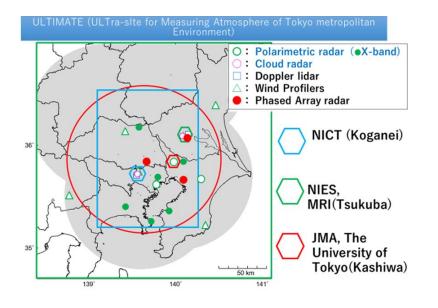
# An introduction to the ULTIMATE project in Japan


Woosub Roh and Masaki Satoh, and the other researchers (AORI, the University of Tokyo) EGU 2021 26<sup>th</sup> Apr. 2021

An analysis was done by the NEC SX supercomputer at Center for Global Environmental Research of National Institute for Environmental Studies.

## Introduction

- It is important to evaluate and improve the cloud properties in global non-hydrostatic models like a Nonhydrostatic ICosahedral Atmospheric Model (NICAM, Satoh et al. 2014) using observation data. One of the methods is a radiance-based evaluation using satellite data and a satellite simulator (here Joint simulator, Hashino et al. 2013), which avoids making different settings of the microphysics between retrieval algorithms and NICAM.
- The satellite data with active sensors has a limitation to observe the specific case of cloud and precipitation systems. And it is needed to validate satellite observations using in-situ observation. There are intensive observation stations over the Kanto region.
- The ULTIMATE (ULTra slte for Measuring Atmosphere of Tokyo metropolitan Environment) started to verify and improve high resolution numerical simulations based on these observation data this fiscal year.
- In this study, we introduce the available observation data for the ULTIMATE project.
- We introduce the evaluation results of NICAM using 94 GHz radar and 5.3 GHz polarimetric radar.

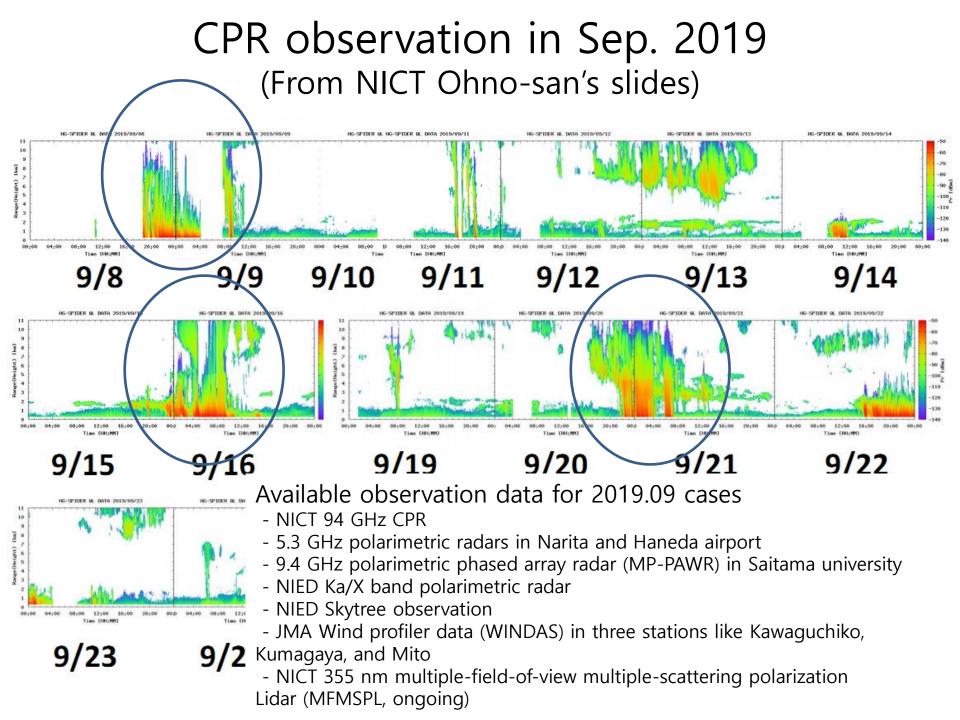
#### ULTIMATE (ULTra site for Measuring Atmosphere of Tokyo metropolitan Environment) project

