An Introduction to Three-Dimensional, Rigid Body Dynamics

James W. Kamman, PhD

Volume I: Kinematics

Unit 10

Introduction to Modeling Mechanical System Kinematics using MATLAB ${ }^{\circledR}$ Scripts, Simulink ${ }^{\circledR}$ and SimMechanics ${ }^{\circledR}$

Summary

This unit provides and introduction to modeling mechanical system kinematics using MATLAB scripts, Simulink models, and SimMechanics models. MATLAB scripts are text-based programs written in the MATLAB programming language. Simulink models are block-diagram-based programs that run in the MATLAB environment. SimMechanics models are block-diagram-based, multibody dynamics programs that run in the MATLAB/Simulink environment. MATLAB scripts can be used alone or in conjunction with Simulink and SimMechanics models.

Developing models using MATLAB scripts alone requires an analyst to write or computationally develop all the necessary equations to model the system. Many solution algorithms built into MATLAB and its toolboxes can be used to solve the equations. This is a detailed process and may be too time-intensive for the average analyst to master. Alternatively, Simulink can be used to speed-up model development by allowing the solution process to be programmed in the form of block diagrams. Like MATLAB, Simulink has many built-in algorithms to lighten the analyst's load. Because these two approaches give the analyst total control of all modeling and solution details, they provide the most flexible modeling environment. However, the amount of time and effort required to develop models using these approaches increases rapidly as the system complexity increases.

SimMechanics models are Simulink models that contain special blocks for modeling multibody dynamics. These blocks eliminate the need for analysts to develop a set of equations of motion of their own. The analyst builds a block diagram model of the system, and SimMechanics develops and solves the equations of motion. These models require less time and knowledge to develop, but they are also less flexible than those discussed above in that the analyst does not have access to the detailed equations or the solution process.

Page Count	Examples	Suggested Exercises
51	5	7

Trademarks: MATLAB and Simulink, and SimMechanics (now called Simscape Multibody) are all registered trademarks of The MathWorks, Inc. The MathWorks does not warrant the accuracy of the examples given in this volume.

MATLAB Scripts

Example 1: Conversions from Orientation Angles to Euler Parameters

This example provides a MATLAB script for computing a set of four Euler parameters associated with a 1-2-3 body-fixed sequence of orientation angles. The script consists of four separate routines, a main module and three supporting functions. See Units 5 and 6 for a description of body-fixed orientation angle sequences and Euler parameters.

The main module first sets the values of the three orientation angles and converts the angles to radians. To find the four Euler parameters associated with these angles, it calls a function to compute the transformation matrix associated with the angles, and using that transformation matrix, it then calls a second function to calculate the four Euler parameters associated with that transformation matrix.

Main module:

```
%
% with a 1-2-3 body-fixed sequence of orientation angles
    degtoRad = pi/180.0;
% Set the three angles of the 1-2-3 orientation angle sequence
    thetalDeg = 180; thetal = thetalDeg*degtoRad;
    theta2Deg = 30; theta2 = theta2Deg*degtoRad;
    theta3Deg = 20; theta3 = theta3Deg*degtoRad;
% get the coordinate transformation matrix associated with this angle sequence
    transformationMatrix = ...
        calculateTransformationMatrixFromAngles123(theta1,theta2,theta3);
% get the Euler parameters associated with the transformation matrix
    eulerParameter = ...
    calculateEulerParametersFromTransformationMatrix(transformationMatrix);
% get the transformation matrix associated with the Euler parameters
    transformationMatrixE = ...
    calculateTransformationMatrixFromEulerParameters(eulerParameter);
% Check calculate [Ra][Re'] to see how close to identity matrix
    identityCheck = transformationMatrix*(transformationMatrixE');
% display the results
    disp('The Angles:')
    disp(theta1Deg); disp(theta2Deg); disp(theta3Deg);
    disp('')
    disp('The Euler Parameters:')
    disp(eulerParameter)
    disp('The Transformation Matrix (based on the angles):')
    disp(transformationMatrix)
    disp('The Transformation Matrix (based on the Euler parameters):')
    disp(transformationMatrixE)
    disp('Identity matrix?:')
    disp(identityCheck)
```

The values of the Euler parameters are checked in a two-step process. First, a function is called to compute the transformation matrix associated with the newly-computed parameters. Then, it computes the matrix product of the original transformation matrix with the transpose of the transformation matrix associated with the Euler parameters. If the four Euler parameters are accurate, the result should be the identity matrix. Recall that these transformation matrices are orthogonal matrices so that their inverses are equal to their transposes. The results are then sent to the MATLAB command window. The angles, Euler parameters, transformation matrices and identity matrix check are all displayed. A set of sample output is shown below.

Command Window Output:

```
>> angles123toEulerParameters
Largest Euler parameter is epsilon_1
The Angles:
    180
        30
    20
The Euler Parameters:
    0.951251242564198
    -0.167731259496521
    0.254887002244179
    -0.044943455527548
The Transformation Matrix (based on the angles):
    0.813797681349374 -0.342020143325669 0.469846310392954
    -0.296198132726024 -0.939692620785908 -0.171010071662834
    0.500000000000000 -0.000000000000000 -0.866025403784439
The Transformation Matrix (based on the Euler parameters):
    0.813797681349374 -0.342020143325669 0.469846310392954
    -0.296198132726024 -0.939692620785909 -0.171010071662834
    0.500000000000000 -0.000000000000000 -0.866025403784439
Identity matrix?:
    1.000000000000000 -0.000000000000000 0.000000000000000
    0.000000000000000 1.000000000000000
    -0.000000000000000 0.000000000000000 1.000000000000000
```


Supporting Functions:

Brief descriptions of the operation of each of the three supporting functions used by the main module are given below. A detailed listing of each function follows the descriptions. To aid in understanding the calculations in each function, the following equation provides the form of the coordinate transformation matrices in terms of the 1-2-3 orientation angle sequence and in terms of the four Euler parameters as presented in Units 5 and 6.

$$
[R]=\left[\begin{array}{ccc}
C_{2} C_{3} & C_{1} S_{3}+S_{1} S_{2} C_{3} & S_{1} S_{3}-C_{1} S_{2} C_{3} \\
-C_{2} S_{3} & C_{1} C_{3}-S_{1} S_{2} S_{3} & S_{1} C_{3}+C_{1} S_{2} S_{3} \\
S_{2} & -S_{1} C_{2} & C_{1} C_{2}
\end{array}\right]=\left[\begin{array}{ccc}
\left(\varepsilon_{1}^{2}-\varepsilon_{2}^{2}-\varepsilon_{3}^{2}+\varepsilon_{4}^{2}\right) & 2\left(\varepsilon_{1} \varepsilon_{2}+\varepsilon_{3} \varepsilon_{4}\right) & 2\left(\varepsilon_{1} \varepsilon_{3}-\varepsilon_{2} \varepsilon_{4}\right) \\
2\left(\varepsilon_{1} \varepsilon_{2}-\varepsilon_{3} \varepsilon_{4}\right) & \left(-\varepsilon_{1}^{2}+\varepsilon_{2}^{2}-\varepsilon_{3}^{2}+\varepsilon_{4}^{2}\right) & 2\left(\varepsilon_{2} \varepsilon_{3}+\varepsilon_{1} \varepsilon_{4}\right) \\
2\left(\varepsilon_{1} \varepsilon_{3}+\varepsilon_{2} \varepsilon_{4}\right) & 2\left(\varepsilon_{2} \varepsilon_{3}-\varepsilon_{1} \varepsilon_{4}\right) & \left(-\varepsilon_{1}^{2}-\varepsilon_{2}^{2}+\varepsilon_{3}^{2}+\varepsilon_{4}^{2}\right)
\end{array}\right]
$$

1. calculateTransformationMatrixFromAngles123-accepts the values of three orientation angles and computes the elements of the 3×3 transformation matrix $[R]$ discussed in Unit 5 .
2. calculateEulerParametersFromTransformationMatrix - accepts the elements of a 3×3 transformation matrix and computes the four Euler parameters. The function uses an algorithm recommended by Baruh in reference 1 and presented in Unit 6 . First, the squares of the four Euler parameters are calculated. The parameter with the largest value is computed from these results and assumed to be positive. The other three parameters are computed with equations that enable their values and algebraic signs to be determined. See Unit 6 for more details.
3. calculateTransformationMatrixFromEulerParameters - accepts the values of four Euler parameters and computes the elements of the corresponding 3×3 transformation matrix $[R]$.

Function: calculateTransformationMatrixFromAngles123

```
function [transformationMatrix] = ...
    calculateTransformationMatrixFromAngles123(theta1,theta2,theta3)
%
% This function computes the coordinate transformation matrix associated
% with a 1-2-3 orientation angle sequence.
%
% Input:
% thetal, theta2, and theta3 are the three angles in radians (in order)
% Output.
% transformationMatrix
% Compute the transformation matrix
    transformationMatrix = zeros(3);
% first row
    transformationMatrix(1,1) = cos(theta2)*cos(theta3);
    transformationMatrix(1,2) = (cos(theta1)*sin(theta3)) ...
                            + (sin(theta1)*sin(theta2)*cos(theta3));
    transformationMatrix(1,3) = (sin(theta1)*sin(theta3)) ...
                            - (cos(theta1)*sin(theta2)*cos(theta3));
% second row
    transformationMatrix(2,1) = -cos(theta2)*sin(theta3);
    transformationMatrix (2,2) = (cos(theta1)*cos(theta3)) ...
                            - (sin(theta1)*sin(theta2)*sin(theta3));
    transformationMatrix (2,3) = (sin(theta1)*cos(theta3)) ...
                            +(cos(theta1)*sin(theta2)*sin(theta3));
% third row
    transformationMatrix(3,1) = sin(theta2);
    transformationMatrix(3,2) = -sin(theta1)*cos(theta2);
    transformationMatrix(3,3) = cos(theta1)*cos(theta2);
```

Function: calculateEulerParametersFromTransformationMatrix

```
function [eulerParameter] = ...
            calculateEulerParametersFromTransformationMatrix(transformationMatrix)
%
% This function calculates the Euler parameters associated with a
% specific transformation matrix
% Ref: H. Baruh, Analytical Dynamics, WCB/McGraw-Hill, 1999.
%
% Input:
% 3x3 transformationMatrix
%
% Output:
% 4 Euler paramters
%
% Initialize the Euler parameter squares array, Euler parameter array,
% and tolerance
    eulerParametersq = zeros(4,1); eulerParameter = zeros(4,1);
% calculate the squares of the Euler parameters
    eulerParametersq(1) = (transformationMatrix(1,1)-transformationMatrix(2,2) ...
    -transformationMatrix(3,3)+1.0)/4.0;
    eulerParametersq(2) = (-transformationMatrix(1,1)+transformationMatrix(2,2) ...
    -transformationMatrix(3,3)+1.0)/4.0;
    eulerParametersq(3) = (-transformationMatrix(1,1)-transformationMatrix(2,2) ...
    +transformationMatrix(3,3)+1.0)/4.0;
    eulerParametersq(4) = (transformationMatrix(1,1)+transformationMatrix(2,2) ...
                        +transformationMatrix(3,3)+1.0)/4.0;
```

