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Abstract

This thesis aims to give an introductory review of thermal field theo-

ries. We review the imaginary time formalism to generalize field theories

at finite temperature. We study the scalar φ4 theory and gauge theories

in a thermal background. We study the propagators and self energies

at one-loop approximation and understand how particles acquire thermal

masses and the consequences. We show in a hot plasma, there are collec-

tive excitation modes absent in the zero temperature case, and a point

charge is screened by the thermal effects. However, a naive perturba-

tion theory would break down for soft external momenta owing to the

so-called hard thermal loop corrections. Diagrams of higher orders could

contribute at the leading order, and hence it is necessary to develop an

effective theory. We introduce the basic ideas of the resummation scheme

and make several remarks on its applications.
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1 Introduction: Why Thermal Field Theory?

The conventional quantum field theory is formalized at zero temperature. The the-

oretical predictions under this framework, for example the cross sections of particle

collisions in an accelerator, are extremely good to match experimental data. However,

our real world is certainly of non zero temperature, it is natural to ask to what extent

the contributions from the temperature start to be relevant? What new phenomena

absent at zero temperature could arise in a thermal background?

It may occur to us the heavy-ion collision experiments at LHC and at RHIC. A

new state of matter, which is called the quark gluon plasma [1], is predicted to be

created in the collisions. The consistence between experimental data and theoretical

predictions of the Standard Model has to be verified. A useful theoretical framework

to study this hot quark gluon plasma would be the thermal field theory.

We may also think of the early stages of the universe, or astrophysical objects

such as white dwarfs and neutron stars, where the temperature is sufficiently high.

Thermal field theory would be responsible for our understanding of the phenomena

as phase transitions and cosmological inflation in the early universe, the evolution of

a neutron star. On the other hand, cosmology and astrophysics are good test fields

for theoretical studies to verify practical calculations.

These things that we can think of necessitate formal studies of field theories at

finite temperature. This dissertation is devoted to giving an introductory review of

thermal field theories. Most of the topics covered in this article are covered in some

excellent textbooks [2] [3] [4].

The organization of this article is as follows. We give a brief review of quantum

statistical mechanics in Section 2. We then develop the imaginary time formalism to

study scalar field and gauge theories at finite temperature in Section 3 and 4, respec-

tively. We will see in Section 5 the breakdown of a naive perturbatiion expansion

and the necessity to formulate an effective theory to resum the contributions from

the so-called hard thermal loops at all orders.
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2 Review of Quantum Statistical Mechanics

In statistical mechanics the concept of thermal ensembles is of great importance. The

canonical ensemble will be particularly useful to describe a system in equilibrium of

our interest in this introductory review. The canonical ensemble describes a system

in contact with a heat reservoir at a fixed temperature T . Energy can be exchanged

between the system and the reservoir, but the particle number N and volume V are

fixed. We may also use the grand canonical ensemble, where the system exchange

both energy and particles with the reservoir at temperature T , while the chemical

potential µ of particles and volume V are fixed. We can think of the canonical

ensemble as a special case of the grand canonical ensemble in which the particles

have vanishing chemical potentials.

In order to formalize quantum field theory at non-zero temperature, for simplicity,

we use the canonical ensemble by assuming that the chemical potentials are zero. We

will define and calculate quantities such as the density operator, the partition function

in terms of the canonical ensemble.

Consider now a dynamical system characterized by a Hamiltonian H. The equi-

librium state of the system of volume V is described by the canonical density operator

ρ = exp(−βH) (2.1)

The partition function, a very important quantity playing the central role in our

studies of finite temperature field theory, is defined as

Z = Trρ (2.2)

All thermodynamical quantities can be generated from the partition function. For

example,

Pressure P = T
∂ lnZ

∂V
(2.3)

Particle number N = T
∂ lnZ

∂µ
(2.4)

Entropy S = T
∂ lnZ

∂T
(2.5)

Recall in the zero temperature quantum field theory, the expectation value of a

given operator A is

〈A〉0 =
∑
n

〈n|A|n〉 (2.6)

where |n〉 are a complete set of orthonormal states. However, in a heat bath, the

operator expectation should be calculated as the ensemble average with a Boltzmann
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weight factor

〈A〉β =
1

Z

∑
n

〈n|A|n〉e−βH =
1

Z
Tr
(
e−βHA

)
(2.7)

or with the use of the density matrix, we write

〈A〉β =
TrAρ

Trρ
(2.8)

We can also think of a system characterized by a Hamiltonian H and a set of

conserved charges Q with particles of non-zero chemical potential. In this case we

shall switch to use the grand canonical ensemble and redefine the density operator

ρ = exp [−β(H − µN)] (2.9)

The definitions of the other quantities follow similarly as the zero chemical potential

case, where we use the canonical ensemble. The use of grand canonical ensemble

enables us to extend our studies on cases with non-trivial chemical potentials. The

canonical ensemble can be thought of as a special case of the canonical ensemble with

vanishing chemical potentials, but there are subtitles to care about.

We are now ready to derive a fundamental relation in finite temperature theory.

Consider the two-point correlation function

〈φ(x, t)φ(y, 0)〉β =
1

Z
Tr
[
e−βHφ(x, t)φ(y, 0)

]
=

1

Z
Tr
[
φ(x, t)e−βHeβHφ(y, 0)e−βH

]
=

1

Z
Tr
[
φ(x, t)e−βHei(−iβH)φ(y, 0)e−i(−iβH)

]
=

1

Z
Tr
[
φ(x, t)e−βHφ(y,−iβ)

]
=

1

Z
Tr
[
e−βHφ(y,−iβ)φ(x, t)

]
= 〈φ(y,−iβ)φ(x, t)〉β (2.10)

where we used the cyclic permutation property of a trace of operator products. We

surprisingly see that imaginary temperature plays the role as a time variable. If we

define the imaginary time variable

τ = it t = −iτ (2.11)

then the relation above can be rewritten as

〈φ(x, τ)φ(y, 0)〉β = 〈φ(y, β)φ(x, τ)〉β (2.12)
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This is called the Kubo-Martin-Schwinger relation, or the KMS relation in short. It

follows immediately from this relation that

φ(x, 0) = ±φ(x, β) (2.13)

where ± sign corresponds to whether the fields commute or anti-commute with each

other, or in other words, whether the fields are bosonic or fermionic. The KMS

relation shows that the fields are periodic or anti-periodic in imaginary time with β.

It is convenient to cope with the fields in the frequency-momentum space. Owing

to the periodicity constraint on the fields, the Fourier expansion

φ(x, τ) =
∑
n

φ(x, ωn)eiωnτ (2.14)

is no longer a continuous Fourier integral but a Fourier series instead. In order to

satisfy the KMS relation (2.13), we can only take the discrete frequencies

ωn =
2πn

β
for bosonic fields (2.15)

ωn =
2π(n+ 1)

β
for fermionic fields (2.16)

n are integers −∞, · · · ,−2,−1, 0, 1, 2, · · · ,∞. These frequencies are called the Mat-

subara frequencies, named after the Matsubara who first formally constructed a ther-

mal field theory in the imaginary time formalism [5].

We also develop a path integral form for the partition function. The advantage of

a path integral representation lies in the convenience within this framework to deal

with gauge theories than using operator formalism, especially for non-Abelian gauge

theories such as QCD. By noting that

e−βH = e−i
∫−iβ
0 Hdt = e−

∫ β
0 Hdτ (2.17)

We may think of exp(−βH) as an evolution operator in imaginary time with τ = it.

Recall the standard formalism of path integrals which can be found in many quantum

field theory textbooks [6], we have

U(q′, t′; q, t) = 〈q′|e−iH(t′−t)|q〉 =

∫
Dq(t′′) exp

[
i

∫ t′

t

dt′′L(t)

]
(2.18)

We write down the expression for partition function

Z =

∫
Dφ〈φ|e−βH |φ〉 =

∫
Dφ exp

[
−
∫ β

0

dτL(τ)

]
(2.19)

All paths φ(x, τ) satisfying the boundary condition (2.13) shall be evaluated in the

path integral.
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The subtleties of dealing with fermions by introducing anti-commuting Grassmann

variables will be discussed more carefully in Section 3.1.

As a brief ending remark of this section, we see that it is very useful to think of

the temperature as the imaginary time, but the origin of the correspondence between

these two very distinct arguments is an interesting question. This might merely be a

coincidence that the evolution operator e−iHt in quantum mechanics is related to the

Boltzmann distribution factor eβH in statistical physics by an analytical continuation,

but there might be some deeper reasons that we do not well understand.
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3 Scalar Field Theory at Finite Temperature

3.1 Free scalar fields

3.1.1 Partition function

We begin with the simplest possible model of a free real scalar field

L =
1

2
∂µφ∂

µφ− 1

2
m2φ2 (3.1)

Our choice of convention for the metric is gµν = diag(−1,+1,+1,+1). The conjugate

momentum to the field operator is

π(x) =
∂L
∂φ̇

= φ̇(x) (3.2)

As in the zero temperature case, the field operator and its conjugate momentum

can be Fourier expanded in terms of a set of creation and annihilation operators

φ(x) =

∫
d3k

(2π)3

1√
2Ek

(
akeik·x + a†ke−ikx

)
(3.3)

π(x) = −i
∫

d3k

(2π)3

√
Ek

2

(
akeik·x − a†ke−ikx

)
(3.4)

The equal time commutation relation is imposed as

[φ(t,x), π(t,y)] = iδ(3)(x− y)δab (3.5)

or equivalently

[ap, a
†
q] = (2π)3δ(3)(p− q)δrs (3.6)

We want to compute the partition function to obtain thermodynamicals for free

scalar fields. Plug the Lagrangian (3.1) into (2.19), we have

Z =

∫
Dφ exp

{
−i
∫ −iβ

0

dt

∫
d3x

[
1

2
(∂0φ)2 − 1

2
(∇φ)2 − 1

2
m2φ2

]}
(3.7)

=

∫
Dφ exp

{
−
∫ β

0

dτ

∫
d3x

[
1

2
(∂τφ)2 +

1

2
(∇φ)2 +

1

2
m2φ2

]}
(3.8)

To work under the frequency-momentum space, we Fourier expand the fields. Re-

call that the KMS relation has imposed a periodicity constraint, the Fourier integral

we had in the conventional field theories should be replaced by a Fourier series

φ(x) =

√
β

V

∑
n

∑
p

ei(ωnτ+p·x)φ(ωn,p) (3.9)

6



where the allowed Matsubara frequencies are discrete

ωn =
2πn

β
(3.10)

Substitute the Fourier expansion (3.9) into the partition function, we obtain∫
Dφ exp

{
β

V

∫ β

0

dτ

∫
d3x

∑
m,k

φm,kei(ωmτ+k·x)
∑
n,p

−ω2
n − p2 −m2

2
φn,pei(ωnτ+p·x)

}
(3.11)

Using the representations for the δ-functions∫ β

0

dτei(ωm+ωn)τ = βδ(m+ n) (3.12)∫
d3xei(k+p)x = V δ(3)(p + k) (3.13)

We carry out the integration over dτ , d3x and then the summation over m, k with

the Kronecker δ-functions, we get

Z =

∫
Dφ exp

{
−β

2

2

∑
n,p

(ω2
n + p2 +m2)φ−n,−pφn,p

}

=

∫
Dφ exp

{
−β

2

2

∑
n,p

(ω2
n + p2 +m2)φ∗n,pφn,p

}

=
∏
n,p

∫
dφn exp

{
−β

2

2
(ω2

n + p2 +m2)φ∗n,pφn,p

}
= N ·

∏
n,p

(
β2(ω2

n + p2 +m2)
)−1/2

(3.14)

Some unimportant integration constant N is independent of temperature and there-

fore can be dropped.

We are interested in the logarithm of the partition function from which we calcu-

late all the physical measurables. We have

lnZ = −1

2

∑
n,p

ln
(
β2(ω2

n + ω2
p)
)

= −1

2

∑
n,p

ln
(
(2πn)2 + β2ω2

p

)
= −1

2

∑
n,p

{∫ β2ω2
p

1

dx2

(2πn)2 + x2
+ ln

(
(2πn)2 + 1

)}
(3.15)

The last step can be checked by completing the integral. The reason for doing this is

that we can rewrite the frequency sum as a contour integral. The discrete Matsubara

7



frequencies correspond to a collection of poles produced by a well chosen hyperbolic

cotangent function on the imaginary axis on the complex plane. The details of this

technique is given in the appendix. Using the result (A.7) and dropping terms having

no temperature dependence, we obtain

lnZ = −1

2

∑
p

∫ β2ω2
p

1

dx2 1

2x

(
1 +

2

ex − 1

)

=
∑
p

∫ βωp

1

dx

(
−1

2
− 1

ex − 1

)
=
∑
p

{
−1

2
βωp − ln

(
1− e−βωp

)}
(3.16)

In the continuum limit, we have
∑

p ∼ V
∫
d3p/(2π)3, so this can be rewritten as

lnZ = V

∫
d3p

(2π)3

{
−1

2
βωp − ln

(
1− e−βωp

)}
(3.17)

The first term is nothing but the familiar zero-point energy, which is divergent since

it sums over an infinity number of zero-point modes. But we can simply neglect it

because the effects of its contribution cannot be measured experimentally.

We have derived the explicit expression for the partition function, now we can

easily calculate thermodynamicals from it, for instance, the pressure of the scalar

particles.

P =
T

V
lnZ = − 1

β

∫
d3p

(2π)3
ln(1− e−βωp) (3.18)

Take the high energy limit, where |p| � m, ωp =
√

p2 +m2 ≈ |p|, we find

P =
1

β

∫
d3p

(2π)3

(
e−βωp + e−2βωp + e−3βωp + · · ·

)
=

1

β

∫
dp

2π2
p2

+∞∑
n=1

e−nβωp

n

≈ 1

β

∫
dp

2π2
p2

+∞∑
n=1

e−nβp

n

=
T 4

π2

+∞∑
n=1

1

n4

=
π2

90
T 4 (3.19)

The T 4 behavior can be expected from a dimensional analysis by noting that T is

the only characteristic parameter in the free scalar field theory. The pressure is half

of the familiar result of black body radiation. This could be understood from our
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knowledge of statistical mechanics. The mean energy of a system is proportional to

the independent degrees of freedom. The real scalar particles are spin zero particles

and thus have only one degree of freedom, while the photons have two transverse

propagating modes.