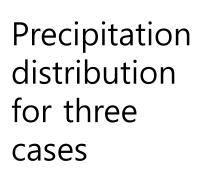


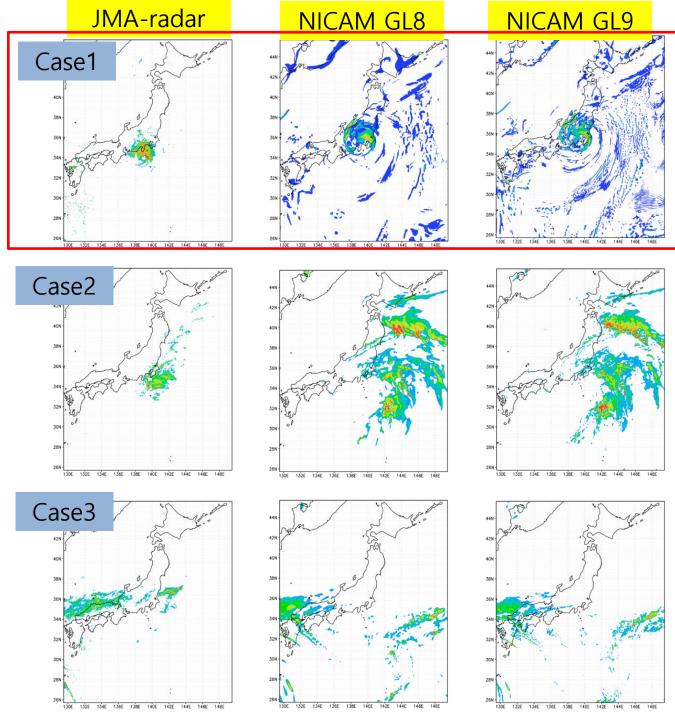
We collected several observation data over Kanto area.

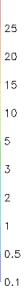
- The available observation data are like CPR, HSRL, wind profiler, C-band polarimetric radar, Xband phased array polarimetric radar, Ka polarimetric radar.

- We are testing and investigating the results about C-band polarimetric radar using POLArimetric Radar Retrieval and Instrument Simulator (POLARRIS, Matsui et al. 2019) in Joint simulator.

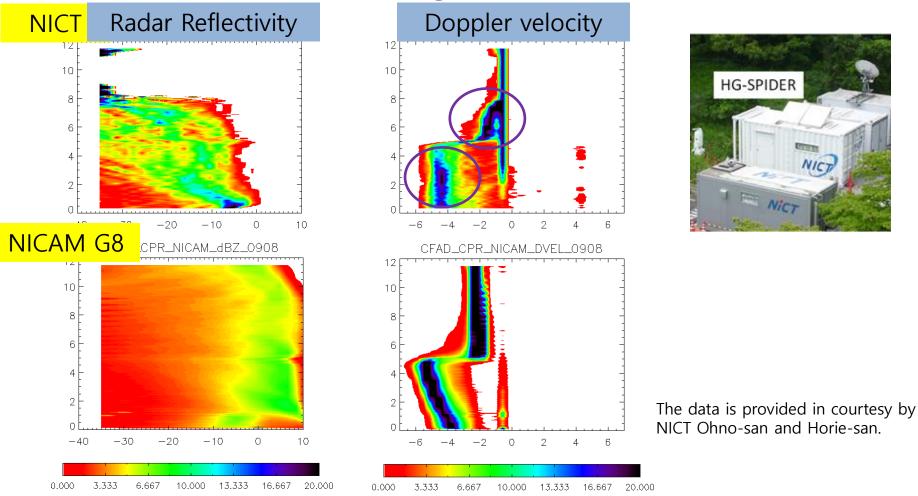

• We selected several cases for the ULTIMATE project


Evaluation and improvement of microphysics in NICAM


- 2019.09.08-09, 09.15-17, 09.19-21 for intensive observations using NICT CPR, HSRL


Intercomparisons and evaluations of three models (Kuba-san, Matsugishi-san)