\% Determine which is the largest Euler parameter
eulerMax = eulerParameter(1); iPoint = 1;
for $i=2: 4$
if (eulerParameter(i) > eulerMax)
eulerMax = eulerParameter(i);
iPoint = i;
end
end
\% Find the other Euler parameters based on the largest parameter
if (iPoint == 1)
eulerParameter(1) = sqrt(abs(eulerParametersq(1)));
eulerParameter (2) = (transformationMatrix(1,2) + ...
transformationMatrix $(2,1)) /(4.0 * e u l e r P a r a m e t e r(1))$;
eulerParameter (3) = (transformationMatrix(1,3) + ...
transformationMatrix(3,1))/(4.0*eulerParameter(1));
eulerParameter $(4)=$ (transformationMatrix $(2,3)-\ldots$
transformationMatrix (3,2))/(4.0*eulerParameter(1));
end
if (iPoint == 2)
eulerParameter(2) = sqrt(abs(eulerParametersq(2)));
eulerParameter $(1)=$ (transformationMatrix $(1,2)+\ldots$
transformationMatrix $(2,1)) /(4.0 * e u l e r P a r a m e t e r(2))$;
eulerParameter (3) $=$ (transformationMatrix $(2,3)+\ldots$
transformationMatrix $(3,2)) /(4.0 * e u l e r P a r a m e t e r(2))$;
eulerParameter $(4)=($ transformationMatrix $(3,1)-\ldots$
transformationMatrix $(1,3)) /(4.0 * e u l e r P a r a m e t e r(2))$;
end
\vdots

Function: calculateEulerParametersFromTransformationMatrix (continued)

Function: calculateTransformationMatrixFromEulerParameters

```
function [transformationMatrix] = ...
    calculateTransformationMatrixFromEulerParameters(eulerParameter)
%
    This function calculates the coordinate transformation matrix
    associated with a set of 4 Euler parameters
    Input:
    4x1 Euler Parameter array (epsilon1,epsilon2,epsilon3,epsilon4)
    Output:
% 3x3 coordinate transformation matrix
% Initialize the transformation matrix
    transformationMatrix=zeros(3);
% calculate the transformation matrix associated with the Euler parameters
% first row
    transformationMatrix(1,1) = (eulerParameter(1)^2) - (eulerParameter(2)^2) ...
    - (eulerParameter(3)^2) + (eulerParameter(4)^2);
    transformationMatrix(1,2) = 2.0*((eulerParameter(1)*eulerParameter(2)) + ...
                            (eulerParameter(3)*eulerParameter(4)));
    transformationMatrix(1,3) = 2.0*((eulerParameter(1)*eulerParameter(3)) - ...
                            (eulerParameter(2)*eulerParameter(4)));
% second row
    transformationMatrix(2,1) = 2.0*((eulerParameter(1)*eulerParameter(2)) - ...
                            (eulerParameter(3)*eulerParameter(4)));
    transformationMatrix(2,2) = - (eulerParameter(1)^2) + (eulerParameter(2)^2) ...
    - (eulerParameter(3)^2) + (eulerParameter(4)^2);
    transformationMatrix(2,3) = 2.0*((eulerParameter(2)*eulerParameter(3)) + ...
        (eulerParameter(1)*eulerParameter(4)));
                        \vdots
```

```
% third row
transformationMatrix(3,1) = 2.0*((eulerParameter(1)*eulerParameter(3)) + ...
    (eulerParameter(2) *eulerParameter(4)));
transformationMatrix(3,2) = 2.0*((eulerParameter(2)*eulerParameter(3)) - ...
    (eulerParameter(1)*eulerParameter(4)));
transformationMatrix (3,3) = - (eulerParameter(1)^2) - (eulerParameter(2)^2) ...
    + (eulerParameter(3)^2) + (eulerParameter(4)^2);
```


Example 2:

The system shown consists of two connected bodies the frame F and the disk D. Frame F rotates at a rate of $\Omega(\mathrm{rad} / \mathrm{s})$ about the fixed vertical direction annotated by the unit vector $\underset{\sim}{k}$. Disk D is affixed to and rotates relative to F at a rate of $\omega(\mathrm{rad} / \mathrm{s})$ about the horizontal arm of F which is annotated by the rotating unit vector e_{2}.

Equations were developed in each of Units 2, 3, and 4 for the velocity and acceleration of point P on the periphery of D as shown. The following kinematic results were generated and expressed in frame F

$$
\begin{aligned}
& { }^{R}{\underset{\sim}{D}}_{D}=\omega \underset{\sim}{e}+\Omega \underset{\sim}{k} \quad{ }^{R} \underset{\sim}{\alpha} \underset{D}{ }=-\omega \Omega \underset{\sim}{e}+\dot{\omega} \underset{\sim}{e}+\dot{\Omega} \underset{\sim}{k} \\
& { }^{R}{\underset{\sim}{V}}_{P}=\left(a \omega S_{\theta}-\ell \Omega\right) \underset{\sim}{e}-\left(a \Omega C_{\theta}\right){\underset{\sim}{e}}_{2}+\left(a \omega C_{\theta}\right) \underset{\sim}{k} \\
& { }^{R} \underset{\sim}{P}{ }_{P}=\left[a \dot{\omega} S_{\theta}-\ell \dot{\Omega}+a C_{\theta}\left(\omega^{2}+\Omega^{2}\right)\right] \underset{\sim}{e}+\left[-a \dot{\Omega} C_{\theta}+2 a \omega \Omega S_{\theta}-\ell \Omega^{2}\right] \underset{\sim}{e}+\left[a \dot{\omega} C_{\theta}-a \omega^{2} S_{\theta}\right] \underset{\sim}{k}
\end{aligned}
$$

These results can also easily be expressed in the frame $D:\left(\underset{\sim}{n}, \underset{\sim}{2},{\underset{\sim}{3}}^{\underset{\sim}{n}}\right)$ by noting that $\underset{\sim}{k}=-S_{\theta} \underset{\sim}{n}+C_{\theta} \underset{\sim}{n}$ and $\underset{\sim}{e}=C_{\theta} \underset{\sim}{n}+S_{\theta} \underset{\sim}{n}$. Making these substitutions and collecting terms gives the representations of these vectors in the frame D.

$$
\begin{aligned}
& { }^{R}{\underset{\sim}{v}}_{P}=\left(-\ell \Omega C_{\theta}\right){\underset{\sim}{n}}_{1}-\left(a \Omega C_{\theta}\right) \underset{\sim}{e}+\left(a \omega-\ell \Omega S_{\theta}\right){\underset{\sim}{n}}_{3} \\
& { }^{R} \underset{\sim}{\underset{\sim}{P}}=\left[-\ell \dot{\Omega} C_{\theta}+a C_{\theta}^{2}\left(\omega^{2}+\Omega^{2}\right)+a \omega^{2} S_{\theta}^{2}\right] \underset{\sim}{n}+\left[-a \dot{\Omega} C_{\theta}+2 a \omega \Omega S_{\theta}-\ell \Omega^{2}\right]{\underset{\sim}{e}}_{2}+ \\
& {\left[a \dot{\omega}-\ell \dot{\Omega} S_{\theta}+a C_{\theta} S_{\theta} \Omega^{2}\right]{\underset{\sim}{n}}_{3}}
\end{aligned}
$$

These equations can be used in a MATLAB script to find components of the angular velocity and angular acceleration of disk D and the velocity and acceleration of point P at a series of times throughout the motion of the system. To illustrate this process, the following data is used

Variable	Value	Variable	Value
ℓ	$0.5(\mathrm{~m})$	$\dot{\omega}=\ddot{\theta}$	$2\left(\mathrm{rad} / \mathrm{s}^{2}\right) \ldots$ constant
a	$0.25(\mathrm{~m})$	$\dot{\Omega}=\ddot{\phi}$	$3\left(\mathrm{rad} / \mathrm{s}^{2}\right) \ldots$ constant

Note that the relative angular accelerations ($\dot{\omega}$ and $\dot{\Omega}$) are constant, and the initial values of the corresponding relative angular velocities $(\omega$ and $\Omega)$ and relative angles $(\theta$ and $\phi)$ are taken to be zero.

Using these values, the values of ω, Ω, θ, and ϕ can be calculated at any time as follows.

$$
\omega(t)=2 t(\mathrm{rad} / \mathrm{s}) \quad \Omega(t)=3 t(\mathrm{rad} / \mathrm{s}) \quad \theta(t)=t^{2}(\mathrm{rad}) \quad \phi(t)=\frac{3}{2} t^{2}(\mathrm{rad})
$$

Specifically, at $t=2(\mathrm{sec})$:

$$
\begin{aligned}
{ }^{R}{\underset{\sim}{v}}_{P} & =\left(-\ell \Omega C_{\theta}\right) \underset{\sim}{n}-\left(a \Omega C_{\theta}\right){\underset{\sim}{2}}^{e}+\left(a \omega-\ell \Omega S_{\theta}\right){\underset{\sim}{n}}_{3} \\
& =\left(-\frac{3}{2} t \cos \left(t^{2}\right)\right) \underset{\sim}{n}-\left(\frac{3}{4} t \cos \left(t^{2}\right)\right) \underset{\sim}{e}+\left(\frac{1}{2} t-\frac{3}{2} t \sin \left(t^{2}\right)\right){\underset{\sim}{n}}_{3} \\
& =1.961{\underset{\sim}{n}}^{n}+0.9805{\underset{\sim}{e}}_{2}+3.270{\underset{\sim}{n}}_{3}(\mathrm{~m} / \mathrm{s})
\end{aligned}
$$

$$
{ }^{R}{\underset{\sim}{P}}_{P}=\left[-\ell \dot{\Omega} C_{\theta}+a C_{\theta}^{2}\left(\omega^{2}+\Omega^{2}\right)+a \omega^{2} S_{\theta}^{2}\right] \underset{\sim}{n}+\left[-a \dot{\Omega} C_{\theta}+2 a \omega \Omega S_{\theta}-\ell \Omega^{2}\right] \underset{\sim}{e}+
$$

$$
\left[a \dot{\omega}-\ell \dot{\Omega} S_{\theta}+a C_{\theta} S_{\theta} \Omega^{2}\right] \underset{\sim}{n}
$$

$$
=\left[-\frac{3}{2} \cos \left(t^{2}\right)+\frac{1}{4} \cos ^{2}\left(t^{2}\right)\left(4 t^{2}+9 t^{2}\right)+t^{2} \sin ^{2}\left(t^{2}\right)\right] \underset{\sim}{n}+\left[-\frac{3}{4} \cos \left(t^{2}\right)+3 t^{2} \sin \left(t^{2}\right)-\frac{9}{2} t^{2}\right] \underset{\sim}{e}
$$

$$
+\left[\frac{1}{2}-\frac{3}{2} \sin \left(t^{2}\right)+\frac{9}{4} t^{2} \sin \left(t^{2}\right) \cos \left(t^{2}\right)\right] \underset{\sim}{n}
$$

$$
=8.826 \underset{\sim}{n} n_{1}-26.59{\underset{\sim}{e}}_{2}+6.087{\underset{\sim}{n}}_{3}\left(\mathrm{~m} / \mathrm{s}^{2}\right)
$$