3.1.2 Scalar propagators

Let us study the propagators carefully. We define the two-point correlators

D+(x, y) = 〈φ(x)φ(y)〉β (3.20)

D−(x, y) = 〈φ(y)φ(x)〉β = D+(y, x) (3.21)

We insert complete sets of eigenstates of the Hamiltonian |n〉’s and express

D+(x, y) =
1

Z

∑
n,m

〈e−βHn|φ(x)|m〉〈m|φ(y)|n〉

=
1

Z

∑
n,m

e−βEn〈n|eipxφ(0)e−ipx|m〉〈m|eipyφ(0)e−ipy|n〉

=
1

Z

∑
n,m

e−βEnei(pn−pm)(x−y)
∣∣〈n|φ(0)|m〉

∣∣2 (3.22)

which shows that the correlator is a function of (x− y). Its Fourier transform is

D+(k) =

∫
d4xeikxD+(x) =

1

Z

∑
n,m

e−βEn
∣∣〈n|φ(0)|m〉

∣∣2(2π)4δ(4)(k − pm + pn) (3.23)

The domain of validity of D± is determined by requiring the convergence of the sum.

For simplicity, we look at only the time argument

D+(t) =
1

Z

∑
n,m

e−βEnei(En−Em)t
∣∣〈n|φ(0)|m〉

∣∣2 (3.24)

from which we read off D+(t) is defined on the strip −β < Im(t) < 0 for a complex

variable t.

Similarly, we get

D−(x, y) =
1

Z

∑
n,m

e−βEnei(pm−pn)(x−y)
∣∣〈n|φ(0)|m〉

∣∣2 (3.25)

D−(t) =
1

Z

∑
n,m

e−βEnei(Em−En)t
∣∣〈n|φ(0)|m〉

∣∣2 (3.26)

and find that D−(t) is defined within 0 < Im(t) < β.

There is a relation between D+(t) and D−(t)

D+(t− iβ) = D−(t) (3.27)

9



which can be checked by comparing (3.24) and (3.26). This relation is just the KMS

relation dressed in a different form.

In the Fourier frequency space, we have

D+(k0) =

∫
dteik

0tD+(t) (3.28)

D−(k0) =

∫
dteik

0tD−(t) =

∫
dteik

0tD+(t− iβ) (3.29)

Comparing these two, we obtain a relation between them

D−(k0) = e−βk
0

D+k0 (3.30)

We also define the spectral density

ρ(k0) = D+(k0)−D−(k0) =
(

eβk
0 − 1

)
D−(k0) (3.31)

with which we may rewrite the correlators as

D+(k0) =
ρ(k0)

1− e−βk0
= [1 + n(k0)]ρ(k0) (3.32)

D−(k0) =
ρ(k0)

eβk0 − 1
= n(k0)ρ(k0) (3.33)

where n(E) is the Bose distribution factor

n(E) =
1

eβE − 1
(3.34)

We find for the spectral density

ρ(k0) =

∫ +∞

−∞
dteik

0t
[
D+(t)−D−(t)

]
=

∫ +∞

−∞
dteik

0t
∑
n,m

e−βEn
∣∣〈n|φ(0)|m〉

∣∣2 [ei(En−Em)t − e−i(En−Em)t
]

=
∑
n,m

e−βEn
∣∣〈n|φ(0)|m〉

∣∣2 [δ(k0 − Em + En)− δ(k0 + Em − En)
]

(3.35)

from which we see that the spectral density is odd in k0

ρ(−k0) = −ρ(k0) (3.36)

Going back to the definition of D±, we find

D+(t)−D−(t) = 〈[φ(t), φ(0)]〉β (3.37)

10



Differentiate with respect to t, we get from the LHS

d

dt

(
D+(t)−D−(t)

)
=

d

dt

∫
dk0

2π
e−ik

0t
(
D+(k0)−D−(k0)

)
= −i

∫
dk0

2π
k0e−ik

0tρ(k0) (3.38)

and from the RHS

d

dt
〈[φ(t), φ(0)]〉β = −〈[φ(0), π(t)]〉β (3.39)

Recall that the equal time commutation relation is imposed as

[φ(t), π(t)] = i (3.40)

Therefore, differentiating both sides of (3.37) and taking the t→ 0 limit, we obtain∫
dk0

2π
k0ρ(k0) = 1 (3.41)

showing that the spectral density is bounded for large k0. As k0 → ∞, we shall

expect ρ(k0)→ 1/(k0)2 → 0 at least.

For the free scalar fields we are dealing with, we can explicitly calculate the

spectral density. We have

ρF (k0) =
1

Z

∫
dteik

0t
∑
n

eβEn〈n|φ(t)φ(0)− φ(0)φ(t)|n〉

=
2π

2Ek

(
δ(k0 − Ek)− δ(k0 + Ek)

)
= 2πε(k0)δ

(
(k0)2 − E2

k

)
(3.42)

It is sometimes convenient to define the propagators in terms of imaginary time

variables, so that we can work under the Euclidean space. This is usually referred to

as the Matsubara propagator in literature. We define

∆(τ) =
1

Z

∑
n

〈n|eβHφ(τ)φ(0)|n〉 (3.43)

whose Fourier transform is

∆(iωn) =

∫ β

0

dτeiωnτ∆(τ) (3.44)

The Matsubara frequencies ωn = 2πn/β can be read off from the condition

∆(τ) =
1

β

∑
n

e−iωnτ∆(iωn) = ∆(τ + β) (3.45)
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The relation between imaginary and real time propagators can be found as

∆(τ) = D+(t = −iτ) (3.46)

=

∫
dk0

2π
e−k

0τ [1 + n(k0)]ρ(k0) (3.47)

So we can compute

∆(iωn) =

∫ β

0

dτeiωnτ
∫
dk0

2π
e−k

0τ [1 + n(k0)]ρ(k0)

=

∫
dk0

2π

∫ β

0

dτe(iωn−k0)τ [1 + n(k0)]ρ(k0)

=

∫
dk0

2π

e(iωn−k0)τ

iωn − k0

∣∣∣β
0

[
1 +

1

eβk0 − 1

]
ρ(k0)

= −
∫
dk0

2π

ρ(k0)

iωn − k0
(3.48)

Substituting (3.42), we find the Matsubara propagator for free scalar particles

∆(iωn) = − 1

2Ek

(
1

iωn − Ek

− 1

iωn + Ek

)
=

1

ω2
n + E2

k

(3.49)

Similarly, one can define the retarded correlator as

DR(k0) =

∫
dteik

0tθ(t)
[
D+(t)−D−(t)

]
(3.50)

= i

∫
dk0′

2π

ρ(k0′)

k0 − k0′ + iε
(3.51)

where we add a infinitesimal imaginary part iε so that we close the contour and pick

up poles with the correct signature in correspondence with our definition.

Comparing the retarded correlator with (3.48), we have

DR(k0) = −i∆(k0 + iε) (3.52)

The other useful correlator is the time-ordered Feynman correlator

DF (t− t′) = 〈T φ(t)φ(t′)〉β (3.53)

= θ(t− t′)D+(t− t′) + θ(t′ − t)D−(t− t′) (3.54)

T means time ordering. We can compute in frequency space

DF (k0) =

∫
dteik

0tDF (t)

=

∫
dteik

0t

∫
dq0

2π

dω

2πi

{
− e−iωt

ω − q0 + iε
D+(q0) +

e−iωt

ω − q0 − iε
D−(q0)

}
=

∫
dq0

2π

dω

2πi

{
2πδ(k0 − ω)

iD+(q0)

ω − q0 + iε
− 2πδ(k0 − ω)

iD−(q0)

ω − q0 − iε

}
=

∫
dq0

2π

{
iD+(q0)

k0 − q0 + iε
− iD−(q0)

k0 − q0 − iε

}
(3.55)
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Using the spectral density function, we get

DF (k0) =

∫
dq0

2π

{
iρ(q0)

k0 − q0 + iε
+ in(q0)ρ(q0)

[
1

k0 − q0 + iε
− 1

k0 − q0 − iε

]}
=

∫
dq0

2π

iρ(q0)

k0 − q0 + iε
− in(k0)ρ(k0)× πi

2π
+ in(k0)ρ(k0)× −πi

2π

=

∫
dq0

2π

iρ(q0)

k0 − q0 + iε
+ n(k0)ρ(k0) (3.56)

At T → 0, the Boson distribution factor n(k0) → 0, we recover the Feynman corre-

lator in zero temperature field theory

DF (k0;T = 0) =

∫
dq0

2π

iρ(q0)

k0 − q0 + iε
(3.57)

To compute the Feynman correlator for free scalar fields, plug (3.42) into (3.56),

we obtain

DF (k0) =

∫
dq0 i

2Ek

δ(k0 − Ek)− δ(k0 + Ek)

k0 − q0 + iε
+ 2πε(k0)n(k0)δ

(
(k0)2 − E2

k

)
=

i

2Ek

1

k0 − Ek + iε
− i

2Ek

1

k0 + Ek + iε
+ 2πε(k0)n(k0)δ

(
(k0)2 − E2

k

)
(3.58)

We want to write this in a neater form which looks more like the Feynman correlator

in zero temperature field theories. Note that the second term

−i
2Ek

1

k0 + Ek + iε
=
−i

2Ek

1

k0 + Ek − iε
+
−i

2Ek

(−2πi)δ(k0 + Ek) (3.59)

Together with the first term, the first two terms of (3.58) give

i

2Ek

1

k0 − Ek + iε
− i

2Ek

1

k0 + Ek − iε
− 1

2Ek

(2π)δ(k0 + Ek)

=
i

(k0)2 − E2
k + iε

− 1

2Ek

(2π)δ(k0 + Ek) (3.60)

From the third term we have

2πε(k0)n(k0)δ
(
(k0)2 − E2

k

)
=

2π

2Ek

n(Ek)δ(k0−Ek)− 2π

2Ek

n(−Ek)δ(k0 +Ek) (3.61)

Noting the property of the distribution factor

n(−E) =
1

e−βE − 1
= −1− 1

eβE − 1
= −1− n(E) (3.62)

The third term of (3.58) gives rise to

2π

2Ek

n(Ek)δ(k0 − Ek) +
2π

2Ek

δ(k0 + Ek) +
2π

2Ek

n(Ek)δ(k0 + Ek)

=2πn(|k0|)δ
(
(k0)2 − E2

k

)
+

2π

2Ek

δ(k0 + Ek) (3.63)
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Putting together all these terms in (3.58), we obtain the Feynman propagator for

free scalar particles

DF (k0) =
1

k0 + Ek − iε
+ 2πn(|k0|)δ

(
(k0)2 − E2

k

)
(3.64)

3.2 Interactions and perturbative theory

3.2.1 Feynman rules

Let’s now add into the scalar fields a φ4 interaction.

L =
1

2
∂µφ∂

µφ− 1

2
m2φ2 − λφ4 = L0 + LI (3.65)

The full Lagrangian breaks into a free part and an interaction part. The coupling con-

stant λ is dimensionless and assumed to be small, so we can study the contributions

from the interaction term perturbatively in terms of λ.

The partition function reads

Z =

∫
DφeS =

∫
DφeS0+SI =

∫
DφeS0(1 + SI +

1

2
S2
I + · · · ) (3.66)

We also break the partition function into a free piece and an interaction piece, and

expand around the free partition function. Consider the logarithm of the partition

function of interest

lnZ = ln(Z0 + ZI)

= ln

(∫
DφeS0 + eS0

+∞∑
n=1

SnI
n!

)

= lnZ0 +
ZI
Z0

− Z2
I

2Z2
0

+ · · · (3.67)

The first order perturbation expansion in λ originates only from the term ZI/Z0.

More specifically, this is

(lnZ)1 =

∫
DφSIeS0∫
DφeS0

(3.68)

Substitute the field expansion (3.9), one obtains

(lnZ)1 =
1

Z0

∫
Dφn,k(−λ)

∫ β

0

dτ

∫
d3x

β2

V 2

∑
n1,··· ,n4

∑
p1,··· ,p4

φn1,p1 · · ·φn4,p4

× ei(ωn1+···+ωn4 )τei(p1+···+p4)xe−
β2

2

∑
n,k |φn,k|2(ω2

n+k2+m2) (3.69)

where the denominator is

Z0 =

∫
Dφn,pe−

β2

2

∑
n,k |φn,p|2(ω2

n+p2+m2) (3.70)
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The integrations
∫ β

0
dτ and

∫
d3x will give rise to a factor of

βV δ(ωn1 + · · ·+ ωn4) · δ(3)(p1 + · · ·+ p4) (3.71)

The only non-zero contributions are from ωn1 = −ωn2 , p1 = −p2 and ωn3 = −ωn4 ,

p3 = −p4 and two other possible permutations. Thus

(lnZ)1 = 3
1

Z0

(−λ)βV
∏
n,k

∫
Dφn,k

β2

V 2

∑
l,m

∑
p,q

|φl,p|2|φm,q|2e−
β2

2
φ2n,k(ω2

n+k2+m2)

= −3λβV

[
V

β

∑
n,p

1

ω2
n + p2 +m2

]2

(3.72)

Taking the continuum limit, we yield

(lnZ)1 = −3λβV

[
1

β

∑
n

∫
d3p

(2π)3

1

ω2
n + p2 +m2

]2

(3.73)

The term in the square bracket is exactly the free scalar propagator in imaginary

time (3.49). Diagrammatically, we can represent the first order corrections to the

partition function in terms of a Feynman diagram

(lnZ)1 = −3× (βV )× (3.74)

We can also examine the second order corrections in λ. The contributions come

from two pieces in (3.67), ZI/Z0 and −Z2
I /2Z

2
0 . From −Z2

I /2Z
2
0 , we get

−1

2

[
DφSIeS0

DeS0

]2

= −1

2

[
3βV

]2

(3.75)

From ZI/Z0, we pick out the contributions of the second order

1

Z0

∫
DφeS0

S2
I

2
=

1

Z0

∫
DφeS0

1

2

[
−λ
∫
d4xφ4

]2

(3.76)

There are several topologically distinct Feynman diagrams corresponding to this

expression. Ignoring the factor of one half and some multiplicative factors relating

to the symmetry of the diagrams, we draw these diagrams

(3.77)

The multiplicative factors can be worked out by starting from two separate vertices

with 4 legs and counting the total number of possible ways to connect different legs

to form the consequential diagram. For the first diagram, we have 3 × 3 ways to

complete this. Picking up the factor of one half from the Taylor expansion, we see
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that the first diagram cancels out the contribution of (3.75). To obtain the second

diagram of (3.77), we choose two legs from one vertex to connect with two legs from

the other vertex, of which there are 4× 3/2 = 6 possible choices for each vertex, and

thus 6× 6× 2 = 72 ways in total. The third diagram can be done in 4× 3× 2 ways.

Therefore, the second order corrections to the partition function looks like

(lnZ)2 = 36(βV )2 + 12(βV )2 (3.78)

The disconnected pieces from the numerator and the denominator are canceled

out. As we should point out, this is true at all orders of the perturbation expansions,

though we only demonstrated this cancellation to the second order. This could be

understood in this way. If there exists a contribution from n pieces of disconnected

diagrams, then each of the disconnected piece will contribute a factor of V and lead to

an overall factor of V n. But the logarithm of the partition function is proportional to

the free energy, an extensive quantity, and therefore must be proportional to V . The

number of the disconnected pieces must be one only, i.e., the contributing diagram

must be connected.

