
Copyright © James W. Kamman, 2017 

An Introduction to  

Three-Dimensional, Rigid Body Dynamics 

James W. Kamman, PhD 

Volume I: Kinematics 

Unit 10 

Introduction to Modeling Mechanical System Kinematics  

using MATLAB® Scripts, Simulink® and SimMechanics® 

Summary 

 This unit provides and introduction to modeling mechanical system kinematics using MATLAB scripts, 

Simulink models, and SimMechanics models. MATLAB scripts are text-based programs written in the 

MATLAB programming language. Simulink models are block-diagram-based programs that run in the 

MATLAB environment. SimMechanics models are block-diagram-based, multibody dynamics programs 

that run in the MATLAB/Simulink environment. MATLAB scripts can be used alone or in conjunction 

with Simulink and SimMechanics models. 

 Developing models using MATLAB scripts alone requires an analyst to write or computationally 

develop all the necessary equations to model the system. Many solution algorithms built into MATLAB and 

its toolboxes can be used to solve the equations. This is a detailed process and may be too time-intensive for 

the average analyst to master. Alternatively, Simulink can be used to speed-up model development by 

allowing the solution process to be programmed in the form of block diagrams. Like MATLAB, Simulink 

has many built-in algorithms to lighten the analyst’s load. Because these two approaches give the analyst 

total control of all modeling and solution details, they provide the most flexible modeling environment. 

However, the amount of time and effort required to develop models using these approaches increases 

rapidly as the system complexity increases. 

 SimMechanics models are Simulink models that contain special blocks for modeling multibody 

dynamics. These blocks eliminate the need for analysts to develop a set of equations of motion of their own. 

The analyst builds a block diagram model of the system, and SimMechanics develops and solves the 

equations of motion. These models require less time and knowledge to develop, but they are also less 

flexible than those discussed above in that the analyst does not have access to the detailed equations or the 

solution process. 

 

 

Trademarks: MATLAB and Simulink, and SimMechanics (now called Simscape Multibody) are all registered trademarks of The 

MathWorks, Inc. The MathWorks does not warrant the accuracy of the examples given in this volume.  

Page Count Examples Suggested Exercises 

51 5 7 



Copyright © James W. Kamman, 2017  Volume I – Unit 10: page 1/51 

 

MATLAB Scripts 

Example 1: Conversions from Orientation Angles to Euler Parameters 

 This example provides a MATLAB script for computing a set of four Euler parameters associated with 

a 1-2-3 body-fixed sequence of orientation angles. The script consists of four separate routines, a main 

module and three supporting functions. See Units 5 and 6 for a description of body-fixed orientation angle 

sequences and Euler parameters. 

 The main module first sets the values of the three orientation angles and converts the angles to radians. 

To find the four Euler parameters associated with these angles, it calls a function to compute the 

transformation matrix associated with the angles, and using that transformation matrix, it then calls a 

second function to calculate the four Euler parameters associated with that transformation matrix. 

Main module: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

%   This script calculates the values of the 4 Euler parameters associated 

%   with a 1-2-3 body-fixed sequence of orientation angles 

  

    degtoRad = pi/180.0; 

  

%   Set the three angles of the 1-2-3 orientation angle sequence 

    theta1Deg = 180; theta1 = theta1Deg*degtoRad; 

    theta2Deg = 30;  theta2 = theta2Deg*degtoRad; 

    theta3Deg = 20;  theta3 = theta3Deg*degtoRad; 

  

%   get the coordinate transformation matrix associated with this angle sequence 

    transformationMatrix = ... 

        calculateTransformationMatrixFromAngles123(theta1,theta2,theta3); 

     

%   get the Euler parameters associated with the transformation matrix 

    eulerParameter = ... 

      calculateEulerParametersFromTransformationMatrix(transformationMatrix); 

     

%   get the transformation matrix associated with the Euler parameters 

    transformationMatrixE = ... 

      calculateTransformationMatrixFromEulerParameters(eulerParameter); 

  

%   Check calculate [Ra][Re’] to see how close to identity matrix 

    identityCheck = transformationMatrix*(transformationMatrixE'); 

  

%   display the results 

    disp('The Angles:') 

    disp(theta1Deg); disp(theta2Deg); disp(theta3Deg); 

    disp('') 

    disp('The Euler Parameters:') 

    disp(eulerParameter) 

    disp('The Transformation Matrix (based on the angles):') 

    disp(transformationMatrix) 

    disp('The Transformation Matrix (based on the Euler parameters):') 

    disp(transformationMatrixE) 

    disp('Identity matrix?:') 

    disp(identityCheck) 

 



Copyright © James W. Kamman, 2017  Volume I – Unit 10: page 2/51 

 

 The values of the Euler parameters are checked in a two-step process. First, a function is called to 

compute the transformation matrix associated with the newly-computed parameters. Then, it computes the 

matrix product of the original transformation matrix with the transpose of the transformation matrix 

associated with the Euler parameters. If the four Euler parameters are accurate, the result should be the 

identity matrix. Recall that these transformation matrices are orthogonal matrices so that their inverses are 

equal to their transposes. The results are then sent to the MATLAB command window. The angles, Euler 

parameters, transformation matrices and identity matrix check are all displayed. A set of sample output is 

shown below. 

Command Window Output: 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supporting Functions: 

 Brief descriptions of the operation of each of the three supporting functions used by the main module are 

given below. A detailed listing of each function follows the descriptions. To aid in understanding the 

calculations in each function, the following equation provides the form of the coordinate transformation 

matrices in terms of the 1-2-3 orientation angle sequence and in terms of the four Euler parameters as 

presented in Units 5 and 6. 

>> angles123toEulerParameters 

Largest Euler parameter is epsilon_1 

The Angles: 

   180 

    30 

    20 

The Euler Parameters: 

   0.951251242564198 

  -0.167731259496521 

   0.254887002244179 

  -0.044943455527548 

The Transformation Matrix (based on the angles): 

   0.813797681349374  -0.342020143325669   0.469846310392954 

  -0.296198132726024  -0.939692620785908  -0.171010071662834 

   0.500000000000000  -0.000000000000000  -0.866025403784439 

The Transformation Matrix (based on the Euler parameters): 

   0.813797681349374  -0.342020143325669   0.469846310392954 

  -0.296198132726024  -0.939692620785909  -0.171010071662834 

   0.500000000000000  -0.000000000000000  -0.866025403784439 

Identity matrix?: 

   1.000000000000000  -0.000000000000000   0.000000000000000 

   0.000000000000000   1.000000000000000                   0 

  -0.000000000000000   0.000000000000000   1.000000000000000 



Copyright © James W. Kamman, 2017  Volume I – Unit 10: page 3/51 

 

  

2 2 2 2
1 2 3 4 1 2 3 4 1 3 2 42 3 1 3 1 2 3 1 3 1 2 3

2 2 2 2
2 3 1 3 1 2 3 1 3 1 2 3 1 2 3 4 1 2 3 4 2 3 1 4

2 2 2
2 1 2 1 2 1 3 2 4 2 3 1 4 1 2 3 4

( ) 2( ) 2( )

2( ) ( ) 2( )

2( ) 2( ) (

C C C S S S C S S C S C

R C S C C S S S S C C S S

S S C C C

           

           

           

      
 

          
 
        

2 )

 
 
 
 
  

 

1. calculateTransformationMatrixFromAngles123 – accepts the values of three orientation angles and 

computes the elements of the 3 3  transformation matrix  R  discussed in Unit 5. 

2. calculateEulerParametersFromTransformationMatrix – accepts the elements of a 3 3
transformation matrix and computes the four Euler parameters. The function uses an algorithm 

recommended by Baruh in reference 1 and presented in Unit 6. First, the squares of the four Euler 

parameters are calculated. The parameter with the largest value is computed from these results and 

assumed to be positive. The other three parameters are computed with equations that enable their values 

and algebraic signs to be determined. See Unit 6 for more details. 

3. calculateTransformationMatrixFromEulerParameters – accepts the values of four Euler 

parameters and computes the elements of the corresponding 3 3  transformation matrix  R . 

 

Function: calculateTransformationMatrixFromAngles123 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

function [transformationMatrix] = ... 

            calculateTransformationMatrixFromAngles123(theta1,theta2,theta3) 

% 

%   This function computes the coordinate transformation matrix associated 

%   with a 1-2-3 orientation angle sequence. 

% 

%   Input: 

%   theta1, theta2, and theta3 are the three angles in radians (in order) 

% 

%   Output: 

%   transformationMatrix 

  

%   Compute the transformation matrix 

    transformationMatrix = zeros(3); 

  

%   first row 

    transformationMatrix(1,1) = cos(theta2)*cos(theta3); 

    transformationMatrix(1,2) = (cos(theta1)*sin(theta3)) ... 

                                   + (sin(theta1)*sin(theta2)*cos(theta3)); 

    transformationMatrix(1,3) = (sin(theta1)*sin(theta3)) ... 

                                   - (cos(theta1)*sin(theta2)*cos(theta3)); 

%   second row 

    transformationMatrix(2,1) = -cos(theta2)*sin(theta3); 

    transformationMatrix(2,2) = (cos(theta1)*cos(theta3)) ... 

                                   - (sin(theta1)*sin(theta2)*sin(theta3)); 

    transformationMatrix(2,3) = (sin(theta1)*cos(theta3)) ... 

                                   + (cos(theta1)*sin(theta2)*sin(theta3)); 

%   third row 

    transformationMatrix(3,1) = sin(theta2); 

    transformationMatrix(3,2) = -sin(theta1)*cos(theta2); 

    transformationMatrix(3,3) = cos(theta1)*cos(theta2); 

 



Copyright © James W. Kamman, 2017  Volume I – Unit 10: page 4/51 

 

Function: calculateEulerParametersFromTransformationMatrix 

 

 

 

  

function [eulerParameter] = ... 

         calculateEulerParametersFromTransformationMatrix(transformationMatrix) 

% 

%   This function calculates the Euler parameters associated with a 

%   specific transformation matrix 

%   Ref: H. Baruh, Analytical Dynamics, WCB/McGraw-Hill, 1999. 

% 

%   Input: 

%   3x3 transformationMatrix 

% 

%   Output: 

%   4 Euler paramters 

% 

%   Initialize the Euler parameter squares array, Euler parameter array, 

%   and tolerance 

    eulerParametersq = zeros(4,1); eulerParameter = zeros(4,1); 

 

%   calculate the squares of the Euler parameters 

    eulerParametersq(1) = (transformationMatrix(1,1)-transformationMatrix(2,2) ... 

                        -transformationMatrix(3,3)+1.0)/4.0; 

    eulerParametersq(2) = (-transformationMatrix(1,1)+transformationMatrix(2,2) ... 

                        -transformationMatrix(3,3)+1.0)/4.0; 

    eulerParametersq(3) = (-transformationMatrix(1,1)-transformationMatrix(2,2) ... 

                        +transformationMatrix(3,3)+1.0)/4.0; 

    eulerParametersq(4) = (transformationMatrix(1,1)+transformationMatrix(2,2) ... 

                        +transformationMatrix(3,3)+1.0)/4.0; 

  

%   Determine which is the largest Euler parameter 

    eulerMax = eulerParameter(1); iPoint = 1; 

    for i = 2:4 

        if (eulerParameter(i) > eulerMax) 

            eulerMax = eulerParameter(i); 

            iPoint = i; 

        end 

    end 

%   Find the other Euler parameters based on the largest parameter 

    if (iPoint == 1) 

        eulerParameter(1) = sqrt(abs(eulerParametersq(1))); 

        eulerParameter(2) = (transformationMatrix(1,2) + ... 

                             transformationMatrix(2,1))/(4.0*eulerParameter(1)); 

        eulerParameter(3) = (transformationMatrix(1,3) + ... 

                             transformationMatrix(3,1))/(4.0*eulerParameter(1)); 

        eulerParameter(4) = (transformationMatrix(2,3) - ... 

                             transformationMatrix(3,2))/(4.0*eulerParameter(1)); 

    end 

    if (iPoint == 2) 

        eulerParameter(2) = sqrt(abs(eulerParametersq(2))); 

        eulerParameter(1) = (transformationMatrix(1,2) + ... 

                             transformationMatrix(2,1))/(4.0*eulerParameter(2)); 

        eulerParameter(3) = (transformationMatrix(2,3) + ... 

                             transformationMatrix(3,2))/(4.0*eulerParameter(2)); 

        eulerParameter(4) = (transformationMatrix(3,1) - ... 