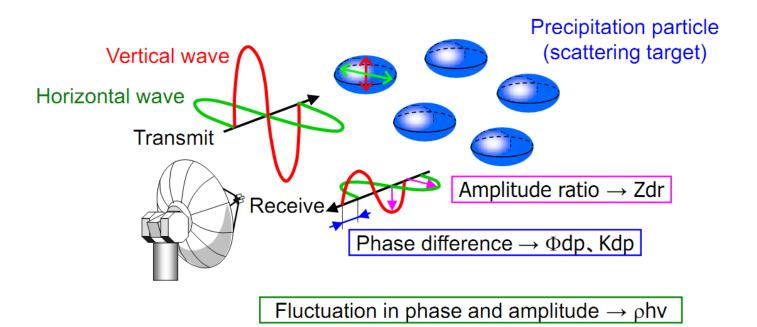
- 2020.04.17-18 for intercomparisons among NICAM, ASUKA, SCALE
- Horizontal resolutions of the stretched NICAM using NCEP FNL data
- GL8: minimum 3.5 km (done)
- GL9: minimum 1.7 km (done)
- GL10: minimum 870 m (done)











## Evaluation using NICT 94 GHz CPR



- Underestimation of radar reflectivity because of attenuation of CPR observation
- NICAM Doppler velocity shows the similar patten of observation for rain and ice hydrometeors.
- We will improve the riming process from 5 km to 8 km altitude.

## Polarimetric radar?

• A radar capable of measuring any or all of the polarization-dependent attributes of a target or backscattering medium. (from AMS dictionary)



Yamauchi 2018

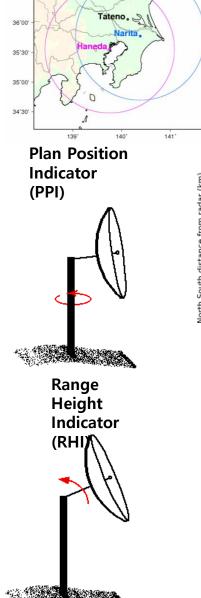
1. Size  $(Z_h)$ 

2. Shape  $(Z_{DR} \text{ Differential reflectivity, } K_{dp} \text{ Specific differential phase shift})$ 

- 3. Variety ( $\rho_{hv}$  Co-polar cross-correlation coefficient )
- 4. Doppler velocity

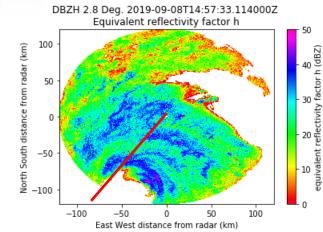
#### 5.3 GHz Doppler Radar for Airport Weather (DRAW, Uehara et al. 2020)

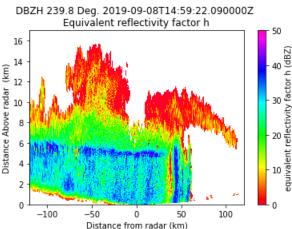
20.0


17.5

12.5

10.0


7.5


<u>)</u> 15.0



36'30

Frequency: 5.3 GHz Time resolution: 5 min. The range: 800 (120 km) The resolution of range: 150 m Angles: 11 (0 to 17 degree)





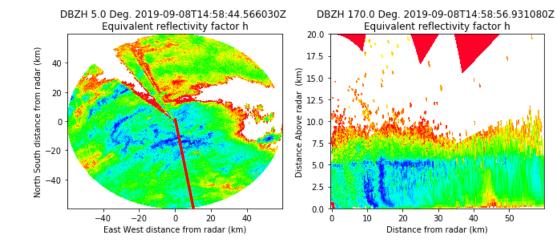
Distance Above radar 5.0 2.5 0.0 20 40 60 80 100 Distance from radar (km) PPI mode has course vertical resolution for

DBZH 180.0 Deg. 2019-09-08T14:55:13.744000Z Equivalent reflectivity factor h

the upper cloud and precipitation. RHI mode has the single angle data like 239.8 degree.

#### Multi-Parameter Phased Array Weather Radar (MP-PAWR, Takahashi et al 2019)

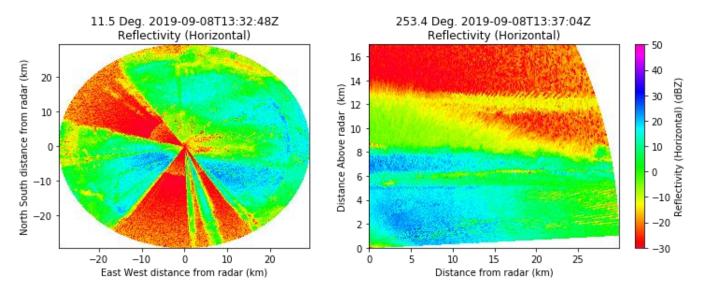



Fig. 4. MP-PAWR antenna (left) and the radome of MP-PAWR installed at Saitama University (right).