These results can be generated over an interval of time using a MATLAB script. An example script is shown below in a series of three panels. The first panel contains the first two sections of the script. The first section describes what the script calculates and plots. The second section initializes the variables and arrays necessary for the calculations that follow. The physical data and input motions are as described above.

$$
\begin{aligned}
& =4.541 \underset{\sim}{n}{\underset{\sim}{1}}+4 \underset{\sim}{e}-3.922 \underset{\sim}{n} n_{3}(\mathrm{rad} / \mathrm{s}) \\
& { }^{R}{\underset{\sim}{\alpha}}_{D}=-\left(\omega \Omega C_{\theta}+\dot{\Omega} S_{\theta}\right) \underset{\sim}{n}+\dot{\omega}{\underset{\sim}{e}}_{2}+\left(\dot{\Omega} C_{\theta}-\omega \Omega S_{\theta}\right){\underset{\sim}{n}}_{3} \\
& =-\left(6 t^{2} \cos \left(t^{2}\right)+3 \sin \left(t^{2}\right)\right){\underset{\sim}{1}}_{n}^{n}+2 \underset{\sim}{e}+\left(3 \cos \left(t^{2}\right)-6 t^{2} \sin \left(t^{2}\right)\right){\underset{\sim}{\sim}}_{3} \\
& =17.96 \underset{\sim}{n_{1}}+2 \underset{\sim}{e}+16.20{\underset{\sim}{n}}_{3}\left(\mathrm{rad} / \mathrm{s}^{2}\right)
\end{aligned}
$$

Script - Panel 1: (functional description and initialization of variables and arrays)

```
%% Unit 10 Example 2: Relative velocity and acceleration
% This script calculates the velocity and acceleration of point P fixed
% on the edge of disk D relative to ground (R). Results are expressed
% in frame D.
%
% The following results are plotted over the time vector:
% Figure 1: Angular Velocity of D in R - Components in Frame D
% Figure 2: Angular Acceleration of D in R - Components in Frame D
% Figure 3: Velocity Components of Point P in R expressed in Frame D
% Figure 4: Acceleration Components of Point P in R expressed in Frame D
%% Initialize variables
    armLength = 0.5; % length of arm F in meters
    diskRadius = 0.25; % radius of disk D in meters
    omegaDot = 2.0; % angular acceleration of D in F in rad/s^2
    capOmegaDot = 3.0; % angular acceleration of F in R in rad/s^2
    omegaInitial = 0.0; % initial angular velocity of D in F in rad/s
    capOmegaInitial = 0.0; % initial angular velocity of F in R in rad/s
    thetaInitial = 0.0; % initial angle of D in radians
    phiInitial = 0.0; % initial angle of F in radians
    time = 0:0.01:4.0; % time vector
    numberoftimes = length(time); % length of time vector
% array initializations
    capOmega = zeros(numberoftimes,1); omega = zeros(numberoftimes,1);
    phi = zeros(numberoftimes,1); theta = zeros (numberoftimes,1);
    omegaDinR = zeros(numberoftimes,3); alphaDinR = zeros(numberoftimes,3);
    vn = zeros(numberoftimes,3); an = zeros (numberoftimes,3);
```

 :
 The second panel contains the third section of the script that calculates the disk-fixed components of the angular velocity and angular acceleration of the disk D and the velocity and acceleration of point P. The results are calculated on a time window from $0 \rightarrow 4(\mathrm{sec})$ in steps of $0.01(\mathrm{sec})$ using a "for-loop". The angular velocity and angular acceleration are expressed directly in the disk frame (D), whereas, the velocity and acceleration of P are first expressed in the frame F and then transformed into the frame D. (Note that these latter calculations could have been done directly in frame D.) The results are stored in arrays whose contents are plotted in the fourth (and final) section.

The third panel contains the fourth section of the script. It contains the statements necessary to create four figures, each having three subplots. The values of the $\underset{\sim}{n}{ }_{1}, \underset{\sim}{n} \underset{2}{n}$, and $\underset{\sim}{n} \underset{3}{ }$ components of each vector are
presented in the three subplots of that figure. Each figure has a title and each subplot has a grid and a label on each axis.

Script - Panel 2: (calculation of results using a "for-loop")

```
                                    \vdots
%% Calculate the velocity and acceleration of point P (see diagram in Unit 10)
for i = 1:numberoftimes
% Assuming constant relative angular accelerations
    capOmega(i) = capOmegaInitial + (capOmegaDot*time(i));
    phi(i) = phiInitial + (capOmegaInitial*time(i)) + ...
                        (0.5*capOmegaDot*(time(i)^2));
    omega(i) = omegaInitial + (omegaDot*time(i));
    theta(i) = thetaInitial + (omegaInitial*time(i)) + ...
                        (0.5*omegaDot*(time(i)^2));
    cosTheta = cos(theta(i)); sinTheta = sin(theta(i));
% angular velocity of D in R - components in frame D
    omegaDinR(i,1) = -capOmega(i)*sinTheta;
    omegaDinR(i,2) = omega(i);
    omegaDinR(i,3) = capOmega(i)*cosTheta;
% angular acceleration of D in R - components in frame D
    alphaDinR(i,1) = (-omega(i)*capOmega(i)*cosTheta) - (capOmegaDot*sinTheta);
    alphaDinR(i,2) = omegaDot;
    alphaDinR(i,3) = (-omega(i)*capOmega(i)*sinTheta) + (capOmegaDot*cosTheta);
% velocity components in frame F
    ve1 = (diskRadius*omega(i)*sinTheta) - (armLength*capOmega(i));
    ve2 = -diskRadius*capOmega(i)*cosTheta;
    ve3 = diskRadius*omega(i)*cosTheta;
% velocity components in disk frame D
    vn(i,1) = (ve1*cosTheta) - (ve3*sinTheta);
    vn(i,2) = ve2;
    vn(i,3) = (ve1*sinTheta) + (ve3*cosTheta);
% acceleration components in frame F
    ae1 = (diskRadius*omegaDot*sinTheta) - (armLength*capOmegaDot) + ...
        (diskRadius*cosTheta*((omega(i)^2) + (capOmega(i)^2)));
    ae2 = (-diskRadius*capOmegaDot*cosTheta) - (armLength*(capOmega(i)^2)) + ...
        (2.0*diskRadius*omega(i)*capOmega(i)*sinTheta);
    ae3 = diskRadius*((omegaDot*cosTheta) - ((omega(i)^2)*sinTheta));
% acceleration components in disk frame D
    an(i,1) = (ae1*cosTheta) - (ae3*sinTheta);
    an(i,2) = ae2;
    an(i,3) = (ae1*sinTheta) + (ae3*cosTheta);
end
                                    \vdots
```

Script - Panel 3: (Plotting of results in four figure windows)

```
:
%% Plot the results
figure(1); clf;
subplot(3,1,1); plot(time,omegaDinR(:,1),'b-'); grid on;
xlabel('time(sec)'), ylabel('omegaDinR_1 (rad/s)');
title('Angular Velocity of D in R - Components in Frame D');
subplot(3,1,2); plot(time,omegaDinR(:,2),'b-'); grid on;
xlabel('time(sec)'), ylabel('omegaDinR_2 (rad/s)');
subplot(3,1,3); plot(time,omegaDinR(:,3),'b-'); grid on;
xlabel('time(sec)'), ylabel('omegaDinR_3 (rad/s)');
figure(2); clf;
subplot(3,1,1); plot(time,alphaDinR(:,1),'b-'); grid on;
xlabel('time(sec)'), ylabel('alphaDinR_1 (rad/s^2)');
title('Angular Acceleration of D in R - Components in Frame D');
subplot(3,1,2); plot(time,alphaDinR(:,2),'b-'); grid on;
xlabel('time(sec)'), ylabel('alphaDinR_2 (rad/s^2)');
subplot(3,1,3); plot(time,alphaDinR(:,3),'b-'); grid on;
xlabel('time(sec)'), ylabel('alphaDinR_3 (rad/s^2)');
figure(3); clf;
subplot(3,1,1); plot(time,vn(:,1),'b-'); grid on;
xlabel('time(sec)'), ylabel('v_1 (m/s)');
title('Velocity Components of Point P in R expressed in Frame D');
subplot(3,1,2); plot(time,vn(:,2),'b-'); grid on;
xlabel('time(sec)'), ylabel('v_2 (m/s)');
subplot(3,1,3); plot(time,vn(:,3),'b-'); grid on;
xlabel('time(sec)'), ylabel('v_3 (m/s)');
figure(4); clf;
subplot(3,1,1); plot(time,an(:,1),'b-'); grid on;
xlabel('time(sec)'), ylabel('a_1 (m/s^2)');
title('Acceleration Components of Point P in R expressed in Frame D');
subplot(3,1,2); plot(time,an(:,2),'b-'); grid on;
xlabel('time(sec)'), ylabel('a_2 (m/s^2)');
subplot(3,1,3); plot(time,an(:,3),'b-'); grid on;
xlabel('time(sec)'), ylabel('a_3 (m/s^2)');
```

The results generated by the script are shown in the following four figures. The results at $t=2(\mathrm{sec})$ are highlighted using the "data cursor" or "datatip" feature available in the figure window generated by MATLAB. Note that the highlighted results are the same as those presented above.

Figure 1. Angular Velocity of D in R - Components in Frame D

Figure 2. Angular Acceleration of D in R - Components in Frame D

Figure 3. Velocity Components of Point P in R expressed in Frame D

Figure 4. Acceleration Components of Point P in R expressed in Frame D

Simulink Modeling

Example 3:

In this example, the system of Example 2 is modeled using a MATLAB script in conjunction with a Simulink model. As before, the column (frame, F) is driven relative to the ground and the disk (D) is driven relative to the column at constant angular accelerations. Values of the lengths ℓ and a and the relative angular accelerations $\dot{\Omega}$ and $\dot{\omega}$ are as provided in Example 2.

The MATLAB script has four sections and is shown below in two panels. The first panel shows the first three sections of the script. As in Example 2, the first section of the script provides a functional description of the model, and the second section initializes variables used by the model. In this case, however, the calculations are performed in Simulink rather than in a MATLAB script. The third section of the script uses the "sim" statement to execute the Simulink model.