                             transformationMatrix(1,3))/(4.0*eulerParameter(2)); 

    end 

  

 



Copyright © James W. Kamman, 2017  Volume I – Unit 10: page 5/51 

 

Function: calculateEulerParametersFromTransformationMatrix (continued) 

 

 

 

 

 

 

 

 

 

Function: calculateTransformationMatrixFromEulerParameters 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

function [transformationMatrix] = ... 

    calculateTransformationMatrixFromEulerParameters(eulerParameter) 

% 

%   This function calculates the coordinate transformation matrix 

%   associated with a set of 4 Euler parameters 

% 

%   Input: 

%   4x1 Euler Parameter array (epsilon1,epsilon2,epsilon3,epsilon4) 

% 

%   Output: 

%   3x3 coordinate transformation matrix 

  

%   Initialize the transformation matrix 

    transformationMatrix=zeros(3); 

  

%   calculate the transformation matrix associated with the Euler parameters 

 

%   first row 

    transformationMatrix(1,1) = (eulerParameter(1)^2) - (eulerParameter(2)^2) ... 

                              - (eulerParameter(3)^2) + (eulerParameter(4)^2); 

    transformationMatrix(1,2) = 2.0*((eulerParameter(1)*eulerParameter(2)) + ... 

                                     (eulerParameter(3)*eulerParameter(4))); 

    transformationMatrix(1,3) = 2.0*((eulerParameter(1)*eulerParameter(3)) - ... 

                                     (eulerParameter(2)*eulerParameter(4))); 

%   second row 

    transformationMatrix(2,1) = 2.0*((eulerParameter(1)*eulerParameter(2)) - ... 

                                     (eulerParameter(3)*eulerParameter(4))); 

    transformationMatrix(2,2) = -(eulerParameter(1)^2) + (eulerParameter(2)^2) ... 

                                - (eulerParameter(3)^2) + (eulerParameter(4)^2); 

    transformationMatrix(2,3) = 2.0*((eulerParameter(2)*eulerParameter(3)) + ... 

                                     (eulerParameter(1)*eulerParameter(4))); 

  
 

  
    if (iPoint == 3) 

        eulerParameter(3) = sqrt(abs(eulerParametersq(3))); 

        eulerParameter(1) = (transformationMatrix(1,3) + ... 

                             transformationMatrix(3,1))/(4.0*eulerParameter(3)); 

        eulerParameter(2) = (transformationMatrix(2,3) + ... 

                             transformationMatrix(3,2))/(4.0*eulerParameter(3)); 

        eulerParameter(4) = (transformationMatrix(1,2) - ... 

                             transformationMatrix(2,1))/(4.0*eulerParameter(3)); 

    end 

    if (iPoint == 4) 

        eulerParameter(4) = sqrt(abs(eulerParametersq(4))); 

        eulerParameter(1) = (transformationMatrix(2,3) - ... 

                             transformationMatrix(3,2))/(4.0*eulerParameter(4)); 

        eulerParameter(2) = (transformationMatrix(3,1) - ... 

                             transformationMatrix(1,3))/(4.0*eulerParameter(4)); 

        eulerParameter(3) = (transformationMatrix(1,2) - ... 

                             transformationMatrix(2,1))/(4.0*eulerParameter(4)); 

    end 



Copyright © James W. Kamman, 2017  Volume I – Unit 10: page 6/51 

 

 

 

 

 

 

Example 2: 

 The system shown consists of two connected bodies – 

the frame F and the disk D. Frame F rotates at a rate of 

 (rad/s)  about the fixed vertical direction annotated by 

the unit vector k . Disk D is affixed to and rotates relative 

to F at a rate of  (rad/s)  about the horizontal arm of F 

which is annotated by the rotating unit vector 2e . 

 Equations were developed in each of Units 2, 3, and 4 

for the velocity and acceleration of point P on the 

periphery of D as shown. The following kinematic results 

were generated and expressed in frame F  

 2

R

D e k      1 2

R

D e e k        

      1 2

R

Pv a S e a C e a C k           

  2 2 2 2

1 22R

Pa a S aC e a C a S e a C a S k                             
  

These results can also easily be expressed in the frame 
1 2 3: ( , , )D n e n  by noting that 

1 3k S n C n      and 

1 1 3e C n S n   . Making these substitutions and collecting terms gives the representations of these vectors 

in the frame D. 

  1 2 3

R

D S n e C n            1 2 3

R

D C S n e C S n                

      1 2 3

R

Pv C n a C e a S n            

 
 2 2 2 2 2 2

1 2

2

3

2R

Pa C aC a S n a C a S e

a S aC S n

    

  

  



                  

     

  

  
%   third row 

    transformationMatrix(3,1) = 2.0*((eulerParameter(1)*eulerParameter(3)) + ... 

                                      (eulerParameter(2)*eulerParameter(4))); 

    transformationMatrix(3,2) = 2.0*((eulerParameter(2)*eulerParameter(3)) - ... 

                                      (eulerParameter(1)*eulerParameter(4))); 

    transformationMatrix(3,3) = -(eulerParameter(1)^2) - (eulerParameter(2)^2) ... 

                                + (eulerParameter(3)^2) + (eulerParameter(4)^2); 

 



Copyright © James W. Kamman, 2017  Volume I – Unit 10: page 7/51 

 

 These equations can be used in a MATLAB script to find components of the angular velocity and 

angular acceleration of disk D and the velocity and acceleration of point P at a series of times throughout the 

motion of the system. To illustrate this process, the following data is used 

Variable Value Variable Value 

 0.5 (m)     22 (rad/s ) …constant 

a   0.25 (m)     
23 (rad/s ) …constant 

 

Note that the relative angular accelerations (  and  ) are constant, and the initial values of the 

corresponding relative angular velocities (  and  ) and relative angles (  and  ) are taken to be zero.  

 Using these values, the values of  ,  ,  , and   can be calculated at any time as follows. 

 ( ) 2t t   (rad/s) ( ) 3t t   (rad/s) 
2( )t t   (rad) 

23
2

( )t t   (rad) 

Specifically, at 2 (sec)t  : 

 

2 2

1 2 3 1 2 3

1 2 3

(3 )sin( ) (2 ) (3 )cos( )

4.541 4 3.922  (rad/s)

R

D S n e C n t t n t e t t n

n e n

         

  
 

 

   

   

1 2 3

2 2 2 2 2 2

1 2 3

2

1 2 3

6 cos( ) 3sin( ) 2 3cos( ) 6 sin( )

17.96 2 16.20  (rad/s )

R

D C S n e C S n

t t t n e t t t n

n e n

              

     

  

 

 

     

     
1 2 3

2 2 23 3 31
1 2 32 4 2 2

1 2 3

cos( ) cos( ) sin( )

1.961 0.9805 3.270  (m/s)

R

Pv C n a C e a S n

t t n t t e t t t n

n e n

         

    

  

 

 

 

 

2 2 2 2 2 2

1 2

2

3

2 2 2 2 2 2 2 2 2 2 2 23 3 91
1 22 4 4 2

2 2 2 23 91
2 2 4

2

cos( ) cos ( ) 4 9 sin ( ) cos( ) 3 sin( )

sin( ) sin( )cos( )

R

Pa C aC a S n a C a S e

a S aC S n

t t t t t t n t t t t e

t t t t

    

  

  



                  

     

             

   3

2

1 2 38.826 26.59 6.087  (m/s )

n

n e n



  

 

 These results can be generated over an interval of time using a MATLAB script. An example script is 

shown below in a series of three panels. The first panel contains the first two sections of the script. The first 

section describes what the script calculates and plots. The second section initializes the variables and arrays 

necessary for the calculations that follow. The physical data and input motions are as described above. 



Copyright © James W. Kamman, 2017  Volume I – Unit 10: page 8/51 

 

 

Script – Panel 1: (functional description and initialization of variables and arrays) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 The second panel contains the third section of the script that calculates the disk-fixed components of 

the angular velocity and angular acceleration of the disk D and the velocity and acceleration of point P. 

The results are calculated on a time window from 0 4 (sec)  in steps of 0.01 (sec)  using a “for-loop”. The 

angular velocity and angular acceleration are expressed directly in the disk frame (D), whereas, the velocity 

and acceleration of P are first expressed in the frame F and then transformed into the frame D. (Note that 

these latter calculations could have been done directly in frame D.) The results are stored in arrays whose 

contents are plotted in the fourth (and final) section. 

 The third panel contains the fourth section of the script. It contains the statements necessary to create 

four figures, each having three subplots. The values of the 
1n , 

2n , and 
3n  components of each vector are 

%% Unit 10 Example 2: Relative velocity and acceleration 

  

%  This script calculates the velocity and acceleration of point P fixed 

%  on the edge of disk D relative to ground (R). Results are expressed 

%  in frame D. 

% 

%  The following results are plotted over the time vector: 

%   Figure 1: Angular Velocity of D in R - Components in Frame D 

%   Figure 2: Angular Acceleration of D in R - Components in Frame D 

%   Figure 3: Velocity Components of Point P in R expressed in Frame D 

%   Figure 4: Acceleration Components of Point P in R expressed in Frame D 

  

%% Initialize variables 

   armLength   = 0.5;      % length of arm F in meters 

   diskRadius  = 0.25;     % radius of disk D in meters 

  

   omegaDot    = 2.0;      % angular acceleration of D in F in rad/s^2 

   capOmegaDot = 3.0;      % angular acceleration of F in R in rad/s^2 

  

   omegaInitial    = 0.0;  % initial angular velocity of D in F in rad/s 

   capOmegaInitial = 0.0;  % initial angular velocity of F in R in rad/s 

  

   thetaInitial    = 0.0;  % initial angle of D in radians 

   phiInitial      = 0.0;  % initial angle of F in radians 

  

   time = 0:0.01:4.0;  % time vector 

   numberoftimes = length(time); % length of time vector 

  

%  array initializations 

   capOmega  = zeros(numberoftimes,1); omega     = zeros(numberoftimes,1); 

   phi       = zeros(numberoftimes,1); theta     = zeros(numberoftimes,1); 

   omegaDinR = zeros(numberoftimes,3); alphaDinR = zeros(numberoftimes,3); 

   vn        = zeros(numberoftimes,3); an        = zeros(numberoftimes,3); 

  

 



Copyright © James W. Kamman, 2017  Volume I – Unit 10: page 9/51 

 

presented in the three subplots of that figure. Each figure has a title and each subplot has a grid and a label 

on each axis. 

Script – Panel 2: (calculation of results using a “for-loop”) 

 

  

  
%% Calculate the velocity and acceleration of point P (see diagram in Unit 10) 

  

for i = 1:numberoftimes 

  

%  Assuming constant relative angular accelerations 

   capOmega(i) = capOmegaInitial + (capOmegaDot*time(i)); 

   phi(i)      = phiInitial + (capOmegaInitial*time(i)) + ... 

                  (0.5*capOmegaDot*(time(i)^2)); 

   omega(i) = omegaInitial + (omegaDot*time(i)); 

   theta(i) = thetaInitial + (omegaInitial*time(i)) + ... 

               (0.5*omegaDot*(time(i)^2)); 

  

   cosTheta = cos(theta(i)); sinTheta = sin(theta(i)); 

  

%  angular velocity of D in R - components in frame D 

   omegaDinR(i,1) = -capOmega(i)*sinTheta; 

   omegaDinR(i,2) = omega(i); 

   omegaDinR(i,3) =  capOmega(i)*cosTheta; 

  

%  angular acceleration of D in R - components in frame D 

   alphaDinR(i,1) = (-omega(i)*capOmega(i)*cosTheta) - (capOmegaDot*sinTheta); 

   alphaDinR(i,2) =  omegaDot; 

   alphaDinR(i,3) = (-omega(i)*capOmega(i)*sinTheta) + (capOmegaDot*cosTheta); 

  

%  velocity components in frame F 

   ve1 = (diskRadius*omega(i)*sinTheta) - (armLength*capOmega(i)); 

   ve2 = -diskRadius*capOmega(i)*cosTheta; 

   ve3 =  diskRadius*omega(i)*cosTheta; 

  

%  velocity components in disk frame D 

   vn(i,1) = (ve1*cosTheta) - (ve3*sinTheta); 

   vn(i,2) =  ve2; 

   vn(i,3) = (ve1*sinTheta) + (ve3*cosTheta); 

  

%  acceleration components in frame F 

   ae1 = (diskRadius*omegaDot*sinTheta) - (armLength*capOmegaDot) + ... 

               (diskRadius*cosTheta*((omega(i)^2) + (capOmega(i)^2))); 

   ae2 = (-diskRadius*capOmegaDot*cosTheta) - (armLength*(capOmega(i)^2)) + ... 

