̇||2 +

∫ 1

0

u′u̇′ dx− u′(1, t)u̇(1, t) + u′(0, t)u̇(0, t)

=

∫ 1

0

fu̇ dx.

The expression above gives

||u̇||2 +
1

2

d

dt
||u′||2 =

∫ 1

0

fu̇ dx ≤ ||f ||||u̇|| ≤ 1

2

(

||f ||2 + ||u′||2
)

. (6.1.7)

Thus
1

2
||u̇||2 +

1

2

d

dt
||u′||2 ≤ 1

2
||f ||2, (6.1.8)

and hence
d

dt
||u′||2 ≤ ||f ||2. (6.1.9)
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Now integrating over (0, t) we get the desired result

||u′(·, t)||2 − ||u′(·, 0)||2 ≤
∫ t

0

||f(·, s)||2 ds, (6.1.10)

and the proof is complete.

To continue we prove a one-dimensional version of the one of the most
important inequalities in PDE and analysis.

Theorem 23 (Poincare inequality in 1−D case). Assume that u and u′ are
square integrable. There exists a constant C, independent of u but dependent
of L, such that if u(0) = u(L) = 0, then there is constant C, independent of
u but dependent of L, such that

∫ L

0

u(x)2 dx ≤ C

∫ L

0

u′(x)2 dx, i.e. ||u|| ≤
√
C||u′||. (6.1.11)

Proof. Note that we can successively write

u(x) =

∫ x

0

u′(y) dy ≤
∫ x

0

|u′(y)| dy ≤
∫ x

0

|u′(y)| · 1 dy

≤
(∫ L

0

|u′(y)|2 dy
)1/2

·
(∫ L

0

12dy
)1/2

=
√
L
(∫ L

0

|u′(y)|2 dy
)1/2

.

Thus
∫ L

0

u(x)2 dx ≤
∫ L

0

L
(∫ L

0

|u′(y)|2 dy
)

= L2

∫ L

0

|u′(y)|2 dy, (6.1.12)

and hence
||u|| ≤ L||u′||. (6.1.13)

Remark 13. The constant c = L means that the Poincare inequality is valid
for arbitrary bounded intervals, but not! for unbounded intervals. It is also
unnecessary to have both boundary values equal zero. For instance if v(0) 6= 0
and, for simplicity L = 1, then by the same argument as above we get the
following version of one-dimensional Poincare’s’ inequality:

||u||2L2(0,1) ≤ 2
(

v(0)2 + ||u′||2L2(0,1)

)

. (6.1.14)
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Theorem 24 (Stability of the homogeneous heat equation). The homoge-
neous INBVP for the heat equation







u̇− u′′ = 0, 0 < x < 1, t > 0

u(0, t) = ux(1, t) = 0, t > 0

u(x, 0) = u0(x), 0 < x < 1,

(6.1.15)

satisfies the stability estimates

a)
d

dt
||u||2 + 2||u′||2 = 0, b) ||u(·, t)|| ≤ e−t||u0||.

Proof. a) Multiply the equation by u and integrate over x ∈ (0, 1),

0 =

∫ 1

0

(u̇−u′′)u dx =

∫ 1

0

u̇u dx+

∫ 1

0

(u′)2 dx−u′(1, t)u(1, t)+u′(0, t)u(0, t).

Using integration by parts and the boundary data we get

1

2

d

dt

∫ 1

0

u2 dx+

∫ 1

0

(u′)2 dx =
d

dt
||u||2 + 2||u′||2 = 0.

This gives the proof of a). As for b) using a) together with the Poincare
inequality with L = 1: ||u|| ≤ ||u′|| we have that

d

dt
||u||2 + 2||u||2 ≤ 0. (6.1.16)

Multiplying both sides of (6.1.16) by e2t yields

d

dt

(

||u||2e2t
)

≤
( d

dt
||u||2 + 2||u||2

)

e2t ≤ 0. (6.1.17)

We replace t by s and integrate over s ∈ (0, t) to obtain

∫ t

0

d

ds

(

||u||2e2s
)

ds = ||u(·, t)||2e2t − ||u(·, 0)||2 ≤ 0. (6.1.18)

This yields

||u(·, t)||2 ≤ e−2t||u0||2 =⇒ ||u(·, t)|| ≤ e−t||u0||, (6.1.19)

and completes the proof.
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Remark 14. For the sake of generality and application of this technical
argument in higher dimensions we shall use a general notation for the domain
and its boundary: namely Ω and ∂Ω respectively. The reader may replace Ω
by any interval (a, b), for instance I = (0, 1) and ∂Ω by the corresponding
boundary. The proof of the general theorem for the energy estimate in higher
dimensions is given in part II.

Theorem 25 (An energy estimate). For any small ε > 0 We have that

∫ t

ε

‖u̇‖(s)ds ≤ 1

2

√

ln
t

ε
‖u0‖. (6.1.20)

Proof. Multiply the differential equation: u̇− u′′ = 0, by −tu′′ and integrate
over Ω to obtain

−t
∫

Ω

u̇u′′ dx+ t

∫

Ω

−(u′′)2 dx = 0. (6.1.21)

Integrating by parts and using the fact that u = 0 on ∂Ω we get
∫

Ω

u̇u′′ dx = −
∫

Ω

u̇′ · u′ dx = −1

2

d

dt
‖u′‖2, (6.1.22)

so that (11.1.11) can be written as

t
1

2

d

dt
‖u′‖2 + t‖u′′‖2 = 0, (6.1.23)

and by using the obvious relation t d
dt
‖u′‖2 = d

dt
(t‖u′‖2) − ‖u′‖2 we get

d

dt
(t‖u′‖2) + 2t‖u′′‖2 = ‖u′‖2. (6.1.24)

We now change t to s and integrate over s ∈ (0, t) to get

∫ t

0

d

ds
(s‖u′‖2(s)) ds+ 2

∫ t

0

s‖u′′‖2(s)ds =

∫ t

0

‖u′‖2(s)ds ≤ 1

2
‖u0‖2,

where in the last inequality we just integrate the stability estimate (a) in the
previous theorem. Consequently

t‖u′‖2(t) + 2

∫ t

0

s‖u′′‖2(s) ds ≤ 1

2
‖u0‖2. (6.1.25)
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In particular, we have:

(I) ‖u′‖(t) ≤ 1√
2t
‖u0‖ (II)

(∫ t

0

s‖u′′‖2(s) ds
)1/2

≤ 1

2
‖u0‖ (6.1.26)

Analogously we can show that

‖u′′‖(t) ≤ 1√
2 t

‖u0‖ (6.1.27)

Now using the differential equation u̇ = u′′ and integrating (6.1.27) we obtain

∫ t

ε

‖u̇‖(s)ds ≤ 1√
2
‖u0‖

∫ t

ε

1

s
ds =

1√
2

ln
t

ε
‖u0‖ (6.1.28)

or more carefully

∫ t

ε

‖u̇‖(s)ds =

∫ t

ε

‖u′′‖(s)ds =

∫ t

ε

1 · ‖u′′‖(s)ds =

∫ t

0

ε
1√
s
·
√
s‖u′′‖(s)ds

≤
(∫ t

ε

s−1 ds
)1/2

·
(∫ t

ε

s‖u′′‖2(s) ds
)1/2

≤ 1

2

√

ln
t

ε
‖u0‖,

where in the first inequality is just an application of the Cauchy Schwartz
inequality and the second is an application of (6.1.26) (II) and we have
obtained the desired result.

Problem 55. Prove (6.1.27). Hint: Multiply (1) by t2 (u′′)2 and note that
u′′ = u̇ = 0 on ∂Ω, or alternatively: differentiate u̇ − u′′ = 0 with respect to
t and multiply the resulting equation by t2 u̇.

6.2 FEM for the heat equation

Consider the one-dimensional heat equation with Dirichlet boundary condi-
tion 





u̇− u′′ = f, 0 < x < 1, t > 0,

u(0, t) = u(1, t) = 0, t > 0,

u(x, 0) = u0(x), 0 < x < 1.

(6.2.1)



138 CHAPTER 6. THE HEAT EQUATION IN 1D

The Variational formulation for the problem (6.2.1) reads as follows: For
every time interval In = (tn−1, tn] find u(x, t), t ∈ In such that

∫

In

∫ 1

0

(u̇v + u′v′)dxdt =

∫

In

∫ 1

0

fvdxdt, ∀v : v(0, t) = v(1, t) = 0. (VF)

A piecewise linear Galerkin approximation: For each time interval In =
(tn−1, tn], with tn − tn−1 = k, let

U(x, t) = Un−1(x)Ψn−1(t) + Un(x)Ψn(t), (6.2.2)

where

Ψn(t) =
t− tn−1

k
, Ψn−1(t) =

tn − t

k
, k = tn − tn−1, (6.2.3)

and

Un(x) = Un,1ϕ1(x) + Un,2ϕ2(x) + . . .+ Un,mϕm(x), (6.2.4)

with ϕ(xj) = δij being the usual finite element basis corresponding to a
partition of Ω = (0, 1), with 0 = x1 < · · · < xk < xk+1 < · · · < xm = 1. In
other words U is piecewise linear in both space and time variables and the
unknowns are the coefficients Un,k satisfying the following discrete variational
formulation:

∫

In

∫ 1

0

(U̇ϕj + U ′ϕ′
j) dxdt =

∫

In

∫ 1

0

fϕj dxdt, j = 1, 2, . . . , m (6.2.5)

Note on In = (tn−1, tn] and with Un := U(xn) and Un−1 := U(xn−1) we have

U̇(x, t) = Un−1(x)Ψ̇n−1(t) + Un(x)Ψ̇n(t) =
Un − Un−1

k
. (6.2.6)

Further differentiating (6.2.2) with respect to x we get

U ′(x, t) = U ′
n−1(x)Ψn−1(t) + U ′

n(x)Ψn(t). (6.2.7)
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x

y

t

x

t

t

n-1

nt

n+1

i

)ψ (tn

1

U

Un(x)

n+1(x)

ψ
n+1(t)

ϕ
i
(x)

x xi-1 i+1

Inserting (6.2.6) and (6.2.7) in (6.2.5) we get using
∫

In
dt = k and

∫

In
Ψndt =

∫

In
Ψn−1dt = k

2
that

∫ 1

0

Unϕjdx

︸ ︷︷ ︸

M ·Un

−
∫ 1

0

Un−1ϕj dx

︸ ︷︷ ︸

M ·Un−1

+

∫

In

Ψn−1 dt

︸ ︷︷ ︸
k
2

∫ 1

0

U ′
n−1ϕ

′
j dx

︸ ︷︷ ︸

S·Un−1

+

∫

In

Ψn dt

︸ ︷︷ ︸
k
2

∫ 1

0

U ′
nϕ

′
j dx

︸ ︷︷ ︸

S·Un

=

∫

In

∫ 1

0

fϕj dxdt

︸ ︷︷ ︸

F

(6.2.8)

which can be written in a compact form as the Crank- Nicholson system
(CNS)

(

M +
k

2
S
)

Un =
(

M − k

2
S
)

Un−1 + F, (CNS)

with the solution Un given by

Un =
(

M +
k

2
S
)−1

︸ ︷︷ ︸

B−1

(

M − k

2
S
)

︸ ︷︷ ︸

A

Un−1 +
(

M +
k

2
S
)−1

︸ ︷︷ ︸

B−1

F, (6.2.9)



140 CHAPTER 6. THE HEAT EQUATION IN 1D

where

Un =











Un,1

Un,2

. . .

Un,m











. (6.2.10)

Thus with a given source term f we can determine the source vector F and
then, for each n = 1, 2, . . .N , given the vector Un−1 we use the CNS to
compute the m-dimensional vector Un (m nodal values of U at the time level
tn).

Example 26. Derive a corresponding equation system, as above, for the
dG(0).

The matrices S and M introduced in (6.2.8) are known as the stiffness
matrix and Mass matrix respectively. Below we compute these matrices.
Note that differentiating (6.2.4):

Un(x) = Un,1ϕ1(x) + Un,2ϕ2(x) + . . .+ Un,mϕm(x),

we get

U ′
n(x) = Un,1ϕ

′
1(x) + Un,2ϕ

′
2(x) + . . .+ Un,mϕ

′
m(x). (6.2.11)

Thus for j = 1, . . . , m we have

SUn =

∫ 1

0

U ′
nϕ

′
j =

( ∫ 1

0

ϕ′
jϕ

′
1

)

Un,1+
(∫ 1

0

ϕ′
jϕ

′
2

)

Un,2+. . .+
(∫ 1

0

ϕ′
jϕ

′
m

)

Un,m,

which can be written in the matrix form as

SUn =











∫ 1

0
ϕ′

1ϕ
′
1

∫ 1

0
ϕ′

1ϕ
′
2 . . .

∫ 1

0
ϕ′

1ϕ
′
m

∫ 1

0
ϕ′

2ϕ
′
1

∫ 1

0
ϕ′

2ϕ
′
2 . . .

∫ 1

0
ϕ′

2ϕ
′
m

. . . . . . . . . . . .
∫ 1

0
ϕ′

mϕ
′
1

∫ 1

0
ϕ′

mϕ
′
2 . . .

∫ 1

0
ϕ′

mϕ
′
m





















Un,1

Un,2

. . .

Un,m











. (6.2.12)
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Note that S is just the matrix Aunif that we have already computed in
Chapter 1:

S =
1

h

















2 −1 0 0 . . . 0

−1 2 −1 0 . . . 0

0 −1 2 −1 . . . 0

. . . . . . . . . . . . . . . . . .

0 . . . . . . −1 2 −1

0 . . . . . . . . . −1 2

















. (6.2.13)

Similarly, recalling the definition for the mass matrixM introduced in (6.2.8),
we have that for j = 1, . . . , m

MUn =

∫ 1

0

Unϕj . (6.2.14)

Thus, to compute the mass matrix M one should drop all derivatives from
the general form of the matrix for S given by (6.2.13). In other words unlike

the form SUn =
∫ 1

0
U ′

nϕ
′
j, MUn does not have any derivatives, neither in Un

nor in ϕj . Consequently

M =











∫ 1

0
ϕ1ϕ1

∫ 1

0
ϕ1ϕ2 . . .

∫ 1

0
ϕ1ϕm

∫ 1

0
ϕ2ϕ1

∫ 1

0
ϕ2ϕ2 . . .

∫ 1

0
ϕ2ϕm

. . . . . . . . . . . .
∫ 1

0
ϕmϕ1

∫ 1

0
ϕmϕ2 . . .

∫ 1

0
ϕmϕm











. (6.2.15)

To continue we follow the same procedure as in chapter one recalling that
for a uniform partition we have

ϕj(x) =
1

h







x− xj−1 xj−1 ≤ x ≤ xj

xj+1 − x xj ≤ x ≤ xj+1

0 x /∈ [xj−1, xj+1].

(6.2.16)
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1

x

y

xj−1 xj xj+1 xj+2

ϕj−1 ϕj ϕj+1 ϕj+2

Figure 6.2: ϕj and ϕj+1.

Thus

∫ 1

0

ϕj(x)
2 dx =

1

h2

(∫ xj

xj−1

(x− xj−1)
2 dx+

∫ xj+1

xj

(xj+1 − x)2
)

=
1

h2

[(x− xj−1)
3

3

]xj

xj−1

+
1

h2

[(xj+1 − x)3

3

]xj+1

xj

=
1

h2
· h

3

3
+

1

h2
· h

3

3
=

2

3
h,

(6.2.17)

and

∫ 1

0

ϕjϕj+1 dx =
1

h2

∫ xj+1

xj

(xj+1 − x)(xj − x) = [PI]

=
1

h2

[

(xj+1 − x)
(x− xj)

2

2

]xj+1

xj

− 1

h2

∫ xj+1

xj

−(x− xj)
2

2
dx

=
1

h2

[(x− xj)
3

6

]xj+1

xj

=
1

6
h.