Script - Panel 1: (functional description, initialization of variables, execution of Simulink model)

```
%% Script for the Simulink model:
% UnitlOTwoBodyRelativeVelocityAccelerationExample03
This script sets values for the Simulink model of Unit 10, Example 3 a two-body
system with applied motions and then executes the model.
The model calculates the angular velocity and angular acceleration of the disk D
and the velocity and acceleration of point P. The components are resolved in the
disk frame.
%% Give values to the required variables
    armLength = 0.5; % (m)
    diskRadius = 0.25; % (m)
    omegaDot = 2.0; % (r/s s^2) ...constant
    omegaInitial = 0.0; % (r/s)
    thetaInitial = 0.0; % (rad)
    capOmegaDot = 3.0; % (r/s^2) ... constant
capOmegaInitial = 0.0; % (r/s)
phiInitial = 0.0; % (rad)
%% Execute the Simulink model
    sim('Unit10TwoBodyKinematicsExample03');
        :
```

The final section of the script simply plots the results generated by the Simulink code. The output for each of the vectors, ${ }^{R}{\underset{\sim}{D}}_{D},{ }^{R}{\underset{\sim}{\alpha}}_{D},{ }^{R}{\underset{\sim}{v}}_{P}$, and ${ }^{R}{\underset{\sim}{P}}^{p}$ are stored in the MATLAB workspace as $N \times 4$ arrays. The first column of each array holds the time values, and the last three columns hold the values of the $\underset{\sim}{n}, \underset{\sim}{n}$, and $\underset{\sim}{n}$ components of the vectors. Here, N represents the number of time values in the simulation. As with the script for Example 3, the results are presented in four figures, each containing plots of the three components of the vector over time.
$\underline{\text { Script - Panel 2: }}$ (Plotting of results in four figure windows)

```
%% Plot the results
figure(1); clf;
subplot(3,1,1); plot(omegaDinR(:,1),omegaDinR(:,2),'b-'); grid on;
xlabel('time(sec)'), ylabel('omegaDinR_1 (rad/s)');
title('Angular Velocity of D in R - Components in Frame D');
subplot(3,1,2); plot(omegaDinR(:,1),omegaDinR(:,3),'b-'); grid on;
xlabel('time(sec)'), ylabel('omegaDinR_2 (rad/s)');
subplot(3,1,3); plot(omegaDinR(:,1),omegaDinR(:,4),'b-'); grid on;
xlabel('time(sec)'), ylabel('omegaDinR_3 (rad/s)');
figure(2); clf;
subplot(3,1,1); plot(alphaDinR(:,1),alphaDinR(:,2),'b-'); grid on;
xlabel('time(sec)'), ylabel('alphaDinR_1 (rad/s^2)');
title('Angular Acceleration of D in R - Components in Frame D');
subplot(3,1,2); plot(alphaDinR(:,1),alphaDinR(:,3),'b-'); grid on;
xlabel('time(sec)'), ylabel('alphaDinR_2 (rad/s^2)');
subplot(3,1,3); plot(alphaDinR(:,1),alphaDinR(:,4),'b-'); grid on;
xlabel('time(sec)'), ylabel('alphaDinR_3 (rad/s^2)');
figure(3); clf;
subplot(3,1,1); plot(vn(:,1),vn(:,2),'b-'); grid on;
xlabel('time(sec)'), ylabel('v_1 (m/s)');
title('Velocity Components of P
subplot(3,1,2); plot(vn(:,1),vn(:,3),'b-'); grid on;
xlabel('time(sec)'), ylabel('v_2 (m/s)');
subplot(3,1,3); plot(vn(:,1),vn(:,4),'b-'); grid on;
xlabel('time(sec)'), ylabel('v_3 (m/s)');
figure(4); clf;
subplot(3,1,1); plot(an(:,1),an(:,2),'b-'); grid on;
xlabel('time(sec)'), ylabel('a_1 (m/s^2)');
title('Acceleration Components of Point P in R expressed in Frame D');
subplot(3,1,2); plot(an(:,1),an(:,3),'b-'); grid on;
xlabel('time(sec)'), ylabel('a_2 (m/s^2)');
subplot(3,1,3); plot(an(:,1),an(:,4),'b-'); grid on;
xlabel('time(sec)'), ylabel('a_3 (m/s^2)');
```


Simulink Model - Top Layer:

The top layer of the Simulink model shows the overall operation of the model and is shown in the panel below. The subsystem on the left side of the diagram generates values for the motion variables $-\phi$, $\Omega(=\dot{\phi}), \dot{\Omega}, \theta, \omega(=\dot{\theta})$, and $\dot{\omega}$. Some or all of these variables are then passed to the subsystems that calculate the values of the disk-fixed components of the vectors ${ }^{R}{\underset{\sim}{\omega}}_{D},{\underset{\sim}{x}}_{P},{ }^{R}{\underset{\sim}{\alpha}}_{D}$, and ${ }^{R}{\underset{\sim}{a}}_{P}$. The values of these variables are plotted and then stored in the MATLAB workspace using Simulink scopes. The History tab of the Parameters menu of each scope determines the variable name and format to be used. The window shown below for the angular velocity scope indicates that an array with the name "omegaDinR" will be generated. This array will be an $N \times 4$ array with N indicating the number of time values (maximum number of times is set to 5000 - the last 5000 calculated). As noted earlier, the first column of this array holds the time values, and the last three columns hold the values of the vector components.

The second panel below shows the "model configuration parameters" found on the "simulation menu" of the model. The parameters shown are for the Simulink solver and indicate the simulation will run from $0 \rightarrow 4$ (sec) in fixed steps of $0.01(\mathrm{sec})$. When numerical integration is required, a fourth-order RungeKutta method is used. Note that any numerical values shown here could have been set using variables from the MATLAB script. Given these values, the arrays generated in the MATLAB workspace will be 401×4.

Simulink Model - Motion Subsystem:
The motion subsystem calculates the relative angular motions of the system assuming the relative angular accelerations $(\dot{\Omega}, \dot{\omega})$ are constant. These values are integrated once using the given initial relative angular velocities (variables "capOmegaInitial" and "omegaInitial" from the script) to calculate the relative angular velocities, and then integrated again using the given initial relative angles (variables "phiInitial" and "thetaInitial" from the script) to calculate the angles. The integrators are labeled by Simulink using the symbol " $\frac{1}{S}$ " (in reference to integrations in the Laplace domain), and the ports for the initial values are indicated by the symbol " x_{0} ". See the diagram below. Clearly, more complicated motion profiles could be generated using this process by simply expressing the relative angular accelerations themselves as functions of time.

Simulink Model - Vector Component Subsystems:

The motion subsystem generates vector inputs for each of the vector component subsystems. The angular velocity and velocity subsystems each receive a 3×1 vector containing values for θ, Ω, and ω, and the angular acceleration and acceleration subsystems each receive a 5×1 vector containing values for θ, Ω, ω, $\dot{\Omega}$, and $\dot{\omega}$ as indicated in the diagram. These values alone are sufficient to calculate the vector components of the angular velocity and angular acceleration vectors. However, values of the arm length ℓ and the disk radius a are also needed to calculate the velocity and acceleration vectors. Values for these variables are set using the MATLAB script variables "armLength" and "diskRadius". These values are appended to the vector received from the motion subsystem before the vector components are calculated. See the diagrams below. In each subsystem, the vector components are returned as 3×1 vectors.

Each of the vector components are computed using MATLAB functions. The contents of the three functions used to calculate the acceleration vector components are shown in the next panel. Based on the block diagrams, each acceleration function receives a 7×1 vector "u" containing values of $\theta, \Omega, \omega, \dot{\Omega}$, $\dot{\omega}, \ell$, and a. The functions are MATLAB scripts with input vector " u " and output vector " y ".

```
function y = fcn(u)
%#codegen
% n_1 component of the acceleration of P in R
%
y = (-u(6)*u(4)* cos(u(1))) + (u(7)*(u(3)^2)) + (u(7)*((u(2)* cos(u(1)))^2));
function y = fcn(u)
%#codegen
% e_2 component of the acceleration of P in R
%
y = (-u(7)*u(4)* cos(u(1))) + (2*u(7)*u(2)*u(3)*sin(u(1))) - (u(6)*(u(2)^2));
function y = fcn(u)
%#codegen
% n_3 component of the acceleration of P in R
%
y=(u(7)*u(5)) - (u(6)*u(4)*\operatorname{sin}(u(1))) + (u(7)*(u(2)^2)*\operatorname{sin}(u(1))*\operatorname{cos(u(1)));}
```

The results generated by this Simulink model are identical to those generated by the MATLAB script of Example 2. As with the script, the programmer has full control over the equations used to model the system behavior. Simulink does, however, provide an alternative to script programming that some may find more intuitive. Even though this is a very simple model, it is clear from this example that Simulink provides a more visual representation of the functionality of a model than a MATLAB script. Data generation and flow within a model is made clear by the block diagram. In this regard, it is easier for someone viewing the model for the first time to understand the process the model represents.

Example 4: SimMechanics Modeling

In this example, the system of Example 2 is modeled again, this time using a MATLAB script in conjunction with a SimMechanics model. As before, the column (frame, F) is driven relative to the ground and the disk D is driven relative to the column at constant angular accelerations. Values of the lengths ℓ and a and the relative angular accelerations $\dot{\Omega}$ and $\dot{\omega}$ are as provided in Example 2.

The MATLAB script has four sections and is shown below in three panels. The first panel shows the first section of the script which provides a functional description of the model and
 initializes variables used by the model.

In this example, the model is more detailed than in the previous two examples. In addition to the motion data, it also includes geometric, mass, and inertia data for the bodies, and a stopping time and time
increment. Also, the frame F is treated as two bodies welded together (to form a single body) - a vertical column and a horizontal arm. For the purpose of calculating inertia matrices, the column and arm are assumed to be right circular cylinders and the disk is assumed to be thin.

Script - Panel 1: (functional description and initialization of variables)

```
%% Unit 10 - Example 4: Script for the SimMechanics model:
% Unit10TwoBodyKinematicsExample04
This script sets values for the SimMechanics model of Unit 10, Example 4 a two-
body system with applied motions and then executes the model.
The model calculates the angular velocity and angular acceleration of the disk D
and the velocity and acceleration of point P. The components are resolved in the
disk frame. All results are plotted and some are displayed in the MATLAB
command window.
timeMax = 4.0; %sec
timeIncrement = 0.01; %sec
% Column Data
columnMass = 1.0; %kg
columnLength = 1.5; %meters
columnRadius = 0.05; %meters
Ixx = columnMass*((3*(columnRadius^2))+(columnLength^2))/12; Iyy = Ixx;
Izz = 0.5*columnMass*(columnRadius^2);
columnInertiaMatrix = [Ixx,0,0; 0,Iyy,0; 0,0,Izz]; %okg-m^2
% Arm Data
    armMass = 1.0; %kg
    armLength = 0.5; %meters
    armRadius = 0.05; %meters
    Ixx = armMass*((3*(armRadius^2))+(armLength^2))/12; Izz = Ixx;
Iyy = 0.05*armMass*(armRadius^2);
armInertiaMatrix = [Ixx,0,0; 0,Iyy,0; 0,0,Izz]; %kg-m^2
% Disk Data
diskMass = 1.0; %kg
diskRadius = 0.25; %meters
theta = 30*pi/180; %radians
Ixx = 0.25*diskMass*(diskRadius^2); Izz = Ixx;
Iyy = 0.50*diskMass*(diskRadius^2);
diskInertiaMatrix = [Ixx,0,0; 0,Iyy,0; 0,0,Izz]; %kg-m^2
Motion Data
omegaDot = 2.0; % rad/s^2 (constant)
capOmegaDot = 3.0; % rad/s^2 (constant)
omegaInitial = 0.0; % rad/s
capOmegaInitial = 0.0; % rad/s
thetaInitial = 0.0; % rad (thetaDot = omega)
phiInitial = 0.0; % rad (phiDot = capOmega)
!
```

Note that values of mass and inertia are not necessary for kinematic calculations associated with the specified motions of this example; however, they are necessary if the model is extended to include calculations of the constraint and driving forces and torques associated with these motions. These types of calculations will be considered in Volume II of this text.