               (2.0*diskRadius*omega(i)*capOmega(i)*sinTheta); 

   ae3 = diskRadius*((omegaDot*cosTheta) - ((omega(i)^2)*sinTheta)); 

  

%  acceleration components in disk frame D 

   an(i,1) = (ae1*cosTheta) - (ae3*sinTheta); 

   an(i,2) =  ae2; 

   an(i,3) = (ae1*sinTheta) + (ae3*cosTheta); 

    

end 

  
 

 

 



Copyright © James W. Kamman, 2017  Volume I – Unit 10: page 10/51 

 

Script – Panel 3: (Plotting of results in four figure windows) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 The results generated by the script are shown in the following four figures. The results at 2 (sec)t   

are highlighted using the “data cursor” or “datatip” feature available in the figure window generated by 

MATLAB. Note that the highlighted results are the same as those presented above.  

 
%% Plot the results 

 

figure(1); clf; 

subplot(3,1,1); plot(time,omegaDinR(:,1),'b-'); grid on; 

xlabel('time(sec)'), ylabel('omegaDinR_1 (rad/s)'); 

title('Angular Velocity of D in R - Components in Frame D'); 

 

subplot(3,1,2); plot(time,omegaDinR(:,2),'b-'); grid on; 

xlabel('time(sec)'), ylabel('omegaDinR_2 (rad/s)'); 

 

subplot(3,1,3); plot(time,omegaDinR(:,3),'b-'); grid on; 

xlabel('time(sec)'), ylabel('omegaDinR_3 (rad/s)'); 

 

figure(2); clf; 

subplot(3,1,1); plot(time,alphaDinR(:,1),'b-'); grid on; 

xlabel('time(sec)'), ylabel('alphaDinR_1 (rad/s^2)'); 

title('Angular Acceleration of D in R - Components in Frame D'); 

 

subplot(3,1,2); plot(time,alphaDinR(:,2),'b-'); grid on; 

xlabel('time(sec)'), ylabel('alphaDinR_2 (rad/s^2)'); 

 

subplot(3,1,3); plot(time,alphaDinR(:,3),'b-'); grid on; 

xlabel('time(sec)'), ylabel('alphaDinR_3 (rad/s^2)'); 

 

figure(3); clf; 

subplot(3,1,1); plot(time,vn(:,1),'b-'); grid on; 

xlabel('time(sec)'), ylabel('v_1 (m/s)'); 

title('Velocity Components of Point P in R expressed in Frame D'); 

 

subplot(3,1,2); plot(time,vn(:,2),'b-'); grid on; 

xlabel('time(sec)'), ylabel('v_2 (m/s)'); 

 

subplot(3,1,3); plot(time,vn(:,3),'b-'); grid on; 

xlabel('time(sec)'), ylabel('v_3 (m/s)'); 

 

figure(4); clf; 

subplot(3,1,1); plot(time,an(:,1),'b-'); grid on; 

xlabel('time(sec)'), ylabel('a_1 (m/s^2)'); 

title('Acceleration Components of Point P in R expressed in Frame D'); 

 

subplot(3,1,2); plot(time,an(:,2),'b-'); grid on; 

xlabel('time(sec)'), ylabel('a_2 (m/s^2)'); 

 

subplot(3,1,3); plot(time,an(:,3),'b-'); grid on; 

xlabel('time(sec)'), ylabel('a_3 (m/s^2)'); 

 

 

 



Copyright © James W. Kamman, 2017  Volume I – Unit 10: page 11/51 

 

 

 

 

 

  

Figure 1. Angular Velocity of D in R - Components in Frame D 

Figure 2. Angular Acceleration of D in R - Components in Frame D 



Copyright © James W. Kamman, 2017  Volume I – Unit 10: page 12/51 

 

 

 

 

 

  

Figure 3. Velocity Components of Point P in R expressed in Frame D 

Figure 4. Acceleration Components of Point P in R expressed in Frame D 



Copyright © James W. Kamman, 2017  Volume I – Unit 10: page 13/51 

 

Simulink Modeling 

Example 3: 

 In this example, the system of Example 2 is modeled using a 

MATLAB script in conjunction with a Simulink model. As 

before, the column (frame, F) is driven relative to the ground 

and the disk (D) is driven relative to the column at constant 

angular accelerations. Values of the lengths  and a  and the 

relative angular accelerations   and   are as provided in 

Example 2. 

 The MATLAB script has four sections and is shown below in two panels. The first panel shows the 

first three sections of the script. As in Example 2, the first section of the script provides a functional 

description of the model, and the second section initializes variables used by the model. In this case, 

however, the calculations are performed in Simulink rather than in a MATLAB script. The third section of 

the script uses the “sim” statement to execute the Simulink model. 

Script – Panel 1: (functional description, initialization of variables, execution of Simulink model) 

 

 

 

 

 

 

 

 

 

 

 

%% Script for the Simulink model: 

% Unit10TwoBodyRelativeVelocityAccelerationExample03 

% 

%  This script sets values for the Simulink model of Unit 10, Example 3 a two-body 

%  system with applied motions and then executes the model. 

% 

%  The model calculates the angular velocity and angular acceleration of the disk D 

%  and the velocity and acceleration of point P. The components are resolved in the 

%  disk frame. 

  

%% Give values to the required variables 

  

   armLength  = 0.5;   % (m) 

   diskRadius = 0.25;  % (m) 

  

   omegaDot     = 2.0;  % (r/s^2) ... constant 

   omegaInitial = 0.0;  % (r/s) 

   thetaInitial = 0.0;  % (rad) 

  

   capOmegaDot     = 3.0;  % (r/s^2) ... constant 

   capOmegaInitial = 0.0;  % (r/s) 

   phiInitial      = 0.0;  % (rad) 

  

%% Execute the Simulink model 

   sim('Unit10TwoBodyKinematicsExample03'); 

 
 

 



Copyright © James W. Kamman, 2017  Volume I – Unit 10: page 14/51 

 

 The final section of the script simply plots the results generated by the Simulink code. The output for 

each of the vectors, 
R

D , 
R

D , 
R

Pv , and 
R

Pa  are stored in the MATLAB workspace as 4N   arrays. The 

first column of each array holds the time values, and the last three columns hold the values of the 
1n , 

2e , 

and 
3n  components of the vectors. Here, N represents the number of time values in the simulation. As with 

the script for Example 3, the results are presented in four figures, each containing plots of the three 

components of the vector over time. 

Script – Panel 2: (Plotting of results in four figure windows) 

 

 

 

 

 

  

  
%% Plot the results 

  

figure(1); clf; 

subplot(3,1,1); plot(omegaDinR(:,1),omegaDinR(:,2),'b-'); grid on; 

xlabel('time(sec)'), ylabel('omegaDinR_1 (rad/s)'); 

title('Angular Velocity of D in R - Components in Frame D'); 

  

subplot(3,1,2); plot(omegaDinR(:,1),omegaDinR(:,3),'b-'); grid on; 

xlabel('time(sec)'), ylabel('omegaDinR_2 (rad/s)'); 

  

subplot(3,1,3); plot(omegaDinR(:,1),omegaDinR(:,4),'b-'); grid on; 

xlabel('time(sec)'), ylabel('omegaDinR_3 (rad/s)'); 

  

figure(2); clf; 

subplot(3,1,1); plot(alphaDinR(:,1),alphaDinR(:,2),'b-'); grid on; 

xlabel('time(sec)'), ylabel('alphaDinR_1 (rad/s^2)'); 

title('Angular Acceleration of D in R - Components in Frame D'); 

  

subplot(3,1,2); plot(alphaDinR(:,1),alphaDinR(:,3),'b-'); grid on; 

xlabel('time(sec)'), ylabel('alphaDinR_2 (rad/s^2)'); 

  

subplot(3,1,3); plot(alphaDinR(:,1),alphaDinR(:,4),'b-'); grid on; 

xlabel('time(sec)'), ylabel('alphaDinR_3 (rad/s^2)'); 

  

figure(3); clf; 

subplot(3,1,1); plot(vn(:,1),vn(:,2),'b-'); grid on; 

xlabel('time(sec)'), ylabel('v_1 (m/s)'); 

title('Velocity Components of Point P in R expressed in Frame D'); 

  

subplot(3,1,2); plot(vn(:,1),vn(:,3),'b-'); grid on; 

xlabel('time(sec)'), ylabel('v_2 (m/s)'); 

  

subplot(3,1,3); plot(vn(:,1),vn(:,4),'b-'); grid on; 

xlabel('time(sec)'), ylabel('v_3 (m/s)'); 

  

figure(4); clf; 

subplot(3,1,1); plot(an(:,1),an(:,2),'b-'); grid on; 

xlabel('time(sec)'), ylabel('a_1 (m/s^2)'); 

title('Acceleration Components of Point P in R expressed in Frame D'); 

  

subplot(3,1,2); plot(an(:,1),an(:,3),'b-'); grid on; 

xlabel('time(sec)'), ylabel('a_2 (m/s^2)'); 

  

subplot(3,1,3); plot(an(:,1),an(:,4),'b-'); grid on; 

xlabel('time(sec)'), ylabel('a_3 (m/s^2)'); 

 

 



Copyright © James W. Kamman, 2017  Volume I – Unit 10: page 15/51 

 

Simulink Model – Top Layer: 

 The top layer of the Simulink model shows the overall operation of the model and is shown in the panel 

below. The subsystem on the left side of the diagram generates values for the motion variables –  , 

    ,  ,  ,    , and  . Some or all of these variables are then passed to the subsystems that 

calculate the values of the disk-fixed components of the vectors 
R

D , 
R

Pv , 
R

D , and 
R

Pa . The values of 

these variables are plotted and then stored in the MATLAB workspace using Simulink scopes. The History 

tab of the Parameters menu of each scope determines the variable name and format to be used. The window 

shown below for the angular velocity scope indicates that an array with the name “omegaDinR” will be 

generated. This array will be an 4N   array with N  indicating the number of time values (maximum 

number of times is set to 5000 – the last 5000 calculated). As noted earlier, the first column of this array 

holds the time values, and the last three columns hold the values of the vector components. 

 The second panel below shows the “model configuration parameters” found on the “simulation menu” 

of the model. The parameters shown are for the Simulink solver and indicate the simulation will run from 

0 4 (sec)  in fixed steps of 0.01 (sec) . When numerical integration is required, a fourth-order Runge-

Kutta method is used. Note that any numerical values shown here could have been set using variables from 

the MATLAB script. Given these values, the arrays generated in the MATLAB workspace will be 401 4 . 

 

 

 

 

 

 

 

 

 

 

 

 

Plot parameters for   



Copyright © James W. Kamman, 2017  Volume I – Unit 10: page 16/51 

 

 

 

 

 

 

 

 

Simulink Model – Motion Subsystem: 

 The motion subsystem calculates the relative angular motions of the system assuming the relative 

angular accelerations ( , )  are constant. These values are integrated once using the given initial relative 

angular velocities (variables “capOmegaInitial” and “omegaInitial” from the script) to calculate the relative 

angular velocities, and then integrated again using the given initial relative angles (variables “phiInitial” 

and “thetaInitial” from the script) to calculate the angles. The integrators are labeled by Simulink using the 

symbol “ 1
s ” (in reference to integrations in the Laplace domain), and the ports for the initial values are 

indicated by the symbol “ 0x ”. See the diagram below. Clearly, more complicated motion profiles could be 

generated using this process by simply expressing the relative angular accelerations themselves as functions 

of time.  

 

 

 

 

 

 

 

 

 

 



Copyright © James W. Kamman, 2017  Volume I – Unit 10: page 17/51 

 

Simulink Model – Vector Component Subsystems: 

 The motion subsystem generates vector inputs for each of the vector component subsystems. The angular 

velocity and velocity subsystems each receive a 3 1  vector containing values for  ,  , and  , and the 

angular acceleration and acceleration subsystems each receive a 5 1  vector containing values for  ,  ,  , 

 , and   as indicated in the diagram. These values alone are sufficient to calculate the vector components 

of the angular velocity and angular acceleration vectors. However, values of the arm length  and the disk 

radius a  are also needed to calculate the velocity and acceleration vectors. Values for these variables are set 

using the MATLAB script variables “armLength” and “diskRadius”. These values are appended to the 

vector received from the motion subsystem before the vector components are calculated. See the diagrams 

below. In each subsystem, the vector components are returned as 3 1  vectors. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Each of the vector components are computed using MATLAB functions. The contents of the three 

functions used to calculate the acceleration vector components are shown in the next panel. Based on the 

block diagrams, each acceleration function receives a 7 1  vector “u” containing values of  ,  ,  ,  ,  

 , , and a . The functions are MATLAB scripts with input vector “u” and output vector “y”. 