Obviously we have that

∫ 1

0

ϕjϕi dx = 0, ∀|i− j| > 1. (6.2.18)
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Thus the mass matrix in this case is given by

M = h

















2
3

1
6

0 0 . . . 0

1
6

2
3

1
6

0 . . . 0

0 1
6

2
3

1
6

. . . 0

. . . . . . . . . . . . . . . . . .

0 . . . . . . 1
6

2
3

1
6

0 . . . . . . . . . 1
6

2
3

















. (6.2.19)

6.3 Error analysis

In this section we shall consider a general domain Ω with the boundary ∂Ω.
Therefore the analysis are adequate in higher dimensions as well. For our
specific one dimensional case this means a general interval Ω := [a, b] with
∂Ω = {a, b}. Then a general for of (6.2.5) can be written as

∫

In

∫

Ω

(U̇v + U ′v′)dxdt =

∫

In

∫

Ω

fvdxdt for all v ∈ Vh, (6.3.1)

where Vh = {v(x) : v is continuous, piecewise linear, and v(a) = v(b) = 0},
and in higher dimensional case v(a) = v(b) = 0 is replaced by v|∂Ω = 0. Note
that this variational formulation is valid for the exact solution u and for all
v(x, t) such that v(a, t) = v(b, t) = 0:

∫

In

∫

Ω

(u̇v + u′v′)dxdt =

∫

In

∫

Ω

fv dxdt, ∀v ∈ Vh, (6.3.2)

Subtracting (6.3.1) from (6.3.2) we obtain the Galerkin orthogonality relation
for the error

∫

In

∫

Ω

(ėv + e′v′) dxdt = 0, for all v ∈ Vh. (6.3.3)

Theorem 26 (A posterirori error estimates). We have the following a pos-
teriori error estimate for the heat conductivity equation given by (6.2.1)

‖e(t)‖ ≤
(

2 +

√

ln
T

ε

)

max
[0,T ]

‖(k + h2)r(U)‖. (6.3.4)
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Sketch. To derive error estimates we let ϕ(x, t) be the solution of the follow-
ing dual problem







−ϕ̇− ϕ′′ = 0, in Ω t < T,

ϕ = 0, on ∂Ω t < T,

ϕ = e, in Ω for t = T,

(6.3.5)

where e = e(t) = e(·, T ) = u(·, T )−U(·, T ), T = tN . Note that for w(x, t) =
ϕ(x, T − t), (t > 0) we can write the backward dual problem (6.3.5) as the
following forward problem







ẇ − w′′ = 0, in Ω t > 0,

w = 0, on ∂Ω t > 0,

w = e, in Ω for t = 0.

(6.3.6)

For this problem we have shown in the energy estimate theorem that

∫ T

ε

‖ẇ‖ ≤ 1

2

√

ln
T

ε
‖e‖, (6.3.7)

and consequently ( let s = T − t, then ε
t→ T ⇔ T − ε

s→ 0, and ds = −dt)
we have for ϕ:

∫ T−ε

0

‖ϕ̇‖ ≤ 1

2

√

ln
T

ε
‖e‖. (6.3.8)

Now since −ϕ′′ = ϕ̇ we get also

∫ T−ε

0

‖ϕ′′‖ ≤ 1

2

√

ln
T

ε
‖e‖ (6.3.9)
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To continue we assume that u0 ∈ Vh then, since (−ϕ̇−ϕ′′) = 0, we can write

‖e(T )‖2 =

∫

Ω

e(T ) · e(T ) dx+

∫ T

0

∫

Ω

e(−ϕ̇− ϕ′′) dxdt = [PI in t]

=

∫

Ω

e(T ) · e(T ) dx−
∫

Ω

e(T ) · e(T ) dx+

∫

Ω

e(0) · ϕ(0)
︸ ︷︷ ︸

=0

dx

+

∫ T

0

∫

Ω

(ėϕ + e′ϕ′) dxdt = {Galerkin Orthogonality (7.1)}

=

∫ T

0

∫

Ω

ė(ϕ− v) + e′(ϕ− v)′ dxdt = {PI in x, in 2ed term}

=

∫ T

0

∫

Ω

(ė− e′′)(ϕ− v) dxdt+

∫ T

0

e′ (ϕ− v)
∣
∣
∣
∂Ω

︸ ︷︷ ︸

=0

dt

=

∫ T

0

∫

Ω

(f − U̇ + U ′′)(ϕ− v) dxdt =

∫ T

0

∫

Ω

r(U)(ϕ− v) dxdt,

where we use ė = u̇− U̇ and e′′ = u′′−U ′′ to write ė−e′′ = u̇−u′′− U̇−U ′′ =
f−U̇−U ′ := r(U) which is the residual. Now with mesh variables h = h(x, t)
and k = k(t) in x and t, respectively we can derive an interpolation estimate
of the form:

||ϕ− v||L2
≤ k||ϕ̇|L2

+ h2||ϕ′′||L2
≤ (k+ h2)|ϕ̇|L2

+ (k+ h2)||ϕ′′||L2
, (6.3.10)

Summing up we have using maximum principle and the estimates (7.2.2)-
(7.2.3), basically that

‖e(T )‖2 ≤
∫ T

0

‖(k + h2)r(U)‖(‖ϕ̇‖ + ‖ϕ′′‖)

≤ max
[0,T ]

‖(k + h2)r(U)‖
[ ∫ T−ε

0

(‖ϕ̇‖ + ‖ϕ′′‖) + 2 max
[T−ε,T ]

‖ϕ‖
]

≤ max
[0,T ]

‖(k + h2)r(U)‖
(
√

ln
T

ε
‖e‖ + 2‖e‖

)

.

This gives our final estimate

‖e(t)‖ ≤
(

2 +

√

ln
T

ε

)

max
[0,T ]

‖(k + h2)r(U)‖. (6.3.11)
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x

y

t

v

ϕ

The complete proof is given in general form and for higher dimensions in
part II.

• Algorithm Starting from the a posteriori estimate of the error e = u− U
for example for 





−u′′ = f, in Ω

u = 0, on ∂Ω
(6.3.12)

i.e.
‖e′‖ ≤ C‖h r(U)‖, (6.3.13)

where r(U) = |f |+ maxIk
|[u′]| and [ ] denotes the jump (over the endpoints

of a partition interval Ik), we have the following Algorithm:

(1) Choose an arbitrary h = h(x) and a tolerance Tol > 0.

(2) Given h, compute the corresponding U .

(3) If C‖hr(U)‖ ≤ Tol, accept U . Otherwise choose a new (refined) h =
h(x) and return to step (2) above. �

• Higher order elements cG(2), piecewise polynomials of degree 2 is de-
termined by the values of the approximate solution at the end-points of the
subintervals. The constructing is through the bases functions of the form:
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• Error estimates (a simple case)

For −u′′ = f, 0 < x < 1 associated with Dirichlet (or Neumann) boundary
condition we have

‖(u− U)′‖ ≤ C‖h2D3u‖. (6.3.14)

‖u− U‖ ≤ C max
(

h‖h2D3u‖
)

. (6.3.15)

‖u− U‖ ≤ C‖h2r(U)‖, where |r(U)| ≤ Ch. (6.3.16)

These estimates can be extended to, for example, the space-time discretiza-
tion of the heat equation.

• The equation of an elastic beam







(au′′)′′ = f, Ω = (0, 1)

u(0) = 0, u′(0) = 0 (Dirichlet)

u′′(1) = 0, (au′′)′(1) = 0, (Neumann)

(6.3.17)

where a is the bending stiffness, au′ is the moment, f is the load function,
and u = u(x) is the vertical deflection.

A variational formulation for this equation can be written as

∫ 1

0

au′′v′′dx =

∫ 1

0

fvdx, ∀v, such that (0) = v′(0) = 0. (6.3.18)

Here, the piecewise linear finite element functions won’t work (inadequate).
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6.4 Exercises

Problem 56. Work out the details with piecewise cubic polynomials having
continuous first derivatives: i.e., two degrees of freedom on each node.
Hint: A cubic polynomial in (a, b) is uniquely determined by ϕ(a), ϕ′(a), ϕ(b)
and ϕ′(b).

Problem 57. Prove an a priori and an a posteriori error estimate for a
finite element method (for example cG(1)) for the problem

−u′′ + αu = f, in I = (0, 1), u(0) = u(1) = 0,

where the coefficient α = α(x) is a bounded positive function on I, (0 ≤
α(x) ≤ K, x ∈ I).

Problem 58. a) Formulate a cG(1) method for the problem






(a(x)u′(x))′ = 0, 0 < x < 1,

a(0)u′(0) = u0, u(1) = 0.

and give an a posteriori error estimate.

b) Let u0 = 3 and compute the approximate solution in a) for a uniform
partition of I = [0, 1] into 4 intervals and

a(x) =







1/4, x < 1/2,

1/2, x > 1/2.

c) Show that, with these special choices, the computed solution is equal to the
exact one, i.e. the error is equal to 0.

Problem 59. Let ‖ · ‖ denote the L2(0, 1)-norm. Consider the problem






−u′′ = f, 0 < x < 1,

u′(0) = v0, u(1) = 0.

a) Show that |u(0)| ≤ ‖u′‖ and ‖u‖ ≤ ‖u′‖.
b) Use a) to show that ‖u′‖ ≤ ‖f‖ + |v0|.



6.4. EXERCISES 149

Problem 60. Let ‖·‖ denote the L2(0, 1)-norm. Consider the following heat
equation 





u̇− u′′ = 0, 0 < x < 1, t > 0,

u(0, t) = ux(1, t) = 0, t > 0,

u(x, 0) = u0(x), 0 < x < 1.

a) Show that the norms: ||u(·, t)|| and ||ux(·, t)|| are non-increasing in time.

||u|| =
( ∫ 1

0
u(x)2 dx

)1/2

.

b) Show that ||ux(·, t)|| → 0, as t→ ∞.

c) Give a physical interpretation for a) and b).

Problem 61. Consider the problem

−εu′′ + xu′ + u = f, in I = (0, 1), u(0) = u′(1) = 0,

where ε is a positive constant, and f ∈ L2(I). Prove that

||εu′′|| ≤ ||f ||.

Problem 62. Give an a priori error estimate for the following problem:

(auxx)xx = f, 0 < x < 1, u(0) = u′(0) = u(1) = u′(1) = 0,

where a(x) > 0 on the interval I = (0, 1).

Problem 63. Prove an a priori error estimate for the finite element method
for the problem

−u′′(x) + u′(x) = f(x), 0 < x < 1, u(0) = u(1) = 0.

Problem 64. (a) Prove an a priori error estimate for the cG(1) approxima-
tion of the boundary value problem

−u′′ + cu′ + u = f in I = (0, 1), u(0) = u(1) = 0,

where c ≥ 0 is constant.

(b) For which value of c is the a priori error estimate optimal?
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Problem 65. We modify problem 2 above according to

−εu′′ + c(x)u′ + u = f(x) 0 < x < 1, u(0) = u′(1) = 0,

where ε is a positive constant, the function c satisfies c(x) ≥ 0, c′(x) ≤ 0,
and f ∈ L2(I). Prove that there are positive constants C1, C2 and C3 such
that

√
ε||u′|| ≤ C1||f ||, ||cu′|| ≤ C2||f ||, and ε||u′′|| ≤ C3||f ||,

where || · || is the L2(I)-norm.

Problem 66. Show that for a continuously differentiable function v defined
on (0, 1) we have that

||v||2 ≤ v(0)2 + v(1)2 + ||v′||2.

Hint: Use partial integration for
∫ 1/2

0
v(x)2 dx and

∫ 1

1/2
v(x)2 dx and note that

(x− 1/2) has the derivative 1.



Chapter 7

The wave equation in 1d

We start with the homogeneous wave equation: Consider the initial-boundary
value problem







ü− u′′ = 0, 0 < x < 1 t > 0 (DE)

u(0, t) = 0, u(1, t) = 0 t > 0 (BC)

u(x, 0) = u0(x), u̇(x, 0) = v0(x), 0 < x < 1 (IC).

(7.0.1)

Below we shall derive the most important property of the wave equation

Theorem 27 (Conservation of energy). For the wave equation (7.0.1) we
have that

1

2
||u̇||2 +

1

2
||u′||2 =

1

2
||v0||2 +

1

2
||u′0||2 = Constant, (7.0.2)

where

||w||2 = ||w(·, x)||2 =

∫ 1

0

|w(x, t)|2 dx. (7.0.3)

Proof. We multiply the equation by u̇ and integrate over I = (0, 1) to get

∫ 1

0

ü u̇dx−
∫ 1

0

u′′u u̇ dx = 0. (7.0.4)
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Using partial integration and the boundary data we obtain
∫ 1

0

1

2

d

dt

(

u̇
)2

dx+

∫ 1

0

u′ (u̇)′ dx−
[

u′(x, t)u̇(x, t)
]1

0

=

∫ 1

0

1

2

d

dt

(

u̇
)2

dx+

∫ 1

0

1

2

d

dt

(

u′
)2

dx

=
1

2

d

dt

(

||u̇||2 +
1

2
||u′||2

)

= 0.

(7.0.5)

Thus, the quantity

1

2
||u̇||2 +

1

2
||u′||2 = Constant, independent of t. (7.0.6)

Therefore the total energy is conserved. We recall that 1
2
||u̇||2 is the kinetic

energy, and 1
2
||u′||2 is the potential (elastic) energy.

Problem 67. Show that ‖(u̇)′‖2 + ‖u′′‖2 = constant, independent of t.
Hint: Multiply (DE): ü− u′′ = 0 by −(u̇)′′ and integrate over I.
Alternatively: differentiate the equation with respect to x and multiply by
u̇, . . . .

Problem 68. Derive a total conservation of energy relation using the Robin

type boundary condition:
∂u

∂n
+ u = 0.

7.1 FEM for the wave equation

We seek the finite element solution u(x, t) for the following problem






ü− u′′ = 0, 0 < x < 1 t > 0 (DE)

u(0, t) = 0, u′(1, t) = g(t, ) t > 0 (BC)

u(x, 0) = u0(x), u̇(x, 0) = v0(x), 0 < x < 1 (IC).

(7.1.1)

We let u̇ = v, and reformulate the problem as a system of PDEs:






u̇− v = 0 (Convection)

v̇ − u′′ = 0 (Diffusion).
(7.1.2)
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Remark 15. We can rewrite the above system as ẇ + Aw = 0 with

w =




u

v



 =⇒ ẇ+Aw =




u̇

v̇



+




a b

c d





︸ ︷︷ ︸

A




u

v



 =




0

0



 , (7.1.3)

thus we get the following system of equations







au+ bv = −u̇
cu+ dv = −v̇.

(7.1.4)

Recalling that u̇ = v and v̇ = u′′ (7.1.4) can be written as







au+ bv = −v
cu+ dv = −u′′.

(7.1.5)

Consequently we have a = 0, b = −1 and c = − ∂2

∂x2 , d = 0, i.e.




u̇

v̇





︸ ︷︷ ︸

ẇ

+




0 −1

− ∂2

∂x2 0





︸ ︷︷ ︸

A




u

v





︸ ︷︷ ︸

w

=




0

0



 . (7.1.6)

•The finite element discretization procedure
For each n we define the piecewise linear approximations as







U(x, t) = Un−1(x)Ψn−1(t) + Un(x)Ψn(t),

V (x, t) = Vn−1(x)Ψn−1(t) + Vn(x)Ψn(t),
0 < x < 1, t ∈ In, (7.1.7)

where






Un(x) = Un,1(x)ϕ1(x) + . . .+ Un,m(x)ϕm(x),

Vn−1(x) = Vn−1,1(x)ϕ1(x) + . . .+ Vn−1,m(x)ϕm(x).
(7.1.8)
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1

ψn(t) ϕ j (x)

t n-1 t n tn+1 x x xj-1 j+1j

Note that since u̇− v = 0, t ∈ In = (tn−1, tn] we have

∫

In

∫ 1

0

u̇ϕ dxdt−
∫

In

∫ 1

0

vϕ dxdt = 0, for all ϕ(x, t). (7.1.9)

Similarly v̇ − u′′ = 0 yields

∫

In

∫ 1

0

v̇ϕ dxdt−
∫

In

∫ 1

0

u′′ϕdxdt = 0, (7.1.10)

where, in the second term we use partial integration in x and the boundary
condition u′(1, t) = g(t) to obtain

∫ 1

0

u′′ϕdx = [u′ϕ]10 −
∫ 1

0

u′ϕ′ dx = g(t)ϕ(1, t) − u′(0, t)ϕ(0, t) −
∫ 1

0

u′ϕ′ dx.