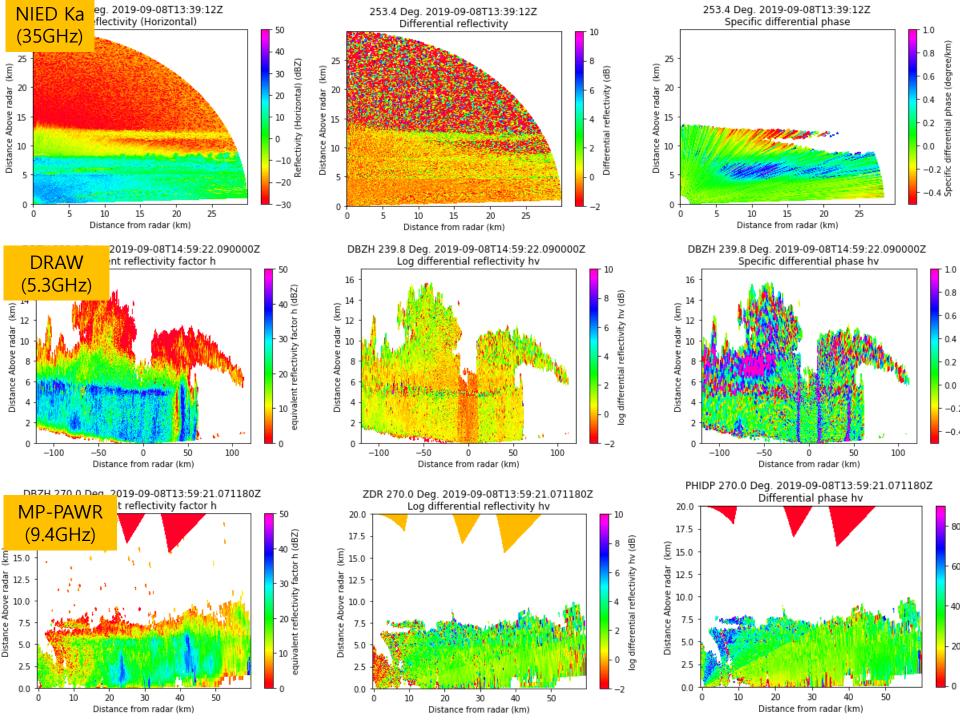
| Spec.               | XRAIN                                                                                                                                                               | MP-PAWR                                                                         |                                                     |
|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-----------------------------------------------------|
|                     |                                                                                                                                                                     | XRAIN mode                                                                      | Research mode                                       |
| Obs. range          | range : 80km<br>azimuth : 360°<br>elevation : 0-30°(12 elev.<br>angles, 90°for<br>calibration)                                                                      | range : 80km<br>azimuth : 360°<br>elevation : -2-<br>60°(90°for<br>calibration) | range : 60km<br>azimuth : 360°<br>elevation : 0-90° |
| Temporal resolution | surface PPI : 1 min.<br>3D : 5 min.                                                                                                                                 | 3D: 1 min.                                                                      | 3D: 30 sec.                                         |
| range<br>resolution | 150m                                                                                                                                                                | 150m                                                                            |                                                     |
| Beam width          | H : <1.2°<br>V : <1.2°                                                                                                                                              | H : <1.2°<br>V : <1.2°                                                          |                                                     |
| Products            | Pr (H ): power, Pr (V): power, V : Doppler, W: width of Doppler<br>φDP: Phase difference between H and V pol.<br>φHV : Correlation coefficient between H and V pol. |                                                                                 |                                                     |
| Radome              | φ< 4.5m                                                                                                                                                             | φ< 4.5m                                                                         |                                                     |

10

50


Frequency: 9.4 GHz Time resolution: 30 sec. The range: 800 (60 km) The resolution of range: 75 m The sector: 301 Angles: 114 (0 to 90 degree)




The data is provided in courtesy by NICT Satoh-san.