 



Copyright © James W. Kamman, 2017  Volume I – Unit 10: page 18/51 

 

 

 

 

 

 

 

 

 

 

 The results generated by this Simulink model are identical to those generated by the MATLAB script of 

Example 2. As with the script, the programmer has full control over the equations used to model the system 

behavior. Simulink does, however, provide an alternative to script programming that some may find more 

intuitive. Even though this is a very simple model, it is clear from this example that Simulink provides a 

more visual representation of the functionality of a model than a MATLAB script. Data generation and 

flow within a model is made clear by the block diagram. In this regard, it is easier for someone viewing the 

model for the first time to understand the process the model represents. 

Example 4: SimMechanics Modeling 

 In this example, the system of Example 2 is modeled again, 

this time using a MATLAB script in conjunction with a 

SimMechanics model. As before, the column (frame, F) is 

driven relative to the ground and the disk D is driven relative to 

the column at constant angular accelerations. Values of the 

lengths  and a  and the relative angular accelerations   and   

are as provided in Example 2. 

 The MATLAB script has four sections and is shown below 

in three panels. The first panel shows the first section of the 

script which provides a functional description of the model and 

initializes variables used by the model. 

 In this example, the model is more detailed than in the previous two examples. In addition to the motion 

data, it also includes geometric, mass, and inertia data for the bodies, and a stopping time and time 

function y = fcn(u) 

%#codegen 

% n_1 component of the acceleration of P in R 

% 

y = (-u(6)*u(4)*cos(u(1))) + (u(7)*(u(3)^2)) + (u(7)*((u(2)*cos(u(1)))^2)); 

 

--------------------------------------------------------------------------- 

function y = fcn(u) 

%#codegen 

% e_2 component of the acceleration of P in R 

% 

y = (-u(7)*u(4)*cos(u(1))) + (2*u(7)*u(2)*u(3)*sin(u(1))) - (u(6)*(u(2)^2)); 

 

---------------------------------------------------------------------------- 

function y = fcn(u) 

%#codegen 

% n_3 component of the acceleration of P in R 

% 

y = (u(7)*u(5)) - (u(6)*u(4)*sin(u(1))) + (u(7)*(u(2)^2)*sin(u(1))*cos(u(1))); 

 

 

 

 



Copyright © James W. Kamman, 2017  Volume I – Unit 10: page 19/51 

 

increment. Also, the frame F is treated as two bodies welded together (to form a single body) – a vertical 

column and a horizontal arm. For the purpose of calculating inertia matrices, the column and arm are 

assumed to be right circular cylinders and the disk is assumed to be thin.  

Script – Panel 1: (functional description and initialization of variables)  

 

 

  

%%  Unit 10 - Example 4: Script for the SimMechanics model: 

%                Unit10TwoBodyKinematicsExample04 

% 

%  This script sets values for the SimMechanics model of Unit 10, Example 4 a two- 

%  body system with applied motions and then executes the model. 

% 

%  The model calculates the angular velocity and angular acceleration of the disk D 

%  and the velocity and acceleration of point P. The components are resolved in the 

%  disk frame. All results are plotted and some are displayed in the MATLAB 

%  command window. 

  

   timeMax       = 4.0; %sec 

   timeIncrement = 0.01; %sec 

     

%  Column Data 

   columnMass   = 1.0;    %kg 

   columnLength = 1.5;    %meters 

   columnRadius = 0.05;   %meters 

  

   Ixx = columnMass*((3*(columnRadius^2))+(columnLength^2))/12; Iyy = Ixx; 

   Izz = 0.5*columnMass*(columnRadius^2); 

   columnInertiaMatrix = [Ixx,0,0; 0,Iyy,0; 0,0,Izz];  %kg-m^2 

                     

%  Arm Data 

   armMass   = 1.0;    %kg 

   armLength = 0.5;    %meters 

   armRadius = 0.05;   %meters 

     

   Ixx = armMass*((3*(armRadius^2))+(armLength^2))/12; Izz = Ixx; 

   Iyy = 0.05*armMass*(armRadius^2); 

   armInertiaMatrix = [Ixx,0,0; 0,Iyy,0; 0,0,Izz]; %kg-m^2 

                   

%  Disk Data 

   diskMass   = 1.0;     %kg 

   diskRadius = 0.25;    %meters 

   theta  = 30*pi/180;   %radians 

    

   Ixx = 0.25*diskMass*(diskRadius^2); Izz = Ixx; 

   Iyy = 0.50*diskMass*(diskRadius^2);  

   diskInertiaMatrix = [Ixx,0,0; 0,Iyy,0; 0,0,Izz];  %kg-m^2 

     

%  Motion Data 

   omegaDot    = 2.0;      % rad/s^2 (constant) 

   capOmegaDot = 3.0;      % rad/s^2 (constant) 

  

   omegaInitial    = 0.0;  % rad/s 

   capOmegaInitial = 0.0;  % rad/s 

   thetaInitial    = 0.0;  % rad (thetaDot = omega) 

   phiInitial      = 0.0;  % rad (phiDot = capOmega) 

  
 

 



Copyright © James W. Kamman, 2017  Volume I – Unit 10: page 20/51 

 

 Note that values of mass and inertia are not necessary for kinematic calculations associated with the 

specified motions of this example; however, they are necessary if the model is extended to include 

calculations of the constraint and driving forces and torques associated with these motions. These types of 

calculations will be considered in Volume II of this text. 

 The next two panels show the last three sections of the script. The first section executes the 

SimMechanics model, the second plots results for 
R

D , 
R

D , 
R

Pv , and 
R

Pa , and the last section displays 

the initial values of these vectors in the MATLAB workspace. Note the output from the SimMechanics 

model are structured arrays which include time signals. For example, the time signal for 
R

D  is named 

“diskAngularVelocity.time”, and the signals for the x, y, and z components of 
R

D  are named 

“diskAngularVelocity.signals(1).values”, “diskAngularVelocity.signals(2).values”, and 

“diskAngularVelocity.signals(3).values”. A similar naming convention is used for the other vectors. 

See the description of the SimMechanics model for more details on how these structures are generated. 

Script – Panel 2: (execution of SimMechanics model with some results plotted) 

    
%% Run SimMechanics Model 

   sim('Unit10TwoBodyKinematicsExample04.slx'); 

     

%% Plot Output 

%  Angular Velocity Components of Disk, D (rad/s) 

   figure(1); clf; subplot(3,1,1); 

   plot(diskAngularVelocity.time,diskAngularVelocity.signals(1).values); 

   grid; title('Body-Fixed Angular Velocity Components of Disk, D (rad/s)');  

   xlabel('Time (sec)'); ylabel('X-Component (rad/s)') 

     

   subplot(3,1,2); 

   plot(diskAngularVelocity.time,diskAngularVelocity.signals(2).values);  

   grid; xlabel('Time (sec)'); ylabel('Y-Component (rad/s)') 

     

   subplot(3,1,3); 

   plot(diskAngularVelocity.time,diskAngularVelocity.signals(3).values); 

   grid; xlabel('Time (sec)'); ylabel('Z-Component (rad/s)') 

     

%  Angular Acceleration Components of Disk, D (rad/s) 

    figure(2); clf; subplot(3,1,1); 

    plot(diskAngularAcceleration.time,diskAngularAcceleration.signals(1).values); 

    grid; title('Body-Fixed Angular Acceleration Components of Disk, D (rad/s^2)');  

    xlabel('Time (sec)'); ylabel('X-Component (rad/s^2)') 

     

    subplot(3,1,2); 

    plot(diskAngularAcceleration.time,diskAngularAcceleration.signals(2).values);  

    grid; xlabel('Time (sec)'); ylabel('Y-Component (rad/s^2)') 

     

    subplot(3,1,3); 

    plot(diskAngularAcceleration.time,diskAngularAcceleration.signals(3).values); 

    grid; xlabel('Time (sec)'); ylabel('Z-Component (rad/s^2)') 



Copyright © James W. Kamman, 2017  Volume I – Unit 10: page 21/51 

 

Script – Panel 3: (more results plotted and initial values of results displayed in command window)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

  
%  Velocity Components of Point P (m/s) 

   figure(3); clf; 

   subplot(3,1,1); plot(velocityPointP.time,velocityPointP.signals(1).values); 

   grid; title('Body-Fixed Components of the Velocity of Point P (m/s)');  

   xlabel('Time (sec)'); ylabel('X-Component (m/s)') 

     

   subplot(3,1,2); plot(velocityPointP.time,velocityPointP.signals(2).values);  

   grid; xlabel('Time (sec)'); ylabel('Y-Component (m/s)') 

     

   subplot(3,1,3); plot(velocityPointP.time,velocityPointP.signals(3).values); 

   grid; xlabel('Time (sec)'); ylabel('Z-Component (m/s)') 

 

%  Acceleration Components of Point P (m/s^2) 

   figure(4); clf; subplot(3,1,1); 

   plot(accelerationPointP.time,accelerationPointP.signals(1).values); 

   grid; title('Body-Fixed Components of the Acceleration of Point P (m/s^2)');  

   xlabel('Time (sec)'); ylabel('X-Component (m/s^2)') 

     

   subplot(3,1,2); 

   plot(accelerationPointP.time,accelerationPointP.signals(2).values);  

   grid; xlabel('Time (sec)'); ylabel('Y-Component (m/s^2)') 

     
   subplot(3,1,3); 

   plot(accelerationPointP.time,accelerationPointP.signals(3).values); 

   grid; xlabel('Time (sec)'); ylabel('Z-Component (m/s^2)') 

 

%% Initial angular velocity and angular acceleration of Disk D 

%  and Initial velocity and acceleration of point P 

  

   disp('Body-Fixed Components of the Initial Angular Velocity of Disk D (r/s)') 

   disp('X-Component'),disp(diskAngularVelocity.signals(1).values(1)) 

   disp('Y-Component'),disp(diskAngularVelocity.signals(2).values(1)) 

   disp('Z-Component'),disp(diskAngularVelocity.signals(3).values(1)) 

    

   disp('Body-Fixed Components of the Initial Angular Acceleration of Disk D (r/s^2)') 

   disp('X-Component'),disp(diskAngularAcceleration.signals(1).values(1)) 

   disp('Y-Component'),disp(diskAngularAcceleration.signals(2).values(1)) 

   disp('Z-Component'),disp(diskAngularAcceleration.signals(3).values(1)) 

  

   disp('Body-Fixed Components of the Initial Velocity of Point P (m/s)') 

   disp('X-Component'),disp(velocityPointP.signals(1).values(1)) 

   disp('Y-Component'),disp(velocityPointP.signals(2).values(1)) 

   disp('Z-Component'),disp(velocityPointP.signals(3).values(1)) 

  

   disp('Body-Fixed Components of the Initial Acceleration of Point P (m/s^2)') 

   disp('X-Component'),disp(accelerationPointP.signals(1).values(1)) 

   disp('Y-Component'),disp(accelerationPointP.signals(2).values(1)) 

   disp('Z-Component'),disp(accelerationPointP.signals(3).values(1)) 

 



Copyright © James W. Kamman, 2017  Volume I – Unit 10: page 22/51 

 

SimMechanics Model – Top Layer: 

 The Simulink model presented in Example 3 focused on calculations based on a set of previously 

derived model equations. The block diagram represents the process needed to solve the model equations. In 

contrast, a SimMechanics block diagram model focuses on the physical system. SimMechanics then 

formulates and solves the model equations. Data can be moved seamlessly between SimMechanics and 

Simulink using actuators and sensors. Simulink signals can be used to drive a system using actuator 

blocks, and SimMechanics signals can measured (and sent to Simulink) using sensor blocks. 

 The top layer of the SimMechanics model of the system of this example is shown in the panel below. 

The model has a Machine Environment block, a Ground block, three Body blocks, three Joint blocks, two 

Motion subsystems, and three Measurement subsystems. The diagram generally indicates how the bodies 

are connected and where the applied motions and measurements occur. More specific details of each block 

within the model are presented below. 

 

 

 

 

 

 

 

 

 

 

 The two panels below show the “model configuration parameters” found on the “simulation menu” of 

the model. Parameters are shown for the Simulink solver and for the SimMechanics first generation (1G) 

model. The Simulink solver parameters indicate the simulation will start at time 0t   and stop at the time 

indicated by the variable “timeMax”. Numerical integration of the model equations will occur in fixed time 

steps indicated by the variable “timeIncrement” and be done using an 8th order, Dormand-Prince algorithm. 