Inserting in (7.1.10) we get

∫

In

∫ 1

0

v̇ϕ dxdt+

∫

In

∫ 1

0

u′ϕ′ dxdt =

∫

In

g(t)ϕ(1, t) dt, (7.1.11)

for all ϕ such that ϕ(0, t) = 0. We therefore seek U(x, t) and V (x, t) such
that

∫

In

∫ 1

0

Un(x) − Un−1(x)

k
︸ ︷︷ ︸

U̇

ϕj(x) dxdt−

−
∫

In

∫ 1

0

(

Vn−1(x)Ψn−1(t) + Vn(x)Ψn(t)
)

ϕj(x) dxdt = 0,

for j = 1, 2, . . . , m,

(7.1.12)
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and
∫

In

∫ 1

0

Vn(x) − Vn−1(x)

k
︸ ︷︷ ︸

V̇

ϕj(x) dxdt

+

∫

In

∫ 1

0

(

U ′
n−1(x)Ψn−1(t) + U ′

n(x)Ψn(t)
)

︸ ︷︷ ︸

U ′

ϕ′
j(x) dxdt

=

∫

In

g(t)ϕj(1) dt, for j = 1, 2, . . . , m.

(7.1.13)

The equations (7.1.12) and (7.1.13) is reduced to the iterative forms:

∫ 1

0

Un(x)ϕj(x)dx

︸ ︷︷ ︸

MUn

− k

2

∫ 1

0

Vn(x)ϕj(x)dx

︸ ︷︷ ︸

MVn

=

∫ 1

0

Un−1(x)ϕj(x)dx

︸ ︷︷ ︸

MUn−1

+
k

2

∫ 1

0

Vn−1(x)ϕj(x) dx

︸ ︷︷ ︸

MVn−1

, for j = 1, 2, . . . , m,

and
∫ 1

0

Vn(x)ϕj(x)dx

︸ ︷︷ ︸

MVn

+
k

2

∫ 1

0

U ′
n(x)ϕ′

j(x) dx

︸ ︷︷ ︸

SUn

=

∫ 1

0

Vn−1(x)ϕj(x) dx

︸ ︷︷ ︸

MVn−1

−k
2

∫ 1

0

U ′
n−1(x)ϕ

′
j(x) dx

︸ ︷︷ ︸

SUn−1

+gn, for j = 1, 2, . . . , m,

respectively, where as we computed earlier

S =
1

h














2 −1 . . . 0

−1 2 −1 . . .

. . . . . . . . . . . .

0 −1 2 −1

0 0 −1 2














, M = h














2
3

1
6

. . . 0

1
6

2
3

1
6

. . .

. . . . . . . . . . . .

. . . 1
6

2
3

1
6

0 . . . 1
6

2
3














,
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and we use the vector functions:

Un =











Un,1

Un,2

. . .

Un,m











, and gn =











0

. . .

0

gn,m











where gn,m =

∫

In

g(t) dt.

In compact form the vectors Un and Vn are determined through solving the
linear system of equations:







MUn − k
2
MVn = MUn−1 + k

2
MVn−1

k
2
SUn +MVn = −k

2
SUn−1 +MVn−1 + gn.

(7.1.14)

This is a system of 2m equations with 2m unknowns:




M −k

2
S

k
2
S M





︸ ︷︷ ︸

A




Un

Vn





︸ ︷︷ ︸

W

=




M k

2
M

−k
2
S M








Un−1

Vn−1



 +




0

gn





︸ ︷︷ ︸

b

, (7.1.15)

with W = A \ b, Un = W (1 : m), Vn = W (m+ 1 : 2m).

7.2 Exercises

Problem 69. Derive the corresponding linear system of equations in the case
of time discretization with dG(0).

Problem 70 (discrete conservation of energy). Show that cG(1)-cG(1) for
the wave equation in system form with g(t) = 0, conserves energy: i.e.

‖U ′
n‖2 + ‖Vn‖2 = ‖U ′

n−1‖2 + ‖Vn−1‖2. (7.2.1)

Hint: Multiply the first equation by (Un−1 +Un)tSM−1 and the second equa-
tion by (Vn−1+Vn)t and add up. Use then, e.g., the fact that U t

nSUn = ‖U ′
n‖2,
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where

Un =











Un,1

Un,2

. . .

Un,m











, and Un = Un(x) = Un,1(x)ϕ1(x) + . . .+ Un,m(x)ϕm(x).

Problem 71. Apply cG(1) time discretization directly to the wave equation
by letting

U(x, t) = Un−1Ψn−1(t) + Un(x)Ψn(t), t ∈ In. (7.2.2)

Note that U̇ is piecewise constant in time and comment on:

∫

In

∫ 1

0

Üϕj dxdt

︸ ︷︷ ︸

?

+

∫

In

∫ 1

0

u′ϕ′
j dxdt

︸ ︷︷ ︸
k
2
S(Un−1+Un)

=

∫

In

g(t)ϕj(1)dt

︸ ︷︷ ︸

gn

, j = 1, 2, . . . , m.

Problem 72. Show that the FEM with the mesh size h for the problem:







−u′′ = 1 0 < x < 1

u(0) = 1 u′(1) = 0,
(7.2.3)

with

U(x) = 7ϕ0(x) + U1ϕ1(x) + . . .+ Umϕm(x). (7.2.4)

leads to the linear system of equations: Ã · Ũ = b̃, where

Ã =
1

h











−1 2 −1 0

0 −1 2 −1 . . .

. . . . . . . . . . . .

0 . . . 0 . . .











,

m× (m+ 1)

Ũ =











7

U1

. . .

Um











,

(m+ 1) × 1

b̃ =











h

. . .

h

h
2











m× 1
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which is reduced to AU = b, with

A =
1

h














2 −1 0 . . . 0

−1 2 −1 0 . . .

. . . . . . . . . . . . . . .

. . . 0 −1 2 −1

0 0 0 −1 2














, U =











U1

U2

. . .

Um











, b =














h+ 7
h

h

. . .

h

h
2














Problem 73. Construct a FEM for the problem







ü+ u̇− u′′ = f, 0 < x < 1 t > 0,

u(0, t) = 0, u′(1, t) = 0, t > 0,

u(x, 0) = 0, u̇(x, 0) = 0, 0 < x < 1.

(7.2.5)

Problem 74. Assume that u = u(x) satisfies

∫ 1

0

u′v′dx =

∫ 1

0

fv dx, for all v(x) such that v(0) = 0. (7.2.6)

Show that −u′′ = f for 0 < x < 1 and u′(1) = 0.
Hint: See Lecture notes, previous chapters.

Problem 75. Determine the solution for the wave equation







ü− c2u′′ = f, x > 0, t > 0,

u(x, 0) = u0(x), ut(x, 0) = v0(x), x > 0,

ux(1, t) = 0, t > 0,

in the following cases:

a) f = 0.

b) f = 1, u0 = 0, v0 = 0.



Chapter 8

Piecewise polynomials in
several dimensions

8.1 Introduction

•Variational formulation in R2

All the previous studies in the 1 - dimensional case can be extended to Rn,
then the mathematics of computation becomes much more cumbersome. On
the other hand, the two and three dimensional cases are the most relevant
cases from both physical as well as practical point of views. A typical problem
to study is, e.g.







−∆u + au = f, x := (x, y) ∈ Ω ⊂ R2

u(x, y) = 0, (x, y) ∈ ∂Ω.
(8.1.1)

The discretization procedure, e.g. with piecewise linears, would require the
extensions of the interpolation estimates from the intervals in 1D to higher
dimensions. Other basic concepts such as Cauchy-Shwarz and Poincare in-
equalities are also extended to the correspoding inequalities in Rn. Due to
the integrations involved in the variational formulation, a frequently used
difference, from the 1-dimensional case, is in the performance of the partial
integrations which is now replaced by the following well known formula:
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Lemma 7 (Green’s formula). Let u ∈ C2(Ω) and v ∈ C1(Ω), then

∫∫

Ω

(∂2u

∂x2
+
∂2u

∂y2

)

vdxdy =

∫

∂Ω

(∂u

∂x
,
∂u

∂y

)

· n(x, y)vds

−
∫∫

Ω

(∂u

∂x
,
∂u

∂y

)

·
(∂v

∂x
,
∂v

∂y

)

dxdy,

(8.1.2)

where n(x, y) is the outward unit normal at the boundary point x = (x, y) ∈
∂Ω and ds is a curve element on the boundary ∂Ω. In concise form

∫

Ω

(∆u)vdx =

∫

Ω

(∇u · n)vds−
∫

Ω

∇u · ∇vdx. (8.1.3)

n

Ω

∂Ω

ds

Figure 8.1: A smooth domain Ω with an outward unit normal n

In the case that Ω is a rectangular domain. Then we have that

∫∫

Ω

∂2u

∂x2
vdxdy =

∫ b

0

∫ a

0

∂2u

∂x2
(x, y) · v(x, y)dxdy = [P.I.]

=

∫ b

0

([∂u

∂x
(x, y) · v(x, y)

]a

x=0
−

∫ a

0

∂u

∂x
(x, y) · ∂v

∂x
(x, y)dx

)

dy

=

∫ b

0

(∂u

∂x
(a, y) · v(a, y) − ∂u

∂x
(0, y) · v(0, y)

)

dy−

−
∫∫

Ω

∂u

∂x
· ∂v
∂x

(x, y)dxdy.
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n(0, y) = (−1, 0) n(a, y) = (1, 0)

n(x, 0) = (0,−1)

n(x, b) = (0, 1)

Ω

b

a

Γ1 := ∂Ω1
Γ3 := ∂Ω3

Γ4 := ∂Ω4

Γ2 := ∂Ω2

Figure 8.2: A rectangular domain Ω with its outward unit normals

Now we have on Γ1 : n(a, y) = (1, 0)

on Γ2 : n(x, b) = (0, 1)

on Γ3 : n(0, y) = (−1, 0)

on Γ4 : n(x, 0) = (0,−1)

Thus the first integral on the right hand side can be written as
∫

∂Ω

(∂u

∂x
,
∂u

∂y

)

· n(x, y)vds =
(∫

Γ1

+

∫

Γ3

)(∂u

∂x
,
∂u

∂y

)

· n(x, y)v(x, y)ds

and hence
∫∫

Ω

∂2u

∂x2
dxdy =

∫

Γ1∪Γ3

(∂u

∂x
,
∂u

∂y

)

· n(x, y)v(x, y)ds−
∫∫

Ω

∂u

∂x
· ∂v
∂x
dxdy

Similarly, for the y-direction we get
∫∫

Ω

∂2u

∂y2
vdxdy =

∫

Γ2∪Γ4

(∂u

∂x
,
∂u

∂y

)

· n(x, y)v(x, y)ds−
∫∫

Ω

∂u

∂y
· ∂v
∂y
dxdy.

Now adding up these two recent relations gives the desired result. The case of
general domain Ω, is a routine proof in the calculus of several variables.
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8.2 Piecewise linear approximation in 2 D

The objective in this part is the study of piecewise polynomial approxima-
tions for the solutions for differential equations in two dimensional spatial
domains. In this setting, and for simplicity, we focus on piecewise linear
polynomials and polygonal domains. Thus we shall deal with triangular
mesh without any concerns about curved boundary.

8.2.1 Basis functions for the piecewise linears in 2 D

We recall that in the 1-dimensional case a function which is linear on a
subinterval is uniquely determined by its values at the endpoints. (There is
only one straight line connecting two points)

xk−1 xkIk

y

x

Figure 8.3: A picewise linear function on a subinterval Ik = (xk−1, xk).

Similarly a plane in R3 is uniquely determined by three points. Therefore
it is natural to make partitions of 2-dimensional domains using triangular
elements and letting the sides of the triangles to correspond to the endpoints
of the intervals in the 1-dimensional case.

The figure illustrates a “partitioning”: triangulation of a domain Ω with
curved boundary where the partitioning is performed only for a polygonal
domain ΩP generated by Ω (a domains with polygonal boundary). Here we
have 6 internal nodes Ni, 1 ≤ i ≤ 6 and Ωp is the polygonal domain inside Ω,
which is triangulated. The figure 1.4 illustrates a piecewise linear function
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Ω

Ωp

Ν
Ν Ν Ν Ν Ν

1
2

3 4 5 6

on a single triangle which is determined by its values at the vertices of the
triangle.

Now for every linear function U on Ωp we have

U(x) = U1ϕ1(x) + U1ϕ2(x) + . . .+ U6ϕ6(x), (8.2.1)

where Ui = U(Ni), i = 1, 2, . . . , 6 are numbers (nodal values) and ϕi(Ni) =
1, while ϕi(Nj) = 0 for j 6= i. Further ϕi(x) is linear in x in every trian-
gle/element. In other words

ϕi(Nj) =







1, j = i

0, j 6= i






= δij (affin) (8.2.2)

and, for instance with the Dirichlet boundary condition we take ϕi(x) =
0 on ∂Ωp.

In this way given a differential equation, to determine the approximate solu-
tion U is now reduced to find the values (numbers) U1, U2, . . . , U6, satisfying
the corresponding variational formulation. For instance if we chosse x = N5,
then U(N5) = U1ϕ1(N5) + U2ϕ2(N5) + . . . + U5ϕ5(N5) + U6ϕ6(N5), where
ϕ1(N5) = ϕ2(N5) = ϕ3(N5) = ϕ4(N5) = ϕ6(N5) = 0 and ϕ5(N5) = 1, and
hence

U(N5) = U5ϕ5(N5) = U5 (8.2.3)
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y

z = f(x, y)

x

(x1, y1, 0)

(x2, y2, 0)

(x3, y3, 0)

(x1, y1, z1)

(x2, y2, z2)

(x3, y3, z3)

Figure 8.4: A triangle in 3D as a piecewise linear function and its projection
in 2D.

= 1

Ni

ϕi

Example 27. , let Ω = {(x, y) : 0 < x < 4, 0 < y < 3} and make a FEM
discretization of the following boundary value problem:







−∆u = f in Ω

u = 0 on ∂Ω
(8.2.4)
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The variational formulation reads as follows: Find a function u vanishing at
the boundary Γ = ∂Ω of Ω, such that

∫∫

Ω

(∇u · ∇v)dxdy =

∫∫

Ω

fvdxdy, ∀v ∈ H1
0 (Ω). (8.2.5)

Note that H1
0 (Ω) is the space of continuously differetiable functions in Ω

which are vanishing at the boundary ∂Ω. Now we shall make a test function
space of piecewise linears. To this approach we triangulate Ω as in the figure
below and let

1 2 3

4 5 6

V 0
h = {v ∈ C(Ω) : vis linear on each sub-triangle and is 0 at the boundary.}

Since such a function is uniquely determined by its values at the vertices of
the triangles and 0 on the boundary, so indeed in our example we have only 6
inner vertices of interest. Now precisely as in the “1−D” case we construct
basis functions. (6 of them in this particular case), with values 1 at one of the
nodes and zero at the others. Then we get the two-dimensional telt functions
as shown in the figure above.
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K

8.2.2 Error estimates for piecewise linear interpolation

In this section we make a straightforward generalization of the one dime-
nensional linear interpolation estimate on an interval in the maximum norm
to a two dimensional linear interpolation on a triangle. As in the 1D case,
our estimate indicates that the interpolation error depends on the second
order, this time, partial derivatives of the functions being interpolated, i.e.,
the curvature of the functions, mesh size and also the shape of the triangle.
The results are also extended to other Lp, 1 ≤ p <∞ norms as well as higher
dimensions than 2.