We can sum up our discussions to write down the Feynman rules for the φ4-

interacting scalar field theories.

1. Draw all topologically inequivalent connected Feynman diagrams.

2. Assign a factor of 1
β

∑
n

∫
d3p

(2π)3
∆(iωn,p) to each line.

3. Assign a factor of (−λ) to each vertex.

4. Include a factor of (2π)3

β
δ(ωin−ωout)δ(3)(pin−pout) at each vertex due to energy-

momentum conservation.

5. Determine the overall combinatoric symmetry factor.

6. There will be an overall factor of β(2π)3δ(0) = βV left over.

3.2.2 Progapators and self-energies

The existence of interactions will modify the propagators. A finite temperature prop-

agator in coordinate space is defined by

D(τ,x) = 〈φ(τ,x)φ(0, 0)〉β =
1

Z

∫
Dφφ(τ,x)φ(0, 0)e

∫ β
0 dτ

∫
d3xL (3.79)

Transform into the frequency-momentum space

D(ωn,p) =
1

Z

∫ β

0

dτ

∫
d3xe−i(ωnτ+p·x)D(τ,x) (3.80)

=
β

V

∑
m,q

∑
m′,q′

〈φm,qφm′,q′〉β
∫ β

0

dτ

∫
d3xei(ωm−ωn)τei(q−p)x (3.81)
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The ensemble average 〈φm,qφm′,q′〉β is zero by symmetric integration unless m = −m′

and q = −q′. So we have

D(ωn,p) = β2〈φn,pφ−n,−p〉β (3.82)

Write this in terms of a path integral,

D(ωn,p) = β2

∫
Dφφn,pφ−n,−peS∫

DφeS
(3.83)

from which we may find

−2
δ lnZ

δD−1
0

=
−2

Z

δZ

δD−1
0

=
β2

Z

∫
Dφφn,pφ−n,−peS = D(ωn,p) (3.84)

D(ωn,p) can be nicely expressed as a functional derivative of lnZ with respect to

free propagator D0(ωn,p). Further we have

D(ωn,p) = −2
δ lnZ

δD−1
0

= 2D2
0

δ lnZ

δD0

(3.85)

We define the self energy for scalar fields

Π(ωn,p) = D−1(ωn,p)−D−1
0 (ωn,p) (3.86)

Noting that
δ lnZ0

δD0

=
1

2

δ

δD0

∑
n,p

ln
[
β−2D0(ωn,p)

]
=

1

2
D−1

0 (3.87)

we can compute from (3.84)

D(ωn,p) = 2D2
0

{
δ lnZ0

δD0

+
δ lnZ1

δD0

+ · · ·
}

= D0 + 2D2
0

δ lnZ1

δD0

+ · · · (3.88)

where we expand lnZ into a perturbative series. We also expand the self energy

Π(ωn,p) = Π1(ωn,p) + Π2(ωn,p) + · · · (3.89)

Solve for (3.86) to the first order, we obtain

1−D0Π1 = 1 + 2D0
δ lnZ1

δD0

(3.90)

or

Π1 = −2
δ lnZ1

δD0

(3.91)

Recall that we interpreted the partition functions lnZwith Feynman diagrams.

Diagrammatically, differentiating lnZ with respect to the free propagator D0 is equiv-

alent to cutting lines in the diagrams. We get

Π1 = −2
δ

δD0

(−3× (βV )× ) = −12 (3.92)
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There is a factor of 2 because there are 2 different ways to cut lines in the figure-eight

diagram for lnZ1.

At the second order, we yield

−D0Π2 +D0Π1D0Π1 = 2D0
δ lnZ2

δD0

(3.93)

or

Π2 = Π1D0Π1 − 2
δ lnZ2

δD0

= (−12 )× (−12 )− 2
δ

δD0

(36 + 12 )

= 144 − 144 − 144 − 96

= −144 − 96 (3.94)

We may obtain the expressions for higher order corrections with the same meth-

ods. In principle, the self energies can be computed to arbitrary high orders. However,

we will see later that this naive perturbative expansion is poorly convergent due to

the infrared divergences.

3.2.3 Thermal mass and phase transitions

We have obtained a diagrammatic representation for the self energies. These diagrams

can be evaluated by using the Feynman rules. Let’s evaluate the self energy at the

lowest order corresponding to the one-loop diagram. Recalling the Feynman rules,

we write

Π1 = −12

= −12(−λ)
1

β

∑
n

∫
d3p

(2π)3

1

ω2
n + p2 +m2

= 12λ

∫
C

dp0

2πi

∫
d3p

(2π)3

1

(p0)2 − ω2
p

1

2
coth

βp0

2

= 12λ

∫
d3p

(2π)3

1

2ωp

1

2
coth

βωp
2
× 2

= 12λ

∫
d3p

(2π)3

1

2ωp

(
1 +

2

eβωp − 1

)
(3.95)

Like the partition function of a free scalar field at finite temperature we calculated

before, the self energy also splits into two parts.

The temperature independent part

Πvac = 12λ

∫
d3p

(2π)3

1

2ωp
= 12λ

∫
d3p

(2π)3

∫
dp0

2πi

−1

(p0)2 − ω2
p

(3.96)
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is just the vacuum one-loop self energy calculated in many quantum field theory

textbooks with a Wick rotation of p0 to imaginary axis. With p0 = ip4 we rewrite

Πvac = 12λ

∫
d3p

(2π)3

∫
dp4

2πi

−i
−(p4)2 − ω2

p

= 12λ

∫
d4p

(2π)4

1

(p4)2 + ω2
p

(3.97)

The integral is unfortunately divergent. We should set a large but finite cut-off

momentum Λc. When m = 0, the integration gives

12λ · 2π2

16π4

p2

2

∣∣∣∣Λc
0

=
3λ

4π2
Λ2
c (3.98)

while m 6= 0, the result becomes

12λ · 2π2

16π4

1

2

[
p2 −m2 ln

p2 +m2

m2

] ∣∣∣∣Λc
0

=
3λ

4π2

(
Λ2
c −m2 ln

Λ2
c

m2

)
(3.99)

However, under a proper counter term renormalization scheme, m2 = m2
0 + δm2,

where m0 is the bare mass and δm shall be treated as a counter term, we can always

choose δm2 such that the vacuum self energy vanishes.

Πren
vac ≡ 0 (3.100)

We shall emphasize that renormalization at zero temperature is sufficient to make

the full theory well-defined in non-zero temperature cases, because the thermal con-

tributive part is suppressed at high energies due to the property of distribution func-

tion, which contains an exponential factor e−βE.

We are then left with a thermal part

ΠT = 12λ

∫
d3p

(2π)3

1

ωp

1

eβωp − 1
(3.101)

The integral can be easily evaluated in the massless limit m = 0

ΠT = 12λ · 4π
∫

dpp2

(2π)3

1

p

1

eβp − 1

=
12λ

4π2

1

β2

∫
dx

x

ex − 1

= λT 2 (3.102)

where we used the result for the dimensionless integral∫ ∞
0

dx
x

ex − 1
=
π2

6
(3.103)
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The thermal background introduces a mass for scalar particles of order λT 2. The

appearance of the thermal mass has an important result, and we make several com-

ments on it. If we take a scalar Lagrangian with a negative square mass

L =
1

2
∂µφ∂

µφ+
1

2
µ2φ2 − λφ4 = L0 + L+ I (3.104)

At zero temperature, the effective potential takes its minimum at non-zero values

of the field φc =
√
µ/2λ. Hence the symmetry is spontaneously broken. The vac-

uum mass will continue to dominate at low temperatures. But owing to the positive

square-mass generated by a thermal background, the effective potential will behave

differently provided we keep increasing the temperature. When the magnitude of

the thermal mass is larger than that of the vacuum mass, the minimum of the ef-

fective potential is acquired when we take all the field arguments to be zero φc = 0.

We should expect the broken symmetry to be restored at some critical temperature.

There must exist a phase transition between the high and low temperature domain,

which is a significant consequence for our understanding of the early universe. The

broken symmetry of the world we are living in, which is a low-temperature system

with T ≈ 3K, shall be restored when tracing back to early times. We know that the

Higgs mechanism of spontaneous symmetry breaking is responsible for the particle

masses, so we might infer that all particles were massless in the early universe. Al-

though the details of the phase transition should be discussed more carefully, since

we have only studied the mass corrections to the first order. However, our calcula-

tion is sufficient to convey us a general idea of how temperatures could influence the

behaviors of our scalar field model.

3.2.4 Partition function

We want to study the corrections to the partition function to the first order

(lnZ)1 = −3βV

= −3λβV

(
1

β

∑
n

∫
d3p(2π)3 1

(p0)2 − ω2
p

)2

→ −3λβV

(∫
d3p(2π)3 1

2p

2

eβp − 1

)2

= −3λβV

(
1

2π2

1

β2

π2

6

)2

= − λV

48β3
(3.105)

where in the third step, we again take the massless limit. We also drop the vacuum

part as long as the vacuum pressure is renormalized to zero.
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The corresponding first order correction to the pressure is

P1 =
(lnZ)1

βV
= − λ

48
T 4 (3.106)

Together with the free field pressure (3.19), the pressure of interacting fields looks

like

P = T 4

(
π2

90
− λ

48
+ · · ·

)
(3.107)

As we will see soon, the next to leading order corrections are not of order λ2 as one

would expect, but of order λ3/2. The naive perturbation method is problematic if one

studies the thermal field theories more carefully. We will discuss these unexpected

behaviors in Section 5.
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4 Gauge Theories at Finite Temperature

Up till now, we have been studying the scalar theories only. However, the world we are

living in is consisted of spin-half fermions and gauge bosons, which are well explained

by gauge theories. Quantum electrodynamics (QED) and quantum chromodynamics

(QCD), being the two most important and successful gauge theories, describe the

mechanism behind almost all phenomena to a very high accuracy. In this section, we

will study the generalization of gauge theories to finite temperatures in details.

4.1 Fermions

4.1.1 Partition function

Recall the Lagrangian for free electrons is

L = ψ̄(iγµ∂µ −m)ψ (4.1)

The field operators ψ and ψ̄ should be treated as independent variables. The equation

of motion is the famous Dirac equation

(iγµ∂µ −m)ψ = 0 (4.2)

The conjugate momentum of the field ψ is

π(x) =
∂L

∂ ˙ψ(x)
= iψ† (4.3)

We can expand the fields in terms of creation and annihilation operators

ψ(x) =
1√
V

2∑
s=1

∫
d3p

(2π)3

1

2Ep

{
bs(p)us(p)eip·x + d†s(p)vs(p)e−ip·x

}
(4.4)

where us(p), vs(p) are the free solutions to the Dirac equation with positive and

negative frequencies, respectively, and the lower index s denotes for two different

spin states. Similar expansion holds for ψ̄(x).

The equal time anti-commutation relation is imposed as

{ψa(t,x), πb(t,y)} = iδ(3)(x− y)δab (4.5)

or equivalently

{br(p), b†s(q)} = {dr(p), d†s(q)} = (2π)3δ(3)(p− q)δrs (4.6)

The anti-commutators reveal the fermionic nature of electrons. Unlike scalar parti-

cles, the Hilbert space of a system of electrons is finite dimensional. Consider a single
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mode of the system of electrons, then the basis of the Hilbert space is conventionally

given by two states |0〉 and |1〉, with an occupation number of 0 and 1 respectively.

The trace that we need to take when computing the partition function for this single

mode becomes a sum over only two states.

Zp =
1∑

n=0

〈n|e−βH |n〉 = 〈0|0〉+ e−βEp〈1|1〉 = 1 + e−βEp (4.7)

We sum over all the modes to get the full partition function

lnZ =
∏
p

(1 + e−βEp) = 4V

∫
d3p

(2π)3
ln(1 + e−βEp) (4.8)

The appearance of the factor of 4 in this expression for fermions is due to the degrees

of freedom. There is a factor of 2 responsible for the existence of two sets of creation

operators which generate anti-antiparticles as well as particles, and another factor of

2 because the fermions we deal with are of spin one-half and thus have 2 different

spin states.

Since path integral turns out to be a powerful method to deal with gauge theories,

hence we expect to construct a path integral representation for fermionic fields, so

that we can include gauge interactions and study them in a similar approach later.

We define the fermionic coherent states |η〉 by

|η〉 = e−ηa
†|0〉 = (1− ηa†)|0〉 = |0〉 − η|1〉 (4.9)

The conjugate coherent states 〈η| are given by

〈η| = 〈0|e−aη∗ = 〈0|(1− aη∗) = 〈0| − 〈1|η∗ (4.10)

The numbers η, η∗ are the basis of the Grassmann algebra.

A useful identity of Grassmannian variables is∫
dη∗dηe−η

∗aη =

∫
dη∗dη(1− η∗aη) = a (4.11)

Some other useful identities are

1 =

∫
dη∗dηe−η

∗η|η〉〈η| (4.12)

TrA =

∫
dη∗dηe−η

∗η〈−η|A|η〉 (4.13)

They can be easily checked by expanding the exponential terms and using the defining

properties of the Grassmann algebra.
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With the help of (4.13), we are ready to write down the fermion partition function

in the form of path integrals

Z = Tre−βH =

∫
dη∗dηe−η

∗η〈−η|e−βH |η〉 (4.14)

By splitting β into a large number of small intervals and inserting a set of unity

identities (4.12), after some work one obtains

Z =

∫
Dη∗Dη exp

{
−
∫ β

0

dτ

[
η∗
∂η

∂τ
+H(η∗, η)

]}
(4.15)

with a suitable choice of boundary condition

η(β) = −η(0) (4.16)

The partition function for the Dirac fermion fields takes the form∫
Dψ∗Dψ exp

{∫ β

0

dτd3x

[
−ψ∗(τ,x)

∂ψ(τ,x)

∂τ
− ψ∗(τ,x)(−iγ0γi∂i +mγ0)ψ(τ,x)

]}
(4.17)

Going back to real time variable t = −iτ , we find

− ψ∗∂ψ
∂τ

= iψ∗
∂ψ

∂t
= iψ̄γ0∂0ψ (4.18)

iψ∗γ0γi∂iψ = iψ̄γi∂iψ (4.19)

Therefore the path integral representation for the partition function is

Z =

∫
Dψ̄Dψ exp

{
i

∫ −iβ
0

dtd3xψ̄(iγµ∂µ −m)ψ

}
(4.20)

The exponential term is just the Lagrangian (4.1). Hence the expression is further

simplified to be

Z =

∫
Dψ̄Dψ exp

{
i

∫ −iβ
0

dtd3xL(t)

}
=

∫
Dψ̄Dψ exp

{
−
∫ β

0

dτd3xL(τ)

}
(4.21)

which is analogous to (2.19) but the functional integration variables are now anti-

commuting objects.