The next two panels show the last three sections of the script. The first section executes the SimMechanics model, the second plots results for ${ }^{R}{\underset{\sim}{\omega}}_{D},{ }^{R}{\underset{\sim}{\alpha}}_{D},{ }^{R}{\underset{\sim}{v}}_{P}$, and ${ }^{R}{\underset{\sim}{P}}_{P}$, and the last section displays the initial values of these vectors in the MATLAB workspace. Note the output from the SimMechanics model are structured arrays which include time signals. For example, the time signal for ${ }^{R}{\underset{\sim}{\omega}}_{D}$ is named "diskAngularVelocity.time", and the signals for the x, y, and z components of ${ }^{R}{\underset{\sim}{\omega}}_{D}$ are named "diskAngularVelocity.signals(1).values", "diskAngularVelocity.signals(2).values", and "diskAngularVelocity.signals(3).values". A similar naming convention is used for the other vectors. See the description of the SimMechanics model for more details on how these structures are generated.
$\underline{\text { Script - Panel 2: }}$ (execution of SimMechanics model with some results plotted)

```
%% Run SimMechanics Model
    sim('Unit10TwoBodyKinematicsExample04.slx');
%% Plot Output
% Angular Velocity Components of Disk, D (rad/s)
    figure(1); clf; subplot(3,1,1);
    plot(diskAngularVelocity.time,diskAngularVelocity.signals(1).values);
    grid; title('Body-Fixed Angular Velocity Components of Disk, D (rad/s)');
    xlabel('Time (sec)'); ylabel('X-Component (rad/s)')
    subplot(3,1,2);
    plot(diskAngularVelocity.time,diskAngularVelocity.signals(2).values);
    grid; xlabel('Time (sec)'); ylabel('Y-Component (rad/s)')
    subplot(3,1,3);
    plot(diskAngularVelocity.time,diskAngularVelocity.signals(3).values);
    grid; xlabel('Time (sec)'); ylabel('Z-Component (rad/s)')
% Angular Acceleration Components of Disk, D (rad/s)
    figure(2); clf; subplot(3,1,1);
    plot(diskAngularAcceleration.time,diskAngularAcceleration.signals(1).values);
    grid; title('Body-Fixed Angular Acceleration Components of Disk, D (rad/s^2)');
    xlabel('Time (sec)'); ylabel('X-Component (rad/s^2)')
    subplot(3,1,2);
    plot(diskAngularAcceleration.time,diskAngularAcceleration.signals(2).values);
    grid; xlabel('Time (sec)'); ylabel('Y-Component (rad/s^2)')
    subplot(3,1,3);
    plot(diskAngularAcceleration.time,diskAngularAcceleration.signals(3).values);
    grid; xlabel('Time (sec)'); ylabel('Z-Component (rad/s^2)')
```

Script - Panel 3: (more results plotted and initial values of results displayed in command window)
\% Velocity Components of Point $P(\mathrm{~m} / \mathrm{s})$ figure(3); clf; subplot (3,1,1); plot(velocityPointP.time, velocityPointP.signals(1).values); grid; title('Body-Fixed Components of the Velocity of Point P (m/s)'); xlabel('Time (sec)'); ylabel('X-Component (m/s)')
subplot (3,1,2); plot(velocityPointP.time, velocityPointP.signals(2).values); grid; xlabel('Time (sec)'); ylabel('Y-Component (m/s)')
subplot (3,1,3); plot(velocityPointP.time, velocityPointP.signals(3).values); grid; xlabel('Time (sec)'); ylabel('Z-Component (m/s)')
\% Acceleration Components of Point $P\left(\mathrm{~m} / \mathrm{s}^{\wedge} 2\right)$
figure(4); clf; subplot(3,1,1);
plot (accelerationPointP.time, accelerationPointP.signals(1).values);
grid; title('Body-Fixed Components of the Acceleration of Point $\left.P\left(m / s^{\wedge} 2\right) '\right) ;$
xlabel('Time (sec)'); ylabel('X-Component (m/s^2)')
subplot (3,1,2);
plot(accelerationPointP.time, accelerationPointP.signals(2).values);
grid; xlabel('Time (sec)'); ylabel('Y-Component (m/s^2)')
subplot (3,1,3);
plot (accelerationPointP.time, accelerationPointP.signals (3).values);
grid; xlabel('Time (sec)'); ylabel ('Z-Component (m/s^2)')
\%\% Initial angular velocity and angular acceleration of Disk D
\% and Initial velocity and acceleration of point P
disp('Body-Fixed Components of the Initial Angular Velocity of Disk D (r/s)')
disp ('X-Component') , disp (diskAngularVelocity.signals (1).values (1))
disp ('Y-Component') , disp (diskAngularVelocity.signals (2).values (1))
disp('Z-Component'), disp (diskAngularVelocity.signals (3).values (1))
disp('Body-Fixed Components of the Initial Angular Acceleration of Disk D (r/s^2)') disp ('X-Component'), disp (diskAngularAcceleration.signals (1).values (1))
disp ('Y-Component'), disp (diskAngularAcceleration.signals (2).values (1))
disp('Z-Component'), disp (diskAngularAcceleration.signals (3).values (1))
disp('Body-Fixed Components of the Initial Velocity of Point P (m/s)')
disp('X-Component'), disp (velocityPointP.signals (1).values (1))
disp('Y-Component'), disp (velocityPointP.signals (2).values (1))
disp ('Z-Component') , disp (velocityPointP.signals (3) . values (1))
disp('Body-Fixed Components of the Initial Acceleration of Point P ($\mathrm{m} / \mathrm{s}^{\wedge} 2$)')
disp ('X-Component') , disp (accelerationPointP.signals (1).values (1))
disp ('Y-Component'), disp (accelerationPointP.signals (2) .values (1))
disp ('Z-Component') , disp (accelerationPointP.signals (3).values (1))

SimMechanics Model - Top Layer:

The Simulink model presented in Example 3 focused on calculations based on a set of previously derived model equations. The block diagram represents the process needed to solve the model equations. In contrast, a SimMechanics block diagram model focuses on the physical system. SimMechanics then formulates and solves the model equations. Data can be moved seamlessly between SimMechanics and Simulink using actuators and sensors. Simulink signals can be used to drive a system using actuator blocks, and SimMechanics signals can measured (and sent to Simulink) using sensor blocks.

The top layer of the SimMechanics model of the system of this example is shown in the panel below. The model has a Machine Environment block, a Ground block, three Body blocks, three Joint blocks, two Motion subsystems, and three Measurement subsystems. The diagram generally indicates how the bodies are connected and where the applied motions and measurements occur. More specific details of each block within the model are presented below.

The two panels below show the "model configuration parameters" found on the "simulation menu" of the model. Parameters are shown for the Simulink solver and for the SimMechanics first generation (1G) model. The Simulink solver parameters indicate the simulation will start at time $t=0$ and stop at the time indicated by the variable "timeMax". Numerical integration of the model equations will occur in fixed time steps indicated by the variable "timeIncrement" and be done using an $8^{\text {th }}$ order, Dormand-Prince algorithm. Values for the variables "timeMax" and "timeIncrement" are set in the MATLAB script. The configuration parameters for the SimMechanics model instruct SimMechanics to provide warnings to the user for any redundant constraints, display the system in an animation window after the user updates the block diagram, and to display an animation of the motion of the system during the simulation.

The following sections provide details on the content and function of each of the blocks within the model. Double clicking on a block will open its dialog box.

Machine Environment Block:

The dialog box for the Machine Environment block is displayed in the panel to the right. This box allows the user to set the "simulation environment" for the system being modeled. In this example, default values are used for entries on the Constraints, Linearization, and Visualization tabs. Under the Parameters tab, the Machine Dimensionality has been set to "Auto-detect", and the Analysis mode has been set to "Inverse Dynamics", and (although it is not needed in this example) a gravity vector has been defined to be in the negative Z direction of
 the global coordinate system (in metric units).
"Auto-detect" indicates that SimMechanics will choose the dimensionality of the system based on the data it receives. The other choices are "2D Only" and "3D Only". As the system is three dimensional, the Machine dimensionality could also be set to "3D Only." The Analysis mode of "Inverse Dynamics" indicates that all fundamental motions are specified so all other results may be derived directly from the
specified motions and the physical data provided. This example focuses on kinematic results only; however, the forces and torques required to produce the motions can also be computed. The model equations in this case are algebraic.

The other analysis options are "Forward Dynamics", "Kinematics", and "Trimming". Forward Dynamic analyses generally apply to systems for which all fundamental motions are not specified so that some parts of the system will respond freely to the specified motions and external forces (e.g. gravity) acting on the system. That is, the system has some unspecified degrees of freedom. Even though the system of this example has no unspecified degrees of freedom, a forward dynamic analysis may also be used. A "Kinematics" analysis is designed for use only with closed-loop mechanisms. The system of this example is an open-tree system with no closed loops, so a "Kinematics" analysis may not be used. A "Trimming" analysis is used to find equilibrium (or steady state) configurations about which the model equations can be linearized and does not apply to this example.

Ground block:

The dialog box for the Ground block is shown in the panel
at the right. In this example, the Ground block serves two purposes. It specifies the location in the world (global) coordinate system where the first revolute joint is located - in this case, the revolute joint is located at the origin of the world system. The check box at the bottom of the dialog box allows the user to show a Machine Environment port to which a

Machine Environment block can be attached.

Z-Revolute: Column to Ground

The dialog box for the Z-revolute joint connecting the column to the ground is shown in the panel to the right. The "Axes" tab indicates the joint is an "R1" or single degree-of-freedom revolute joint about the direction " $[0001] "$ (or z-axis) of the "World" coordinate system (CS). The middle portion of the box indicates the "base" port of the joint is connected to the "Ground" block, the "follower" port is connected to the coordinate system CS1 of the column and that two sensor/actuator ports will be shown on the block.