To continue we assume a triangulation T = {K} of a two dimensional
polygonal domain Ω. We let vi, i = 1, 2, 3 be the vertices of the triangle K.
Now we consider a continuous function f defined on K and define the linear
interpolant πhf ∈ P1(K) by

πhf(vi) = f(vi), i = 1, 2, 3. (8.2.6)

This is illustrated in the figure on the next page. We shall now state some
basic interpolation results that we frequently use in the error estimates. The
proofs of these results are given in CDE, by Eriksson et al.

Theorem 28. If f has contionuous second order partial derivatives, then

‖f − πhf‖L∞(K) ≤
1

2
h2

K ||D2f ||L∞(K), (8.2.7)

||∇(f − πhf)||L∞(K) ≤
3

sin(αK)
hK ||D2f ||L∞(K), (8.2.8)

where hK is the largest side of K, αK is the smallest angle of K, and

D2f =
( 2∑

i,j=1

(
∂2f

∂xi∂xj

)2
)1/2

.
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y

z

x

v1

v2

v3

•

•

•

K

f

πhf

Figure 8.5: The nodal interpolant of f in 2D case

Remark 16. Note that the gradient estimate (8.2.8) deteriotes for small
sin(αK); i.e. for the thinner triangle K. This phenomenon is avoided assum-
ing a quasi-uniform triangulation, where there is a minimum angle condition
for the triangles viz,

sin(αK) ≥ C, for some constant C. (8.2.9)

8.2.3 The L2 projection

Definition 15. Let Vh be the space of all continuous linear functions on a
triangulation Th = {K} of the domain Ω. The L2 projection Phu ∈ Vh of a
function u ∈ L2(Ω) is defined by

(u− Phu, v) = 0, ∀v ∈ Vh. (8.2.10)

This means that, the error u − Phu is orthogonal to Vh. (8.2.10) yields
a linear system of equations for the coefficients of Phu with respect to the
nodal basis of Vh.
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Advantages of the L2 projection to the nodal interpolation

• The L2 projection Phu is well defined for u ∈ L2(Ω), whereas the nodal
interpolant πhu in general requires u to be continuous. Therefore the L2

projection is an alternative for the nodal interpolation for, e.g. discontinuous
L2 functions.

• Letting v ≡ 1 in (8.2.10) we have that
∫

Ω

Phu dx =

∫

Ω

u dx. (8.2.11)

Thus the L2 projection conserves the total mass, whereas, in general, the
nodal interpolation operator does not preserve the total mass.

• Finally we have the following error estimate for the L2 projection:

Theorem 29.
‖u− πhu‖ ≤ Ci‖h2D2u‖. (8.2.12)

Proof. We have using (8.2.10) and the Cauchy’s inequality that

‖u− πhu‖2 = (u− πhu, u− πhu)

(u− πhu, u− v) + (u− πhu, v − πhu) = (u− πhu, u− v)

≤ ‖u− πhu‖‖u− v‖.
(8.2.13)

This yields
‖u− πhu‖ ≤ ‖u− v‖, ∀v ∈ Vh. (8.2.14)

Now choosing v = πhu and recalling the interpolation theoren above we get
the desired result.

8.3 Exercises

Problem 76. Show that the function u : R2 → R given by u(x) = log(|x|−1), x 6=
0 is a solution to the Laplace equation ∆u(x) = 0.

Problem 77. Show that the Laplacian of a C2 function u : R2 → R in the
polar coordinates is written by

∆u =
1

r

∂

∂r

(

r
∂u

∂r

)

+
1

r2

∂2u

∂θ2
. (8.3.1)
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Problem 78. Show using (8.3.1) that the function u = a log(r) + b where a
and b are arbitrary constants is a solution of the Laplace equation ∆u(x) = 0
for x 6= 0. Are there any other solutions of the Laplace equation in R2 which
are invariant under rotation (i.e. it depends only on r = |x|)?

Problem 79. For a given triangle K, determine the relation between the
smallest angle τK , the triangle diameter hK and the diameter ρK of the largest
inscribed circle.

Problem 80. Prove that a linear function in R2 is uniquely determined by
its at three points as long as they don’t lie on a straight line.

Problem 81. Let K be a triangle with nodes {ai}, i = 1, 2, 3 and let the
midpoints of the edges be denoted {aij , 1 ≤ i < j ≤ 3}.
a) Show that a function v ∈ P1(K) is uniqely determined by the degrees of
freedom {v(aij), 1 ≤ i < j ≤ 3}.
b) Are functions continuous in the corresponding finite element space of piece-
wise linear functions?

Problem 82. Prove that if K1 and K2 are two neighboring triangles and
w1 ∈ P2(K1) and w2 ∈ P2(K2) agree at three nodes on the common boundary
(e.g., two endpoints and a midpoint), then w1 ≡ w2 on the common boundary.

Problem 83. Prove that a linear function is uniquely determined by its
values at three points, as long as they don’t lie on a straight line.

Problem 84. Assume that the triangle K has nodes at {v1, v2, v3}, vi =
(vi

1, v
i
2), the element nodal basis is the set of functions λi ∈ P1(K), i = 1, 2, 3

such that

λi(v
j) =







1, i = j

0, i 6= j.

Compute the explicit formulas for λi.

Problem 85. Let K be a triangular element. Show the following identities,
for j, k = 1, 2, and x ∈ K,

3∑

i=1

λi(x) = 1,

3∑

i=1

(vi
j − xj)λi(x) = 0, (8.3.2)
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3∑

i=1

∂

∂xk
λi(x) = 0,

3∑

i=1

(vi
j − xj)

∂λi

∂xk
= δjk, (8.3.3)

where vi = (vi
1, v

i
2), i = 1, 2, 3 are the vertices of K, x = (x1, x2) and δjk = 1

if j = k and δjk = 0 otherwise.

Problem 86. Using (8.3.2), we obtain a representation for the interpolation
error of the form

f(x) − πhf(x) = −
3∑

i=1

ri(x)λi(x). (8.3.4)

Prove that the remainder term ri(x) can be estimated as

|ri(x)| ≤
1

2
hK‖D2f‖L∞(K), i = 1, 2, 3. (8.3.5)

Hint: (I) Note that |vi − x| ≤ hK . (II) Start applying Cauchy’s inequality to
show that ∑

ij

xicijxj =
∑

i

xi

∑

j

cijxj .

Problem 87. τK is the smallest angle of a triangular element K. Show that

max
x∈K

|∇λi(x)| ≤
2

hK sin(τK)
.

Problem 88. The Euler equation for an incompressible inviscid fluid of
density can be written as

ut + (u · ∇)u+ ∇p = f, ∇ · u = 0, (8.3.6)

where u(x, t) is the velocity and p(x, t) the pressure of the fluid at the pint x
at time t and f is an applied volume force (e.g., a gravitational force). The
second equation ∇ · u = 0 expresses the incopressibility. Prove that the first
equation follows from the Newton’s law.

Hint: Let u = (u1, u2) with ui = ui(x(t), t), i = 1, 2 and use the chain
rule to derive u̇i = ∂ui

∂x1
u1 + ∂ui

∂x2
u2 + ∂ui

∂t
, i = 1, 2.

Problem 89. Prove that if u : R2 → R2 satisfies rot u :=
(

∂u2

∂x1
,−∂u1

∂x2

)

= 0

in a convex domian Ω ⊂ R2, then there is a scalar function ϕ defined on Ω
such that u = ∇ϕ in Ω.

Problem 90. Prove that
∫

Ω
rot u dx =

∫

Γ
n × u ds, where Ω is a subset of

R3 with boundary Γ with outward unit normal n.



Chapter 9

Riesz and Lax-Milgram
Theorems

9.1 Preliminaries

In part I, we proved under certain assumptions that to solve a boundary value
problem (BVP) is equavalent to a corresponding variational formulation (VF)
which in turn is equivalent to a minimization problem (MP):

BVP ⇐⇒ VF ⇐⇒ MP.

More precisely we had the following 1-dimensional boundary value problem:

(BV P ) :







−
(

a(x)u′(x)
)′

= f(x), 0 < x < 1

u(0) = u(1) = 0,
(9.1.1)

with the corresponding variational formulation, viz

(VF): Find u(x), with u(0) = u(1) = 0, such that

∫ 1

0

u′(x)v′(x)dx =

∫ 1

0

f(x)v(x)dx, ∀v ∈ H1
0 , (9.1.2)

171
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where H1
0 := H1

0 (0, 1) is the Sobolev space of all square integrable functions
having square integrable first order derivatives on (0, 1) and vanishing at the
boundary of the interval (0, 1):

H1
0 =

{

v :

∫ 1

0

(

v(x)2 + v′(x)2
)

dx <∞, v(0) = v(1) = 0
}

, (9.1.3)

and a minimization problem as:

(MP): Find u(x), with u(0) = u(1) = 0, such that u(x) minimizes the func-
tional F given by

F (v) =
1

2

∫ 1

0

v′(x)2dx−
∫ 1

0

f(x)v(x)dx. (9.1.4)

Recalling Poincare inequality we may actually take instead of H1
0 , the space

H1
0 =

{

f : [0, 1] → R :

∫ 1

0

f ′(x)2dx <∞,∧f(0) = f(1) = 0
}

. (9.1.5)

Let now V be a vector space of function on (0, 1) and define a bilinear form
on V ; a(·, ·) : V × V → R, i.e. for α, β, x, y ∈ R and u, v, w ∈ V , we have

{

a(αu+ βv, w) = α · a(u, w) + β · a(v, w)

a(u, xv + yw) = x · a(u, v) + y · a(u, w)
(9.1.6)

Example 28. Let V = H1
0 and define

a(u, v) := (u, v) :=

∫ 1

0

u′(x)v′(x)dx, (9.1.7)

then (·, ·) is symmetric, i.e. (u, v) = (v, u), bilinear (obvious), and positive
definite in the sense that

(u, u) ≥ 0, and (u, u) = 0 ⇐⇒ u ≡ 0.

Note that

(u, u) =

∫ 1

0

u′(x)2dx = 0 ⇐⇒ u′(x) = 0,

thus u(x) is constant and since u(0) = u(1) = 0 we have u(x) ≡ 0.
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Definition 16. A linear function L : V → R is called a linear form on V :
If

L(αu+ βv) = αL(u) + βL(v). (9.1.8)

Example 29. Let

ℓ(v) =

∫ 1

0

fv dx, ∀v ∈ H1
0, (9.1.9)

Then our (VF) can be restated as follows: Find u ∈ H1
0 such that

(u, v) = ℓ(v), ∀v ∈ H1
0. (9.1.10)

Generalizing the above example we get the following abstract problem: Find
u ∈ V , such that

a(u, v) = L(v), ∀v ∈ V. (9.1.11)

Definition 17. Let ‖ · ‖V be a norm corresponding to a scalar product (·, ·)V

defined on V ×V . Then the bilinear form a(·, ·) is called coercive ( V-elliptic),
and a(·, ·) and L(·) are continuous, if there are constants c1, c2 and c2 such
that:

a(v, v) ≥ c1‖v‖2
V , ∀v ∈ V (coercivity) (9.1.12)

|a(u, v)| ≤ c2‖u‖V ‖v‖V , ∀u, v ∈ V (a is continuous) (9.1.13)

|L(v)| ≤ c3‖v‖V , ∀v ∈ V (L is continuous). (9.1.14)

Note. Since L is linear, we have using the relation (9.1.14) above that

|L(u) − L(v)| = |L(u− v)| ≤ c3‖u− v‖V ,

which shows that L(u) =⇒ L(v) as u =⇒ v, in V . Thus L is continuous.
Similarly the relation |a(u, v)| ≤ c1‖u‖V ‖v‖V implies that the bilinear form
a(·, ·) is continuous in each component.

Definition 18. The energy norm on V is defined by ‖v‖a =
√

a(v, v), v ∈
V .

Recalling the relations (9.1.12) and (9.1.13) above, the energy norm satisfies

c1‖v‖2
V ≤ a(v, v) = ‖v‖2

a ≤ c2‖v‖2
V . (9.1.15)

Hence, the energy norm ‖v‖a is equivalent to the abstract ‖v‖V norm.
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Example 30. For the scalar product

(u, v) =

∫ 1

0

u′(x)v′(x)dx, in H1
0, (9.1.16)

and the norm
‖u‖ =

√

(u, u), (9.1.17)

the relations (9.1.12) and (9.1.13) are valid with c1 = c2 ≡ 1 : More closely
we have in this case that

(i): (v, v) = ‖v‖2 is an identity, and

(ii): |(u, v)| ≤ ‖u‖‖v‖ is the Cauchy’s inequality sketched below:

Proof of the Cauchy’s inequality. Using the obvious inequality 2ab ≤ a2 +b2,
we have

2|(u, w)| ≤ ‖u‖2 + ‖w‖2. (9.1.18)

We let w = (u, v) · v/‖v‖2, then

2|(u, w)| = 2
∣
∣
∣

(

u, (u, v)
v

‖v‖2

)∣
∣
∣ ≤ ‖u‖2 + |(u, v)|2‖v‖

2

‖v‖4
(9.1.19)

Thus

2
|(u, v)|2
‖v‖2

≤ ‖u‖2 + |(u, v)|2‖v‖
2

‖v‖4
, (9.1.20)

which multiplying by ‖v‖2, gives

2|(u, v)|2 ≤ ‖u‖2 · ‖v‖2 + |(u, v)|2, (9.1.21)

and hence
|(u, v)|2 ≤ ‖u‖2 · ‖v‖2, (9.1.22)

and the proof is complete.

Definition 19. A Hilbert space is a complete linear space with a scalar
product.

To define complete linear space we first need to define a Cauchy sequence of
real or complex numbers.
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Definition 20. A sequence {zk}∞k=1 is a Cauchy sequence if for every ε > 0,
there is an integer N > 0, such that m,n > N ⇒ |zm − zn| < ε.

Now we state, without proof, a classical theorem of analysis:

Theorem 30. Every Chaucy sequence in C is convergent. More precisely:
If {zk}∞k=1 ⊂ C is a Cauchy sequence, then there is a z ∈ C, such that for
every ǫ > 0, there is an integer M > 0, such that m ≥M ⇒ |zm − z| < ε.

Definition 21. A linear space V (vector space) with the norm ‖ · ‖ is called
complete if every Cauchy sequence in V is convergent. In other words: For
every {vk}∞k=1 with the property that for every ε > 0 there is an integer N > 0,
such that m,n > N ⇒ ‖vm −vn‖ < ε, (i.e. for every Cauchy sequence) there
is a v ∈ V such that for every ε > 0 there is an integer M > 0 such that
m ≥M ⇒ |vm − v| < ε.

Theorem 31. H1
0 = {f : [0, 1] → R :

∫ 1

0
f ′(x)2dx < ∞,∧f(0) = f(1) = 0}

is a complete Hilbert space with the norm

‖u‖ =
√

(u, u) =
(∫ 1

0

u′(x)2dx
)1/2

. (9.1.23)

Lemma 8 (Poincare’s inequality in 1D). If u(0) = u(L) = 0 then

∫ L

0

u(x)2dx ≤ CL

∫ L

0

u′(x)2dx, (9.1.24)

where CL is a constant independent of u(x) but depends on L.

Proof. Using the Cauchy-Schwarz inequality we have

u(x) =

∫ x

0

u′(y)dy ≤
∫ x

0

|u′(y)|dy ≤
∫ L

0

|u′(y)| · 1dy

≤
(∫ L

0

u′(y)2dy
)1/2(

∫ L

0

12dy
)1/2

=
√
L
(∫ L

0

u′(y)2dy
)1/2

.

(9.1.25)

Consequently

u(x)2 ≤ L

∫ L

0

u′(y)2dy, (9.1.26)
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and hence
∫ L

0

u(x)2dx ≤ L

∫ L

0

(∫ L

0

u′(y)2dy
)

dx = L2

∫ L

0

u′(x)2dx, (9.1.27)

i.e. CL = L. Thus Poincare inequality deteriorates in unbounded domains.