It is convenient to deal with the fermion fields by expanding them into the

frequency-momentum space, but note that we have the constraint ψ(τ = β) =

−ψ(τ = 0), which can only be satisfied by a discrete set of frequencies. The Fourier

expansion is

ψ(x, τ) =
1√
V

∑
n,p

ei(ωnτ+p·x)ψ(ωn,p) (4.22)
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where the allowed Matsubara frequencies are

ωn =
(2n+ 1)π

β
(4.23)

which is consistent with our discussion (2.16)

Insert (4.22) into the action S =
∫ −iβ

0
dtd3xL =

∫ −iβ
0

dtd3xψ̄(iγµ∂µ−m)ψ, we get

S = −β
∑
p

ψ̄∗n,p(iωn + γ0γipi +mγ0)ψn,p (4.24)

Note that in the integrand, the field arguments ψ∗ and ψ are 4-component spinors,

and the term in the round bracket containing γ-matrices has a 4×4 matrix structure.

In order to carry out this integral, we shall use a generalized version of (4.11)∫
Dψ̄Dψ exp(−ψ̄Mψ) = detM (4.25)

Integrating over Dψ∗ and Dψ, we get the determinant of the matrix element

β(iωn + γ0γipi +mγ0) (4.26)

Using the Dirac representation for the γ-matrices, this matrix can be written

explicitly as

β


iωn − p 0 m 0

0 iωn + p 0 m

m 0 iωn + p 0

0 m 0 iωn − p

 (4.27)

The determinant of this matrix is worked out to be

det(· · · ) = β4
[
(iωn)2 − p2 −m2

]2
= β4(ωn + E2

p)2 (4.28)

So up to an unimportant multiplicative constant independent of temperature, the

partition function is

lnZ =
∑
n,p

ln
[
β4(ωn + E2

p)2
]

(4.29)

In the continuum momentum limit

lnZ = 2V
∑
n

∫
d3p

(2π)3
ln
[
β2(ωn + E2

p)
]

(4.30)

The frequency sum can be performed with a similar trick using a contour integral as

before. We first write the logarithm term in the integrand as

ln
[
β2(ωn + E2

p)
]

=

∫ β2E2
p

1

dθ2

β2ω2
n + θ2

(4.31)
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and then interpret the sum as the residuals of a clever choice of contour integral by

using the hyperbolic tangent function. We simply give the result of the frequency

sum here, the reader can refer to the appendix for details. From (A.9), we have∑
n

1

β2ω2
n + θ2

=
1

2θ
− 1

θ

1

eθ + 1
(4.32)

The last term is related to the vacuum contribution to the partition function, of

which we are not interested and thus will be dropped from now on. The auxiliary

integration over dθ reads∫ β2E2
p

1

dθ2

(
1

2θ
− 1

θ

1

eθ + 1

)
=

∫ βEp

1

dθ

(
1− 2

eθ + 1

)
= βEp + 2 ln(1 + e−βEp)− 2 ln(1 + e−1) (4.33)

where the last temperature independent constant term can be neglected.

Therefore we arrive at the final expression of the partition function for pure

fermions

lnZ = 4V

∫
d3p

(2π)3

[
1

2
βEp + ln(1 + e−βEp)

]
(4.34)

The first term again owes its appearance to the zero-point energy. This expression is

obviously consistent with (4.8), which we computed in a different approach.

We also notice that this expression is very similar to the analogous formula (3.17)

for scalar particles, with two major differences. (i) The change of signs, arising from

difference between the fermionic and bosonic nature of the particles we are studying.

For fermions, the integration over anti-commuting Grassmannian variables instead

of ordinary commuting c-numbers gives an overall minus sign, and the difference in

periodicity conditions leads to another change of sign for the term in the logarithm.

(ii) The appearance of the factor of 4, which is absent for real scalar particles, arising

from the fact that electrons have 4 degrees of freedom.

4.1.2 Electron propagators

The studies of electron propagators are very similar to our discussions on scalar

propagators. Since the methods we use are almost basically the same, we are not

going into too much details for electron propagators. The reader can compare the

relevant discussions in the Section 3.1 for a reference.

As for scalar fields, we can define two-point correlators for electrons

S+
αβ(x, y) = 〈ψα(x)ψ̄β(y)〉β (4.35)

S−αβ(x, y) = −〈ψ̄β(y)ψα(x)〉β = −S+
αβ(y, x) (4.36)
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Note the minus sign in the definition for S−αβ(x, y), which is necessary to derive the

correct KMS relation for fermions

S+(t− iβ) = −S−(t) (4.37)

One may find a relation similar to (3.30) as

S−αβ(p0) = −e−βp
0

S+
αβ(p0) (4.38)

We also define the spectral density function

ραβ(p0) = S+
αβ(p0)− S−αβ(p0) (4.39)

with which we rewrite the correlators as

S+
αβ(p0) = [1− ñ(p0)]ραβ(p0) (4.40)

S−αβ(p0) = −ñ(p0)ραβ(p0) (4.41)

where ñ(E) is the Fermi-Dirac distribution factor

ñ(E) =
1

eβE + 1
(4.42)

With the same methods in our treatments of scalar propagators, one finds the

electron Matsubara propagator

S(iωn,p) = −
∫
dp0

2π

ρ(p0)

iωn − p0
(4.43)

which is an analogy to (3.48).

The spectral density for free electron fields is

ραβ(p0) = 2πε(p0)δ
(
(p0)2 − E2

p

)
(/p+m)αβ (4.44)

from which we yield the free Matsubara propagator for electrons

S(iωn,p) = − /p−m
ω2
n + E2

p

= −(/p−m)∆̃(iωn,p) (4.45)

where for the convenience of writing in the future, we defined a Euclidean propagator

for fermions

∆̃(iωn,p) =
1

ω2
n + E2

p

(4.46)
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4.2 Quantum electrodynamics

4.2.1 QED Lagrangian

The free Dirac action (4.1) is invariant under a global phase transformation

ψ(x)→ eiαψ(x) (4.47)

with a fixed phase parameter α. Nevertheless, the theory is no longer invariant

provided that α has a dependence on local space-time coordinate x. To retain the

invariance under the so-called local phase transformation, we need include gauge

potentials Aµ into our theory. The gauge field together with the original fermion field

will leave the Lagrangian invariant. For this reason, the local phase transformation

is also called the gauge transformation. The modified Lagrangian reads

L = iψ̄γµ∂µψ −mψ̄ψ − eψ̄γµAµψ = ψ̄(iγµDµ −m)ψ (4.48)

with the original partial differentiation operator ∂µ replaced by a covariant derivative

Dµ = ∂µ + ieAµ (4.49)

and the gauge field transforms as

Aµ → Aµ −
1

e
∂µα(x) (4.50)

e represents the gauge coupling.

Another gauge-invariant quantity, known as the field strength, can be constructed

purely out of gauge fields

Fµν = ∂µAν − ∂νAµ (4.51)

We further construct a Lorentz scalar out of the field strength, so that we can include

this in the Lagrangian, and this is the electromagnetism Lagrangian

Lγ = −1

4
FµνF

µν (4.52)

the factor of −1/4 is chosen such that it yields the correct normalization for the

equation of motion of an applied current ∂µF
µν = jν .

The whole Lagrangian, describing a system of electrons and gauge photons inter-

acting with each other, reads

L = ψ̄(iγµDµ −m)ψ − 1

4
FµνF

µν = ψ̄(iγµ∂µ −m)ψ − 1

4
FµνF

µν − eψ̄γµAµψ (4.53)

The first two terms are nothing but the same as a free theory of electrons and photons

without interactions, while the last term shows that the electrons and photons are

coupled through an interaction with a dimensionless coupling parameter e. If the

parameter e is small, we can study the interacting theory by perturbative techniques

in terms of Feynman diagrams.
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4.2.2 Partition function for photons

Before going on, we briefly review the necessity of introducing gauge fixing and ghost

terms into the formulation of the functional integral representation for photons. We

illustrate this by computing the photon partition function. Let us start with the

vacuum case,

Z =

∫
DAµ exp

{
i

∫ −iβ
0

d4x

(
−1

4
FµνF

µν

)}
(4.54)

Gauge transformations should not change anything physically, but we need to fix

a gauge. The covariant gauge condition

G(A) = ∂µA
µ = w(x) (4.55)

can be imposed by inserting the identity

1 =

∫
Dα(x)δ

(
G(A,α)− w(x)

)∣∣∣∣δ
(
G(A,α)− w(x)

)
δα

∣∣∣∣ (4.56)

w(x) is some funtion of x we can choose for the convenience of calculations. Take

w = 0 we recover the Lorenz gauge condition.

There is still a residual gauge transformation

Aµ → Aµ + ∂µα (4.57)

which leaves the field strength unchanged, and thus it does not change the Lagrangian.

We can write

G(A,α) = ∂µA
µ + ∂µ∂

µα (4.58)

The determinant term in (4.56) is

δG
(
A,α(x)

)
δα(y)

= ∂µ∂
µδ(4)(x− y) (4.59)

Therefore, we write the partition function

Z =

∫
DADαδ

(
G(A,α)− w(x)

)∣∣∣∣δ
(
G− w(x)

)
δα

∣∣∣∣ exp

{
i

∫ −iβ
0

d4x

(
−1

4
FµνF

µν

)}
(4.60)

Now we shift Aµ → Aµ + ∂µα and this shall not change the partition function

Z =

∫
DADαδ

(
G(A)− w(x)

)
det(∂2) exp

{
i

∫ −iβ
0

d4x

(
−1

4
FµνF

µν

)}
(4.61)

but the integrand does not contain α, so we can take out the integration over
∫
Dα.

This integral is divergent, and it merely shows the redundancy of the residual gauge

transformation.
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We further average over w(x) around zero with a Gaussian width ξ∫
Dw 1√

2πξ
ew

2(x)/2ξ (4.62)

where ξ is a gauge fixing parameter that one can choose for the convenience of

calculations. The factor of 1/
√

2πξ is a choice for the sake of normalization. We

shall ignore it for a while until when it is necessary to put it back. Integration over

Dw can be performed with the delta function that we introduced to impose gauge

conditions. Then the partition function embraces a gauge fixing term∫
DA exp

{
i

∫ −iβ
0

d4x

[
−1

4
FµνF

µν − (∂µA
µ)2

2ξ

]}
(4.63)

There is yet a det ∂2δ(4)(x− y) term. Using the representation for delta function

δ(4)(x− y) =
1

βV

∑
n,p

eiωn(τx−τy)+ip(x−y) (4.64)

and acting the derivative operation on this, we get

∂2δ(4)(x− y) =
1

βV

∑
n,p

(−ω2
n − p2) exp{iωn(τx − τy) + ip(x− y)} (4.65)

We see that the det ∂2 term is not diagonal in the x − y space, and moreover it is

temperature dependent when expressed in frequency-momentum space. Therefore in

the computation of the partition function, it cannot be simply ignored. We shall see

how this term plays a crucial role to cancel the redundant degrees of freedom.

The det ∂2 term can be written in terms of a functional integral over Grassmannian

variables by noting (4.25). We have

det ∂2 =

∫
Dη∗Dη exp

(
−
∫ −iβ

0

η∗∂2η

)
(4.66)

η∗ and η are called the ghost fields.

Hence, the full partition function takes the form

Z =

∫
DADη∗Dη exp

{
i

∫ −iβ
0

d4x
(
Lγ + Lgf + Lgh

)}
(4.67)

where the gauge fixing term and the ghost term are

Lgf = − 1

2ξ
(∂µAµ)2 (4.68)

Lgh = −η∗∂2η (4.69)
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Let us evaluate (4.67) more closely. Pick out the original Lagrangian Lγ and the

gauge fixing term Lgf , integrate by parts and drop the terms that vanish at infinity,

one derives ∫
DA exp

{
i

2

∫ −iβ
0

d4xAµ
[
gµν2−

(
1− 1

ξ

)
∂µ∂ν

]
Aν
}

(4.70)

We want to rotate to imaginary time variable τ = it = ix0 to compute in the finite

temperature case. We have∫
DA exp

{
−1

2

∫ β

0

dτd3xAµ
[
gµν2−

(
1− 1

ξ

)
∂µ∂ν

]
Aν
}

(4.71)

If we want to write the Lagrangian in terms of τ , then we will get imaginary terms

in the Lagrangian from the derivative ∂/∂x0. To avoid this happening, we make a

unitary transformation for the photon fields A4 = iA0 and denote the photon fields

as Ai, where the index i runs from 1, 2, 3, 4. One finds some useful conversion rules

are

δij ↔ −gµν , AiAj ↔ AµAν with i, j = 1, 2, 3, 4, and µ, ν = 0, 1, 2, 3 (4.72)

With these substitutions into (4.71), it becomes∫
DA exp

{
−1

2

∫ β

0

dτd3xAi
[
δij2τ −

(
1− 1

ξ

)
∂i∂j

]
Aj
}

(4.73)

The gauge particles are bosons and they naturally have the Fourier expansion

Ai(τ,x) =

√
β

V

∑
n,k

ei(ωnτ+k·x)Ain,k (4.74)

Going to the frequency-momentum space, we find the partition function becomes∫
DAn,k exp

{∑
n,k

−β
2

2
Ai∗n,k

[
δij(ω

2
n + k2)−

(
1− 1

ξ

)
kikj

]
Ajn,k

}

=

∫
DAn,k exp

{∑
n,k

−β
2

2
Ai∗n,kMij(ξ)A

j
n,k

}

=
∏
n,k

√
πN

detMξ

(4.75)

where M is a 4×4 matrix of arguments ωn and k. For convenience we set k = (0, 0, k),

then this matrix can be explicitly written down as

Mξ = β2


k2 + ω2

n

ξ
0 0 −

(
1− 1

ξ

)
ωnk

0 ω2
n + k2 0 0

0 0 ω2
n + k2 0

−
(

1− 1
ξ

)
ωnk 0 0 ω2

n + k2

ξ

 (4.76)
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whose determinant is

detMξ =

{(
k2 +

ω2
n

ξ

)(
ω2
n + k2

)2
(
ω2
n +

k2

ξ

)
−
[
−
(

1− 1

ξ

)
ωnk

]2 (
ω2
n + k2

)2

}

=
[β2 (ω2

n + k2)]
4

ξ
(4.77)

from which we obtain the contribution to the partition function from Lγ and Lgf

lnZ(γ+gf) = −1

2

∑
n,k

ln
[
β2
(
ω2
n + k2

)]
× 4 (4.78)

The ξ-dependence is canceled by the factor of (1/
√

2πξ)N originating from the in-

troduction of Gaussian integral (4.62) at each location of x. Since the ghost piece is

independent of gauge fixing parameter ξ, so the full partition function, and therefore

all the thermodynamicals must be gauge fixing independent.