### NIED Ka-band polarimetric radar

- The frequency of radar: 35 ~ 36 GHz, nonprecipitating clouds
- The number of radar observation stations: 5
- Polarimetric radar: Tsukuba(PPI+RHI), Oota, Hanno
- Radar: Nishi-Tokyo, Matsudo
- the range of radar: 30km
- the resolution of range: 150m
- Every 3 minutes
- The resolution of the azimuthal direction: 0.35 degree
- The number of elevation angles of PPI: 6
- 2 RHI (AZ: 253.4 up, 253.4 down), 2 sector PPI (EL: 5.2 8), and 4 PPI (EL: 11.5 15.7 20.8 27.2)



The data is provided in courtesy by NIED Misumi-san and Ohigashi-san.



#### POLARRIS

#### (POLArimetric Radar Retrieval and Instrument Simulator)

Matsui et al. (2019), JGR

POLARRIS-f (in courtesy by Hashino-san)

- T-matrix and Mueller-matrix modules added to GSDSU
  - ★T-matrix calculates single-scattering of axis-symmetric oblate hydrometeors
  - Muller matrix take into account the change of intensity and polarization after scattering.
- calculate  $Z_{_h}$   $Z_{_{dr}}$   $K_{_{dp}}$   $ho_{_{hv}}$   $V_{_{rad}}$
- currently does not take into account attenuation (Consideration of MRI Ikuta-san's simulator)

iPOLARRIS, CSU-radar tools

- fuzzy-logic HID (hydrometeor identification)
- requires temperature, polarimetric data, and radar wavelength
- drizzle, rain, ice crystals, dry snow, wet snow, vertical ice, lowdensity graupel, high-density graupel, hail, and big drops.
- written in python2

#### Handling about microphysics in POLARRIS

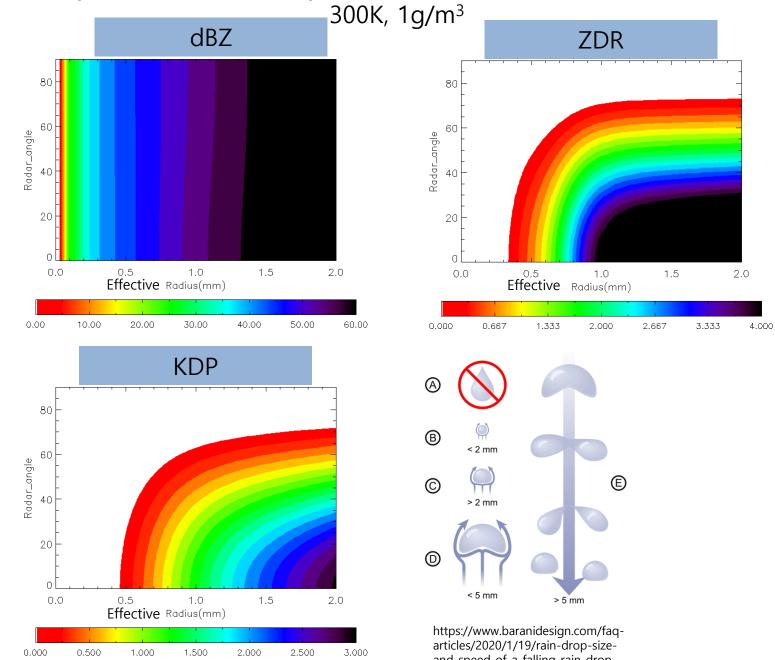
Table 1

Differing Assumptions Used for Particle Axis Ratio and Orientation Angle Distributions From Ryzhkov et al. (2011, RY11), Putnam et al. (2017, PU17), and This Study (MA18)