Definition 22. We define a functional ℓ as a mapping from a (linear) func-
tion space V into R, i.e.,

ℓ : V → R. (9.1.28)

• A funcitonal ℓ is called linear if
{

ℓ(u+ v) = ℓ(u) + ℓ(v) for all u, v ∈ V

ℓ(αu) = α · ℓ(u) for all u ∈ V and α ∈ R.
(9.1.29)

• A functional is called bounded if there is a constant C such that

|ℓ(u)| ≤ C · ‖u‖ for all u ∈ V (C is independnet of u)

Example 31. If f ∈ L2(0, 1), i.e.
∫ 1

0
f(x)2dx is bounded, then

ℓ(v) =

∫ 1

0

u(x)v(x)dx (9.1.30)

is a bounded linear functional.

Problem 91. Show that ℓ, defined in example above is linear.

Problem 92. Prove using Cauchy’s and Poincare’s inequalities that ℓ, de-
fined as in the above example , is bounded in H1

0.

9.2 Riesz and Lax-Milgram Theorems

Abstract formulations: Recalling that

(u, v) =

∫ 1

0

u′(x)v′(x)dx and ℓ(v) =

∫ 1

0

u(x)v(x)dx,
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we may redefine our variational formulation (VF) and minimization problem
(MP) in an abstract forn as (V) and (M), respectively:

(V) Find u ∈ H1
0, such that (u, v) = ℓ(v) for all v ∈ H1

0.

(M) Find u ∈ H1
0, such that F (u) = min

v∈H1
0

F (v) with F (v) =
1

2
‖v‖2 − ℓ(v).

Theorem 32. There exists a unique solution for the, equivalent, problems
(V) and (M).

Proof. That (V) and (M) are equvalent is trivial and shown as in part I.
Now, we note that there exists a real number σ such that F (v) > σ for all
v ∈ H1

0, (otherwise it is not possible to minimize F ): namely we can write

F (v) =
1

2
‖v‖2 − ℓ(v) ≥ 1

2
‖v‖2 − γ‖v‖, (9.2.1)

where γ is the constant bounding ℓ, i.e. |ℓ(v)| ≤ γ‖v‖. But since

0 ≤ 1

2
(‖v‖ − γ)2 =

1

2
‖v‖2 − γ‖v‖ +

1

2
γ2, (9.2.2)

thus evidently we have

F (v) ≥ 1

2
‖v‖2 − γ‖v‖ ≥ −1

2
γ2. (9.2.3)

Let now σ∗ be the largest real number σ such that

F (v) > σ for all v ∈ H1
0. (9.2.4)

Take now a sequence of functions {uk}∞k=0, such that

F (uk) −→ σ∗. (9.2.5)

To show that there exists a unique solution for (V) and (M) we shall use the
following two fundamental results:
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uk, k = 1, 2, . . .

σ⋆
•

F (H1
0)

F

S ⊃ H1
0

Figure 9.1: The axiom of choice for existence of a solution of (V ) and (M).

(i) It is always possible to find a sequence {uk}∞k=0, such that F (uk) → σ•

(because R is complete.)

(ii) The parallelogram law (elementary linear algebra).

‖a + b‖2 + ‖a− b‖2 = 2‖a‖2 + 2‖b‖2.

Using (ii) and the linearity of ℓ we can write

‖uk − uj‖2 = 2‖uk‖2 + 2‖uj‖2 − ‖uk + uj‖2 − 4ℓ(uk) − 4ℓ(uj) + 4ℓ(u+ v)

= 2‖uk‖2 − 4ℓ(uk) + 2‖uj‖2 − 4ℓ(uj) − ‖uk + uj‖2 + 4ℓ(uk + uj)

= 4F (uk) + 4F (uj) − 8F
(uk + uj

2

)

,

where we have used the definition of F (v) = 1
2
‖v‖2 − ℓ(v) with v = uk, uj,

and v = (uk + uj)/2, respectivey. In particular by linearity of ℓ:

−‖uk +uj‖2 +4ℓ(uk +uj) = −4
∥
∥
∥
uk + uj

2

∥
∥
∥

2

+8ℓ
(uk + uj

2

)

= −8F
(uk + uj

2

)

.
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Now since F (uk) → σ∗ and F (uj) → σ∗, then

‖uk − uj‖2 ≤ 4F (uk) + 4F (uj) − 8σ∗ → 0, as k, j → ∞.

Thus we have shown that {uk}∞k=0 is a Cauchy sequence. Since {uk} ⊂ H1
0

and H1
0 is complete thus {uk}∞k=1 is a convergent sequence. Hence

∃u ∈ H1
0, such that u = lim

k→∞
uk.

By the continuity of F we get that

lim
k→∞

F (uk) = F (u). (9.2.6)

Now (9.2.5) and (9.2.6) yield F (u) = σ∗ and by (9.2.4) and the definition of
σ∗ we end up with

F (u) < F (v), ∀v ∈ H1
0. (9.2.7)

This in our minimization problem (M). And since (M) ⇔ (V) we conclude
that:

there is a unique u ∈ H1
0 , such that ℓ(v) = (u, v) ∀v ∈ H1

0.

Summing up we have proved that:

Proposition 3. Every bounded linear functional can be represented as a
scalar product with a given function u. This u is the unique solution for both
(V) and (M).

Theorem 33 (Riesz representation theorem). If V is a Hilbert space with
the scalar product (u, v) and norm ‖u‖ =

√

(u, u), and ℓ(v) is a bounded
linear functional on V , then there is a unique u ∈ V , such that ℓ(v) =
(u, v), ∀v ∈ V .

Theorem 34 (Lax-Milgram theorem). (A general version of Riesz theorem)
Assume that ℓ(v) is a bounded linear functional on V and a(u, v) is bilinear
bounded and elliptic in V , then there is a unique u ∈ V , such that

a(u, v) = ℓ(v), ∀v ∈ V. (9.2.8)



180 CHAPTER 9. RIESZ AND LAX-MILGRAM THEOREMS

Remark 17. Bilinear means that a(u, v) satisfies the same properties as a
scalar product, however it need not! to be symmetric.

Bounded means:

|a(u, v) ≤ β‖u‖ ‖v‖, for some constant β > 0. (9.2.9)

Elliptic means:
a(v, v) ≥ α‖v‖2, for some α > 0. (9.2.10)

Note
If a(u, v) = (u, v), then α = β = 1.

9.3 Exercises

Problem 93. Verify that the assumptions of the Lax-Milgram theorem are
satisfied for the following problems with appropriate assumptions on α and
f .

(I)







−u′′ + αu = f, in (0, 1),

u(0) = u′(1) = 0, α = 0 and 1.

(II)







−u′′ + αu = f, in (0, 1),

u(0) = u(1) u′(0)0u′(1) = 0.

(III)







−u′′ = f, in (0, 1),

u(0) − u′(0) = u(1) + u′(1)a = 0.

Problem 94. Let Ω be a bounded domain in Rd with boundary Γ, show that
there is a constant C such that for all v ∈ H1(Ω),

‖v‖L2(Γ) ≤ C‖v‖H1(Ω), (9.3.1)

where ‖v‖2
H1(Γ) = ‖v‖2 + ‖∇v‖2. Hint: Use the following Green’s formula

∫

Ω

v2∆ϕ =

∫

Γ

v2∂nϕ−
∫

Ω

2v∇v · ∇ϕ, (9.3.2)

with ∂nϕ = 1. (9.3.1) is knowm as trace inequality, or trace theorem.
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Problem 95. Let u be the solution of the following Neumann problem:







−∆u = f, in Ω ⊂ Rd,

−∂nu = ku, on Γ = ∂Ω, .

where ∂nu = n · ∇u with n being outward unit normal to Γ and k ≥ 0. a)
Show the stability estimate

‖u‖Ω ≤ CΩ(‖u‖Γ + ‖∇u‖Ω).

b) Use the estimate in a) to show that ‖u‖Γ → 0 as k → ∞.

Problem 96. Using the trace inequality, show that the solution for the prob-
lem 





−∆u + u = 0, in Ω

∂nu = g, on Γ,

satisfies the inequality

‖v‖2 + ‖∇v‖2 ≤ C‖g‖2
L2(Γ).

Problem 97. Consider the boundary value problem







∆u = 0, in Ω ⊂ R2,

∂nu+ u = g, on Γ = ∂Ω, n is outward unit normal to Γ.

a) Show the stability estimate

||∇u||2L2(Ω) +
1

2
||u||2L2(Γ) ≤

1

2
||g||2L2(Γ).

b) Discuss, concisely, the conditions for applying the Lax-Milgram theorem
to this problem.
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Chapter 10

The Poisson Equation

In this chapter we shall extend the study in Chapter 4 in Part I to solve the
Poisson equation







−∆u = f, in Ω ∈ R
d, d = 2, 3

u = 0 on ∂Ω,
(10.0.1)

where Ω is a bounded domain in Rd, with d = 2 or d = 3, with polygonal
boundary Γ = ∂Ω. For the presentation of problems from science and in-
dustry that are modeled by the Poisson’s equation we refer to Eriksson et
al. Computational Differential Equations [] and Folland: An introduction
to Fourier Analysis and its Applications []. Below we shall prove stability
results and derive a priori and a posteriori error estimates for the problem
(10.0.1)

10.1 Stability

To derive stability estimates for (10.0.1) we shall assume an underlying gen-
eral vector space V (to be specified below) of functions. We multiply the
equation by u and integrate over Ω to obtain

−
∫

Ω

(∆u)udx =

∫

Ω

f udx, x ∈ Ω and u ∈ V. (10.1.1)

183
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Using Green’s formula and the boundary condition: u = 0 on Γ, we get that

‖∇u‖2 =

∫

Ω

fu ≤ ‖f‖ ‖u‖, (10.1.2)

where ‖ · ‖ denotes the usual L2(Ω)-norm.

Lemma 9 (Poincaré inequality; the 2D-version). For the solution u of the
problem (10.0.1) in a bounded domain Ω ∈ R2, There exisists a constant CΩ,
independet of u such that

‖u‖ ≤ CΩ‖∇u‖ (10.1.3)

Proof. Let ϕ be a function such that ∆ϕ = 1 in Ω, and 2|∇ϕ| ≤ CΩ in Ω,
(it is easy to construct such a functionϕ ), then again by the use of Green’s
formula and the boundary condition we get

‖u‖2 =

∫

Ω

u2∆ϕ = −
∫

Ω

2u(∇u · ∇ϕ) ≤ CΩ‖u‖ ‖∇u‖. (10.1.4)

Thus
‖u‖ ≤ CΩ‖∇u‖. (10.1.5)

Now combining with the inequality (10.1.2) we get that the following weak
stability estimate holds

‖∇u‖ ≤ CΩ‖f‖. (10.1.6)

Problem 98. Derive corresponding estimates for following Neumann prob-
lem: 





−∆u+ u = f, in Ω

∂u
∂n

= 0, on Γ = ∂Ω.
(10.1.7)

10.2 Error Estimates for FEM

We start with the variational formulation for the problem (10.0.1), through
multiplying the equation by a test function, integrating over Ω and using the
Green’s formula: Find a solution u(x) such that u(x) = 0 on Γ = ∂Ω and

(V F ) :

∫

Ω

∇u · ∇v dx =

∫

Ω

fv dx, ∀v such that v = 0 on Γ. (10.2.1)
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We prepare for a finite element method where we shall approximate the
exact solution u(x) by a suitable discrete solution U(x). To this approach let
T = {K : ∪K = Ω} be a triangulation of the domain Ω and ϕj, j = 1, 2, . . . , n
be the corresponding basis functions, such that ϕj(x) is continuous, linear in
x on each K and

ϕj(Ni) =







1 for i = j

0 for i 6= j
(10.2.2)

where N1, N2, . . . , Nn are the inner nodes in the triangulation.

Now we set the approximate solution U(x) to be a linear combination of the
basis functions ϕj , j = 1, . . . , n:

U(x) = U1ϕ1(x) + U2ϕ2(x) + . . .+ Unϕn(x), (10.2.3)

and seek the coefficients Uj = U(Nj), i.e., the nodal values of U(x), at the
nodes Nj , 1 ≤ i ≤ n, so that

(FEM)

∫

Ω

∇U · ∇ϕi dx =

∫

Ω

f · ϕi dx, i = 1, 2, . . . n, (10.2.4)

or equivalently

(V 0
h )

∫

Ω

∇U · ∇v dx =

∫

Ω

f · v dx, ∀v ∈ V 0
h . (10.2.5)

We recall that

V 0
h = {v(x) : v is continuous, piecewise linear(onT ), and v = 0 onΓ = ∂Ω}.

Note that every v ∈ V 0
h can be represented by

v(x) = v(N1)ϕ1(x) + v(N2)ϕ2(x) + . . .+ v(Nn)ϕn(x). (10.2.6)

Theorem 35 (a priori error estimate for the gradient ∇u − ∇U). Let e =
u− U represent the error in the above piecelinear, continuous finite element
estimate approximation of the solution for (10.0.1), let ∇e = ∇u − ∇U =
∇(u−U). Then we have the following estimate for the gradient of the error

‖∇e‖ = ‖∇(u− U) ≤ C‖hD2u‖. (10.2.7)



186 CHAPTER 10. THE POISSON EQUATION

Proof. For the error e = u − U we have ∇e = ∇u − ∇U = ∇(u − U).
Subtracting (10.2.5) from the (10.2.1) we obtain the Galerkin Orthogonality:

∫

Ω

(∇u−∇U)∇v dx =

∫

Ω

∇e · ∇v dx = 0, ∀v ∈ V 0
h . (10.2.8)

Further we may write

‖∇e‖2 =

∫

Ω

∇e·∇e dx =

∫

Ω

∇e·∇(u−U) dx =

∫

Ω

∇e·∇u dx−
∫

Ω

∇e·∇U dx.

Now using the Galerkin orthogonality (10.2.8), since U(x) ∈ V 0
h we have

the last integral above:
∫

Ω
∇e · ∇U dx = 0. Hence removing the vanishing

∇U -term and inserting
∫

Ω
∇e · ∇v dx = 0, ∀v ∈ V 0

h we have that

‖∇e‖2 =

∫

Ω

∇e·∇udx−
∫

Ω

∇e·∇vdx =

∫

Ω

∇e·∇(u−v)dx ≤ ‖∇e‖·‖∇(u−v)‖.

Thus
‖∇(u− U)‖ ≤ ‖∇(u− v)‖, ∀v ∈ V 0

h , (10.2.9)

that is, measuring in the L2-norm the finite element solution U is closer to
u than any other v in V 0

h .

U

u

V 0
h

u− U

•

Figure 10.1: The orthogonal (L2) projection of u on V 0
h .