Volume I - Unit 10: page 24/51

Note from the diagram of the top layer of the model that each joint block has "base" and "follower" ports. The base port is indicated in the block diagram with a red " B ", and the follower port is indicated with a red " F ". Note also that SimMechanics requires the points on either side of the joint block to be collocated. In this case, it means that the coordinate system CS1 of the column must be located at the origin of the world coordinate system to match the location of the ground block. If this condition is not met, SimMechanics will stop with an error message.
Body block: Column, C
The dialog box for the body block associated with the column is shown in the panel below. As shown, values of the mass and the 3×3 inertia matrix of the column are given by the variables "columnMass" and "columnInertiaMatrix". The values for these variables are set in the MATLAB script.

The "Position" tab shows the locations of all the coordinate systems associated with the column, and it shows which coordinate systems are shown as ports on the body block. The relative location of the coordinate systems is shown in the figure to the right. CS1 has a port on the left side of the block and is located with the coordinates $\left[\begin{array}{lll}0 & 0 & 0\end{array}\right]$ relative to the adjoining Z-revolute joint, that is, it is collocated with that joint. All other coordinate systems of the column are located relative to CS1. CS6 is located two-thirds of the way up the column, and it has a port on the right side of the block. Note from the top layer of the model that this is the location at which the horizontal arm is welded to the column. The coordinate system located at the mass center of the column (labeled CG) is located half-way up the column. The other systems outline the overall projected shape of the column. The column length and column radius are specified by the variables "columnLength" and "columnRadius" whose values are supplied by the MATLAB script.

The "Orientation" tab of the dialog box (shown below) indicates how each body coordinate system is oriented relative to other coordinate systems. In this case, each of the body coordinate systems is initially aligned with the "World" coordinate system. Generally, a coordinate system may be oriented relative to the "World" or "Adjoining" coordinate systems or any other coordinate system of that body. The relative orientation can be specified using a variety of orientation angle sequences, orientation parameters, or a

3×3 transformation matrix.

The "Visualization" tab (shown below) describes how bodies will be viewed in the animation window. In this example, the column will be "blue" and its shape determined using an "Equivalent ellipsoid from the mass (inertia) properties". The other body geometry choices are: "Use machine default body geometry", "Convex hull from body CS locations", and "External graphics file". As shown, the body will appear as an ellipsoid, but if the body geometry is based on the CS locations given, it will appear as a rectangle. More realistic shapes can be generated using an external graphics file.

Wlock Parameters: Column, C \times											
Body											
Represents a user-defined rigid body. Body defined by mass m, inertia tensor I, and coordinate origins and axes for center of gravity (CG) and other user-specified Body coordinate systems. This dialog sets Body initial position and orientation, unless Body and/or connected Joints are actuated separately. This dialog also provides optional settings for customized body geometry and color.											
Mass properties											
Mass:	columnMass									kg	-
Inertia:	columnInertiaMatrix									$\mathrm{kg}^{*} \mathrm{~m}^{\wedge} 2$	\checkmark
Position	Orientation			Visualization							
Show Port	Port Side		Name	Orientation Vector	Units		Relative CS		Specified Using Convention		?
\square	Left	\checkmark	CG	$\left[\begin{array}{lll}0 & 0 & 0\end{array}\right]$	deg	\checkmark	World	\checkmark	Euler $X-Y-Z$	\checkmark	
\checkmark	Left	\checkmark	CS1	$\left[\begin{array}{lll}0 & 0 & 0\end{array}\right]$	deg	\checkmark	World	\checkmark	Euler $X-Y-Z$	\checkmark	
\square	Right		CS2	$\left[\begin{array}{lll}0 & 0 & 0\end{array}\right]$	deg	\checkmark	World	\checkmark	Euler $X-Y-Z$	\checkmark	
\square	Right	\checkmark	CS3	$\left[\begin{array}{lll}0 & 0 & 0\end{array}\right]$	deg	\checkmark	World	\checkmark	Euler $X-Y-Z$	-	
\square	Right	\checkmark	CS4	$\left[\begin{array}{lll}0 & 0 & 0\end{array}\right]$	deg	\checkmark	World	\checkmark	Euler $X-Y-Z$	\checkmark	
\square	Right	\checkmark	CS7	$\left[\begin{array}{lll}0 & 0 & 0\end{array}\right]$	deg	\checkmark	World	\checkmark	Euler $X-Y-Z$	\checkmark	
\square	Right	\checkmark	CS5	$\left[\begin{array}{lll}0 & 0 & 0\end{array}\right]$	deg	\checkmark	World	\checkmark	Euler $X-Y-Z$	\checkmark	
\checkmark Right \quad CS6 $\left[\begin{array}{lll}0 & 0 & 0\end{array}\right]$ deg $*$ World * Euler $X-Y-Z \quad *$											
							OK	Cance	Help		

Weld Joint:

The weld joint connects coordinate system CS6 of the column to coordinate system CS1 of the arm. This joint requires that the column and arm move as a single body.

Body block: Arm, M

The dialog box for the body block associated with the horizontal arm is shown below. As shown, values of the mass and the 3×3 inertia matrix of the column are given by the variables "armMass" and "armInertiaMatrix". The values for these variables are set in the MATLAB script. Arm coordinate system CS1 is collocated with the adjoining coordinate system CS6 of the column. All other arm coordinate systems
are located relative to CS1 and define the overall projected shape of the body. Arm coordinate system CS2 is located at the other end of the arm where the disk is attached with a revolute joint, and $\boldsymbol{C G}$ is located at the midpoint. The orientation angles of all the arm coordinate systems are zero, so all the arm coordinate systems are initially aligned with the world system. The visualization parameters (not shown here) are the same as those for the column. Hence, the arm will be blue and will appear as an ellipsoid.

Y-Revolute: Disk to Column

The dialog box for the Y-revolute joint connecting the disk to the column is shown in the panel to the right. The "Axes" tab indicates the joint is an "R1" or single degree-of-freedom revolute joint about the direction "[llll 010 " (or y-axis) of the "Base" coordinate system. As connected in the top layer (and as indicated in this dialog box) the arm coordinate system $\boldsymbol{C S} \mathbf{2}$ is the reference coordinate system for this joint. This ensures the axis of the revolute joint will always be directed along the horizontal arm. Two

sensor/actuator ports are shown on the block.
Body block: Disk, D
The dialog box for the body block associated with the disk is shown below. As shown, values of the mass and the 3×3 inertia matrix of the disk are given by the variables "diskMass" and "diskInertiaMatrix". The values for these variables are set in the MATLAB script. Disk coordinate system CS1 is collocated with the adjoining coordinate system CS2 of the arm. All other arm coordinate systems are located relative to

CS1. The disk mass center coordinate system $\boldsymbol{C G}$ is collocated with $\boldsymbol{C S 1}$ at the center of the disk, and coordinate system CS2 is located on the edge of the disk. The orientation angles of all the disk coordinate systems are zero, so all the disk coordinate systems are initially aligned with the world system. The "Body geometry" on the "Visualization" tab (not shown here) is the same as for the column and arm, but the color has been changed to pink so it is distinguishable from the arm. The equivalent ellipsoidal shape associated with the inertia matrix specified in the script for the disk is a circle.

Motion Subsystem: Column relative to Ground
The subsystem that specifies the motion of the column relative to the ground is shown below. This subsystem is very similar to the subsystem presented in the Simulink model. The only difference is that the combined motion signals are sent to SimMechanics using the "Joint Actuator" block of the Z-revolute joint that connects the column to the ground. As in the previous example, the specified motion is constant angular acceleration "capOmegaDot" with initial angular velocity "capOmegaInitial" and initial angle "phiInitial". Values of the three variables are specified in the MATLAB script.

The dialog box for the joint actuator block is also shown below. It indicates that motion is specified for the attached single degree-of-freedom revolute joint and that the angle, angular velocity, and angular acceleration signals will be provided in radians, $\mathrm{rad} / \mathrm{sec}$, and $\mathrm{rad} / \mathrm{sec}^{2}$. Note here that the actuator block moves signals from Simulink to SimMechanics.

Whack Parameters: Joint Actuator				
Joint Actuator				
Actuates a Joint primitive with generalized force/torque or linear/angular position, velocity, and acceleration motion signals. Base-follower sequence and joint axis determines sign of forward motion. Inputs are Simulink signals. Motion input signals must be bundled into one signal. Connect to Joint block to see Connected to primitive list.				
Actuation				
Connected to primitive:	R1			-
Actuate with:	Motio			-
Angular units:		rad		\checkmark
Angular velocity units:		rad/s		\checkmark
Angular acceleration units:		$\mathrm{rad} / \mathrm{s}^{\wedge} 2$		\checkmark
OK		Cancel	Help	Apply

Motion Subsystem: Disk relative to Arm

This subsystem is also very similar to the subsystem presented in the Simulink model. In this case, the only difference is that the combined motion signals are sent to SimMechanics using the "Joint Actuator" block of the Y-revolute joint that connects the disk to the arm. This specifies the motion at this joint. As in the previous example, the specified motion is constant angular acceleration "omegaDot" with initial angular velocity "omegaInitial" and initial angle "thetaInitial". Values of the three variables are specified in the MATLAB script. The joint actuator block in this subsystem functions the same as the one described above for the column motion.

Joint Measurement Subsystem: Column to Ground
The subsystem that measures the motion of the column relative to the ground is shown in the panel to the right. The joint sensor is connected directly to the Z-revolute joint that connects the column to the ground. The sensor sends the signal from SimMechanics to Simulink. In this case, the angular position (ap) and angular velocity (av) are measured and plotted on two scopes.

The dialog box for the joint sensor (shown in the panel to the right) allows the user to determine what is being measured. The dialog box indicates the sensor is connected to a single degree-of-freedom revolute joint and that "Primitive Outputs" and "Joint Reactions" can be measured. In this case, the angle is measured in degrees and the angular velocity is measured in $\mathrm{rad} / \mathrm{sec}$. Measurements of forces and torques associated with the joint will be discussed in Volume II of this text.

Joint Measurement Subsystem: Disk to Arm

The subsystem that measures the motion of the disk relative to the arm is shown in the panel to the right. In this case, the sensor is connected to the Y-revolute joint that connects the disk and arm, and it measures the relative angular position (ap) and angular velocity (av). The settings in the joint sensor dialog box are the same as those
 in the joint sensor for the Z-revolute joint discussed above.

Body Measurement Subsystem: Disk

The subsystem that measures the angular velocity (av) and angular acceleration (aa) of the disk and the velocity (v) and acceleration (a) of point \boldsymbol{P} on the disk is shown in the panel to the right. Each of these vector quantities are separated (using a Demux (demultiplexor)) into components that are plotted on separate axes on a single scope. The sensor that measures the angular velocity and angular acceleration of the disk are connected to $\boldsymbol{C G}$ the coordinate system at the center of gravity, and the sensor that measures the velocity and acceleration of P is connected to coordinate system CS2 on the edge of the disk. CS2 tracks the angle theta of the disk
 starting at $\theta=0$.