We shall also take the ghost fields into account. Its contribution to the partition

function is∫
Dη∗Dη exp

{
−i
∫ −iβ

0

d4xη∗∂2η

}
=

∫
Dη∗Dη exp

{∫ β

0

dτd3xη∗2τη

}
(4.79)

Substituting the Fourier expansion of the ghost fields

η(x, τ) =

√
β

V

∑
n,k

ei(ωnτ+k·x)ηn,k (4.80)

We obtain the following expression∫
Dη∗−n,−kDηn,k exp

{
−
∑
n,k

β2η∗−n,−k(ω2
n + k2)ηn,k

}
=
∏
n,k

β2(ω2
n + k2) (4.81)

Hence the ghost fields contribute to the partition function

lnZgh = −1

2

∑
n,k

ln
[
β2
(
ω2
n + k2

)]
× (−2) (4.82)

Putting all the contributions to the photon partition function together, we get

lnZ = −1

2

∑
n,k

ln
[
β2
(
ω2
n + k2

)]
× 2 (4.83)

We should note that in this covariant gauge, we would render 4 degrees of freedom in

comparison with (3.17) if the ghost field contributions are not included. There would

be two physical transverse degrees of freedom, but also two unwanted degrees of

freedom relating to the unphysical time-like photons and longitudinal photons. The

two unwanted degrees of freedom are exactly canceled by the ghost contributions.
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4.3 Photon propagator

4.3.1 Vacuum photon propagator

We are not going to study the photon propagators. We define the photon propagator

in imaginary time

Dµν(x, τ) =

∫
DAAµ(x, τ)Aν(0, 0) exp

{∫ β
0
dτd3xL

}
∫
DA exp

{∫ β
0
dτd3xL

} (4.84)

Recall a useful technique that the n-point functions at zero temperature can be

derived from the generating functional

Z[j] =

∫
DA exp

{
i

∫
d4x(L+ Aµjµ)

}
(4.85)

The n-point correlators are given by the derivatives of the generating functional with

respect to jµ’s, for example,

〈Aµ〉 =
1

Z[j]

(
−i δ
δjµ

)
Z[j]

∣∣∣
j=0

(4.86)

〈AµAν〉 =
1

Z[j]

(
−i δ
δjµ

)(
−i δ
δjν

)
Z[j]

∣∣∣
j=0

(4.87)

Converting this method to our discussions for finite temperature field theories,

the corresponding generating functional is

Z[j] =

∫
DA exp

{∫ β

0

dτd3x(L+ Aµjµ)

}
(4.88)

The factor of (−i) is absorbed into the imaginary time variable, so there is no need

to assign this factor to the derivative operators to generate the n-point functions.

For the pure electromagnetic field, the argument of the exponential in the gener-

ating functional is

1

2
Ai

[
2τδij −

(
1− 1

ξ

)
∂i∂j

]
Aj + Aiji =

1

2
AiGijAj + Aiji (4.89)

The path integral over DA is over the full space, so we can shift the A fields

Ai(x)→ Ai(x)−
∫ β

0

dτ ′d3y
[
G−1
ij (x− y)

]
jj(y) (4.90)

We find the exponential term (4.89) is translated into∫ β

0

dτd3x
1

2

{
Ai(x)Gij(x)Aj(x)−

∫ β

0

dτ ′d3yjk(x)G−1
kl (x− y)jl(y)

}
(4.91)
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Therefore, the two-point function reads

〈Ai(x, τx)Aj(y, τy) =
δ

δjix

δ

δjjy

{
−1

2

∫ β

0

dτxd
3x

∫ β

0

dτyd
3yjk(x)(G−1)kl(x− y)jl(y)

} ∣∣∣∣
j=0

= −1

2

[
(G−1)ij(x− y) + (G−1)ij(y − x)

]
(4.92)

Let’s evaluate (G−1)ij(x− y). In frequency-momentum space, we have

Gij(k) = −δij(ω2
n + k2) +

(
1− 1

ξ

)
kikj (4.93)

The inverse of this is solved to be

(G−1)jk(k) = − δjk

ω2
n + k2

+
(1− ξ)kjkk

(ω2
n + k2)2

(4.94)

One may check this is indeed the inverse of Gij(k), satisfying

Gij(G−1)jk = δik (4.95)

The free photon propagator in Euclidean space has the Fourier transform

〈Ai(x)Aj(y)〉β =
1

βV

∑
n,k

eiωn(τx−τy)+ik·(x−y)Dij(ωn,k) (4.96)

So the Euclidean photon propagator in energy-momentum space

Dij(ωn,k) = −(G−1)ij(x− y) =
δij

ω2
n + k2

− (1− ξ) kikj

(ω2
n + k2)2

(4.97)

Remember that the Euclidean indices i and j run from 1, 2, 3, 4, and the defi-

nitions A4 = iA0. We can define k4 = ik0 = ωn, so that ki has the same conversion

relation as Ai in (4.72). Therefore, the photon propagator in Minkowski space-time

is

Dµν(ωn,k) =
−gµν

ω2
n + k2

− (1− ξ) kµkν

(ω2
n + k2)2

(4.98)

The analytic continuation to real k0 can be worked out

〈Aµ(x)Aν(y)〉β =
1

βV

∑
n,k

Dµν(ωn,k)eiωn(τx−τy)+ik·(x−y)

=
1

βV

∑
n,k

{
−gµν

−(k0)2 + k2
− (1− ξ) kµkν

[−(k0)2 + k2]2

}
×e−ik

0(x0−y0)+ik·(x−y)

=
1

βV

∑
n,k

{
gµν

k2
− (1− ξ) k

µkν

(k2)2

}
eik(x−y) (4.99)

The free photon propagator can be written as

Dµν
F (k0,k) =

i

k2

[
−gµν + (1− ξ)k

µkν

k2

]
(4.100)
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4.3.2 Longitudinal and transverse projections

By far we have only discussed the free photon propagator in vacuum. But in the

QED theory, photons are interactive with electrons. The behavior of the propagation

of photons will be modified in the existence of a medium. The full photon propagator

will take the form

Dµν = Dµν
F +Dµα

F (−iΠαβ)Dβν
F +Dµα

F (−iΠαβ)Dβγ
F (−iΠγδ)D

δν
F + · · · (4.101)

where Πµν is called the photon self energy. This expression could be simplified by

noting that in vacuum Πµν obeys the Ward identity

kµΠµν = 0 (4.102)

Πµν is Lorentz covariant, so

Πµν =

(
−gµν +

kµkν

k2

)
Π(k) (4.103)

The presence of a medium will not affect the Ward identity, but will break the

Lorentz covariance. Another way of saying this is that photons do not have a preferred

rest frame in vacuum, but the medium introduces another 4-vector nµ = (1, 0, 0, 0)

into the problem. We write

Πµν = agµν + bkµkν + cnµkν + dkµnν + enµnν (4.104)

where a, b, c, d, e are some numerical factors that can be determined. Note that

n · k = k0 6= 0, thus not all the components are independent.

Consider the effect of k/mu acting on the tensor nµnν ,

kµ(nµnν) = k0nν

kµ(kµnν) = k2nν (4.105)

kµ(nµkν) = k0kν

We can construct tensors out of these combinations. A particular combination of our

interest is

P µν
T = −gµν + nµnν + b(kµ − k0nµ)(kν − k0nν)

= δijgµi g
ν
j + bkikjδµi δ

ν
j (4.106)

where b is some undetermined constant. If we set

b = − 1

k2
(4.107)
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then we obtain

P µν
T =

(
δij − kikj

k2

)
δµi δ

ν
j (4.108)

It can be immediately verified that

kµP
µν
T = 0 (4.109)

which means that P µν
T is orthogonal to the 4-vector kµ as well as the 3-vector k.

Therefore it is called the transverse projector (transverse to k).

The other projector, the longitudinal projector, is defined as

P µν
L =

(
−gµν +

kµkν

k2

)
− P µν

T (4.110)

It is three-dimensionally longitudinal, but still four-dimensionally transverse.

These two projectors have the following properties,

gµνP
µν
T = −3 + 1 = −2 (4.111)

gµνP
µν
L = −4 + 1 + 2 = −1 (4.112)

corresponding to 2 transverse projectors and 1 longitudinal projector, respectively.

We can also check that

P µα
T PTαν = P µ

Tν (4.113)

P µα
L PLαν = P µ

Lν (4.114)

P µα
T PLαν = 0 (4.115)

showing that these are indeed projectors.

4.3.3 Full photon propagator

Using these properties of transverse and longitudinal projectors, we can decompose

the free propagator as

Dµν
F (k) = i

−gµν + (1− ξ)kµkν
k2

k2
≡ i

P µν
T

k2
+ i

P µν
L

k2
− iξ k

µkν

k2
(4.116)

We also decompose the photon self energy

Πµν = FP µν
L +GP µν

T (4.117)

F and G are some scalar functions to be determined. We then have

Dµα
F ΠαβD

βν
F = F

iP µν
L

k2
+G

iP µν
T

k2
(4.118)

This is summed to get the full propagator of the form

Dµν = i
P µν
L

k2 − F
+ i

P µν
T

k2 −G
(4.119)

If we have expressions for the decomposition functions F and G, then we can

solve the poles of these propagators and understand the kind of modes they have.

36



4.4 Photon self energy

From now on in this and the next section, we are going to use a different notation to

distinguish 4-momenta and 3-momenta. Any 4-momentum will be denoted by capital

letters, and the 3-momentum will be denoted by the corresponding lower case letters.

For example,

Kµ = (k0,k) (4.120)

The modulus of a 3-momentum k is simply represented by k.

4.4.1 Photon self energy

In order to learn about the behavior of the full propagator, we want to compute at

finite temperature the photon self energy Πµν(k0,k), where the Matsubara frequencies

k0 = 2nπ/β. It can be shown that the evaluation of Πµν is closely related to that of

functions F and G.

Let us first study the photon self energy at the lowest order. The relevant one-loop

Feynman diagram is shown in Fig.1.

Figure 1: One-loop photon self energy

Using the Feynman rules, this corresponds to

Πµν(k0 = iωn,k) = −e
2

β

∑
n

∫
d3q

(2π)3
Tr {γµS(Q)γνS(K −Q)} (4.121)

There should be a minus sign corresponding to the closed fermion loop.

Note that fermion propagator can be decomposed, for example

S(Q) = (/Q−m)∆̃(iωn,q) (4.122)

Similar relation hold for S(K −Q). So we can write

Πµν = e2

∫
d3q

(2π)3
Tr{γµ(/Q−m)s1γ

ν( /K− /Q−m)s2}
1

β

∑
n

∆̃(iωn,q)∆̃(i(ωm−ωn),k−q)

(4.123)
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The frequency sum can be performed by using the relation (A.27). Therefore we get

a expression for the photon self energy

Πµν = e2

∫
d3q

(2π)3

Tr{γµ(/Q−m)s1γ
ν( /K − /Q−m)s2}

4EqEk−q

1− ñ(−s1Eq)− ñ(−s2Ek−q)

iωn − s1Eq − s2Ek−q
(4.124)

The summation over s1, s2 = ± is omitted.

4.4.2 Computation of F

We want to compute F and G to obtain a physical interpretation of the photon self

energy. With the notation (4.120), we note the projectors

P µν
T =

(
δij − KiKj

k2

)
gµi g

ν
j (4.125)

P µν
L =

(
−gµν +

KµKν

(k0)2 − k2

)
− P µν

T (4.126)

whose 00-components read

P 00
T = 0, P 00

L = −1 +
k0k0

(k0)2 − k2
=

k2

(k0)2 − k2
(4.127)

Recall that Πµν = FP µν
L +GP µν

T , so we have

F =
(k0)2 − k2

k2
Π00 (4.128)

relating the calculation of F closely to the evaluation of Π00.

We have already had an expression (4.124) for Πµν . However, the complete evalu-

ation is rather complicated, and we shall step back and limit to the high-temperature

limit, also known as the hard thermal loop (HTL) limit. The significance of this

particular limit will be discussed in the last section. By saying the HTL limit, we

actually mean that the temperature is much higher than any mass scale at zero tem-

perature. All these mass terms can be dropped, and external momenta K can be

neglected with comparison to the loop momenta Q.

Within the HTL limit, dropping the mass terms we have

Π00 = −e2

∫
d3q

(2π)3

Tr{γ0 /Qs1
γ0( /K − /Q)s2}

4EqEk−q

1− ñ(−s1Eq)− ñ(−s2Ek−q)

k0 − s1Eq − s2Ek−q
(4.129)

Using the γ-matrices identities, we get

Tr{γ0 /Qs1
γ0( /K− /Q)s2} = 4Qµ

s1
(K−Q)νs2 +4Qν

s1
(K−Q)µs2−4gµνQs1(K−Q)s2 (4.130)
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Also under the HTL approximation, we have

Qs1 = (Eq, s1q) ≈ (q, s1q)

(K −Q)s2 = (Ek−q, s2(k− q)) ≈ (q,−s2q) (4.131)

The numerator of in the expression for Π00 becomes

4
[
q2 + q2 − (1 + s1s2)q2

]
= 4q2(1− s1s2) (4.132)

So the only non-zero terms are s1 = −s2 = ±.

Π00 = −e2

∫
d3q

(2π)3

4q2(1 + 1)

4q2

1− ñ(−sEq)− ñ(sEk−q)

k0 − sEq + sEk−q

= −2e2

∫
d3q

(2π)3

{
1− ñ(−Eq)− ñ(Ek−q)

k0 − Eq + Ek−q
+

1− ñ(Eq)− ñ(−Ek−q)
k0 + Eq − Ek−q

}
(4.133)

In the HTL limit, we have Eq ≈ q, and Ek−q ≈ q − k cos θ. Remember that

here we simply denoted |q| as q for the convenience of writing, which shall not cause

confusion with our notation (4.120).

Ignore all the thermal independent factors, and pick out only the thermal contri-

butions, we obtain

Π00 = −2e2

∫
d3q

(2π)3

{
ñ(q)− ñ(q − k cos θ)

k0 − q + q − k cos θ
+
ñ(q − k cos θ)− ñ(q)

k0 + q − q + k cos θ

}
= −2e2

∫
dqq2d cos θ

(2π)2

{
∂ñ
∂q
k cos θ

k0 − k cos θ
−

∂ñ
∂q
k cos θ

k0 + k cos θ

}
(4.134)

where in the last step, the integral
∫
dφ = 2π in

∫
d3q was taken, and the assumption

was used that the internal momentum q of the loop is much larger than the external

momentum k.