In other words the error u− U is orthogonal to V 0
h .
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It is possible to show that there is a v ∈ V 0
h (an interpolant), such that

‖∇(u− v)‖ ≤ C‖hD2u‖, (10.2.10)

where h = h(x) = diam(K) for x ∈ K and C is a constant, independent of
h. This is the case, for example, if v interpolates u at the nodes Ni

x2

x3

x1

N1

N2

N3

•

•

•

K

u

πhu

Figure 10.2: The nodal interpolant of u in 2D case

Combining (10.2.9) and (10.2.10) we get

‖∇e‖ = ‖∇(u− U) ≤ C‖hD2u‖, (10.2.11)

which is indicating that the error is small if h(x) is sufficiently small depend-
ing on D2u. See the Fig. below

To prove an a priori error estimate for the solution we shall use the following
result:
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•

•

•

•

•

•

•

•

•

••

•

•
••

•

h large h small

D2u large

D2u small

Figure 10.3: The adaptivity priciple: to refine mesh for large D2u

Lemma 10 (regularity lemma). Assume that Ω has no re-intrents. We have
for u ∈ H2(Ω); with u = 0 or (∂u

∂n
= 0) on ∂Ω. that

‖D2u‖ ≤ cΩ · ‖∆u‖, (10.2.12)

where
D2u = (u2

xx + 2u2
xy + u2

yy)
1/2. (10.2.13)

We postpone the proof of this lemma and first derive the error estimate:

Theorem 36 (a priori error estimate for the solution e = u − U). For a
general mesh we have the following a priori error estimate for the solution
of the Poisson equation (10.0.1):

‖e‖ = ‖u− U‖ ≤ C2CΩ (max
Ω

h) · ‖hD2u‖. (10.2.14)

Proof. Let ϕ be the solution of the dual problem






−∆ϕ = e, in Ω

ϕ = 0, on ∂Ω
(10.2.15)
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Then we have using Green’s formula

‖e‖2 =

∫

Ω

e(−∆ϕ)dx =

∫

Ω

∇e · ∇ϕ dx,

∫

Ω

∇e · ∇(ϕ− v) dx

≤ ‖∇e‖ · ‖∇(ϕ− v)‖, ∀v ∈ V 0
h ,

(10.2.16)

where in the last equality we have used the Galerkin orthogonality. We now
choose v such that

‖∇(ϕ− v)e‖ ≤ C‖h ·D2ϕC‖ ≤ C(max
Ω

h)‖h ·D2ϕC‖. (10.2.17)

Applying the lemma to ϕ, we get

‖D2ϕ‖ ≤ CΩ · ‖∆ϕ‖ = CΩ‖e‖. (10.2.18)

Now (10.2.11)-(10.2.18) implies that

‖e‖2 ≤ ‖∇e‖ · ‖∇(ϕ− v)‖ ≤ ‖∇e‖ · Cmax
Ω

h ‖D2ϕ‖

≤ ‖∇e‖ · C max
Ω

hCΩ‖e‖ ≤ C2CΩ max
Ω

h‖e‖‖hD2u‖.
(10.2.19)

Thus we have obtained the desired result: a priori error estimate:

‖e‖ = ‖u− U‖ ≤ C2CΩ (max
Ω

h) · ‖hD2u‖. (10.2.20)

Corollary 3 (strong stability estimate). Using the Lemma, for a uniform
(constant h), the a priori error estimate (10.2.20) can be written as an sta-
bility estimate viz,

‖u− U‖ ≤ C2C2
Ω (max

Ω
h)2 ‖f‖. (10.2.21)



190 CHAPTER 10. THE POISSON EQUATION

Theorem 37 ( a posteriori error estimate). For the solution of the Poisson
equation (10.0.1) we have that

‖u− U‖ ≤ C ‖h2r‖, (10.2.22)

where U is the continuous piecewise linear finite element approximation and
r = f + ∆nU is the residual with ∆n being discrete Laplacian defined by

(∆nU, v) =
∑

K∈Th

(∇U,∇v)K. (10.2.23)

Proof. We consider the following dual problem






−∆ϕ(x) = e(x), x ∈ Ω,

ϕ(x) = 0, x ∈ ∂Ω, e(x) = u(x) − U(x).
(10.2.24)

Thus e(x) = 0, ∀x ∈ ∂Ω. Using (10.2.24) and the Green’s formula, the
L2-norm of the error can be written as:

‖e‖2 =

∫

Ω

e · e dx =

∫

Ω

e(−∆ϕ)dx =

∫

Ω

∇e · ∇ϕdx. (10.2.25)

Thus by the Galerkin orthogonality:
∫

Ω
∇e · ∇vdx = 0, ∀v ∈ V 0

h , and the
boundary data: ϕ(x), ∀x ∈ ∂Ω we can write

‖e‖2 =

∫

Ω

∇e · ∇ϕdx−
∫

Ω

∇e · ∇vdx =

∫

Ω

∇e · ∇(ϕ− v) dx

=

∫

Ω

(−∆e)(ϕ− v) dx ≤ ‖h2r‖ · ‖h−2(ϕ− v)‖

≤ C · ‖h2r‖ · ‖∆ϕ‖ ≤ C · ‖h2r‖ · ‖e‖,

(10.2.26)

where we use the fact that the −∆e = −∆u+ ∆U = f + ∆U is the residual
r and v is an interpolant of ϕ. Thus, for this problem, the final a posteriori
error estimate is:

‖u− U‖ ≤ C ‖h2r‖. (10.2.27)

Observe that for piecewise linear approximations ∆U = 0 on each element
K and hence r ≡ f and our a posteriori error estimate above can be viewed
as a strong stability estimate viz,

‖e‖ ≤ C ‖h2f‖. (10.2.28)

Note that now is ∇e(ϕ− v) 6= 0 on the enter-element boundaries.
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Problem 99. Show that ‖(u− U)′‖ ≤ C‖hr‖.
Problem 100. Verify that for v being the interpolant of ϕ, we have

‖e‖ ≤ C ‖h2f‖ ×







‖h−2 (ϕ− v)‖ ≤ C ‖∆ϕ‖, and

‖h−1(ϕ− v)‖ ≤ C ‖∇ϕ‖.
(10.2.29)

Problem 101. Derive the corresponding estimate to (10.2.27) in the 1-
dimensional case (d = 1).

Now we return to the proof of Lemma:

proof of regularity lemma. First note that for convex Ω, the constant CΩ ≤ 1
in lemma, otherwise the constant CΩ > 1 and increases from left to right for
the Ω:s below.

Ω Ω Ω Ω

(Ω)<1C - C (Ω)>1 C (Ω) larger C (Ω)=ω

Let now Ω be a rectangular domain and set u = 0 on ∂Ω. We have then

‖∆u‖2 =

∫

Ω

(uxx + uyy)
2dxdy =

∫

Ω

(u2
xx + 2uxxuyy + u2

yy) dxdy. (10.2.30)

Further applying Green’s formula:
∫

Ω

(∆u)v dx =

∫

Γ

(∇u · n)v ds−
∫

Ω

∇u · ∇v dx

to our rectangular domain Ω we have
∫

Ω

uxxuyydxdy =

∫

∂Ω

ux(uyy · nx)ds−
∫

Ω

ux uyyx
︸︷︷︸

=uxyy

dxdy (10.2.31)
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using Green’s formula once again ( with “v = ux”, “∆u = uxyy”) we get
∫

Ω

uxuxyydxdy =

∫

∂Ω

ux(uyx · ny)ds−
∫

Ω

uxyuxy dxdy, (10.2.32)

which inserting in (10.2.31) gives that
∫

Ω

uxxuyy dxdy =

∫

∂Ω

(uxuyynx − uxuyxny)ds+

∫

Ω

uxyuxy dxdy. (10.2.33)

n(0, y) = (−1, 0) n(a, y) = (1, 0)

n(x, 0) = (0,−1)

n(x, b) = (0, 1)

Ω

b

a

uyy = 0uyy = 0

ux = 0

ux = 0

Figure 10.4: A rectangular domain Ω with its outward unit normals

Now, as we can see from the figure that (uxuyynx −uxuyxny) = 0, on ∂Ω and
hence we have

∫

Ω

uxxuyydxdy =

∫

Ω

uxyuxydxdy =

∫

Ω

u2
xy dxdy. (10.2.34)

Thus, in this case,

‖∆u‖2 =

∫

Ω

(uxx + uyy)
2dxdy =

∫

Ω

(u2
xx + 2u2

xy + u2
yy)dxdy = ‖D2u‖2,

and the proof is complete by a constant ≡ 1.
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10.3 Exercises

Problem 102. Consider the following two dimensional problem:







−∆u = 1, in Ω

u = 0, on ΓD

∂u
∂n

= 0, on ΓN

(10.3.1)

See figure below

1

Γ

x2 x2

ΓN

Γ

Γ
D Ω

1

1

1

N

D

xx1 1

Triangulate Ω as in the figure and let

U(x) = U1ϕ1(x) + . . .+ U16ϕ16(x),

where x = (x1, x2) and ϕj, j = 1, . . . 16 are the basis functions, see Fig.
below, and determine U1, . . . U16 so that

∫

Ω

∇U · ∇ϕjdx =

∫

Ω

ϕjdx, j = 1, 2, . . . , 16.
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N1

N15

ϕ
1

ϕ
15

Problem 103. Generalize the procedure in the previous problem to the fol-
lowing case







−∇(a∇u) = f, in Ω

u = 0, on ΓD

a∂u
∂n

= 7, on ΓN

, where







a = 1 for x1 <
1
2

a = 2 for x1 >
1
2

f = x2. mesh-size=h.

Problem 104. Consider the Dirichlet problem

−∇ · (a(x)∇u) = f(x), x ∈ Ω ⊂ R
2, u = 0, for x ∈ ∂Ω.

Assume that c0 and c1 are constants such that c0 ≤ a(x) ≤ c1, ∀x ∈ Ω and let
U =

∑N
j=1 αjwj(x) be a Galerkin approximation of u in a finite dimensional

subspace M of H1
0 (Ω). Prove the a priori error estimate

||u− U ||H1
0
(Ω) ≤ C inf

χ∈M
||u− χ||H1

0
(Ω).

Problem 105. Consider the following Schrödinger equation

u̇+ i∆u = 0, in Ω, u = 0, on ∂Ω,

where i =
√
−1 and u = u1 + iu2. a) Show that the the L2 norm of the

solution, i.e.,
∫

Ω
|u|2 is time independent.
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Hint: Multiply the equation by ū = u1 − iu2, integrate over Ω and consider
the real part.

b) Consider the corresponding eigenvalue problem, of finding (λ, u 6= 0), such
that

−∆u = λu in Ω, u = 0, on ∂Ω.

Show that λ > 0, and give the relation between ||u|| and ||∇u|| for the corre-
sponding eigenfunction u.

c) What is the optimal constant C (expressed in terms of smallest eigenvalue
λ1), for which the inequality ||u|| ≤ C||∇u|| can fullfil for all functions u,
such that u = 0 on ∂Ω?

Problem 106. Determine the stiffness matrix and load vector if the cG(1)
finite element method applied to the Poisson’s equation on a triangulation
with triangles of side length 1/2 in both x1- and x2-directions:







−∆u = 1, in Ω = {(x1, x2) : 0 < x1 < 2, 0 < x2 < 1},
u = 0, on Γ1 = {(0, x2)} ∪ {(x1, 0)} ∪ {(x1, 1)},
∂u
∂n

= 0, on Γ2 = {(2, x2) : 0 ≤ x2 ≤ 1}.

Problem 107. Let Ω = (0, 2)× (0, 2), B1 = ∂Ω \B2 and B2 = {2}× (0, 2).
Determine the stiffness matrix and load vector in the cG(1) solution for the
problem 





−∂2u
∂x2

1

− 2∂2u
∂x2

2

= 1, in Ω = (0, 2) × (0, 2),

u = 0, on B1,
∂u
∂x1

= 0, on B2,

with piecewise linear approximation applied on the triangulation below:

Problem 108. Determine the stiffness matrix and load vector if the cG(1)
finite element method with piecewise linear approximation is applied to the
following Poisson’s equation with mixed boundary conditions:







−∆u = 1, on Ω = (0, 1) × (0, 1),

∂u
∂n

= 0, for x1 = 1,

u = 0, for x ∈ ∂Ω \ {x1 = 1},
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1

2

1

B

B

B

B

2

1

x

x

2

1

2

on a triangulation with triangles of side length 1/4 in the x1-direction and
1/2 in the x2-direction.

Problem 109. Formulate the cG(1) method for the boundary value problem

−∆u + u = f, x ∈ Ω; u = 0, x ∈ ∂Ω.

Write down the matrix form of the resulting equation system using the fol-
lowing uniform mesh:

1 2

3
4

h

h

x
2

x
1

T



Chapter 11

The heat equation in R
N

In this chapter we shall study the stability of the heat equation in Rd, d ≥ 2.
The one-dimesional case is studied in Part I. Here our concern will be those
aspects of the stability estimates for the higher dimensional case that are not
a direct consequence of the study of the one-dimesional problem. The finite
element error analysis in the higher dimensions are derived in a similar way
as the corresponding 1D case. Here we omit the detailed error estimates and
instead refer the reader to the text book CDE, Eriksson et al. [].

The initial boundary value problem for the heat equation can be formulated
as







u̇− ∆u = 0, in Ω ⊂ Rd, d = 1, 2, 3) (DE)

u = 0, on Γ := ∂Ω, (BC)

u(0, x) = u0, for x ∈ Ω, (IC)

(11.0.1)

where u̇ = ∂u
∂t

.

The equation (11.0.1) is of parabolic type with signifacnt smoothing and
stability properties. It can also be used as a model for a variety of physical
phenomena involving diffusion processes. We shall not go in detail of the
physical properties for (11.0.1), instead we focus only on the stability issue.
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11.1 Stability

The stability estimates for the heat equation (11.0.1) are summarized in the
following theorem:

Theorem 38 (Energy estimates). The solution u of the initial-boundary
value problem (11.0.1) satisfies the stability estimates

‖u‖(t) ≤ ‖u0‖ (11.1.1)
∫ t

0

‖∇u‖2(s) ds ≤ 1

2
‖u0‖2 (11.1.2)

‖∇u‖(t) ≤ 1√
2 t

‖u0‖ (11.1.3)

(∫ t

0

s‖∆u‖2(s) ds
)1/2

≤ 1

2
‖u0‖ (11.1.4)

‖∆u‖(t) ≤ 1√
2 t

‖u0‖ (11.1.5)

∫ t

ε

‖u̇‖(s) ds ≤ 1

2

√

ln
t

ε
‖u0‖. (11.1.6)

Proof. To derive the first two estimates (11.1.1) and (11.1.2) we multiply
(11.0.1) by u and integrate over Ω, viz

∫

Ω

u̇u dx−
∫

Ω

(∆u)u dx = 0. (11.1.7)

Note that u̇u = 1
2

d
dt
u2 and using Green’s formula with the Dirichlet boundary

data: u = 0 on Γ, we get

−
∫

Ω

(∆u)u dx = −
∫

Γ

(∇u ·n) u ds+

∫

Ω

∇u · ∇u dx =

∫

Ω

|∇u|2 dx. (11.1.8)

Thus equation (11.1.7) can be written in the following, equivalent, form:

1

2

d

dt

∫

Ω

u2dx+

∫

Ω

|∇u|2dx = 0 ⇐⇒ 1

2

d

dt
‖u‖2 + ‖∇u‖2 = 0, (11.1.9)
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where ‖ · ‖ denotes the L2(Ω) norm. We substitute t by s and integrate the
equation (11.1.9) over s ∈ (0, t) to get

1

2

∫ t

0

d

ds
‖u‖2(s)ds+

∫ t

0

‖∇u‖2(s)ds =
1

2
‖u‖2(t)−1

2
‖u‖2(0)+

∫ t

0

‖∇u‖2ds = 0.

Hence, inserting the initial data u(0) = u0 we have

‖u‖2(t) + 2

∫ t

0

‖∇u‖2(s) ds = ‖u0‖2. (11.1.10)

In particular, we have our first two stability estimates

‖u‖(t) ≤ ‖u0‖, and

∫ t

0

‖∇u‖2(s) ds ≤ 1

2
‖u0‖.