Values for the variables “timeMax” and “timeIncrement” are set in the MATLAB script. The configuration 

parameters for the SimMechanics model instruct SimMechanics to provide warnings to the user for any 

redundant constraints, display the system in an animation window after the user updates the block 

diagram, and to display an animation of the motion of the system during the simulation. 

 



Copyright © James W. Kamman, 2017  Volume I – Unit 10: page 23/51 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 The following sections provide details on the content and function of each of the blocks within the 

model. Double clicking on a block will open its dialog box.    

Machine Environment Block: 

 The dialog box for the Machine Environment block is 

displayed in the panel to the right. This box allows the user to set 

the “simulation environment” for the system being modeled. In 

this example, default values are used for entries on the 

Constraints, Linearization, and Visualization tabs. Under the 

Parameters tab, the Machine Dimensionality has been set to 

“Auto-detect”, and the Analysis mode has been set to “Inverse 

Dynamics”, and (although it is not needed in this example) a 

gravity vector has been defined to be in the negative Z direction of 

the global coordinate system (in metric units). 

 “Auto-detect” indicates that SimMechanics will choose the dimensionality of the system based on the 

data it receives. The other choices are “2D Only” and “3D Only”. As the system is three dimensional, the 

Machine dimensionality could also be set to “3D Only.” The Analysis mode of “Inverse Dynamics” 

indicates that all fundamental motions are specified so all other results may be derived directly from the 



Copyright © James W. Kamman, 2017  Volume I – Unit 10: page 24/51 

 

specified motions and the physical data provided. This example focuses on kinematic results only; however, 

the forces and torques required to produce the motions can also be computed. The model equations in this 

case are algebraic.  

 The other analysis options are “Forward Dynamics”, “Kinematics”, and “Trimming”. Forward Dynamic 

analyses generally apply to systems for which all fundamental motions are not specified so that some parts 

of the system will respond freely to the specified motions and external forces (e.g. gravity) acting on the 

system. That is, the system has some unspecified degrees of freedom. Even though the system of this 

example has no unspecified degrees of freedom, a forward dynamic analysis may also be used. A 

“Kinematics” analysis is designed for use only with closed-loop mechanisms. The system of this example is 

an open-tree system with no closed loops, so a “Kinematics” analysis may not be used. A “Trimming” 

analysis is used to find equilibrium (or steady state) configurations about which the model equations can be 

linearized and does not apply to this example. 

Ground block: 

 The dialog box for the Ground block is shown in the panel 

at the right. In this example, the Ground block serves two 

purposes. It specifies the location in the world (global) 

coordinate system where the first revolute joint is located – in 

this case, the revolute joint is located at the origin of the world 

system. The check box at the bottom of the dialog box allows 

the user to show a Machine Environment port to which a 

Machine Environment block can be attached.  

Z-Revolute: Column to Ground 

 The dialog box for the Z-revolute joint connecting 

the column to the ground is shown in the panel to the 

right. The “Axes” tab indicates the joint is an “R1” or 

single degree-of-freedom revolute joint about the 

direction “[0 0 1]” (or z-axis) of the “World” 

coordinate system (CS). The middle portion of the box 

indicates the “base” port of the joint is connected to the 

“Ground” block, the “follower” port is connected to the 

coordinate system CS1 of the column and that two 

sensor/actuator ports will be shown on the block. 



Copyright © James W. Kamman, 2017  Volume I – Unit 10: page 25/51 

 

 Note from the diagram of the top layer of the model that each joint block has “base” and “follower” 

ports. The base port is indicated in the block diagram with a red “B”, and the follower port is indicated with 

a red “F”. Note also that SimMechanics requires the points on either side of the joint block to be collocated. 

In this case, it means that the coordinate system CS1 of the column must be located at the origin of the 

world coordinate system to match the location of the ground block. If this condition is not met, 

SimMechanics will stop with an error message. 

Body block: Column, C 

 The dialog box for the body block associated with the column is shown in the panel below. As shown, 

values of the mass and the 3 3  inertia matrix of the column are given by the variables “columnMass” and 

“columnInertiaMatrix”. The values for these variables are set in the MATLAB script. 

 

 

 

 

 

 

 

 

 

 

 

 

 The “Position” tab shows the locations of all the coordinate systems associated with the column, and it 

shows which coordinate systems are shown as ports on the body block. The relative location of the 

coordinate systems is shown in the figure to the right. CS1 has a port on the left side of the block and is 

located with the coordinates [0 0 0] relative to the adjoining Z-revolute joint, that is, it is collocated with 

that joint. All other coordinate systems of the column are located relative to CS1. CS6 is located two-thirds 

of the way up the column, and it has a port on the right side of the block. Note from the top layer of the 

model that this is the location at which the horizontal arm is welded to the column. The coordinate system 

located at the mass center of the column (labeled CG) is located half-way up the column. The other systems 

outline the overall projected shape of the column. The column length and column radius are specified by 

the variables “columnLength” and “columnRadius” whose values are supplied by the MATLAB script. 



Copyright © James W. Kamman, 2017  Volume I – Unit 10: page 26/51 

 

 The “Orientation” tab of the dialog box (shown below) indicates how each body coordinate system is 

oriented relative to other coordinate systems. In this case, each of the body coordinate systems is initially 

aligned with the “World” coordinate system. Generally, a coordinate system may be oriented relative to the 

“World” or “Adjoining” coordinate systems or any other coordinate system of that body. The relative 

orientation can be specified using a variety of orientation angle sequences, orientation parameters, or a 

3 3  transformation matrix. 

 The “Visualization” tab (shown below) describes how bodies will be viewed in the animation window. 

In this example, the column will be “blue” and its shape determined using an “Equivalent ellipsoid from the 

mass (inertia) properties”. The other body geometry choices are: “Use machine default body geometry”, 

“Convex hull from body CS locations”, and “External graphics file”. As shown, the body will appear as an 

ellipsoid, but if the body geometry is based on the CS locations given, it will appear as a rectangle. More 

realistic shapes can be generated using an external graphics file.  

 

 

 

 

 

 

 

 

 

 

 

 

Weld Joint: 

 The weld joint connects coordinate system CS6 of the column to coordinate system CS1 of the arm. This 

joint requires that the column and arm move as a single body. 

Body block: Arm, M 

 The dialog box for the body block associated with the horizontal arm is shown below. As shown, values 

of the mass and the 3 3  inertia matrix of the column are given by the variables “armMass” and 

“armInertiaMatrix”. The values for these variables are set in the MATLAB script. Arm coordinate system 

CS1 is collocated with the adjoining coordinate system CS6 of the column. All other arm coordinate systems 



Copyright © James W. Kamman, 2017  Volume I – Unit 10: page 27/51 

 

are located relative to CS1 and define the overall projected shape of the body. Arm coordinate system CS2 is 

located at the other end of the arm where the disk is attached with a revolute joint, and CG is located at the 

midpoint. The orientation angles of all the arm coordinate systems are zero, so all the arm coordinate 

systems are initially aligned with the world system. The visualization parameters (not shown here) are the 

same as those for the column. Hence, the arm will be blue and will appear as an ellipsoid. 

 

  

 

 

 

 

 

 

 

 

Y-Revolute: Disk to Column 

 The dialog box for the Y-revolute joint 

connecting the disk to the column is shown in the 

panel to the right. The “Axes” tab indicates the joint 

is an “R1” or single degree-of-freedom revolute joint 

about the direction “[0 1 0]” (or y-axis) of the “Base” 

coordinate system. As connected in the top layer (and 

as indicated in this dialog box) the arm coordinate 

system CS2 is the reference coordinate system for 

this joint. This ensures the axis of the revolute joint 

will always be directed along the horizontal arm. Two 

sensor/actuator ports are shown on the block. 

Body block: Disk, D 

 The dialog box for the body block associated with the disk is shown below. As shown, values of the 

mass and the 3 3  inertia matrix of the disk are given by the variables “diskMass” and “diskInertiaMatrix”. 

The values for these variables are set in the MATLAB script. Disk coordinate system CS1 is collocated with 

the adjoining coordinate system CS2 of the arm. All other arm coordinate systems are located relative to 



Copyright © James W. Kamman, 2017  Volume I – Unit 10: page 28/51 

 

CS1. The disk mass center coordinate system CG is collocated with CS1 at the center of the disk, and 

coordinate system CS2 is located on the edge of the disk. The orientation angles of all the disk coordinate 

systems are zero, so all the disk coordinate systems are initially aligned with the world system. The “Body 

geometry” on the “Visualization” tab (not shown here) is the same as for the column and arm, but the color 

has been changed to pink so it is distinguishable from the arm. The equivalent ellipsoidal shape associated 

with the inertia matrix specified in the script for the disk is a circle. 

 

 

 

 

 

 

 

 

Motion Subsystem: Column relative to Ground 

 The subsystem that specifies the motion of the column relative to the ground is shown below. This 

subsystem is very similar to the subsystem presented in the Simulink model. The only difference is that the 

combined motion signals are sent to SimMechanics using the “Joint Actuator” block of the Z-revolute joint 

that connects the column to the ground. As in the previous example, the specified motion is constant 

angular acceleration “capOmegaDot” with initial angular velocity “capOmegaInitial” and initial angle 

“phiInitial”. Values of the three variables are specified in the MATLAB script. 

 The dialog box for the joint actuator block is also shown below. It indicates that motion is specified for 

the attached single degree-of-freedom revolute joint and that the angle, angular velocity, and angular 

acceleration signals will be provided in radians, rad/sec, and rad/sec2. Note here that the actuator block 

moves signals from Simulink to SimMechanics. 

 

 

 

 

 

 

 

 



Copyright © James W. Kamman, 2017  Volume I – Unit 10: page 29/51 

 

Motion Subsystem: Disk relative to Arm 

 This subsystem is also very similar to the subsystem presented in the Simulink model. In this case, the 

only difference is that the combined motion signals are sent to SimMechanics using the “Joint Actuator” 

block of the Y-revolute joint that connects the disk to the arm. This specifies the motion at this joint. As in 

the previous example, the specified motion is constant angular acceleration “omegaDot” with initial 

angular velocity “omegaInitial” and initial angle “thetaInitial”. Values of the three variables are specified in 

the MATLAB script. The joint actuator block in this subsystem functions the same as the one described 

above for the column motion. 

 

 

 

 

 

 

 

Joint Measurement Subsystem: Column to Ground 

 The subsystem that measures the motion of the column 

relative to the ground is shown in the panel to the right. The 

joint sensor is connected directly to the Z-revolute joint that 

connects the column to the ground. The sensor sends the signal 

from SimMechanics to Simulink. In this case, the angular 

position (ap) and angular velocity (av) are measured and plotted 

on two scopes.  

 The dialog box for the joint sensor (shown in the panel to 

the right) allows the user to determine what is being measured. 

The dialog box indicates the sensor is connected to a single 

degree-of-freedom revolute joint and that “Primitive Outputs” 

and “Joint Reactions” can be measured. In this case, the angle is 

measured in degrees and the angular velocity is measured in 

rad/sec. Measurements of forces and torques associated with the 

joint will be discussed in Volume II of this text. 

 



Copyright © James W. Kamman, 2017  Volume I – Unit 10: page 30/51 

 

Joint Measurement Subsystem: Disk to Arm 

  The subsystem that measures the motion of the disk relative to 

the arm is shown in the panel to the right. In this case, the sensor is 

connected to the Y-revolute joint that connects the disk and arm, and 

it measures the relative angular position (ap) and angular velocity 

(av). The settings in the joint sensor dialog box are the same as those 

in the joint sensor for the Z-revolute joint discussed above. 

Body Measurement Subsystem: Disk 

 The subsystem that measures the angular velocity 

(av) and angular acceleration (aa) of the disk and the 

velocity (v) and acceleration (a) of point P on the 

disk is shown in the panel to the right. Each of these 

vector quantities are separated (using a Demux 

(demultiplexor)) into components that are plotted on 

separate axes on a single scope. The sensor that 

measures the angular velocity and angular 

acceleration of the disk are connected to CG the 

coordinate system at the center of gravity, and the 

sensor that measures the velocity and acceleration of 

P is connected to coordinate system CS2 on the edge 

of the disk. CS2 tracks the angle theta of the disk 

starting at 0  . 