|                         | RY11                                                                                                                                                                                            | PU17                                                                                                 | MA18                                                                                                                            |  |
|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|--|
| Liquid (cloud and rain) | $A_{\text{xis}} = 0.9951 + 0.0251^*D \cdot 0.03644^*D^2 + 0.005303^*D^3 - 0.0002492^*D^4$ (Brandes et al., 2011)<br>Type: quasi-Gaussian ( $\Theta_{\text{mean}} = 0^\circ, \sigma = 1^\circ$ ) |                                                                                                      |                                                                                                                                 |  |
| Ice (column)            | $A_{\rm xis} = 2.0$<br>Type: random                                                                                                                                                             |                                                                                                      |                                                                                                                                 |  |
| Ice (plate)             | $A_{xis} = 0.35$<br>Type: quasi-Gaussian ( $\Theta_{mean} = 0^\circ, \sigma = 10^\circ$ )                                                                                                       |                                                                                                      |                                                                                                                                 |  |
| Ice (dendrite)          | $A_{\rm xis} = 0.125$<br>Type: quasi-Gaussian ( $\Theta_{\rm mean} = 0^\circ, \sigma = 10^\circ$ )                                                                                              |                                                                                                      |                                                                                                                                 |  |
| Snow aggregate          | $A_{xis} = 0.8$<br>Type: quasi-Gaussian<br>( $\Theta_{mean} = 0^\circ, \sigma = 40^\circ$ )                                                                                                     | $A_{\rm xis} = 0.75$<br>Type: quasi-Gaussian<br>( $\Theta_{\rm mean} = 0^\circ, \sigma = 20^\circ$ ) | $A_{xis} = 0.7-0.05D + 0.003D^{2}$<br>Type: quasi-Gaussian<br>( $\Theta_{mean} = 0^{\circ}, \sigma = 20^{\circ}$ )              |  |
| Graupel                 | $A_{xis} = \max(0.8, 10.2*D)$<br>Type: quasi-Gaussian<br>$(\Theta_{mean} = 0^\circ, \sigma = 40^\circ)$                                                                                         | $A_{\rm xis} = 0.75$<br>Type: quasi-Gaussian<br>( $\Theta_{\rm mean} = 0^\circ, \sigma = 10^\circ$ ) | $A_{xis} = 0.814$<br>Type: quasi-Gaussian<br>$(\Theta_{mean} = 20^{\circ}, \sigma = 42^{\circ})$                                |  |
| Hail                    | $A_{\rm xis} \max(0.8, 10.2^*D)$<br>Type: quasi-Gaussian<br>$(\Theta_{\rm mean} = 0^\circ, \sigma = 40^\circ)$                                                                                  | $A_{\rm xis} = 0.75$<br>Type: quasi-Gaussian<br>$(\Theta_{\rm mean} = 0^\circ, \sigma = 10^\circ)$   | $A_{xis} = \max(0.725, 0.897 - 0.0008D - 0.0002D^2)$<br>Type: quasi-Gaussian<br>$(\Theta_{mean} = 90^\circ, \sigma = 40^\circ)$ |  |

Matsui et al. (2019), JGR

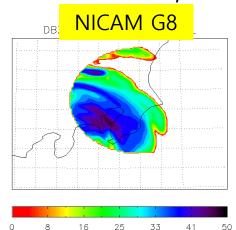
1. Aspect ratio


2. Distribution of orientations

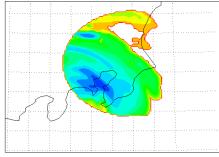
3. Radar angle






#### Examples of Lookup tables of POLARRIS for rain

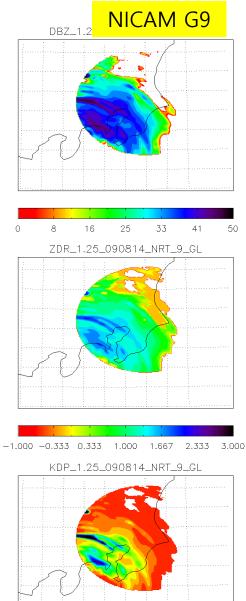



#### Horizontal distributions of dBZ, ZDR, KDP for TC Faxai



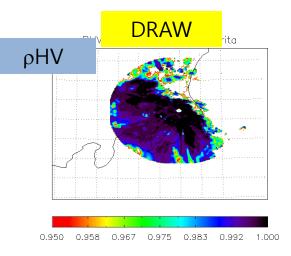
-0.200 -0.000 0.200 0.400 0.600 0.800 1.000

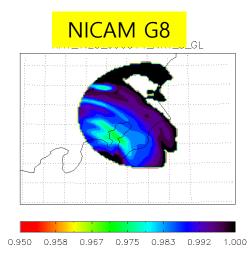


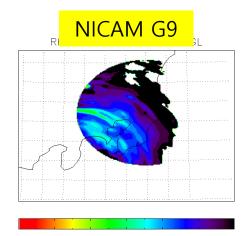

ZDR\_1.25\_090814\_NRT\_8\_GL



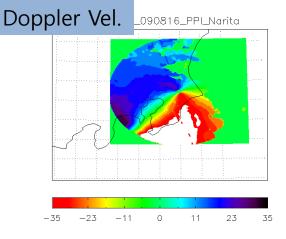
-1.000 -0.333 0.333 1.000 1.667 2.333 3.000