Each of the four scopes are used to plot the data as well as send the data to the MATLAB workspace for later plotting by the MATLAB script. The dialog box for the "Parameters" menu of the scope for the angular velocity vector is shown in the panel to the right. The "History" tab shows that the data will be saved to the workspace as a "Structure with time" using the variable name "diskAngularVelocity". The data will be limited to the last 5000 data points of the signal. The other three scopes create structures named "diskAngularAcceleration", "velocityPointP",
 and "accelerationPointP".

The dialog boxes for the two body sensors are shown in the panels below. The panel on the left indicates that the angular velocity vector in $\mathrm{rad} / \mathrm{sec}$ and the angular acceleration vector in $\mathrm{rad} / \mathrm{sec}^{2}$ will be measured and the components will be expressed in the local body coordinate system. These are the body-fixed components of the vectors. The panel on the right indicates that the body-fixed components of the velocity vector in meters/sec and acceleration vector in meters $/ \mathrm{sec}^{2}$ of point P (located by the coordinate system CS2) will also be measured.

Model Execution:

The model is executed by running the MATLAB script. As described earlier, the script defines all necessary variables, runs the SimMechanics model, plots the results in four figure windows, and displays the initial values of results in the command window. As the SimMechanics model executes, an animation window (see description below) opens to display the motion of the system. This model produces identical results to those of the previous models (presented in Figures 1-4 above).

Animation window:
The animation window shown in the panel to the right shows the position of the system at time $t=0.78$ (sec). The window shows the world (global) coordinate system (lower left corner of the window), and it shows the mass center and all the coordinate systems associated with each body. All X-axes are red, all Y-axes are green, and all Z-axes are blue. At time $t=0$ all the coordinate systems were aligned with the world system. As time progresses, however, all coordinate systems must maintain their orientation relative to the body on which they are defined. Note the column and arm coordinate systems are rotated relative to the world system, but they all remain aligned (with each other) as they move as a single body. The disk coordinate systems are rotated relative to the arm due to the disk rotation.

Command Window Output:

The command window output of the vector component values at $t=0$ are shown in the panel below. Again, these results are identical to those generated by the previous models.

```
Body-Fixed Components of the Initial Angular Velocity of Disk D (r/s)
X-Component Y-Component Z-Component
    0 0 0
Body-Fixed Components of the Initial Angular Acceleration of Disk D (r/s^2)
X-Component Y-Component Z-Component
    0
2
Body-Fixed Components of the Initial Velocity of Point P (m/s)
X-Component Y-Component Z-Component
Body-Fixed Components of the Initial Acceleration of Point P (m/s^2)
```

X-Component
Y-Component $-1.500000000000000 \quad-0.750000000000000 \quad 0.500000000000000$

Z-Component

Increasing the Quality of the Animation:

As mentioned above, the body geometries of the column, arm, and disk (as shown above) were determined using "Equivalent ellipsoids from the mass properties" of the bodies as indicated on the "Visualization" tab of the body block dialog boxes. The quality of the animation can be easily improved using external stereolithographic files to define the geometries of the bodies. There are many applications that can be used to generate these files. Windows 10, for example, has a free application called 3D Builder that is quite easy to use.

The graphics files are indicated in the body block dialog box by first indicating the "Body geometry" is found in an "External graphics file" and then indicating the name of the file and the body coordinate system to which the geometry is attached. In this example, the geometry of the column is contained in a file named "Column.stl" located in the default directory and is attached to the center of gravity of the column. The geometries of the arm and disk are defined in two other files. The dialog boxes of the body blocks of the arm and disk are not shown here.

The resulting animation window shown here is a snapshot of the position of the system at $t=0.85(\mathrm{sec})$. The arm and column are now clearly indicated as having circular cross sections with the specified diameters, and the disk is shown with its specified diameter and thickness. For visualization purposes, a supporting cylindrical structure (shown at the base of the column) is included in the graphics file as part of the geometry of the column.

| 四 Block Parameters: Column, C | | |
| :--- | :--- | :--- | :--- |
| Body | | |
| Represents a user-defined rigid body. Body defined by mass m, | | |
| inertia tensor I, and coordinate origins and axes for center of gravity | | |
| (CG) and other user-specified Body coordinate systems. This dialog | | |
| sets Body initial position and orientation, unless Body and/or | | |
| connected Joints are actuated separately. This dialog also provides | | |
| optional settings for customized body geometry and color. | | |

Example 5: SimMechanics Modeling of a Closed Loop Mechanism

The figure shows the three-dimensional slidercrank mechanism that was analyzed in Unit 8. Disk D rotates about its center C with angular velocity ${ }^{R}{\underset{\sim}{\omega}}_{D}=\dot{\phi} \underset{\sim}{k}=\Omega \underset{\sim}{k}$. The center of the disk is in the $x y$ plane at the point $(2 a, a, 0)$. Bar $A B$ is attached to the disk with a ball and socket joint at A and is attached to the fixed bar $E F$ with a three degree of freedom joint at B. The collar can translate along and rotate about the fixed bar $E F$ (in the y direction), and bar $A B$ can rotate relative to the collar about an axis which is normal to the plane $A E B$. The size of the collar at B is assumed

At the instant shown $(\phi=0), A$ has coordinates $(2 a, 0,0)$ and B has coordinates $(0,6 a, 3 a)$. to be negligible.

As in Unit 8, the motion of disk \boldsymbol{D} is specified, and the motion of bar $\boldsymbol{A B}$ and the collar at B is calculated. In this case, a MATLAB script is used to execute a SimMechanics model that computes the motions of the bar and the collar, and then it uses the analytical equations from Unit 8 to compute analytical results. The results of the two methods are shown to be identical.

The first four sections of the MATLAB script are shown in Panel 1 below. The first section provides a functional description of the script and starts the "pause" option, the second defines variables used by the SimMechanics model, the third executes the SimMechanics model, and the fourth plots the specified motions applied to the disk. In this example, disk D has a constant angular acceleration given by the value of variable "crankInitialAngularAcceleration", an initial angular velocity given by the variable "crankInitialAngularVelocity", and an initial angle of zero. As shown in the diagram above, the initial geometry of the system is defined in terms of the parameter "a". The radius of D ("diskRadius") is "a", and the length of the bar ("barLength") is " 7 a ".

The last section shown in this panel plots the angular motion of the crank (i.e. the disk) in Figures 1-3. The angle, angular velocity, and angular acceleration of the disk are assumed to be stored in structures with the associated time values. The names of the structures are given in the plot commands.

Script - Panel 1: (functional description, initialization of variables, model execution, crank motion plots)

```
Unit 10 - Example 5 - Three-dimensional slider crank model
This script sets values for the SimMechanics model of Unit 10, Example
5, a three dimensional slider crank mechanism with applied motion,
executes the SimMechanics model, and plots the results.
    This script computes results using both a SimMechanics model and
    an analytical model so the results can be compared.
    pause on;
    model input
    crankInitialAngularVelocity = 10; % (rad/s)
    crankInitialAngularAcceleration = 5; % (rad/s^2)
    a =0.1; % (meters)
    diskRadius = a; % (meters)
    barLength = 7*a; % (meters)
```

$\%$
\%\% run the SimMechanics model
sim('UnitloThreeDimensionalSliderCrankExample05');
\%\% plot the crank motion
figure(1); clf;
plot (crankAngle.time, crankAngle.signals.values);
grid; xlabel('Time (sec)'); ylabel('Angle (deg)');
title('Angle of Crank');
figure(2); clf;
plot (crankAngularVelocity.time, crankAngularVelocity.signals.values) ;
grid; xlabel('Time (sec)'); ylabel('Angular Velocity (rad/s)');
title('Angular Velocity of Crank');
figure (3) ; clf;
plot (crankAngularAcceleration.time, crankAngularAcceleration.signals.values);
grid; xlabel('Time (sec)'); ylabel('Angular Acceleration (rad/s^2)');
title('Angular Acceleration of Crank');

The next two sections of the script are shown in Panel 2 below. The first section plots the components of the angular velocity and angular acceleration of the bar resolved in the world coordinate system in Figures 4-5. After each plot, MATLAB pauses to allow the user to edit the plot (for example, to highlight data values using the data cursor). After pausing, the script will continue execution when the user presses any key on the keyboard. The second section plots the velocity and acceleration of the slider in Figures 6-7. Again, MATLAB pauses after each plot to allow the user to edit the plot. The data is assumed to be stored in structures with the associated time values; the names of the structures are given in the plot commands.

Script - Panel 2: (plot bar and slider motion and pause to allow the user to edit the plots)

```
%% plot the bar motion
    figure(4); clf;
    subplot(3,1,1)
    plot(barAngularVelocity.time,barAngularVelocity.signals(1).values)
    title('Angular Velocity of the Bar - World Components');
    ylabel('X Component (r/s)'); grid on;
    subplot(3,1,2)
    plot(barAngularVelocity.time,barAngularVelocity.signals(2).values)
    ylabel('Y Component (r/s)'); grid on;
    subplot(3,1,3)
    plot(barAngularVelocity.time,barAngularVelocity.signals(3).values)
    ylabel('z Component (r/s)'); grid on; xlabel('Time (sec)');
    pause;
    figure(5); clf;
    subplot(3,1,1)
    plot(barAngularAcceleration.time,barAngularAcceleration.signals(1).values)
    title('Angular Acceleration of the Bar - World Components');
    ylabel('X Component (r/s)'); grid on;
    subplot(3,1,2)
    plot(barAngularAcceleration.time,barAngularAcceleration.signals(2).values)
    ylabel('Y Component (r/s)'); grid on;
    subplot(3,1,3)
    plot(barAngularAcceleration.time,barAngularAcceleration.signals(3).values)
    ylabel('Z Component (r/s)'); grid on; xlabel('Time (sec)');
    pause;
%% plot the motion of the slider
    figure(6); clf;
    plot(sliderVelocity.time,sliderVelocity.signals.values);
    grid; xlabel('Time (sec)'); ylabel('Velocity (m/s)');
    title('Velocity of Slider');
    pause;
    figure(7); clf;
    plot(sliderAcceleration.time,sliderAcceleration.signals.values);
    grid; xlabel('Time (sec)'); ylabel('Acceleration (m/s^2)');
    title('Acceleration of Slider');
    pause;
```

 \(\vdots\)
 The next section of the script is shown in Panel 3 below. This section calculates analytical results at the initial position $(t=0)$ and displays the results in the MATLAB command window. See Unit 8 for derivations of these equations. To format the results in the command window, advantage is taken of the MATLAB function "num2str" which converts a numerical value into a string for use in the display command.