 Each of the four scopes are used to plot the data as well as 

send the data to the MATLAB workspace for later plotting by the 

MATLAB script. The dialog box for the “Parameters” menu of 

the scope for the angular velocity vector is shown in the panel to 

the right. The “History” tab shows that the data will be saved to 

the workspace as a “Structure with time” using the variable 

name “diskAngularVelocity”. The data will be limited to the last 

5000 data points of the signal. The other three scopes create 

structures named “diskAngularAcceleration”, “velocityPointP”, 

and “accelerationPointP”. 



Copyright © James W. Kamman, 2017  Volume I – Unit 10: page 31/51 

 

 The dialog boxes for the two body sensors are shown in the panels below. The panel on the left indicates 

that the angular velocity vector in rad/sec and the angular acceleration vector in rad/sec2 will be measured 

and the components will be expressed in the local body coordinate system. These are the body-fixed 

components of the vectors. The panel on the right indicates that the body-fixed components of the velocity 

vector in meters/sec and acceleration vector in meters/sec2 of point P (located by the coordinate system CS2) 

will also be measured. 

 

 

 

 

 

 

 

 

 

 

Model Execution: 

 The model is executed by running the MATLAB script. As described earlier, the script defines all 

necessary variables, runs the SimMechanics model, plots the results in four figure windows, and displays 

the initial values of results in the command window. As the SimMechanics model executes, an animation 

window (see description below) opens to display the motion of the system. This model produces identical 

results to those of the previous models (presented in Figures 1-4 above). 

  



Copyright © James W. Kamman, 2017  Volume I – Unit 10: page 32/51 

 

 Animation window: 

 The animation window shown in the panel 

to the right shows the position of the system at 

time 0.78 (sec)t  . The window shows the 

world (global) coordinate system (lower left 

corner of the window), and it shows the mass 

center and all the coordinate systems associated 

with each body. All X-axes are red, all Y-axes 

are green, and all Z-axes are blue. At time 0t   

all the coordinate systems were aligned with the 

world system. As time progresses, however, all 

coordinate systems must maintain their 

orientation relative to the body on which they 

are defined. Note the column and arm 

coordinate systems are rotated relative to the 

world system, but they all remain aligned (with 

each other) as they move as a single body. The 

disk coordinate systems are rotated relative to 

the arm due to the disk rotation. 

Command Window Output: 

 The command window output of the vector component values at 0t   are shown in the panel below. 

Again, these results are identical to those generated by the previous models. 

 

 

 

 

 

 

 

 

 

 

Body-Fixed Components of the Initial Angular Velocity of Disk D (r/s) 

X-Component     Y-Component     Z-Component 

     0               0               0 

 

Body-Fixed Components of the Initial Angular Acceleration of Disk D (r/s^2) 

X-Component     Y-Component     Z-Component 

     0               2               3 

 

Body-Fixed Components of the Initial Velocity of Point P (m/s) 

X-Component     Y-Component     Z-Component 

     0               0               0 

 

Body-Fixed Components of the Initial Acceleration of Point P (m/s^2) 

    X-Component          Y-Component          Z-Component 

-1.500000000000000     -0.750000000000000   0.500000000000000 

 

   

 

 

    



Copyright © James W. Kamman, 2017  Volume I – Unit 10: page 33/51 

 

Increasing the Quality of the Animation: 

 As mentioned above, the body geometries of the 

column, arm, and disk (as shown above) were determined 

using “Equivalent ellipsoids from the mass properties” of 

the bodies as indicated on the “Visualization” tab of the 

body block dialog boxes. The quality of the animation can 

be easily improved using external stereolithographic files 

to define the geometries of the bodies. There are many 

applications that can be used to generate these files. 

Windows 10, for example, has a free application called  

3D Builder that is quite easy to use.  

 The graphics files are indicated in the body block 

dialog box by first indicating the “Body geometry” is found 

in an “External graphics file” and then indicating the name 

of the file and the body coordinate system to which the 

geometry is attached. In this example, the geometry of the 

column is contained in a file named “Column.stl” located in 

the default directory and is attached to the center of gravity 

of the column. The geometries of the arm and disk are 

defined in two other files. The dialog boxes of the body 

blocks of the arm and disk are not shown here. 

 The resulting animation window shown here is a 

snapshot of the position of the system at 0.85 (sec)t  . The 

arm and column are now clearly indicated as having 

circular cross sections with the specified diameters, and 

the disk is shown with its specified diameter and thickness. 

For visualization purposes, a supporting cylindrical 

structure (shown at the base of the column) is included in 

the graphics file as part of the geometry of the column. 

 

 

 



Copyright © James W. Kamman, 2017  Volume I – Unit 10: page 34/51 

 

Example 5: SimMechanics Modeling of a Closed Loop Mechanism 

 The figure shows the three-dimensional slider-

crank mechanism that was analyzed in Unit 8. 

Disk D rotates about its center C with angular 

velocity 
R

D k k   . The center of the disk 

is in the xy plane at the point (2 , , 0)a a . Bar AB 

is attached to the disk with a ball and socket joint 

at A and is attached to the fixed bar EF with a 

three degree of freedom joint at B. The collar can 

translate along and rotate about the fixed bar EF 

(in the y direction), and bar AB can rotate relative 

to the collar about an axis which is normal to the 

plane AEB. The size of the collar at B is assumed 

to be negligible. 

 As in Unit 8, the motion of disk D is specified, and the motion of bar AB and the collar at B is 

calculated. In this case, a MATLAB script is used to execute a SimMechanics model that computes the 

motions of the bar and the collar, and then it uses the analytical equations from Unit 8 to compute 

analytical results. The results of the two methods are shown to be identical. 

 The first four sections of the MATLAB script are shown in Panel 1 below. The first section provides a 

functional description of the script and starts the “pause” option, the second defines variables used by the 

SimMechanics model, the third executes the SimMechanics model, and the fourth plots the specified 

motions applied to the disk. In this example, disk D has a constant angular acceleration given by the value 

of variable “crankInitialAngularAcceleration”, an initial angular velocity given by the variable 

“crankInitialAngularVelocity”, and an initial angle of zero. As shown in the diagram above, the initial 

geometry of the system is defined in terms of the parameter “a”. The radius of D (“diskRadius”) is “a”, and 

the length of the bar (“barLength”) is “7a”. 

 The last section shown in this panel plots the angular motion of the crank (i.e. the disk) in Figures 1-3. 

The angle, angular velocity, and angular acceleration of the disk are assumed to be stored in structures with 

the associated time values. The names of the structures are given in the plot commands. 

  

At the instant shown , A has coordinates  

 and B has coordinates . 



Copyright © James W. Kamman, 2017  Volume I – Unit 10: page 35/51 

 

Script – Panel 1: (functional description, initialization of variables, model execution, crank motion plots) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 The next two sections of the script are shown in Panel 2 below. The first section plots the components 

of the angular velocity and angular acceleration of the bar resolved in the world coordinate system in 

Figures 4-5. After each plot, MATLAB pauses to allow the user to edit the plot (for example, to highlight 

data values using the data cursor). After pausing, the script will continue execution when the user presses 

any key on the keyboard. The second section plots the velocity and acceleration of the slider in Figures 6-7. 

Again, MATLAB pauses after each plot to allow the user to edit the plot. The data is assumed to be stored in 

structures with the associated time values; the names of the structures are given in the plot commands. 

  

%% Unit 10 - Example 5 - Three-dimensional slider crank model 

% 

%  This script sets values for the SimMechanics model of Unit 10, Example 

%  5, a three dimensional slider crank mechanism with applied motion, 

%  executes the SimMechanics model, and plots the results. 

%   

%   This script computes results using both a SimMechanics model and  

%   an analytical model so the results can be compared. 

% 

    pause on; 

% 

%%  model input 

     

    crankInitialAngularVelocity        = 10; % (rad/s) 

    crankInitialAngularAcceleration    = 5;  % (rad/s^2) 

  

    a          = 0.1;  % (meters) 

    diskRadius = a;    % (meters) 

    barLength  = 7*a;  % (meters) 

  

%%  run the SimMechanics model 

  

    sim('Unit10ThreeDimensionalSliderCrankExample05'); 

  

%%  plot the crank motion 

  

    figure(1); clf; 

    plot(crankAngle.time,crankAngle.signals.values); 

    grid; xlabel('Time (sec)'); ylabel('Angle (deg)'); 

    title('Angle of Crank'); 

  

    figure(2); clf; 

    plot(crankAngularVelocity.time,crankAngularVelocity.signals.values); 

    grid; xlabel('Time (sec)'); ylabel('Angular Velocity (rad/s)'); 

    title('Angular Velocity of Crank'); 

  

    figure(3); clf; 

    plot(crankAngularAcceleration.time,crankAngularAcceleration.signals.values); 

    grid; xlabel('Time (sec)'); ylabel('Angular Acceleration (rad/s^2)'); 

    title('Angular Acceleration of Crank'); 

  

  

 



Copyright © James W. Kamman, 2017  Volume I – Unit 10: page 36/51 

 

Script – Panel 2: (plot bar and slider motion and pause to allow the user to edit the plots) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 The next section of the script is shown in Panel 3 below. This section calculates analytical results at the 

initial position  ( 0t  ) and displays the results in the MATLAB command window. See Unit 8 for 

derivations of these equations. To format the results in the command window, advantage is taken of the 

MATLAB function “num2str” which converts a numerical value into a string for use in the display 

command.  

  

%%  plot the bar motion 

    figure(4); clf; 

    subplot(3,1,1) 

    plot(barAngularVelocity.time,barAngularVelocity.signals(1).values) 

    title('Angular Velocity of the Bar - World Components'); 

    ylabel('X Component (r/s)'); grid on; 

    subplot(3,1,2) 

    plot(barAngularVelocity.time,barAngularVelocity.signals(2).values) 

    ylabel('Y Component (r/s)'); grid on; 

    subplot(3,1,3) 

    plot(barAngularVelocity.time,barAngularVelocity.signals(3).values) 

    ylabel('Z Component (r/s)'); grid on; xlabel('Time (sec)'); 

     

    pause; 

     

    figure(5); clf; 

    subplot(3,1,1) 

    plot(barAngularAcceleration.time,barAngularAcceleration.signals(1).values) 

    title('Angular Acceleration of the Bar - World Components'); 

    ylabel('X Component (r/s)'); grid on; 

    subplot(3,1,2) 

    plot(barAngularAcceleration.time,barAngularAcceleration.signals(2).values) 

    ylabel('Y Component (r/s)'); grid on; 

    subplot(3,1,3) 

    plot(barAngularAcceleration.time,barAngularAcceleration.signals(3).values) 

    ylabel('Z Component (r/s)'); grid on; xlabel('Time (sec)'); 

  

    pause; 

     

%%  plot the motion of the slider 

    figure(6); clf; 

    plot(sliderVelocity.time,sliderVelocity.signals.values); 

    grid; xlabel('Time (sec)'); ylabel('Velocity (m/s)'); 

    title('Velocity of Slider'); 

     

    pause; 

  

    figure(7); clf; 

    plot(sliderAcceleration.time,sliderAcceleration.signals.values); 

    grid; xlabel('Time (sec)'); ylabel('Acceleration (m/s^2)'); 

    title('Acceleration of Slider'); 

  

    pause; 

 

 



Copyright © James W. Kamman, 2017  Volume I – Unit 10: page 37/51 

 

Script – Panel 3: (calculate and display analytical results at the initial position, 0t  )    
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 The next section of the script is shown in Panel 4 below. This section calculates analytical results at all 

times 0t   and stores the results for later plotting. 

  

%%  Calculate analytical results for omega_AB, v_B, alpha_AB, a_B at t=0 

%   The following results are calculated for the initial position 

% 

    omegaX0 =  3*crankInitialAngularVelocity/39; 

    omegaY0 = -9*crankInitialAngularVelocity/39; 

    omegaZ0 =  2*crankInitialAngularVelocity/39; 

    v_B0    = -a*crankInitialAngularVelocity/3; 

  

   alphaCoefficientMatrix0 = [0 3 -6; 6 2 0; -2 0 3]; 

   alphaRHS0 = zeros(3,1); 

   alphaRHS0(1,1) = -(crankInitialAngularAcceleration) - ... 

                      omegaY0*((6*omegaX0)+(2*omegaY0)) - ... 

                      omegaZ0*((2*omegaZ0)+(3*omegaX0)); 

   alphaRHS0(2,1) =  omegaX0*((2*omegaZ0)+(3*omegaX0)) + ... 

                     omegaY0*((3*omegaY0)-(6*omegaZ0)); 

   alphaRHS0(3,1) = crankInitialAngularVelocity*omegaX0; 

  

   alpha0 = alphaCoefficientMatrix0\alphaRHS0; % solve matrix equation for alpha 

  

   a_B0 = -(3*a*alpha0(1,1)) - (2*a*alpha0(3,1)) + ... 