To derive (11.1.3) and (11.1.4) we multiply the (DE) in (11.0.1): u̇−∆u = 0,
by −t · ∆u and integrate over Ω to obtain

−t
∫

Ω

u̇ · ∆u dx+ t

∫

Ω

(∆u)2 dx = 0. (11.1.11)

Using Green’s formula (u = 0 on Γ) yields

∫

Ω

u̇∆u dx = −
∫

Ω

∇u̇ · ∇u dx = −1

2

d

dt
‖∇u‖2, (11.1.12)

so that (11.1.11) can be written as

t
1

2

d

dt
‖∇u‖2 + t ‖∆u‖2 = 0. (11.1.13)

Now using the relation t d
dt
‖∇u‖2 = d

dt
(t‖∇u‖2) − ‖∇u‖2, we rewrite the

(11.1.13) as

d

dt

(

t‖∇u‖2
)

+ 2t‖∆u‖2 = ‖∇u‖2. (11.1.14)

Once again we substitute t by s and integrate over (0, t) to get:

∫ t

0

d

ds

(

s‖∇u‖2(s)
)

ds+ 2

∫ t

0

s‖∆u‖2(s)ds =

∫ t

0

‖∇u‖2(s)ds ≤ 1

2
‖u0‖2,
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where in the last inequality we use (11.1.2). Consequently

t ‖∇u‖2(t) + 2

∫ t

0

s ‖∆u‖2(s) ds ≤ 1

2
‖u0‖2. (11.1.15)

In particular, we have:

‖∇u‖(t) ≤ 1√
2t
‖u0‖ and

(∫ t

0

s‖∆u‖2(s) ds
)1/2

≤ 1

2
‖u0‖,

which are our third and fourth stability estimates (11.1.3) and (11.1.4). The
stability estimate (11.1.5) is proved analogously. Now using (11.0.1): (u̇ =
∆u) and (11.1.5) we may write

∫ t

ε

‖u̇‖(s)ds ≤ 1√
2
‖u0‖

∫ t

ε

1

s
ds =

1√
2

ln
t

ε
‖u0‖ (11.1.16)

or more carefully

∫ t

ε

‖u̇‖(s)ds =

∫ t

ε

‖∆u‖(s)ds =

∫ t

ε

1 · ‖∆u‖(s)ds =

∫ t

ε

1√
s
·
√
s‖∆u‖(s)ds

≤
(∫ t

ε

s−1 ds
)1/2

·
(∫ t

ε

s‖∆u‖2(s) ds
)1/2

≤ 1

2

√

ln
t

ε
‖u0‖,

where in the last two inequalities we use Cauchy Schwartz inequality and
(11.1.4), respectively.

Problem 110. Show that ‖∇u(t)‖ ≤ ‖∇u0‖ (the stability estimate for the
gradient). Hint: Multiply (11.0.1) by −∆u and integrate over Ω.

Is this inequality valid for u0 = constant?

Problem 111. Derive the corresponding estimate for Neuman boundary con-
dition:

∂u

∂n
= 0. (11.1.17)

Problem 112. Prove the stability estimate (11.1.5).
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Example 32 (The equation of an elastic beam). This is an example of a
stationary biharmonic equation describing the bending of an elastic beam as
a one-dimensional model problem (the relation to the heat coductivity is the
even number of spatial diferentiation)







(au′′)′′ = f, Ω = (0, 1),

u(0) = 0, u′(0) = 0, (Dirichlet)

u′′(1) = 0, (au′′)′(1) = 0, (Neumann)

(11.1.18)

0 1

f

x

y

where a is the bending stiffness

au′′ is the moment

f is the function load

u = u(x) is the vertical deflection

Variational form:

∫ 1

0

au′′v′′dx =

∫ 1

0

fvdx, ∀v(x) such that v(0) = v′(0) = 0. (11.1.19)

FEM: Piecewise linear functions won’t work (inadequate).
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11.2 Exercises

Problem 113. Work out the details with piecewise cubic polynomials having
continuous first derivatives: i.e., two degrees of freedom on each node.

A cubic polynomial in (a, b) is uniquely determined by ϕ(a), ϕ′(a), ϕ(b) and
ϕ′(b), where the basic functions would have the following form:

Problem 114. Consider the following general form of the heat equation






ut(x, t) − ∆u(x, t) = f(x, t), for x ∈ Ω, 0 < t ≤ T,

u(x, t) = 0, for x ∈ Γ, 0 < t ≤ T,

u(x, 0) = u0(x), for x ∈ Ω,

(11.2.1)

where Ω ∈ R2 with boundary Γ. Let ũ be the solution of (11.2.1) with a
modified initial data ũ0(x) = u0(x)ε(x).



11.2. EXERCISES 203

a) Show that w := ũ− u solves (11.2.1) with initial data w0(x) = ε(x).

b) Give estimates for the difference between u and ũ.

c) Prove that the solution of (11.2.1) is unique.

Problem 115. Formulate the equation for cG(1)dG(1) for the two-dimensional
heat equation using the discrete Laplacian.

Problem 116. In two dimensions the heat equation, in the case of radial
symmetry, can be formulated as ru̇−(ru′r)

′
r = rf , where r = |x| and w′

r = ∂w
∂r

.

a) Verify that u = 1
4πt

exp(−r2

4t
) is a solution for the homogeneous equation

(f = 0) with the initial data being the Dirac δ function u(r, 0) = δ(r).

b) Sketching u(r, t) for t = 1 and t = 0.01, deduce that u(r, t) → 0 as
t→ 0 for r > 0.

c) Show that
∫

R2 u(x, t) dx = 2π
∫ ∞
0
u(r, t) r dr = 1 for all t.

d) Determine a stationary solution to the heat equation with data

f =







1/(πε)2, for r < ε,

0, otherwise.

e) Determine the fundamental solution corresponding to f = δ, letting
ε→ 0.

Problem 117. Consider the Schrödinger equation

iu̇− ∆u = 0, in Ω, u = 0, on ∂Ω.

where i =
√
−1 and u = u1 + iu2.

a) Show that the total probability
∫

Ω
|u|2 is independent of the time.

Hint: Multiplying by ū = u1 − iu2, and consider the imaginary part
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b) Consider the corresponding eigenvalue problem, i.e, find the eigenvalue
λ and the corresponding eigenfunction u 6= 0 such that

−∆u = λu in Ω, u = 0, on ∂Ω.

Show that λ > 0 and give the relationship between the norms ‖u‖ and
‖∇u‖ for the corresponding eigenfunction u.

c) Determine (in terms of the smallest eigenvalue λ1), the smallest possi-
ble value for the constant C in the Poincare estimate

‖u‖ ≤ C‖∇u‖,

derived for all solutions u vanishing at the boundary (u = 0, on ∂Ω).

Problem 118. Consider the initial-boundary value problem







ut(x, t) − ∆u(x, t) = f(x, t), for x ∈ Ω, t > 0,

u(x, t) = 0, for x ∈ Γ, t > 0,

u(x, 0) = u0(x), for x ∈ Ω,

(11.2.2)

a) Prove (with ‖u‖ = (
∫

Ω
u2 dx)1/2) that

‖u(t)‖2 +

∫ t

0

‖∇u(s)‖2 ds ≤ ‖u0‖2 +

∫ t

0

‖f(s)‖2 ds

‖∇u(t)‖2 +

∫ t

0

‖∆u(s)‖2 ds ≤ ‖∇u0‖2 +

∫ t

0

‖f(s)‖2 ds

b) Formulate dG(0) − cG(1) method for this problem.

Problem 119. Formulate and prove dG(0) − cG(1) a priori and a posteri-
ori error estimates for the two dimentional heat equation (cf. the previous
problem) that uses lumped mass and midpoit quadrature rule.



Chapter 12

The wave equation in R
N

The fundamental study of the wave equation in R
n, n ≥ 2 is an extension of

the results in the one-dimensional case introduced in Part I. Some additional
properties in 1D are introduced in Lecture Notes in the Fourier Analysis (see
homepage of the authors). The higher dimensional problem is considered in
details in our course text book: CDE. In the present Chapter we prove the
law of conservation of energy for the wave equation in Rn, n ≥ 2, and the
full study refer to CDE.

Theorem 39 (Conservation of energy). For the wave equation







ü− ∆u = 0, quad in Ω (DE)

u = 0, on ∂Ω = Γ (BC)

(u = u0) ∧ (u̇ = v0) in Ω, for t = 0, (IC)

(12.0.1)

where ü = ∂2u/∂t2 we have that

1

2
‖u̇‖2 +

1

2
‖∇u‖2 = constant, independent of t, (12.0.2)

i.e., the total energy is conserved, where 1
2
‖u̇‖2 is the kinetic energy, and

1
2
‖∇u‖2 is the potential (elastic) energy.
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Proof. We multiply the equation by u̇ and integrate over Ω to get
∫

Ω

ü · u̇ dx−
∫

Ω

∆u · u̇ dx = 0. (12.0.3)

Using Green’s formula:

−
∫

Ω

(∆u)u̇ dx = −
∫

Γ

(∇u · n)u̇ ds+

∫

Ω

∇u · ∇u̇ dx, (12.0.4)

and the boundary condition u = 0 on Γ, (which implies u̇ = 0 on Γ), we get
∫

Ω

ü · u̇ dx+

∫

Ω

∇u · ∇u̇ dx = 0. (12.0.5)

Consequently we have that
∫

Ω

1

2

d

dt
(u̇2) dx+

∫

Ω

1

2

d

dt
(|∇u|2) dx = 0 ⇐⇒ 1

2

d

dt
(‖u̇‖2 + ‖∇u‖2) = 0,

and hence

1

2
‖u̇‖2 +

1

2
‖∇u‖2 = constant, independent of t,

and we have the desired result.

12.1 Exercises

Problem 120. Show that

‖u̇‖2 + ‖∇u‖2 = constant, independent of t.

Hint: Multiply (DE): ü− ∆u = 0 by −∆u̇ and integrate over Ω.

Alternatively: differentiate the equation with respect to x and multiply the
result by u̇, and continue!

Problem 121. Derive a total conservation of energy relation using the Robin

type boundary condition:
∂u

∂n
+ u = 0.
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Problem 122. Determine a solution for the following equation

ü− ∆u = eitδ(x),

where ∆ = ∂2

∂x2
1

+ ∂2

∂x2
2

+ ∂2

∂x2
3

, i =
√
−1, x = (x1, x2, x3) and δ is the Dirac-delta

function.

Hint: Let u = eitv(x), v(x) = w(r)/r where r = |x|. Further rv = w → 1
4π

as r → 0.

Problem 123. Consider the initial boundary value problem







ü− ∆u+ u = 0, x ∈ Ω, t > 0,

u = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), u̇(x, 0) = u1(x), x ∈ Ω.

(12.1.1)

Rewrite the problem as a system of two equations with a time derivative of
order at most 1. Why this modification is necessary?

Problem 124. Consider the initial boundary value problem







ü− ∆u = 0, x ∈ Ω, t > 0,

u = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), u̇(x, 0) = u1(x), x ∈ Ω.

(12.1.2)

Formulate the cG(1) method for this problem. Show that the energy is con-
served.
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Chapter 13

Convection - diffusion problems

Most of the multi-physical phenomena are described by the convection, diffu-
sion and absorption. Fluid- and gas dynamical problems, chemical reaction-
diffusion, electromagnetic fields, collisions in plasma of charged Coulomb par-
ticles (electron and ions), particle transport processes both in micro (neutron
transport) and macro-dimension (traffic flow with cars as particles) are often
modeled as convection diffusion and absorption type problems. In this chap-
ter we shall give a brief review of the problem in the one-dimensional case.
The higher dimensional case will be considered in a forthcoming version of
this notes.

13.1 A convection-diffusion model problem

We illustrate the convection-diffusion phenomenon by an example:

Example 33 (A convection model). Consider the traffic flow in a highway,
viz the Fig. below. Let ρ = ρ(x, t) be the density of cars (0 ≤ ρ ≤ 1) and
u = u(x, t) the velocity (speed vector) of the cars at the position x ∈ (a, b)
and time t. For a highway path (a, b) the difference between the traffic inflow
u(a)ρ(a) at the point x = a and outflow u(b)ρ(b) at x = b gives the density

209
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variation on the interval (a, b):

d

dt

∫ b

a

ρ(x, t)dx =

∫ b

a

ρ̇(x, t)dx = ρ(a)u(a) − ρ(b)u(b) = −
∫ b

a

(uρ)′dx

or equivalently
∫ b

a

(

ρ̇+ (uρ)′
)

dx = 0. (13.1.1)

ρ

x
ba

u(a) u(b)

(a) = 1 ρ  (b) = −12

Since a and b can be chosen arbitrary, thus we have

ρ̇+ (uρ)′ = 0. (13.1.2)

Let now u = 1 − ρ, (motivate this choice), then (13.1.2) is rewritten as

ρ̇+
(

(1 − ρ)ρ
)′

= ρ̇+ (ρ− ρ2)′ = 0. (13.1.3)

Hence

ρ̇+ (1 − 2ρ)ρ′ = 0 (A non-linear convection equation). (13.1.4)

Alternatively, to obtain a convection-diffusion model), we may assume that
u = c− ε · (ρ′/ρ), c > 0, ε > 0, (motivate). Then we get from (13.1.2) that

ρ̇+
(

(c− ε
ρ′

ρ
)ρ

)′
= 0, (13.1.5)
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i.e.,

ρ̇+ cρ′ − ερ′′ = 0 (A convection - diffusion equation). (13.1.6)

The equation (13.1.6) is convection dominated if c > ε.

For ε = 0 the solution is given by the exact transport ρ(x, t) = ρ0(x − ct),
because then ρ = constant on the (c, 1)-direction.

x

t
-

(x + ct, t)

-x -
x = x - ct

Note that differentiating ρ(x, t) = ρ(x̄+ ct, t) with respect to t we get

∂ρ

∂x
· ∂x
∂t

+
∂ρ

∂t
= 0, ⇐⇒ cρ′ + ρ̇ = 0. (13.1.7)

Finally, we may rewrite (13.1.6): our last convection-diffusion equation for
ρ, by changing the notation from ρ to u, and replacing c by β to get

u̇+ β · u′ − ε · u′′ = 0. (13.1.8)

Remark 18. Compare this equation with the Navier-Stokes equations for
incompressible flow:

u̇+ (β · ∇)u− ε∆u+ ∇P = 0, ∧ divu = 0, (13.1.9)

where β = u, u = (u1, u2, u3) is the velocity vector, with u1 representing
the mass, u2 momentum, and u3 = energy. Further P is the pressure and

ε =
1

Re
with Re denoting the Reynold’s number.
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Navier-Stokes equations are not easily solvable, for ε > 0 and small, because
of difficulties related to boundary layer and turbulence. A typical range for
the Reynold’s number Re is between 105 and 107.

Example 34 (The boundary layer). Consider the following boundary value
problem

(BVP)







u′ − εu′′ = 0, 0 < x < 1

u(0) = 1, u(1) = 0.
(13.1.10)

The exact solution to this problem is given by

u(x) = C
(

e1/ε − ex/ε
)

, with C =
1

e1/ε − 1
. (13.1.11)

which has an outflow boundary layer of width ∼ ε, as seen in the Fig. below

u(x)

y

x
0

1
ε

1

13.1.1 Finite Element Method

We shall now study the finite element solution of the problem (13.1.10). To
this end we represent, as usual, the finite element solution by

U(x) = ϕ0(x) + U1ϕ1(x) + . . .+ Unϕn(x), (13.1.12)

where the ϕj:s are the piecewise linear basis function illustrated viz Fig.
below
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0

ϕ
0
(x) ϕn(x)

...
xxn-1 n

y

x
1

1

Evidently, the corresponding variational formulation is

∫ 1

0

(

U ′ϕjdx+ εU ′ϕ′
j

)

dx = 0, j = 1, 2, . . . n. (13.1.13)

This yields the equations

1

2

(

Uj+1 − Uj−1

)

+
ε

h

(

2Uj − Uj−1 − Uj+1

)

= 0, j = 1, 2, . . . , n, (13.1.14)

where U0 = 1 and Un+1 = 0.

Note that, using Central -differencing we may also write

Uj+1 − Uj−1

2h
︸ ︷︷ ︸

corresp. to u′(xj)

−ε Uj+1 − 2Uj + Uj−1

h2
︸ ︷︷ ︸

corresp. to u′′(xj)

= 0
(

⇐⇒ 1

h
× equation(13.1.14)

)

.

Now for ε being very small this gives that Uj+1 ≈ Uj−1, which results, for
even n values, alternating 0 and 1 as the solution values at the nodes:

i.e., oscillations in U are transported “upstreams” making U a “globally bad
approximation” of u.
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y

x

0 1

1

U(x)

A better approach would be to approximate u′(xj) by an upwind derivative
as follows

u′(xj) ≈
Uj − Uj−1

h
, (13.1.15)

which, formally, gives a better stability, however, with low accuracy.

Remark 19. The example above demonstrates that a high accuracy without
stability is indeed useless.

A more systematic method of making the finite element solution of the fluid
problems stable is through using the streamline diffusion method which we,
formally, introduce in the following subsection.