Integration over dq can be done by evaluating∫ ∞
0

dqq2∂ñ(q)

∂q
= q2ñ(q)

∣∣∞
0
− 2

∫ ∞
0

dqqñ(q)

= 0− 2× 1

12
π2T 2 = −1

6
π2T 2 (4.135)

Substituting and we have

Π00 = e2π
2T 2

6

1

4π2

∫
d cos θ

{
k cos θ

k0 − k cos θ
− k cos θ

k0 + k cos θ

}
=
e2T 2

12

∫
d cos θ

{
−2 +

k0

k0 − k cos θ
− k0

k0 + k cos θ

}
(4.136)
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There is only one integration over dθ left. We can evaluate the integral by defining a

new parameter y = cos θ, and finally we compute

=
e2T 2

12
× (−4) +

e2T 2

12

∫ 1

−1

dy

{
k0

k0 − ky
− k0

k0 + ky

}
= −e

2T 2

3
+
e2T 2

6

∫ 1

−1

dy
k0

k0 − ky

= −e
2T 2

3
+
e2T 2

6
ln

(
k0 + k

k0 − k

)
k0

k

= −2m2 +m2 ln

(
k0 + k

k0 − k

)
k0

k
(4.137)

The term m2 = e2T 2/6 is identified as the photon thermal mass squared.

Instead of using the logarithm function, sometimes we also use the Legendre

function of the second kind.

Q0(x) =
1

2
ln

(
x+ 1

x− 1

)
(4.138)

So we more compactly write

Π00 = −2m2

[
1− k0

k
Q0

(
k0

k

)]
(4.139)

The decomposition function F can be immediately obtained by plugging the ex-

pression for Π00 into (4.128)

F = −2m2 (k0)2 − k2

k2

[
1− k0

k
Q0

(
k0

k

)]
(4.140)

4.4.3 Computation of G

We can also compute the scalar function G. It can be shown that the computation

of G is closely related to the evaluation of Πxx. If we take the xx-component of the

projectors P µν
L,T

P xx
T = 1, P xx

L = 0 (4.141)

from which we immediately yield

G = Πxx (4.142)

So next we will take some efforts to calculate Πxx.

We limit ourselves to the HTL approximations as before. Going back to (4.124),

from the trace, we get

4(s1q
x)(−s2q

x) + 4(−s2q
x)(s1q

x) + 4q2(1 + s1s2) (4.143)
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with qx = q sin θ cosφ, this is

4q2
[
1 + s1s2(1− 2 sin2 θ cos2 φ)

]
(4.144)

The integration over dφ can be carried out, and we are left with

4q2
[
1 + s1s2(1− 2 sin2 θ)

]
2π = 4q2(1 + s1s2 cos2 θ)2π (4.145)

The terms are of two types

s1 = s2 → 4q2(1 + cos2 θ)2π (4.146)

s1 = −s2 → 4q2(1− cos2 θ)2π (4.147)

From the second fraction in Πxx, there are also two possible cases

s1 = s2 → d1 =
1− ñ(−Eq)− ñ(−Ek−q)

k0 − Eq − Ek−q
+

1− ñ(Eq)− ñ(Ek−q)

k0 + Eq + Ek−q
(4.148)

s1 = −s2 → d2 =
1− ñ(−Eq)− ñ(Ek−q)

k0 − Eq + Ek−q
+

1− ñ(Eq)− ñ(−Ek−q)
k0 + Eq − Ek−q

(4.149)

In the case of HTL limit and noting that

ñ(−E) =
1

e−βE + 1
=

eβE

eβE + 1
= 1− ñ(E) (4.150)

we see the s1 = ±s2 pieces have different behaviors

d1 =
ñ(q) + ñ(q − k cos θ)− 1

k0 − q − q + k cos θ
+

1− ñ(q)− ñ(q − k cos θ)

k0 + q + q − k cos θ

∼ 2ñ(q)

−2q
− 2ñ(q)

2q
= −2ñ(q)

q
(4.151)

where the ∼ means that we keep only the thermal contributions of interest. Note

that in the numerators of d1, the statistical distribution factors are of the same sign.

Also we have

d2 =
ñ(q)− ñ(q − k cos θ)

k0 − q + q − k cos θ
+
ñ(q − k cos θ)− ñ(q)

k0 + q − q + k cos θ

=

∂ñ
∂q
k cos θ

k0 − k cos θ
+

−∂ñ
∂q
k cos θ

k0 + k cos θ

=
∂ñ

∂q

[
−1 +

k0

k0 − k cos θ
− 1 +

k0

k0 + k cos θ

]
=
∂ñ

∂q

[
−2 + 2

k0

k0 − k cos θ

]
(4.152)

where the last step is only valid under the integration
∫
d cos θ, and the numerators

of d2 include the difference of statistical distribution factors.
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Putting all the pieces together, we obtain

Πxx = −e2

∫
dqq2d cos θ

(2π)24q2

[(
terms from s1 = s2

)
+
(
terms from s1 = −s2

)]
= −e2

∫ 1

−1

dy

∫
dqq2

(2π)2

[
(1 + y2)

−2ñ(q)

q
+ (1− y2)

∂ñ(q)

∂q

(
−2 +

2k0

k0 − ky

)]
(4.153)

We integrate over dq by using the following identities∫
dqqñ(q) =

π2T 2

12

∫
dqq2∂ñ(q)

∂q
= −π

2T 2

6
(4.154)

So we have

Πxx = e2π
2T 2

6

1

4π2

∫ 1

−1

dy

[
(1 + y2) + (1− y2)

(
−2 + 2

k0

k0 − ky

)]
=
π2T 2

6

1

2

∫ 1

−1

dy

(
k0

k

1
k0

k
− y
− k0

k

y2

k0

k
− y

)
(4.155)

We have encountered the first integrand before, the result of this integral is

1

2

∫ 1

−1

dy
k0

k
− y

= Q0

(
k0

k

)
(4.156)

while the second integrand can be manipulated∫ 1

−1

dy
y2

k0

k
− y

=

∫ 1

−1

dy

[(
k0

k
− y
)
− 2

k0

k
+

(
k0

k

)2
1

k0

k
− y

]

= −yk
0

k
|1−1 +

(
k0

k

)2 ∫ 1

−1

dy
k0

k
− y

= −2
k0

k
+ 2

(
k0

k

)2

Q0

(
k0

k

)
(4.157)

With these results, we finally obtain

G = Πxx = m2

(
k0

k

)2

+m2

(
k0

k

)[
1−

(
k0

k

)2
]
Q0

(
k0

k

)
(4.158)

where the thermal mass squared is the same as before m2 = e2T 2/6

We shall notice that F , G and thus the photon self energy are not only temperature

dependent but also momentum dependent.

4.5 Photon Collective Modes

Now that we have the longitudinal and transverse decomposition functions F and G,

we can express the in-medium soft photon propagator, or HTL propagator as,

Dµν =
iP µν

L

(k0)2 − k2 − F
+

iP µν
T

(k0)2 − k2 −G
(4.159)
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We can understand the kind of modes of this medium has by examining the

solutions to the poles of the propagators. We may look at the the different limits of

these modes at small or large values of momentum.

4.5.1 Longitudinal modes

For the longitudinal modes, the dispersion relation can be solved from

(k0)2 − k2 + 2m2 (k0)2 − k2

k2

[
1− k0

k
Q0

(
k0

k

)]
= 0 (4.160)

or simply

1 +
2m2

k2

[
1− k0

k
Q0

(
k0

k

)]
= 0 (4.161)

For large momenta k, we may find to a first order approximation ωL = k0 ≈ k �
ωP . Note that in this limit

Q0

(
k0

k

)
≈ 1

2
ln

2k

ωL − k
� 1 (4.162)

so we only keep this term in the square brackets in (4.161) when solving it. Under

these suitable approximations, we derive

1− m2

k2
ln

2k

ωL − k
= 0 (4.163)

The solution of which is easily found

ωL = k
(

1 + 2e−k
2/m2

)
(4.164)

For small value of k, i.e., for k0/k � 1, we find the expansion for Q0(x)

Q0(x) =
1

2
ln
x+ 1

x− 1

=
1

2

[
ln

(
1 +

1

x

)
−
(

1− 1

x

)]
=

1

2

[(
1

x
− 1

2x2
+

1

3x3
+ · · ·

)
−
(
−1

x
− 1

2x2
− 1

3x3
− · · ·

)]
=

1

x
+

1

3x3
+

1

5x5
+ · · · (4.165)

where the dots representing higher order terms. This expansion is valid for large x.

Let us define the plasma frequency as

ω2
P =

2

3
m2 =

1

9
e2T 2 (4.166)
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We then rewrite the dispersion equation (4.161) for longitudinal excitations as

ω4
L − ω2

Pω
2
L −

3

5
ω2
Pk

2 = 0 (4.167)

which is solved to be

ω2
L =

1

2

(
ω2
P +

√
ω4 + 4 · 3

5
ω2
Pk

2

)

=
1

2

[
ω2
P + ω2

P

(
1 +

1

2
· 4 · 3

5
ω2
Pk

2

)]
= ω2

P +
3

5
k2 (4.168)

4.5.2 Transverse modes

For the transverse excitations, we can similarly try to solve the dispersion relations

from the equation

(k0)2 − k2 −m2

(
k0

k

)2

−m2

(
k0

k

)[
1−

(
k0

k

)2
]
Q0

(
k0

k

)
= 0 (4.169)

with a substitution of x = k0/k = ωT/k, this is

(x2 − 1)− m2

k2

[
x2 +

x(1− x2)

2
ln
x+ 1

x− 1

]
(4.170)

In the high momentum limit, x ≈ 1, the second term in the square bracket

lim
x→1

x(1− x2)

2
ln
x+ 1

x− 1
= lim

x→1

x(1 + x)(1− x)

2
[ln(x+ 1)− ln(x− 1)]

= lim
x→1

x− 1

ln(x− 1)

= lim
x→1

1

1/(x− 1)
→ 0 (4.171)

goes to zero and thus can be dropped, since the other term x2 in the bracket is of

order 1. Note that x2 − 1 = [ω2
T − k2]/k2 ∼ m2/k2, the two terms in (4.170) are of

the same order. So we obtain

x2 − 1− m2

k2
= 0 (4.172)

and immediately find the dispersion relation

ω2
T = k2 +m2 (4.173)
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For small momenta k, using the expansion formula (4.165), we find

x2 +
x(1− x2)

2
ln
x+ 1

x− 1
= x2 + x(1− x2)

(
1

x
+

1

3x3
+

1

5x5
+ · · ·

)
= x2 + 1 +

1

3x2
+

1

5x4
− x2 − 1

3
− 1

5x2
+ · · ·

=
2

3
+

2

15x2
(4.174)

Plugging this into (4.170) and replacing k0/k = x, we get

ω4
T − (ω2

P + k2)ω2
T −

1

5
ω2
Pk

2 = 0 (4.175)

from which we solve

ω2
T =

1

2

[
ω2
P + k2 +

√
(ω2

P + k2)2 +
4

5
ω2
Pk

2

]

=
1

2

{
ω2
P + k2 + ω2

P

[
1 +

1

2

(
2 +

4

5

)
k2

ω2
P

]}
= ω2

P +
6

5
k2 (4.176)

The exact solutions of (4.161) and (4.170) can of course be solved numerically. The

curves of dispersion relations for the longitudinal and transverse photon excitations

are shown in Fig.2.

Figure 2: Dispersion relations for photon excitations
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For large momenta k, the asymptotic behaviors of longitudinal and transverse

excitations are distinct. However, for low momenta k → 0, the frequencies of lon-

gitudinal and transverse modes are indistinguishable, ωL(0) = ωT (0) = ωP . The

intercept of the curve is the plasma frequency, which describes the effective mass of

the quasi-particles. The longitudinal excitation is sometimes called a plasmon, and

appears in medium only.

4.6 Debye screening

The collective modes and other physical quantities of interest can also be studied by

linear response theory.

Suppose we introduce a classical current in a hot QED plasma, which gives a

small perturbation to the Hamiltonian

V =

∫
d3x3jµcl(x)Aµ(x) (4.177)

By linear response, the small change in the gauge field in the medium is

〈δAµ(x)〉 = −
∫
d4yθ(x0 − y0)〈[Aµ(x), Aν(y)]〉βjνcl(x) (4.178)

This is basically the retarded correlator. Note that in the absence of jµcl(x), the mean

field vanishes 〈Aµ(x)〉β = 0, as it is the expectation of a one-point function in a

medium. Thus δAµ is basically Aµ.

Write down the Fourier transforms

Dµν
R (x− y) =

∫
d4K

(2π)4
e−iK(x−y)Dµν

R (K) (4.179)

jµcl(x) =

∫
d4P

(2π)4
e−iPxjµcl(P ) (4.180)

We also have

Aµ(x) =

∫
d4yDµν

R (x− y)jcl,ν(y)

=

∫
d4K

(2π)4
e−iKxDµν

R (k)jcl,ν(k) (4.181)

from which we read off

Aµ(K) = Dµν
R (K)jcl, ν(K) =

Dµν
L

K2 − F
jcl,ν +

Dµν
T

K2 −G
jcl,ν (4.182)

In components, we have

A0(K) = − P 0i
L j

i

K2 − F
jcl,ν +

P 00
L j

0

K2 − F
(4.183)
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To simplify this, we note that

P 0i
L =

k0ki

k2
, P 00

L = −g00 +
k0k0

k2
(4.184)

and also owing to the conservation of currents

kµj
µ
cl = k0j0 − kiji = 0 (4.185)

we can get the following relation

P 0i
L j

i =
k0kiji

(k0)2 − k2
=

(k0)2j0

(k0)2 − k2
(4.186)

Substitute these in (4.183) and we have

A0 =
1

K2 − F

{
− (k0)2

(k0)2 − k2
− 1 +

(k0)2

(k0)2 − k2

}
j0

= − ρcl
(k0)2 − k2 − F

(4.187)

where we identified the zeroth component of the 4-current as the charge density ρcl.

The i-th component of the gauge vector is

Ai =
−P ij

T j
j

K2 −G
+
P i0
L j

0 − P ij
L j

j

K2 − F

= −

{
jicl,T

(k0)2 − k2 −G
+

jicl,L
(k0)2 − k2 − F

}
(4.188)

From these one can compute measurable quantities, such as the induced electric

and magnetic fields in the plasma. For electric fields, one has

Ei(x) = F i0 = ∂iA0(x)− ∂0Ai(x) (4.189)

Ei(K) = −ikiA0(K) + ik0Ai(K) (4.190)

and simliar simple relations hold for the B fields.