           (a*crankInitialAngularVelocity*crankInitialAngularVelocity) +... 

            omegaZ0*((3*a*omegaY0)-(6*a*omegaZ0)) -... 

            omegaX0*((6*a*omegaX0)+(2*a*omegaY0)); 

  

   disp('   '); 

   disp('Analytical Results at the Initial Position (phi = 0)'); 

   disp('----------------------------------------------------'); 

   disp('   '); 

   disp('Initial Angular Velocity Components (r/s)'); 

   printString = ['   X component: ' num2str(omegaX0)]; disp(printString); 

   printString = ['   Y component: ' num2str(omegaY0)]; disp(printString); 

   printString = ['   Z component: ' num2str(omegaZ0)]; disp(printString); 

   disp('   '); 

   disp('Initial Angular Acceleration Components (r/s^2)'); 

   printString = ['   X component: ' num2str(alpha0(1,1))]; disp(printString); 

   printString = ['   Y component: ' num2str(alpha0(2,1))]; disp(printString); 

   printString = ['   Z component: ' num2str(alpha0(3,1))]; disp(printString); 

   disp('   '); 

   disp('Initial Collar Velocity (v_B0) (m/s)'); 

   printString = ['   v_B0: ' num2str(v_B0)]; disp(printString); 

   disp('   '); 

   disp('Initial Collar Acceleration (a_B0) (m/s^2)'); 

   printString = ['   a_B0: ' num2str(a_B0)]; disp(printString); 

 



Copyright © James W. Kamman, 2017  Volume I – Unit 10: page 38/51 

 

Script – Panel 4: (calculate analytical results at all positions, 0t  )    

 

 

 

 

 

 

 

 

  

%% Calculate analytical results for arrays omega_AB, v_B, alpha_AB, a_B (t >= 0) 

%  The following results are calculated for the entire motion 
 

   nTimes  = length(crankAngle.time);  yBHat   = zeros(nTimes,1);  

   v_B     = zeros(nTimes,1);          a_B     = zeros(nTimes,1); 

   omegaAB = zeros(nTimes,3);          alphaAB = zeros(nTimes,3); 

  

   coefficientMatrix = zeros(3,3); rightHandSideV = zeros(3,1); 

   rightHandSideA    = zeros(3,1); 

  

   coefficientMatrix(1,1) = 0.0; coefficientMatrix(1,2) = 3.0; 

   coefficientMatrix(2,3) = 0.0; coefficientMatrix(3,2) = 0.0; 

   coefficientMatrix(3,3) = 3.0; 

   rightHandSideV(2,1)    = 0.0; rightHandSideV(3,1)    = 0.0;  

  

   for i = 1:nTimes 

      crankAngleRad = (pi/180)*crankAngle.signals.values(i); 

      cosPhi = cos(crankAngleRad);    sinPhi = sin(crankAngleRad); 

      crankAngularVelocityValue     = crankAngularVelocity.signals.values(i); 

      crankAngularAccelerationValue = crankAngularAcceleration.signals.values(i); 

  

      yBHat(i)               = 1 - cosPhi + sqrt(40 - (2+sinPhi)^2); 

      coefficientMatrix(1,3) = 1 - cosPhi - yBHat(i); 

      coefficientMatrix(2,1) = -coefficientMatrix(1,3); 

      coefficientMatrix(2,2) = 2.0 + sinPhi; 

      coefficientMatrix(3,1) = -coefficientMatrix(2,2); 

      rightHandSideV(1,1)    = -crankAngularVelocityValue*cosPhi; 

  

      omegaAB(i,:) = coefficientMatrix\rightHandSideV;  % solve matrix equation 

      v_B(i,1)     = (a*crankAngularVelocityValue*sinPhi) -... 

                     (3*a*omegaAB(i,1)) - (a*(2+sinPhi)*omegaAB(i,3)); 

  

      rightHandSideA(1,1) = ... 

         - (crankAngularAccelerationValue*cosPhi) + ... 

           ((crankAngularVelocityValue^2)*sinPhi) - ... 

           (omegaAB(i,1)*omegaAB(i,2)*(yBHat(i) + cosPhi - 1)) - ... 

           ((omegaAB(i,2)^2)*(2 + sinPhi)) - ... 

           ((omegaAB(i,3)^2)*(2 + sinPhi)) - (3*omegaAB(i,1)*omegaAB(i,3)); 

      rightHandSideA(2,1) = ... 

           (3*omegaAB(i,1)*omegaAB(i,1)) + (3*omegaAB(i,2)*omegaAB(i,2)) +... 

           (omegaAB(i,1)*omegaAB(i,3)*(2 + sinPhi)) -... 

           (omegaAB(i,2)*omegaAB(i,3)*(yBHat(i) + cosPhi - 1)); 

      rightHandSideA(3,1) = crankAngularVelocityValue*cosPhi*omegaAB(i,1); 

  

      alphaAB(i,:) = coefficientMatrix\rightHandSideA;  % solve matrix equation 

      a_B(i,1) = -(3*a*alphaAB(i,1)) - ((2 + sinPhi)*a*alphaAB(i,3)) +... 

                  (a*crankAngularAccelerationValue*sinPhi) +... 

                  (a*(crankAngularVelocityValue^2)*cosPhi) +... 

                  (3*a*omegaAB(i,2)*omegaAB(i,3)) -... 

                  (a*omegaAB(i,1)*omegaAB(i,2)*(2 + sinPhi)) -... 

                  ((omegaAB(i,1)^2)+(omegaAB(i,3)^2))*a*(yBHat(i) + cosPhi - 1); 

   end 

 

 



Copyright © James W. Kamman, 2017  Volume I – Unit 10: page 39/51 

 

 The final section of the script is shown in Panel 5 below. This section plots the analytical results at all 

times 0t   in Figures 8-11. The script pauses after each plot to allow the user to edit the plot. At the end of 

the script, the pause feature is turned off. 

Script – Panel 5: (plot the analytical results for all time 0t  ) 

  
 

 

  

%%  Plot the analytical results for t >= 0 

  

    figure(8); clf; 

    subplot(3,1,1) 

    plot(barAngularVelocity.time,omegaAB(:,1)) 

    title('Angular Velocity of the Bar - World Components - Analytical Results'); 

    ylabel('X Component (r/s)'); grid on; 

    subplot(3,1,2) 

    plot(barAngularVelocity.time,omegaAB(:,2)) 

    ylabel('Y Component (r/s)'); grid on; 

    subplot(3,1,3) 

    plot(barAngularVelocity.time,omegaAB(:,3)) 

    ylabel('Z Component (r/s)'); grid on; xlabel('Time (sec)'); 
  

    pause; 
     

    figure(9); clf; 

    plot(sliderVelocity.time,v_B(:,1)); 

    grid; xlabel('Time (sec)'); ylabel('Velocity (m/s)'); 

    title('Velocity of Slider - Analytical Results'); 
  

    pause; 
  

    figure(10); clf; 

    subplot(3,1,1) 

    plot(barAngularAcceleration.time,alphaAB(:,1)) 

    title('Angular Acceleration of the Bar - World Components - Analytical Results'); 

    ylabel('X Component (r/s^2)'); grid on; 

    subplot(3,1,2) 

    plot(barAngularAcceleration.time,alphaAB(:,2)) 

    ylabel('Y Component (r/s^2)'); grid on; 

    subplot(3,1,3) 

    plot(barAngularAcceleration.time,alphaAB(:,3)) 

    ylabel('Z Component (r/s^2)'); grid on; xlabel('Time (sec)'); 
  

    pause; 
     

    figure(11); clf; 

    plot(sliderAcceleration.time,a_B(:,1)); 

    grid; xlabel('Time (sec)'); ylabel('Velocity (m/s^2)'); 

    title('Acceleration of Slider - Analytical Results'); 
  

    pause; 
                                                                         

    pause off; 

 



Copyright © James W. Kamman, 2017  Volume I – Unit 10: page 40/51 

 

SimMechanics Model: Top Layer 

 The top layer of the SimMechanics model is shown in the panel below. As with the previous model, the 

left side of the diagram begins with a Ground block and an attached Machine Environment block. The 

model configuration parameters on the Simulation menu of the model are set to calculate the system’s 

motion for 2 seconds using a fixed-step, 8th order, Dormand-Prince integration method. The time step is set 

to 0.01 seconds. The Machine dimensionality is set to “Auto-detect” and the Analysis mode is set to 

“Forward dynamics” in the Machine Environment block. Note that an Analysis mode of “Kinematics” can 

also be applied to this system as it is a closed-loop mechanism. The Ground block locates the center of the 

circular crank (disk, D) at the world coordinates (2 , , 0)a a  (meters). 

 

 

 

 

 

 

 It is evident from the block diagram that the circular crank is connected to the ground using a revolute 

joint and is connected to bar AB with a spherical (ball and socket) joint. The bar is connected to the slider 

using a revolute joint, and the slider is connected to a fixed bar using a cylindrical joint. Due to the closed-

loop nature of the mechanism, two ground blocks are necessary, one for grounding the crank and one for 

grounding the fixed bar. The diagram also shows four subsystems, one to specify the motion of the crank, 

and the other three to measure the motions of the crank, the bar, and the collar.  

Joint Block: Z-Revolute Joint for the Crank 

 The dialog box for the revolute joint that connects 

the crank to the ground is shown to the right. It 

indicates the line of action of the joint is the z-axis of 

the world coordinate system. The base of the joint is a 

world coordinate system whose origin is specified by 

the ground block, and the follower coordinate system is 

the CG of the circular crank. The dialog box for the 

ground block (not shown here) specifies the ground 

block is located at the world coordinates [2 , , 0]a a .   



Copyright © James W. Kamman, 2017  Volume I – Unit 10: page 41/51 

 

Body block: Circular Crank (Disk, D) 

 The dialog box for the circular crank 

indicates that its mass is 1 (kg) and its inertia 

matrix is consistent with that of a thin disk. It 

also shows that the crank has two coordinate 

systems. The origin of the CG system is 

collocated with the adjoining ground block at 

[2 , , 0]a a , and the origin of CS1 is located on 

the left edge of the disk where bar AB is 

connected. 

 The orientation angles for the two coordinate systems are all set to zero on the Orientation tab so that 

these two systems are initially aligned (at 0t  ) with the world coordinate system. The body color is set to 

blue, and the body geometry is set to “Equivalent ellipsoid from mass properties”. Hence, the body will 

appear as a blue disk in the animation window. 

Spherical Joint: Connecting Crank to Bar AB 

 The dialog box for the spherical joint indicates the base coordinate system of the joint to be CS1 of the 

crank, and the follower coordinate system to be CS1 of the bar. As this joint allows rotation about any axis, 

the “Axes” tab (not shown here) indicates that no “axes of action” or “reference coordinate systems” are 

associated with this joint. In this example, the spherical joint has been specified to be a “cut joint” on the 

“Advanced” tab. This is indicated on the top-layer block diagram as an “X” on the joint block. 

  Cut joints are used by SimMechanics when 

analyzing systems with closed kinematic chains. 

SimMechanics cuts (or opens) one of the joints in 

each of the closed loops of the system and then 

formulates a constraint that requires the joint to 

remain unbroken during the motion. The slider-crank 

mechanism forms a single closed loop, so 

SimMechanics will cut one of the joints. The 

“Advanced” tab allows the user to specify a joint to 

be the “preferred” joint to cut during the analysis. If 

the user does not specify which joint to cut, 

SimMechanics will decide. 



Copyright © James W. Kamman, 2017  Volume I – Unit 10: page 42/51 

 

Body block: Bar AB 

 The dialog box for the body block of bar AB 

indicates that the mass of the bar is 1 (kg) and its 

inertia matrix is consistent with that of a slender 

bar. The “Position” tab shows there are three 

coordinate systems associated with the bar. The 

origin of CS1 is collocated with the adjoining 

coordinate system which is CS1 of the circular 

crank. The origin of CG is at the midpoint of the 

bar, and the origin of CS2 is at the other end of 

the bar. 

 The “Visualization” and “Orientation” tabs of the dialog box of the body block are shown below. The 

Visualization tab indicates the geometry will be based on the coordinate systems defined for the body and 

the color will be red. As the information on the Orientation tab for this body is more complicated than in 

previous examples, a detailed explanation is necessary and provided in the following paragraphs. 