13.1.2 The Streamline - diffusion method (SDM)

The idea is to choose, in the variational formulation, the test functions of the
form (v+ 1

2
βhv′), instead of just v (this would finally correspond to adding an

extra diffusion to the original equation in the direction of the stream-lines).
Then, e.g., for our model problem we obtain the equation (β ≡ 1)

∫ 1

0

[

u′(v +
1

2
hv′

)

− ε · u′′
(

v +
1

2
hv′

)]

dx =

∫ 1

0

f
(

v +
1

2
hv′

)

dx. (13.1.16)

In the case of approximation with piecewise linears, in the discrete version
of the variational formulation, we should interpret the term

∫ 1

0
U ′′v′dx as a
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sum viz,
∫ 1

0

U ′′v′dx :=
∑

j

∫

Ij

U ′′v′dx = 0. (13.1.17)

Then, with piecewise linear test functions, i.e., choosing v = ϕj we get the
discrete term corresponding to the second integral in (13.1.16) as

∫ 1

0

U ′ 1

2
hϕ′

jdx = Uj −
1

2
Uj+1 −

1

2
Uj−1, (13.1.18)

which adding to the obvious relation

∫ 1

0

U ′ϕjdx =
Uj+1 − Uj−1

2
, (13.1.19)

we end up with (Uj − Uj−1), as an approximation of the first integral in
(13.1.16), corresponding to the upwind scheme.

Remark 20. The SDM can also be interpreted as a sort of least-square
method:

Let A = d
dx

then At = − d
dx

. Now u minimizes ‖w′− f‖ if u′ = Au = f . This
can be written as

AtAu = Atf ⇐⇒ −u′′ = −f, (the continuous form). (13.1.20)

While multiplying u′ = Au = f by v and integrating over (0, 1) we have

∫ 1

0

U ′v′dx =

∫ 1

0

fv′dx (the weak form), (13.1.21)

where we replaced u′ by U ′.

For the time-dependent convection equation, the oriented time-space element
are used. Consider the time-dependent problem

u̇+ βu′ − εu′′ = f. (13.1.22)
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U(x,t)

t

nt

n-1t

x

β

Set U(x, t) such that U is piecewise linear in x and piecewise constant in the
(β, 1)-direction. Combine with SDM and add up some artificial viscosity, ε̂,
depending on the residual term to get for each time interval In:
∫

In

∫

Ω

[

(U̇ + βU)
(

v +
β

2
hv̇

)

+ ε̂ U ′v′
]

dxdt =

∫

In

∫

Ω

f
(

v +
β

2
hv′

)

dxdt. �

13.2 Exercises

Problem 125. Prove that the solution u of the convection-diffusion problem

−uxx + ux + u = f, quadin I = (0, 1), u(0) = u(1) = 0,

satisfies the following estimate
(∫

I

u2φ dx
)1/2

≤
(∫

I

f 2φ dx
)1/2

.

where φ(x) is a positive weight function defined on (0, 1) satisfying φx(x) ≤ 0
and −φx(x) ≤ φ(x) for 0 ≤ x ≤ 1.

Problem 126. Let φ be a solution of the problem

−εφ′′ − 3φ′ + 2φ = e, φ′(0) = φ(1) = 0.

Let ‖ · ‖ denote the L2-norm on I. Show that there is a constant C such that

|φ′(0)| ≤ C‖e‖, ‖εφ′′‖ ≤ C‖e‖.
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Problem 127. Consider the convection-diffusion-absorption problem

−εu′′ + xu′ + u = f, in I = (0, 1), u(0) = u′(1) = 0,

where ε is a positive constant, and f ∈ L2(I). Prove that

‖εu′′‖ ≤ ‖f‖,
where ‖ · ‖ denotes the L2(I)-norm.

Problem 128. Use relevant interpolation theory estimates and prove an a
priori and an a posteriori error estimate for the cG(1) finite element method
for the problem

−u′′ + u′ = f, in I = (0, 1), u(0) = u(1) = 0.

Problem 129. Prove an a priori and an a posteriori error estimate for the
cG(1) finite element method for the problem

−u′′ + u′ + u = f, in I = (0, 1), u(0) = u(1) = 0.

Problem 130. Consider the convection-diffusion-absorption problem

−εuxx + ux + u = f, in I = (0, 1), u(0) = 0,
√
εux + u(1) = 0,

where ε is a positive constant, and f ∈ L2(I). Prove the following stability
estimates for the solution u

‖
√
εux‖ + ‖u‖ + |u(1)| ≤ C‖f‖,
‖ux‖ + ‖εuxx‖ ≤ C‖f‖,

where ‖ · ‖ denotes the L2((0, ))-norm and C is an appropriate constant.

Problem 131. Consider the convection problem

β · ∇u+ αu = f, x ∈ Ω, u = g, quadx ∈ Γ−, (13.2.1)

Define the outflow Γ+ ans inflow Γ− boundaries. Assume that α− 1
2
∇ · β ≥

c > 0. Show the following stability estimate

c‖u‖2

∫

Γ+

n · βu2 ds dt ≤ ‖u0‖2 +
1

c
‖f‖2 +

∫

Γ−

|n · β|g2 ds. (13.2.2)

Hint: Show first that

2(β · ∇u, u) =

∫

Γ+

n · β u2 ds−
∫

Γ−

‖n · β‖ u2 ds− ((∇ · β)u, u).

Formulate the streamline diffusion for this problem.
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Problem 132. Consider the convection problem

u̇+ β · ∇u+ αu = f, x ∈ Ω, t > 0,

u = g, x ∈ Γ−, t > 0,

u(x, 0) = u0(x), x ∈ Ω,

(13.2.3)

where Γ+ and Γ− are defined as above. Assume that α − 1
2
∇ · β ≥ c > 0.

Show the following stability estimate

‖u(·, T )‖2 + c

∫ T

0

‖u(·, t)‖2 dt+

∫ T

0

∫

Γ+

n · βu2 ds dt

≤ ‖u0‖2 +
1

c

∫ T

0

‖f(·, t)‖2 dt+

∫ T

0

∫

Γ−

|n · β|g2 ds dt,

(13.2.4)

where ‖u(·, T )‖2 =
∫

Ω
u(x, T )2 dx.



Answers to Exercises

Piecewise Polynomial Approximation in 1D

Linear Least Squares

1.

a. x1 = −7, x2 = 4

b. x1 = 1.66, x2 = 4.42

c. x1 = 2, x2 = 1

d. x1 = 1.6, x2 = 0.6, x3 = 1.2

e. x1 = 1, x2 = 1, x3 = 3

2.

a. y = 2t− 1

b. y = 3t+ 1

c. y = 4 − t

3. a. y = 1
70

(25x2 + 21x+ 76)

b. y = 1
20

(−5x2 − 9x+ 37)

4. c. because r must be orthogonal against all columns of A.

5. x1 = 1.5942, x2 = 0.0088

6. Yes!

219
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Galerkin’s Method

7.

a. u(x) = 1
2
x(1 − x)

b. R(x) = π2A sin πx+ 4π2B sin 2πx− 1

c. A = 4/π3 and B = 0.

d. -

8.

a. -

b. R(x) = (π2+1)A sin πx+(4π2 +1)B sin 2πx+(9π2 +1)C sin 3πx−x

c. A =
2

π(π2 + 1)
, B = − 1

π(4π2 + 1)
and C =

2

3π(9π2 + 1)
.

9.

a. u(x) = 1
6
(π3 − x3) + 1

2
(x2 − π2)

b. R(x) = −U ′′(x) − x+ 1 = 1
4
ξ0 cos x

2
+ 9

4
ξ1 cos 3x

2

c. ξ0 = 8(2π − 6)/π and ξ1 = 8
9
(2

9
− 2

3
π)/π.

10. U(x) = (16 sinx+ 16
27

sin 3x)/π3 + 2x2/π2.

Polynomial Interpolation in 1D

12. (a) x, (b) 0.

13.

Π1f(x) =







4 − 11(x+ π)/(2π), −π ≤ x ≤ −π
2
,

5/4 − (x+ π
2
)/(2π), −π

2
≤ x ≤ 0,

1 − 7x/(2π), 0 ≤ x ≤ π
2
,

3(x− π)/(2π), π
2
≤ x ≤ π.

18. Check the conditions required for a Vector space.
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19.

Π1f(x) = f(a)
2x− a− b

a− b
+ f(

a+ b

2
)
2(x− a)

b− a
.

20. Hint: Use Theorem 5.1 from PDE Lecture Notes.

21.

π4

(

e−8x2
)

≈ 0.25x4 − 1.25x2 + 1.

22. For example we may choose the following basis:

ϕi,j(x) =







0, x ∈ [xi−1, xi],

λi,j(x), i = 1, . . . , m+ 1, j = 0, 1, 2.

λi,0(x) =
(x− ξi)(x− xi)

(xi−1 − ξi)(xi−1 − xi)
, λi,1(x) =

(x− xi−1)(x− xi)

(ξi − xi−1)(ξi − xi)
,

λi,2(x) =
(x− xi−1)(x− ξi)

(xi − xi−1)(xi − ξi)
, ξi ∈ (xi−1, xi).

23. Trivial

24. Hint: Use Taylor expansion of f about x = x1+x2

2
.

Numerical linear algebra

26.

LU =








1 0 0

2 1 0

−2 0 1















1 3 2

0 −1 3

0 0 5







.

27.

x =




0

−1



 .
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28.

LDU =








1 0 0

0 1 0

3 −4 1















1 0 0

0 1 0

0 0 14















1 1 −3

0 1 1

0 0 1







.

30. The exact solution is (1/15,−11/15) = (0.066666,−0.733333).

(a) (u3
1, u

3
2) = (5/64,−47/64), ρ(J) = 1/4 and ||e3||∞ = 0.011.

(b) (u3
1, u

3
2) = (0.0673828,−0.7331543), ρ(G) = 1/16 and

||e3||∞ = 7 × 10−4.

(c) (u3
1, u

3
2) = (0.066789,−0.733317), ρ(ω0) = 0.017 and

||e3||∞ = 1 × 10−4.

Two-Point BVPs

32. c) sin πx, x lnx and x(1−x) are test functions of this problem. x2 and
ex − 1 are not test functions.

34. a) U is the solution for

AU = f ⇐⇒ 1/h








2 −1 0

−1 2 −1

0 −1 2















U1

U2

U3








= h








1

1

1








with h = 1/4.

b) A is invertible, therefore U is unique.

37. a) ξ is the solution for

2




2 −1

−1 2








ξ1

ξ2



 =




0

7





b) (ξ1, ξ2) = 7(1/2, 1) and U(x) = 7x (same as the exact solution).
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38. a) ξ is the solution for

Aξ = f ⇐⇒ 1/h








2 −1 0

−1 2 −1

0 −1 2















ξ0

ξ1

ξ2








=








−5

0

0








with h = 1/3. That is: (ξ0, ξ1, ξ2) = −1
3
(15, 10, 5).

b) U(x) = 5x− 5 (same as the exact solution).

39. a) No solution!

b) Trying to get a finite element approximation ends up with the matrix
equation

Aξ = f ⇐⇒








2 −2 0

−2 4 −2

0 −2 2















ξ0

ξ1

ξ2








=








1

2

1








where the coefficient matrix is singular (detA = 0). There is no finite
element solution.

40. d) ||U ||2E = ξTAξ (check spectral theorem, linear algebra!)

41. a) For an M+1 partition (here M = 2) we get aii = 2/h, ai,i+1 = −1/h
except aM+1,M+1 = 1/h− 1, bi = 0, i = 1, . . . ,M and bM+1 = −1.

42. c)







ξ1

ξ2

ξ3








= 2/3








−1

1

1








+ 3








0

0

2







.

43.

3




2 −1

−1 2








ξ1

ξ2



 +
1

18




4 1

1 4








ξ1

ξ2



 =
1

3




1

1





⇐⇒ (MATLAB) ξ1 = ξ2 = 0.102.

44. Check the theory.
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Scalar Initial Value Problems

47. a)

aij =
j

j + i
− 1

j + i+ 1
, bi =

1

i+ 1
, i, j = 1, 2, . . . ,

b) q = 1 : U(t) = 1 + 3t. q = 2 : U(t) = 1 + 8
11
t+ 10

11
t2.

49. a)

Explicit Euler: Un = −3Un−1, U0 = 1.

Implicit Euler Un = 1
5
Un−1, U0 = 1.

Crank-Nicholson: Un = 1
3
Un−1, U0 = 1.

b)

Explicit Euler: |Un| =
√

1 + 0.01|Un−1| =⇒ |Un| ≥ |Un−1|.
Implicit Euler: |Un| = 1√

1+0.01
|Un−1| =⇒ |Un| ≤ |Un−1|.

Crank-Nicholson: |Un| = |1−0.2i/2
1+0.2i/2

||Un−1| = |Un−1|.

Heat Equation in 1D

54. Heat conduction with

u(x, t) = temperature at x at time t.

u(x, 0) = u0(x), the initial temperature at time t = 0.

u(0, t) = 0, fixed temperature at time x = 0.

u′(1, t) = 0, isolated boundary at x = 1 (no hear flux).

f = 20 − u, heat source, in this case a control system to force u ⇒ 20.

57. ||e||E ≤ Ci

(

||hu′′||L2(I) +
√
K||h2u′′||L2(I)

)

.

58. a) ||(u− U)′||a ≤ Ci||hR(U)||1/a.
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b)We have the matrix equation










1 −1 0 0

−1 2 −1 0

0 −1 3 −2

0 0 −2 4





















ξ1

ξ2

ξ3

ξ4











=











−3

0

0

0











,

which yields the approximate solution U = −3(1/2, 1, 2, 3)t.

62. ||e|| ≤ ||h2uxx||

63. ||e||H1 ≤ Ci

(

||hu′′|| + ||h2u′′||
)

.

64. a) ||e||E ≤ (1 + c)||u− v||E. b) c = 0.

Wave Equation in 1D

73. Follow the procedure as in the lecture notes.

75. a) u(x, t) = 1
2
[u0(x+ ct) + u0(ct− x)] + 1

2c

( ∫ x+ct

0
v0 +

∫ ct−x

0
v0

)

.

b) u(x, t) = 1
2c

∫ t

0
2c(t− s) ds = t2/2.

Calculs in Several variables/Piecewise Poly-

nomials

78. No! There are no other rotation invariant solutions.

79. ρK ≤ τKhK

2
.

81. b) No!

84.

λ1(x) = 1 −D−1(v3 − v2)t
[ 0 −1

1 0

]

(x− v1),

where D = (v2
1 − v1

1)(v
2
2 − v1

2) − (v3
1 − v1

1)(v
3
2 − v1

2).
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Riesz and Lax-Milgram Theorems

93. (I) and (II) α > 0 and f ∈ L2(0, 1). (III) f ∈ L2(0, 1).

Poisson equation

105. c) 1/
√
λ1.

106.

A =











4 −1 0 0

−1 4 −1 0

0 −1 4 −1

0 0 −1 2











b =
1

8











2

2

2

1











.

107.

A =




6 −1

−1 3



 b =




1

1/2



 .

108.

A =











5 −2 0 0

−2 5 −2 0

0 −2 5 −2

0 0 −2 5/2











b =
1

16











2

2

2

1











.

109.

M =
h2

12











8 1 1 1

1 4 0 1

1 0 4 1

1 1 1 8











, S =











4 −1 −1 0

−1 4 0 −1

−1 0 4 −1

0 −1 −1 4











.
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Heat equation in ND

114. b)

‖w(T )‖2 + 2

∫ T

0

‖∇w‖2 dt ≤ ‖ε‖2.

Wave equation in ND

122. v = 1
4π

cos(r)
r

and the corresponding solution u = eit 1
4π

cos(r)
r

.

Convection-Diffusion Equations

128. a priori: ||e||H1 ≤ Ci

(

||hu′′|| + ||h2u′′||
)

.

a posteriori: ||e||H1 ≤ Ci||hR(U)||.

129. a priori: ||e||E ≤ Ci

(

||hu′′|| + ||h2u′′||
)

.

a posteriori: ||e||E ≤ Ci||hR(U)||.
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