Let us consider the special case of a point charge placed in a thermal bath.

ji = 0 j0 = ρ(x) (4.191)

Assuming the charge density is independent from time t, then the Fourier transform

is

ρ(K) =

∫
d4xeiKxρ(x) = ρ(k) · 2πδ(k0) (4.192)

Say we have a point charge at the origin

ρ(x) = Qδ(3)(x) (4.193)
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then in the energy-momentum space,

ρ(K) =

∫
d4xeiKxQδ(3)(x) = 2πQδ(k0) (4.194)

We can compute the induced fields

A0(x) =

∫
d4K

(2π)4
e−iKxA0(k)

=

∫
d4K

(2π)4
e−iKx

−2πQδ(k0)

(k0)2 − k2 − F (k0,k)

=

∫
d3k

(2π)3
eik·x

Q

k2 + F (0,k)
(4.195)

At k0 = 0, we have from (4.140), F (0,k) = 2m2, so

A0(x) = Q

∫
dkk2d cos θdφ

(2π)3

eikr cos θ

k2 + 2m2
(4.196)

The term m2
D = 2m2 = e2T 2/3 is named as the Debye mass squared, for a reason

that we will see soon. We can integrate over dφ and d cos θ easily, and note that A0

actually only depends on the argument r = |x|. We write

A0(r) = Q

∫ ∞
0

dkk2

(2π)2

∫ 1

−1

dy
eikry

k2 +m2
D

=
Q

(2π)2

∫ ∞
0

dk
k

k2 +m2
D

eikr − e−ikr

ir

=
Q

(2π)2

1

ir

∫ ∞
0

dk
k

k2 +m2
D

eikr (4.197)

where in the last step we used the property that the integrand is even in k.

There are two poles in the complex k plane, at k = ±imD respectively. But since

r is positive definite, the contour should be closed as k → i∞, so the contour is

anti-clockwise in the upper half complex plane, picking up a pole at k = imD only.

A0(r) =
Q

(2π)2

2πi

ir

imD

2imD

e−mDr

=
Q

4πr
e−mDr

=
Q

4πr
e−r/rD (4.198)

If mD = 0, A0(r) is exactly the vacuum potential of a point charge, known as the

Coulomb potential. In a medium, the potential is screened by the medium, and rD

is the distance at which it falls to e−1 of the Coulomb potential. This characteristic

length scale is called the Debye radius.
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4.7 Electron self energy

Due to the interactions with photons, the electron propagator should also be modified.

The full electron propagator is of the form

S(P ) =
1

/P −me + Σ
(4.199)

where Σ(P ) is the electron self energy. We want to study this at the first order. The

corresponding one loop diagram is Fig.3.

Figure 3: One-loop electron self energy

Using the Feynman rules to write

Σ(P ) = −e
2

β

∑
n

∫
d3k

(2π)3
γµ( /K − /P )γµ∆(K)∆̃(P −K) (4.200)

We again limit ourselves to the HTL corrections only, where electron mass me and

external momenta P can be ignored with respect to loop momenta K. With these

simplifications, the electron self energy becomes

Σ(P ) = −2e2

β

∑
n

∫
d3k

(2π)3
/K∆(K)∆̃(P −K) (4.201)

The procedures to evaluate the frequency sum is studies in detail in the appendix.

We will skip the details of calculations and simply quote the results

Σ(P ) = 2e2

∫
d3k

(2π)3
/K

s1s2

4EkEp−k

1 + n(s1Ek)− ñ(s2Ep−k)

iω − s1Ek − s2Ep−k
(4.202)

Carrying out the integration over dφ and dk, it can be found that the final result can

be nicely written as

Σ(P ) = m2
f

∫
dΩ

4π

/̂K

P · K̂
(4.203)

where m2
f = e2T 2/8 is identified as the electron thermal mass squared, and K̂ =

(−i, k̂) is a light-like vector.
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Taking the angular integrations, the final results in components can be shown to

be

Σ0 = m2
f

2

p
Q0

(
p0

p

)
=
e2T 2

8

2

p
ln
p0 + p

p0 − p
(4.204)

Σ = m2
f

p

p2

[
1− p0

2p
Q0

(
p0

p

)]
=
e2T 2

8

p

p2

[
1− p0

2p
ln
p0 + p

p0 − p

]
(4.205)

The dispersion relation of the electron collective modes are determined by the

poles of the propagator. The defining equation is

(P + Σ)2 = (p0 + Σ0)2 − (p + Σ)2 = 0 (4.206)

which has two solutions, namely ω±(p). We can study the asymptotic behaviors of

the solutions in the high and low momentum regime. In the high momentum limit,

this is

ω2
+ = p2 +m2

f (4.207)

ω2
− = p2 + 4p2 exp

(
−4p2

m2
f

)
(4.208)

while in the low momentum limit both of the solutions behave as

ω± = mf ±
1

3
p (4.209)

It is also interesting to look at the asymptotic behaviors of the electron propagator

in the two limits. In the high momentum limit,

S(ω → ω+) ≈ 1

2

γ0 − p · γ
ω − ω+

(4.210)

S(ω → ω−) ≈ 2p2

m2
f

exp

(
−4p2

m2
f

)
γ0 + p · γ
ω − ω−

(4.211)

and in the low momentum limit,

S(ω → ω+) ≈ 4

3

γ0 − p · γ
ω − ω+

(4.212)

S(ω → ω−) ≈ 4

3

γ0 − p · γ
ω − ω−

(4.213)

from which we see that the ω+ mode has the same relation between helicity and

chirality, while the ω− mode has the opposite relation. We may also note that within

the high momentum limit, the ω+ excitation has exactly the same dispersion relation

as real electrons, so we conclude that the ω+ mode is the modification to real elec-

trons at finite temperature. The ω− mode is a true collective mode absent at zero
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temperature, and is sometimes called a plasmino. This excitation mode decouples

from the plasma at sufficiently high energies.

In the limit of p → 0, ω± modes are equally important. The physical picture

of this behavior is that when the electrons are at rest, we cannot tell from different

polarization states.

4.8 Quantum chromodynamics

The structure of the QED and QCD model are very similar, so we might generalize

our results from the studies of the QED theory to the QCD case. However, it turns

out that QCD is a much more complicated theory. The sophistication of the QCD

lies in that the gauge group under which quarks transform is the non-Abelian SU(3)

group. The gauge fields in QCD, also known as the gluon fields, are analogous to

photon fields in QED theory, but they carry an additional group index. We write

Aµ = Aaµt
a, where the ta’s are the group generators. Since the group generators do

not commute with each other. When trying to write down a field strength term for

the Lagrangian, we will get cubic and quartic gluon self interacting terms, which give

rise to new types of vertices for Feynman diagrams. The ghost fields also play an

important role in the evaluation of Feynman diagrams.

We can study the collective excitations in a hot QCD plasma from the poles of the

full gluon and quark propagators. The one-loop evaluation of the gluon self energy

now comes from four diagrams.

(a) (b)

(c) (d)

Figure 4: One-loop gluon self energy

The first diagram is similar to the photon self energy, but the rest three diagrams

are typical of QCD. Using the corresponding Feynman rules and also taking the HTL
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approximation, we have

Π(a)
µν =

1

2
g2Nf

1

β

∑
n

∫
d3k

(2π)3
(8KµKν − 4K2δµν)∆̃(K)∆̃(Q−K) (4.214)

Π(b)
µν = −g2CA

1

β

∑
n

∫
d3k

(2π)3
∆(K)∆(Q−K) (4.215)

Π(c)
µν = g2CA

1

β

∑
n

∫
d3k

(2π)3
KµKν∆(K)∆(Q−K) (4.216)

Π(d)
µν = 3CAg

2δµν
1

β

∑
n

∫
d3k

(2π)3
(K2δµν + 5KµKν)∆(K) (4.217)

where g is the QCD coupling constant, CA(= 3) is the group factor, Nf (= 3) is the

number of quark flavors.

Although the appearance of last three expressions are somehow unfortunate, how-

ever, in the HTL limit one might find the contributions to the gluon self energy from

all the one-loop diagrams can be simplified to be a compact expression

Πµν = −g2(CA +
1

2
Nf )

1

β

∑
n

∫
d3k

(2π)3
(4KµKν − 2K2δµν)∆(K)∆(Q−K) (4.218)

Note that the frequency sum and integral we need to evaluate has already been done

in our discussions for the QED case. To see this more clearly, let us go back to the

expression for Πµν . Carry out the trace with (4.130) and take the HTL limit, i.e.,

ignore the external momenta in comparison with loop momenta, we have

Πµν =
e2

β

∑
n

(8KµKν − 4K2δµν)∆̃(K)∆̃(Q−K) (4.219)

The only difference between (4.218) and (4.218) is the overall factor. So we may

simply borrow the results. We speculate that at finite temperature a thermal gluon

mass given by

m2
g =

1

6
g2T 2(CA +

1

2
Nf ) (4.220)

will be generated in the heat bath.

The evaluation of quark self energy at one-loop order is even simpler, as there is

only one relevant diagram which is just the same as Fig.3. The result is

Σ(P ) = m2
f

∫
dΩ

4π

/̂K

P · K̂
(4.221)

with the quark thermal mass given by

m2
f =

1

8
g2T 2Cf (4.222)
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where Cf is a group factor.

Therefore, we can learn about the collective modes in a QCD plasma from our

knowledge of QED plasma excitations with the replacements

e2T 2 → g2T 2(CA +
1

2
Nf ) for gluons (4.223)

e2T 2 → g2T 2Cf for quarks (4.224)
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5 Hard Thermal Loops and Resummation Rules

5.1 The breakdown of a naive perturbative theory

5.1.1 Scalar theories

In conventional quantum field theories, we perturbatively expand the theory in terms

of the dimensionless coupling constant order by order. However, in thermal field the-

ories, some Feynman diagrams of superficially higher orders in the coupling constant

might have the same magnitude as lower order diagrams owing to the contributions

from the so-called hard thermal loops corrections.

These problematic issues are caused by the infrared divergences. We may revisit

the massless scalar φ4 model to see how a naive perturbation series could break down.

We have studied the corrections to the partition function to the first order. However,

if we want to go further, say compute the partition function at the second order, we

will encounter divergences from loop integrals. One of the diagrams contributing at

the second order is . Using the Feynman rules, this looks like

∼ λ2

[
1

β

∑
m

∫
d3k

(2π)3

1

ω2
m + k2

]2
1

β

∑
n

∫
d3p

(2π)3

1

(ω2
n + p2)2

(5.1)

Let us look at the second integral piece. At a low momentum limit, it is divergent

for the n = 0 mode, the integral behaves as∫
d3p

(ω2
n + p2)2

∣∣∣
n=0
∼
∫
dp

p2
(5.2)

We say this is infrared divergent as p → 0. This divergence is apparently different

from the ultraviolet divergences at high momenta. For an expansion of higher order

in λ, there are more possible infrared divergent diagrams. But one may find that at

each order, the most infrared divergent diagram takes the form of Fig.5.

Figure 5: Ring diagrams

To study this sort of ring diagrams more closely, let us work out the combinatoric

symmetry factor of such a diagram with N loops as follows. There are (N − 1)!/2
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ways of ordering the vertices. There are 4 × 3 = 12 ways to connect different lines

at each vertex, but this factor is already included in the diagrammatic expression

Π = −12 . There is yet a factor of 1/N ! from the Taylor expansion. We can

further sum over all these ring diagrams to miraculously get a finite result. The

summation over all the ring diagrams from N = 2 to infinity reads

1

2
βV

1

β

∑
n

∫
d3p

(2π)3

∞∑
N=2

1

N
(−Π1D0(ωn,p))N

=− V

2

∑
n

∫
d3p

(2π)3
[ln(1 + Π1D0)− Π1D0] (5.3)

Replacing the leading order correction to the self energy Π1 = λT 2, this becomes

−V
2

∑
n

∫
d3p

(2π)3

[
ln(1 +

λT 2

ω2
n + p2

)− λT 2

ω2
n + p2

]
(5.4)

Taking the n = 0 mode to evaluate the dominating contribution

− V

2

∑
n

∫
d3p

(2π)3

[
ln(1 +

λT 2

p2
)− λT 2

p2

]
=− V

2

λ3/2T 3

4π2

∫
dx
√
x

[
ln

(
1 +

1

x

)
− 1

x

]
=
λ3/2

12π2
V T 3 (5.5)

We see that this gives a correction to the partition function of order λ3/2, which is

obviously not expected from a naive perturbation expansion in a progressive order in

λ.

The occurrence of the infrared divergence is due to the fact that the massless

scalar particles acquire a thermal mass in a thermal background. If we examine the

source of the scalar thermal mass more carefully, by looking at the expression (??)

we obtained in the one-loop evaluation for scalar self energy which is

ΠT = 12λ

∫
d3p

(2π)3

1

ωp

1

eβωp − 1
(5.6)

We see the leading contribution to the integral comes from hard momenta p ∼ T ,

where eβωp − 1 → 0. In other words, it is from the hard loops that the thermal

mass of order λT is generated. For the soft momenta p ∼
√
λT , We might expect

their contribution to the thermal mass is also of order λ3/2T , from the speculation

that the contribution to the partition function from the ring diagrams, which are the

dominating contributions to the infrared divergences for soft momenta at all orders,

is of order λ3/2.
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Recall that the full propagator of the interacting theory is expressed in terms of

a bare propagator with a correction from the self-energies of order λT 2

D−1(ωn,p) = ω2
n + p2 + Π(ωn,p) ≈ ω2

n + p2 + λT 2 (5.7)

For a particle of soft momentum of order
√
λT , the inverse of its free propagator is

of the same magnitude as the thermal mass. But we are expanding the perturbative

series with free scalar propagators without considering the thermally generated mass,

which may cause problems.

These give us a hint that a naive perturbation theory breaks down for soft mo-

menta, which should be resummed. However, it can be found that the only HTL

contribution to λT 2 is the 2-point correlators, so it is adequate to use an effective

propagator

D∗(ωn,p) =
1

ω2
n + p2 + λT 2

(5.8)

to obtain an improved perturbative expansion.

5.1.2 Gauge theories

The discussions of scalar field theories give us enough information on the gauge

theories. For gauge theories, it is also necessary to resum all the possible HTL

contributions.

However, the structure of gauge theories is much more complicated than scalar

theories. Unlike the latter, where the self energies are dependent on temperature

only, the gauge theory self energies are dependent on temperature as well as energy

and momentum.

One might try to examine what sort of hard thermal loops result into a leading

T 2 behavior in QED or QCD. The complete discussions are very involved, However,

attributed to Braaten and Pisarski [7] [8], one can use a set of power counting rules

to understand the superficial magnitude of the HTL contributions. For a proper

vertex with N legs, without taking into account the coupling constant g, the order

of the contribution from a one-loop HTL can be counted by the following rules first

established by Braaten and Pisarski.

1. The integration over loop momentum
∫
d3k is of magnitude T 3.

2. There is a factor of T−1 for the first propagator from the frequency sum. Each

additional propagator will contribute a factor of (pT )−1.