KDP\_1.25\_090814\_NRT\_8\_GL

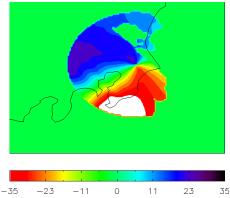

-0.200 -0.000 0.200 0.400 0.600 0.800 1.000



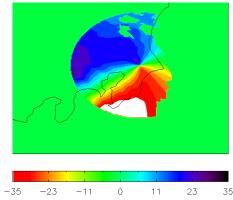

-0.200 -0.000 0.200 0.400 0.600 0.800 1.000

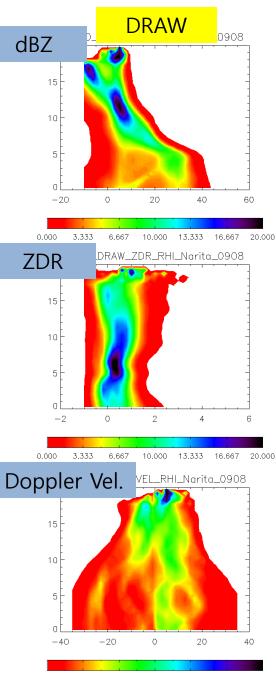

## Horizontal distributions of $\rho \text{HV}$ and Doppler veolocty for TC Faxai



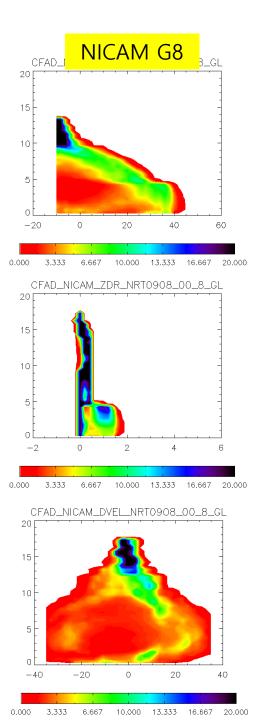


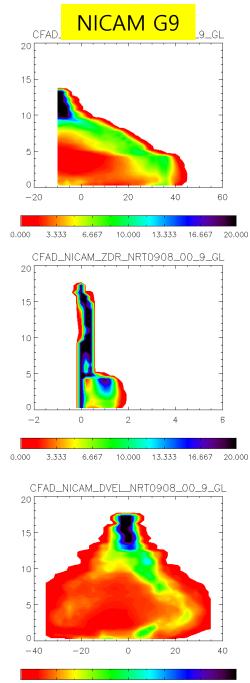




0.950 0.958 0.967 0.975 0.983 0.992 1.000




DVEL\_1.25\_090814\_NRT\_8\_GL





DVEL\_1.25\_090814\_NRT\_9\_GL











0.000 3.333 6.667 10.000 13.333 16.667 20.000

## Summary

- The ULTIMATE project started this fiscal year.
- We collected the several observation data for cases September 2019.
- NICT CPR, JMA C-band polarimetric radar (DRAW), NICT 94 GHz CPR, X-band polarimetric phased array radar, JMA wind profilers, NIED Ka/X band radar, NIED Skytree observations.
- We implemented and tested POLARRIS for polarimetric radars in Joint simulator.
- We have done several simulations using the stretched NICAM for 2019.09 and 2020.04 cases.
- We evaluated NICAM using NICT 94 GHz CPR. The Doppler velocity from CPR shows a similar pattern like NICAM simulations, but NICAM overestimates the Doppler velocity from ice hydrometeors.
- We compared the DRAW and NICAM using POLARRIS in the Joint simulator.
- We will investigate the rain microphysics (e.g., breakup, coalescence) using NICT CPR and polarimetric radars.
- We will investigate the riming process using the NICT CPR and the relationship between KDP and ZDR
- We will evaluate NICAM using MP-PAWR and Ka radars.