 As defined on the “Position” tab, the three coordinate systems of the bar are aligned along the x-axis of 

the body and each coordinate system is aligned with the world system. In this position, one end of the bar is 

at the spherical joint at A and the other end points outward along the world’s x-axis. To realign the bar so 

that coordinate system CS2 is positioned at the location of the collar, a set of non-zero orientation angles 

must be provided on the Orientation tab.  

 In this case, a 3-2-1 body-fixed, orientation angle sequence is used to define the initial orientation of the 

bar’s coordinate systems relative to the world system. The first rotation (angle 1 ) about the world z-axis 

rotates the bar from its position along the positive x-axis to a position along the projection of the bar on the 

xy plane. The second rotation (angle 2 ) about the bar’s y-axis elevates the bar into its correct initial 

position. A third angle is not needed. 

 The angles 1  and 2  are illustrated in the diagrams below. The point pB  represents the projection of 

point B onto the xy plane. These angles may be calculated as follows 

 
       1 1

1

6180 180 6
2 2

180 tan 180 tan

108.435 (deg)

a
a         

    



  
       1 1

2

3180 180 3
7 7

sin sin

25.3769 (deg)

a
a      

 

 

 



Copyright © James W. Kamman, 2017  Volume I – Unit 10: page 43/51 

 

Note that angle 2  must be negative to elevate the bar above the plane. See the formulae in the “Orientation 

Vector box” of the Orientation tab. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Body block: Slider (Collar) at B 

 The “Position” and “Orientation” tabs of the dialog box for the body block of the slider at B are shown 

below. The mass of the slider is 1 (kg) and its inertia matrix is consistent with that of a slender bar. 

Coordinate system CS1 of the slider is collocated with the adjoining coordinate system CS2 of bar AB, and 

the coordinate system CG is collocated with CS1. The slider coordinate systems CS2-CS5 define a simple 

rectangular shape. 

 

 

 

 

 

 

 

 

 

 



Copyright © James W. Kamman, 2017  Volume I – Unit 10: page 44/51 

 

 The orientation of all the coordinate systems of the slider are initially 

aligned with the world coordinate system, except CS1. CS1 is rotated 

relative to the world system about the world’s y-axis, so the z-axis of CS1 

is perpendicular to plane AEB and initially aligned with the axis of the 

revolute joint between the bar and the slider. See the diagram to the right. 

The angle B  in the diagram represents the angle through which CS1 must 

be rotated. As shown in the dialog box, B  may be calculated as 

        1 13180 180 3
2 2

tan tan 56.3099 (deg)B

a
a       

Revolute Joint: Connecting Bar AB to Slider (Collar) 

 The dialog box for the revolute joint that connects bar 

AB to the slider is shown in the panel to the right. The 

base is coordinate system CS2 of the bar, and the 

follower is coordinate system CS1 on the slider. Note the 

joint is specified (at the bottom of the box) as a revolute 

joint about the z-axis of the follower. As indicated above, 

the z-axis of the slider (follower) has been initially 

oriented perpendicular to plane AEB. As the system 

moves away from the initial configuration, the axis of the 

revolute joint will remain perpendicular to plane AEB. 

Cylindrical Joint: Connecting Slider (Collar) to Ground 

 The dialog box for the cylindrical joint that connects 

the slider to the fixed bar is shown in the panel to the right. 

The base of the joint is coordinate system CS2 of the fixed 

bar located at world coordinates [0,6 ,3 ]a a , and the 

follower is the CG coordinate system of the slider. This 

joint has two primitive actions, one prismatic and one 

revolute. The prismatic primitive allows translation and 

the revolute primitive allows rotation of the slider about 

the world coordinate system’s y-axis. The coordinates of 

CS2 of the fixed bar are specified in its dialog box. 

 



Copyright © James W. Kamman, 2017  Volume I – Unit 10: page 45/51 

 

Body block: Fixed Bar 

 The dialog box for the fixed bar that 

the slider moves along is shown to the 

right. Coordinate systems CS1 and CS3 

mark the ends of the bar at [0,0,3 ]a  and 

[0,10 ,3 ]a a  in the world coordinate 

system, and coordinate system CG is 

located at the midpoint of the bar. 

Coordinate system CS2 is located at the 

cylindrical joint between bar AB and the 

slider in the initial position. 

 Clearly, the fixed bar is parallel to the y-axis of the world coordinate system. Not shown here is the 

“Visualization” tab which indicates the locations of the body’s coordinate systems will be used to define the 

bar’s geometry. 

Crank Motion Subsystems: 

 The crank motion subsystems are very similar to those presented in Example 4. The subsystem that 

specifies the motion of the crank is connected to an actuator block, and the subsystem that measures the 

motion is connected to a sensor block. The measurement subsystem provides verification to the user that 

the motion specified is correctly implemented. 

Bar AB Measurement Subsystem: 

 The measurement subsystem for bar AB and the dialog box for the body sensor are shown in the panels 

below. In this case, the body sensor is used to measure the angular velocity and angular acceleration of the 

bar. As the dialog box indicates, the components of the vectors are resolved in the directions of the world 

coordinate system. The drop down box in the Measurements section of the dialog box also allows the user 

to resolve the vector components in the directions of the local body coordinate system. 

 The subsystem splits each of the vectors into components and plots their time histories. The “History” 

tabs on “Parameters” menu of the scopes indicate that these signals are also sent to the MATLAB 

workspace using a structure with the associated time values. The name of the angular velocity structure is 

“barAngularVelocity” and the name of the angular acceleration structure is “barAngularAcceleration”. 

 

 

 



Copyright © James W. Kamman, 2017  Volume I – Unit 10: page 46/51 

 

 

 

 

 

 

 

 

 

 

 

Cylindrical Joint Measurement Subsystem: 

 The measurement subsystem for the cylindrical joint and the dialog box for the joint sensor are shown 

in the panels below. In this case, the sensor is used to measure the velocity and acceleration of the slider 

along the joint axis. Using the dialog box, the user can measure results associated with either the “P1” 

(translational) or “R1” (rotational) primitives associated with the joint. In this case the dialog box indicates 

the sensor is connected to the translational primitive and is measuring the velocity and acceleration of the 

slider along the joint axis. 

 The “History” tabs on “Parameters” menu of the scopes indicate that these signals are also sent to the 

MATLAB workspace using a structure with the associated time values. The name of the velocity structure is 

“sliderVelocity” and the name of the acceleration structure is “sliderAcceleration”. 

 

 

 

 

 

 

 

 

 

 

 

 

 



Copyright © James W. Kamman, 2017  Volume I – Unit 10: page 47/51 

 

Results:  

 When the MATLAB script is executed, model input variables are defined, the SimMechanics model 

executed, SimMechanics results are plotted in Figures 1-7, analytical results are calculated at 0t   and 

displayed in the MATLAB command window, and finally, analytical results are calculated for 0t   and 

plotted in Figures 8-11. When the SimMechanics model is executed, an animation window opens to display 

the system in motion.  

 A snapshot of the animation of the system at 1.29 (sec)t   is shown below. As previously noted, the 

slider is depicted as a rectangle for animation purposes. Using this approach clearly shows that the slider 

rotates and translates along the y-direction as the crank rotates. This rotational motion could be measured 

by connecting a sensor to the “R1” primitive of the cylindrical joint. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SimMechanics Model Results: 

 The script generates eleven plot figures as it executes. Figures 1-3 are used to verify that the angular 

motion of the crank has been correctly calculated and are not shown here. Figures 4-5 show the world 

components of the angular velocity and angular acceleration of bar AB and are shown in the first set of 

plots below. The velocity and acceleration of the slider are plotted in Figures 6-7 and are shown in the 

second set of plots. Data cursors have been used to show values at 1 (sec)t  .  

 Results generated using the analytical equations from Unit 8 are plotted in Figures 8-11. The results 

(not shown here) are found to be identical to those generated by SimMechanics. 



Copyright © James W. Kamman, 2017  Volume I – Unit 10: page 48/51 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

Increasing the Quality of the Animation: 

 As presented above, the body geometry of the disk was determined using an “Equivalent ellipsoid from 

the mass properties”, and the body geometries of the arm, slider, and fixed arm were determined by the 

locations of the body coordinate systems as indicated on the “Visualization” tabs of the body dialog boxes. 

As in Example 4, the animation results for this example can be improved using external stereolithographic 

files to provide the geometries of the bodies. 

 Three improved animation windows are shown below. The figure on the top left shows the position of 

the system from a prospective like that shown above for the previous model. The other two figures each 

show the position of the system from a prospective that more clearly shows the nature of the revolute joint 

between the bar and the slider. Note that a third angle was used to orient bar AB so the fork would be 

aligned to accept the slider. 



Copyright © James W. Kamman, 2017  Volume I – Unit 10: page 49/51 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

  



Copyright © James W. Kamman, 2017  Volume I – Unit 10: page 50/51 

 

Exercises: 

10.1 Write a MATLAB script to convert a 2-3-1 body-fixed orientation angle sequence to an equivalent set 

of Euler parameters. Check your results as in Example 1. You can make use of the scripts provided 

above or you can write your own.  

10.2 Write a MATLAB script to calculate the velocity and 

acceleration of point A at a series of times starting in the 

position shown with 0  . Resolve the components of the 

two vectors in the disk-fixed system. At 0t   the coordinate 

systems of all the bodies are aligned, and all relative angular 

accelerations are constant. Use the following data: 

  0.5 (m)L    0.25 (m)r    

  
2

2 3 (rad/s ) constant     
2( 0) 2 (rad/s)t     

  
2

1 4 (rad/s ) constant     
1( 0) 3 (rad/s)t     

  
2

3 5 (rad/s ) constant     
3( 0) 4 (rad/s)t    

 Plot the disk-fixed components of 
R

D , 
R

D , 
R

Av , and 
R

Aa  for 0 3 (sec)t  . 

10.3 Develop a Simulink model to calculate the motion for the system of Exercise 10.2. Plot your results 

and compare them with the script results from Exercise 10.2. Use a script to define the necessary 

variables, run the Simulink model, and plot the results. 

10.4 Develop a SimMechanics model to calculate the motion for the system of Exercise 10.2. Use a column 

length of 1.5 (m)  and attach the arm two-thirds of the way up the column. Plot your results and 

compare them with the script results from Exercise 10.2 and the Simulink results from Exercise 10.3. 

Use a script to define the necessary variables, run the SimMechanics model, and plot the results. 

10.5 The system shown consists of bar AB whose 

ends are connected to collars that slide along 

the two fixed poles. The collar at B can only 

translate along the horizontal bar (prismatic 

joint), while the collar at A can both translate 

and rotate relative to the vertical bar 

(cylindrical joint). The bar is connected to the 

collar at B using a ball and socket joint, and it 

is connected to the collar at A using a pin 

joint. Neglect the size of the collars. Use the 

following data: 

  0.3 (m)a    0.6 (m)b    0.2 (m)c    ( ) 0.1sin (2 ) (m)u t t   

 Write a script to calculate 
R

AB , 
R

AB , 
R

Bv , 
R

Ba . Plot the results for 0 2 (sec)t  . 

Note the pin (revolute) joint 

at A allows rotation of the 

bar relative to the collar in 

the direction of . 



Copyright © James W. Kamman, 2017  Volume I – Unit 10: page 51/51 

 

10.6 Develop a Simulink model for the same calculations. Plot your results and compare them with the 

script results from Exercise 10.5. Use a script to define the necessary variables, run the Simulink 

model, and plot the results. 

10.7 Develop a SimMechanics model for the same calculations. Plot your results and compare them with 

the script results from Exercise 10.5 and the Simulink results from Exercise 10.6. Use a script to 

define the necessary variables, run the SimMechanics model, and plot the results.  

References: 

1. H. Baruh, Analytical Dynamics, McGraw-Hill, 1999 

2. T.R. Kane, P.W. Likins, and D.A. Levinson, Spacecraft Dynamics, McGraw-Hill, 1983 

3. T.R. Kane and D.A. Levinson, Dynamics: Theory and Application, McGraw-Hill, 1985 

4. R.L. Huston, Multibody Dynamics, Butterworth-Heinemann, 1990 

5. H. Josephs and R.L. Huston, Dynamics of Mechanical Systems, CRC Press, 2002 

6. R.C. Hibbeler, Engineering Mechanics: Dynamics, 13th Ed., Pearson Prentice Hall, 2013 

7. J.L. Meriam and L.G. Craig, Engineering Mechanics: Dynamics, 3rd Ed, 1992 

 