3. Each power of k from the numerator, arising from propagators or vertices, shall

be replaced by T

4. For propagators which represent fields with the same statistics, there is a statis-

tical factor of pT−1 for the cancellation of distribution factors.
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To utilize these rules, for example, for a (N − 2)-photon-two-electron vertex, one

has

eNT 3(pT )−N(pT−1)1TN = gNT 2p−N+1 (5.9)

In the case of a three point electron-photon vertex, this is e3T 2p−2. For soft momen-

tum p ∼ eT , the HTL correction given by the power counting rules is thus e, which is

of the same order as a bare vertex. This again gives us a sign that the perturbation

expansion breaks down for soft momenta.

5.2 The effective perturbative theory

An effective theory can be formalized by resumming the hard thermal loop contri-

butions. In this formalism, bare vertices and bare propagators shall be replaced by

the effective vertices and effective propagators. We have explained for the scalar

field theories that one can improve the perturbation expansion by simply replacing

the bare propagator with an effective propagator (5.8). For QED one might write

down the effective theory by starting with effective Lagrangians [9]. The effective

Lagrangian for photon hard thermal loops is

Lγ = −m
2

2

∫
dΩ

4π
Fµα

K̂αK̂β

(K̂ ·D)2
F µ
β (5.10)

where Fµν is the field strength defined before, and Dµ = ∂µ + ieAµ is the covariant

derivative. The generalization to the QCD case is straightforward. Denoting the

group generators by ta, one only needs to replace the Abelian field strength by the

non-Abelian field strength Fµν = F a
µνt

a and take an overall trace over the group

indices.

The effective Lagrangian for fermionic hard thermal loops is

Lf = −m2
f ψ̄(x)

∫
dΩ

4π

/̂K

K̂ ·D
ψ(x) (5.11)

It is notable that the effective Lagrangians are manifestly Lorentz covariant.

All the n-point functions of our interest can be generated from the effective La-

grangians (5.10) and (5.11). For example, one obtains the electron-photon vertex by

computing δLf/δψ̄δψδAµ. The result is

Γµ(P1, P2) = −m2
f

∫
dΩ

4π

K̂µ /̂K

(P1 · K̂)(P2 · K̂)
(5.12)

By using the expression (4.203) for one-loop electron self energy in the HTL limit,

one can check that the expression for electron photon vertex satisfies the tree-level
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Figure 6: One loop electron photon vertex

Ward identity

(P1 − P2)µΓµ(P1, P2) = Σ(P1)− Σ(P2) (5.13)

This should be expected because the hard thermal loops give a contribution to the

leading order at high temperatures, where Lorentz covariance still requires the Ward

identity must be obeyed.

The same expression as (5.12) can also be derived from an explicit calculation of

the vertex function at one loop order within HTL approximation. From the Feynman

rules, we have

eΓµ(P1, P2) =
e3

β

∑
n

∫
d3k

(2π)3

[
γα( /K − /P 2)γµ( /K − /P 1)γα

]
∆(K)∆̃(P2−K)∆̃(P1−K)

(5.14)

which can be simplified to be

Γµ(P1, P2) = −4e2 1

β

∑
n

∫
d3k

(2π)3
Kµ /K∆(K)∆̃(P2 −K)∆̃(P1 −K) (5.15)

under HTL approximations. (5.12) can be obtained by taking the frequency sum

and decoupled integrations over dk and dφ. But in order to check the Ward identity,

there is no need to do the tedious calculations. Note that within the HTL limit we

have

(P1 − P2)K ≈ 1

2
(P2 −K)2 − 1

2
(P1 −K)2 (5.16)

Multiply both sides of (5.15) by (P1 − P2) and compare with (??), we find

(P1 − P2)Γµ(P1, P2) =
1

β

∑
n

∫
d3k

(2π)3
/K
[
∆(K)∆̃(P1 −K)−∆(K)∆̃(P2 −K)

]
= Σ(P1)− Σ(P2) (5.17)

The check of the validation of Ward identities shows the correctness of the effective

theory, from which one could further establish a consistent perturbation expansion.

The poor convergence due to soft momenta is improved through this reorganization

of expansion series. The resummation procedures have enabled physicts to calculate
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the thermodynamicals to higher orders. The partition functions have been calculated

explicitly to the order of g6 [10] and of g8 ln g [11] for a massless g2φ4-theory, of e5 for

QED [12], and of g6 ln g for QCD [13] [14]. However, there are still infrared divergence

problems from the momenta of order g2T unsolved if one wants to do calculations to

higher orders.
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A Frequency Sums

We often encounter frequency sums over Matsubara frequencies, so it is necessary to

develop some formal methods to carry out these sums.

For the bosonic Matsubara frequencies ωn = 2πn/β, we write down schematically

a general form of the frequency sum

1

β

∑
n

f

(
iωn = i

2πn

β

)
(A.1)

Note that the hyperbolic cotangent function coth(βp0/2) exactly produces a collection

of poles at p0 = 2πni/β = iωn, so the frequency sum could be conveniently expressed

as a contour integral in the complex p0 plane as

1

β

∑
n

f
(
p0 = iωn

)
=

1

β

∫
C1

dp0

2πi
f(p0)

β

2
coth

(
βp0

2

)
(A.2)

The contour C1 is a strip with infinitesimal width around the imaginary axis as

illustrated in Fig 7. However we can deform the contour to C2, which covers the

whole complex plane except the imaginary axis. The hyperbolic cotangent function

does not produce poles off the imaginary axis, so all the poles within the contour C2

are only relevant to the explicit expression of the function f(p0).

Figure 7: Integration contours

We can further change the contour into C3 which runs in the opposite direction

of C2 so that it goes counter clockwise and is consistent with our usual convention of

contour choices. We shall get a minus sign for doing this, so we have

1

β

∑
n

f

(
p0 = iωn = i

2πn

β

)
= − 1

β

∫
C3

dp0

2πi
f(p0)

β

2
coth

(
βp0

2

)
(A.3)

Then we pick up all the poles produced by f(p0) and calculate their residuals to

obtain an evaluation of the original frequency sum.
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For example, we want to evaluate in (3.15)∑
n

1

(βωn)2 + x2
=
∑
n

1

(2πn)2 + x2
=
∑
n

1

−(βp0)2 + x2

∣∣∣∣
p0=i 2πn

β

(A.4)

With the tricks introduced above, we have∫
C1

dp0

2πi

1

−(βp0)2 + x2

β

2
coth

(
βp0

2

)
=

∫
C3

dp0

2πi

1

(βp0)2 − x2

β

2
coth

(
βp0

2

)
(A.5)

The two poles p0 = ±x/β give rise to a sum of residuals

1

2βx

β

2
coth

x

2
+

1

−2βx

β

2
coth

−x
2

=
1

2x
coth

x

2
=

1

2x

(
1 +

2

ex − 1

)
(A.6)

Hence we obtain ∑
n

1

(2πn)2 + x2
=

1

2x

(
1 +

2

ex − 1

)
(A.7)

For fermionic Matsubara frequencies, the ideas are very similar but we should

instead use a hyperbolic tangent function tanh(βp0/2). This generates exactly the

poles at p0 = 2π(n+ 1)i/β = iωn as required. We have

1

β

∑
n

f

(
p0 = iωn = i

2π(n+ 1)

β

)
= − 1

β

∫
C3

dp0

2πi
f(p0)

β

2
tanh

(
βp0

2

)
(A.8)

A simple example can be illustrated with the evaluation of (4.32). We compute∑
n

1

β2ω2
n + x2

=
∑
n

1

−(βp0)2 + x2

∣∣∣∣
p0=i

2π(n+1)
β

=

∫
C3

dp0

2πi

1

(βp0)2 − x2

β

2
tanh

(
βp0

2

)
=

1

2βx

β

2
tanh

x

2
× 2

=
1

2x

(
1− 2

ex + 1

)
(A.9)

We also encounter more complicated frequency sums which contain several prop-

agators during the evaluation of some loop integrals, so it will be helpful to learn

how to do them. We can of course perform the sums by evaluation the corresponding

contour integral directly. There is also another very useful trick which we will come

to soon. By giving another explicit example, we first illustrate again the contour

integral method, and then evaluate it in a different approach.

When evaluating the contributions from the loop diagrams, one may encounter a

sum involving two bosonic propagators of the following form

S(iωm,p) =
1

β

∑
n

∆(iωn,k)∆(i(ωn − ωm),k− p)

=
1

β

∑
n

1

ω2
n + E2

1

1

(ωn − ωm)2 + E2
2

(A.10)
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where E1 = Ek, E2 = Ep−k. Using the contour integral evaluation method, we

rewrite this as

− 1

β

∫
C3

dk0

2πi

1

(k0)2 − E2
1

1

(k0 − iωm)2 − E2
2

β

2
coth

(
βk0

2

)
(A.11)

Within the contour C3 on the complex k0 plane, we pick up four poles, namely

k0 = ±E1, iωm ± E2 (A.12)

Note that the hyperbolic cotangent functions have the following properties

coth
βk0

2
=

eβk
0/2 + e−βk

0/2

eβk0/2 − e−βk0/2

=
eβk

0
+ 1

eβk0 − 1
= 1 +

2

eβk0 − 1
for k0 > 0 (A.13)

=
1 + e−βk

0

1− e−βk0
= −1− 2

e−βk0 − 1
for k0 < 0 (A.14)

The first two poles correspond to residuals

k0 = E1 → −1

2

1

2E1

1

(E1 − iωm)2 − E2
2

(
1 +

2

eβE1 − 1

)
=

1

2

1 + 2n1

2E1 · 2E2

[
1

iωm − E1 − E2

− 1

iωm − E1 + E2

]
k0 = −E1 → −1

2

−1

2E1

1

(−E1 − iωm)2 − E2
2

(
−1− 2

eβE1 − 1

)
=

1

2

1 + 2n1

2E1 · 2E2

[
1

iωm + E1 − E2

− 1

iωm + E1 + E2

]
while the other two poles correspond to residuals

k0 = iωm + E2 → −1

2

1

2E2

1

(iωm + E2)2 − E2
1

(
1 +

2

eβ(iωm+E2) − 1

)
=

1

2

1 + 2n2

2E1 · 2E2

[
1

iωm + E2 − E1

− 1

iωm + E2 + E1

]
k0 = iωm − E2 → → −1

2

−1

2E2

1

(iωm − E2)2 − E2
1

(
−1− 2

e−β(iωm−E2) − 1

)
=

1

2

1 + 2n2

2E1 · 2E2

[
1

iωm − E2 − E1

− 1

iωm − E2 + E1

]
When deriving these two expressions, we have assumed that the external momentum

P also corresponds to a bosonic particle, so the expressions can be simplified by

exp(iβωn) = 1. If the external momentum corresponds to a fermionic particle, then

in this case we should use exp(iβωn) = −1 and therefore several changes of signs

should be taken care of.
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Picking up the residuals of all the four poles, the value of the frequency sum is

S(iωm,p) =
1

4E1E2

[
(1 + n1 + n2)

(
1

iωm − E1 − E2

− 1

iωm + E1 + E2

)

+ (n2 − n1)

(
1

iωm − E1 + E2

− 1

iωm + E1 − E2

)]
(A.15)

Apart from using the contour integral procedures to do the frequency sums, there

is another approach which might be more convenient in some situations. One can

first Fourier transform the Euclidean propagators

∆(τ,k) =
1

β

∑
n

e−iωnτ∆(iωn,k) (A.16)

This sum can be easily carried out by using the contour integral method as before.

The result is

∆(τ,k) =
1

2Ek

[
(1 + n(Ek))e−Ekτ + n(Ek)eEkτ

]
(A.17)

Using the property of Bose distribution factor

n(−E) =
1

e−βE − 1
= −1− 1

eβE − 1
= −1− n(E) (A.18)

We rewrite

∆(τ,k) =
∑
s=±

−s
2Ek

n(−sEk)e−sEkτ (A.19)

This is our central formula to evaluate frequency sums in the new approach.

Going back to the frequency-momentum space, the original Euclidean propagators

can be rewritten as

∆(τ,k) =

∫ β

0

dτeiωnτ∆(τ,k)

=
∑
s

∫ β

0

dτe(iωn−sEk)τ × −s
2Ek

n(−sEk)

=
∑
s

eiωnβe−sEkβ − 1

iωn − sEk

−s
2Ek

1

e−sEkβ − 1

=
∑
s

−s
2Ek

1

iωn − sEk

(A.20)

The evaluation of the frequency sums over a product of propagators will become

easier with this trick. We may show the convenience of this trick by revisiting the

evaluation of S(iωm,p) defined in (A.10). Using (A.19) to write

S(iωm,p) =

∫ β

0

dτeiωmτ
∑
s1,s2

−s1

2E1

n(−s1E1)e−s1E1τ
−s2

2E2

n(−s2E2)e−s2E2τ (A.21)
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Taking the integration over dτ and simplifying the expression, we get

S(iωm,p) =
∑
s1,s2

s1s2

4E1E2

1 + n(−s1E1) + n(−s2E2)

iωm − s1E1 − s2E2

= −
∑
s1,s2

s1s2

4E1E2

1 + n(s1E1) + n(s2E2)

iωm − s1E1 − s2E2

(A.22)

The same expression (A.15) which we derived in a different procedure is recovered

easily, as it must be.

This method can also be applied to evaluate the frequency sum of fermionic

propagators. The ideas are basically the same, so we only briefly give the important

results.

The Fourier transform of a Euclidean propagator for fermions

∆̃(iωn,p) =
1

ω2
n + E2

p

=
1

(2π(n+ 1)/β)2 + E2
p

(A.23)

into the mixed space of imaginary time and momentum is

∆̃(τ,p) =
∑
s=±

s

2Ep

ñ(−sEp)e−sEpτ (A.24)

Going back to frequency-momentum space, one rewrites the propagator

∆̃(iωn,p) =
∑
s

−s
2Ep

1

iωn − sEp

(A.25)

In terms of fermion propagators, we have

Sαβ(τ,p) = (/ps −m)αβ∆̃(τ,p) =
∑
s=±

s

2Ep

ñ(−sEp)e−sEpτ (/p−m)αβ (A.26)

Comparing (A.19) and (A.24), we see that the frequency sum rules for fermions

can be immediately obtained from the rules for bosons, provided we make a substi-

tution n(E)→ ñ(E). For example, from (A.22), we can read off

S̃(iωm,p) =
1

β

∑
n

∆̃(iωn,k)∆̃(i(ωn − ωm),k− p)

=
∑
s1,s2

s1s2

4E1E2

1− ñ(−s1E1)− ñ(−s2E2)

iωm − s1E1 − s2E2

= −
∑
s1,s2

s1s2

4E1E2

1− ñ(s1E1)− ñ(s2E2)

iωm − s1E1 − s2E2

(A.27)

More complicated frequency sums can in principle be done with the two methods

we introduce here. A collection of results for frequency sums that one shall encounter

when evaluating Feynman diagrams can be found in [2].
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