Script - Panel 3: (calculate and display analytical results at the initial position, $t=0$)

```
%% Calculate analytical results for omega_AB, v_B, alpha_AB, a_B at t=0
% The following results are calculated for the initial position
%
    omegaX0 = 3*crankInitialAngularVelocity/39;
    omegaY0 = -9*crankInitialAngularVelocity/39;
    omegaZ0 = 2*crankInitialAngularVelocity/39;
    v_B0 = -a*crankInitialAngularVelocity/3;
    alphaCoefficientMatrix0 = [0 3 -6; 6 2 0; -2 0 3];
alphaRHSO = zeros(3,1);
alphaRHSO(1,1) = -(crankInitialAngularAcceleration) - ...
                                    omegaY0*((6*omegaX0) + (2*omegaY0)) - ...
                                    omegaZ0*((2*omegaZ0) + (3*omegaX0));
alphaRHSO (2,1) = omegaX0*((2*omegaZ0) +(3*omegaX0)) + ...
                                omegaY0*((3*omegaY0)-(6*omegaZ0));
alphaRHSO(3,1) = crankInitialAngularVelocity*omegaX0;
alpha0 = alphaCoefficientMatrix0\alphaRHS0; % solve matrix equation for alpha
a_B0 = - (3*a*alpha0 (1,1)) - (2*a*alpha0(3,1)) + ...
    (a*crankInitialAngularVelocity*crankInitialAngularVelocity) +...
        omegaZ0*((3*a*omegaY0) - (6*a*omegaZ0)) - ...
        omegaX0* ((6*a*omegaX0) + (2*a*omegaY0));
disp(' ');
disp('Analytical Results at the Initial Position (phi = 0)');
disp('------------------------------------------------------------
disp(' ');
disp('Initial Angular Velocity Components (r/s)');
printString = [' X component: ' num2str(omegaX0)]; disp(printString);
printString = [' Y component: ' num2str(omegaY0)]; disp(printString);
printString = [' Z component: ' num2str(omegaZ0)]; disp(printString);
disp(' ');
disp('Initial Angular Acceleration Components (r/s^2)');
printString = [' X component: ' num2str(alpha0(1,1))]; disp(printString);
printString = [' Y component: ' num2str(alpha0(2,1))]; disp(printString);
printString = [' Z component: ' num2str(alpha0(3,1))]; disp(printString);
disp(' ');
disp('Initial Collar Velocity (v_BO) (m/s)');
printString = [' v_B0: ' num2str(v_B0)]; disp(printString);
disp(' ');
disp('Initial Collar Acceleration (a_B0) (m/s^2)');
printString = [' a_B0: ' num2str(a_B0)]; disp(printString);
```

The next section of the script is shown in Panel 4 below. This section calculates analytical results at all times $t \geq 0$ and stores the results for later plotting.

Script - Panel 4: (calculate analytical results at all positions, $t \geq 0$)

```
%% Calculate analytical results for arrays omega_AB, v_B, alpha_AB, a_B (t >= 0)
% The following results are calculated for the entire motion
nTimes = length(crankAngle.time); yBHat = zeros(nTimes,1);
v_B = zeros(nTimes,1); a_B = zeros(nTimes,1);
omegaAB = zeros(nTimes,3); alphaAB = zeros(nTimes,3);
coefficientMatrix = zeros(3,3); rightHandSideV = zeros(3,1);
rightHandSideA = zeros(3,1);
coefficientMatrix(1,1) = 0.0; coefficientMatrix(1,2) = 3.0;
coefficientMatrix(2,3) = 0.0; coefficientMatrix(3,2) = 0.0;
coefficientMatrix(3,3) = 3.0;
rightHandSideV (2,1) = 0.0; rightHandSideV (3,1) = 0.0;
for i = 1:nTimes
    crankAngleRad = (pi/180)*crankAngle.signals.values(i);
    cosPhi = cos(crankAngleRad); sinPhi = sin(crankAngleRad);
    crankAngularVelocityValue = crankAngularVelocity.signals.values(i);
    crankAngularAccelerationValue = crankAngularAcceleration.signals.values(i);
    yBHat(i) = 1 - cosPhi + sqrt(40 - (2+sinPhi)^2);
    coefficientMatrix(1,3) = 1 - cosPhi - yBHat(i);
    coefficientMatrix(2,1) = -coefficientMatrix(1,3);
    coefficientMatrix(2,2) = 2.0 + sinPhi;
    coefficientMatrix(3,1) = -coefficientMatrix(2,2);
    rightHandSideV(1,1) = -crankAngularVelocityValue*cosPhi;
    omegaAB(i,:) = coefficientMatrix\rightHandSideV; % solve matrix equation
    v_B(i,1) = (a*crankAngularVelocityValue*sinPhi) -...
                        (3*a*omegaAB (i,1)) - (a*(2+sinPhi)*omegaAB (i,3));
    rightHandSideA(1,1) = ...
        - (crankAngularAccelerationValue*cosPhi) + ...
                ((crankAngularVelocityValue^2)*sinPhi) - ...
                (omegaAB(i,1)*omegaAB(i,2)*(yBHat(i) + cosPhi - 1)) - ...
                ((omegaAB(i,2)^2)* (2 + sinPhi)) - ...
                ((omegaAB(i,3)^2)* (2 + sinPhi)) - (3*omegaAB(i,1)*omegaAB(i, 3));
    rightHandSideA(2,1) = ...
                (3*omegaAB(i,1)*omegaAB(i,1)) + (3*omegaAB(i,2)*omegaAB(i,2)) +...
        (omegaAB (i,1)*omegaAB (i,3)* (2 + sinPhi)) -...
        (omegaAB(i,2)*omegaAB(i,3)*(yBHat(i) + cosPhi - 1));
    rightHandSideA(3,1) = crankAngularVelocityValue*cosPhi*omegaAB(i,1);
    alphaAB(i,:) = coefficientMatrix\rightHandSideA; % solve matrix equation
    a_B(i,1) = -(3*a*alphaAB(i,1)) - ((2 + sinPhi)*a*alphaAB(i,3)) +...
        (a*crankAngularAccelerationValue*sinPhi) +...
        (a*(crankAngularVelocityValue^2)*cosPhi) +...
        (3*a*omegaAB(i,2)*omegaAB(i,3)) -...
        (a*omegaAB(i,1)*omegaAB(i,2)*(2 + sinPhi)) -...
        ((omegaAB(i,1)^2)+(omegaAB(i,3)^2))*a*(yBHat(i) + cosPhi - 1);
```

end
\vdots

The final section of the script is shown in Panel 5 below. This section plots the analytical results at all times $t \geq 0$ in Figures 8-11. The script pauses after each plot to allow the user to edit the plot. At the end of the script, the pause feature is turned off.
Script - Panel 5: (plot the analytical results for all time $t \geq 0$)

```
%% Plot the analytical results for t >= 0
    figure(8); clf;
subplot(3,1,1)
plot(barAngularVelocity.time,omegaAB (:,1))
title('Angular Velocity of the Bar - World Components - Analytical Results');
Ylabel('X Component (r/s)'); grid on;
subplot(3,1,2)
plot(barAngularVelocity.time,omegaAB(:, 2) )
ylabel('Y Component (r/s)'); grid on;
subplot(3,1,3)
plot(barAngularVelocity.time,omegaAB(:, 3))
ylabel('Z Component (r/s)'); grid on; xlabel('Time (sec)');
pause;
figure(9); clf;
plot(sliderVelocity.time,v_B(:,1));
grid; xlabel('Time (sec)'); ylabel('Velocity (m/s)');
title('Velocity of Slider - Analytical Results');
pause;
figure(10); Clf;
subplot(3,1,1)
plot(barAngularAcceleration.time, alphaAB(:,1))
title('Angular Acceleration of the Bar - World Components - Analytical Results');
ylabel('X Component (r/s^2)'); grid on;
subplot (3,1,2)
plot(barAngularAcceleration.time, alphaAB(:, 2))
ylabel('Y Component (r/s^2)'); grid on;
subplot(3,1,3)
plot(barAngularAcceleration.time, alphaAB(:,3))
ylabel('Z Component (r/s^2)'); grid on; xlabel('Time (sec)');
pause;
figure(11); clf;
plot(sliderAcceleration.time,a_B(:,1));
grid; xlabel('Time (sec)'); ylabel('Velocity (m/s^2)');
title('Acceleration of Slider - Analytical Results');
pause;
pause off;
```


SimMechanics Model: Top Layer

The top layer of the SimMechanics model is shown in the panel below. As with the previous model, the left side of the diagram begins with a Ground block and an attached Machine Environment block. The model configuration parameters on the Simulation menu of the model are set to calculate the system's motion for 2 seconds using a fixed-step, $8^{\text {th }}$ order, Dormand-Prince integration method. The time step is set to 0.01 seconds. The Machine dimensionality is set to "Auto-detect" and the Analysis mode is set to "Forward dynamics" in the Machine Environment block. Note that an Analysis mode of "Kinematics" can also be applied to this system as it is a closed-loop mechanism. The Ground block locates the center of the circular crank (disk, D) at the world coordinates $(2 a, a, 0)$ (meters).

It is evident from the block diagram that the circular crank is connected to the ground using a revolute joint and is connected to bar $\boldsymbol{A B}$ with a spherical (ball and socket) joint. The bar is connected to the slider using a revolute joint, and the slider is connected to a fixed bar using a cylindrical joint. Due to the closedloop nature of the mechanism, two ground blocks are necessary, one for grounding the crank and one for grounding the fixed bar. The diagram also shows four subsystems, one to specify the motion of the crank, and the other three to measure the motions of the crank, the bar, and the collar.

Joint Block: Z-Revolute Joint for the Crank
The dialog box for the revolute joint that connects the crank to the ground is shown to the right. It indicates the line of action of the joint is the \boldsymbol{z}-axis of the world coordinate system. The base of the joint is a world coordinate system whose origin is specified by the ground block, and the follower coordinate system is the $C G$ of the circular crank. The dialog box for the ground block (not shown here) specifies the ground block is located at the world coordinates $[2 a, a, 0]$.

Body block: Circular Crank (Disk, D)
The dialog box for the circular crank indicates that its mass is $1(\mathrm{~kg})$ and its inertia matrix is consistent with that of a thin disk. It also shows that the crank has two coordinate systems. The origin of the $\boldsymbol{C G}$ system is collocated with the adjoining ground block at [2a,a, 0] , and the origin of CS1 is located on the left edge of the disk where bar $A B$ is connected.

The orientation angles for the two coordinate systems are all set to zero on the Orientation tab so that these two systems are initially aligned (at $t=0$) with the world coordinate system. The body color is set to blue, and the body geometry is set to "Equivalent ellipsoid from mass properties". Hence, the body will appear as a blue disk in the animation window.

Spherical Joint: Connecting Crank to Bar AB
The dialog box for the spherical joint indicates the base coordinate system of the joint to be CS1 of the crank, and the follower coordinate system to be CS1 of the bar. As this joint allows rotation about any axis, the "Axes" tab (not shown here) indicates that no "axes of action" or "reference coordinate systems" are associated with this joint. In this example, the spherical joint has been specified to be a "cut joint" on the "Advanced" tab. This is indicated on the top-layer block diagram as an " X " on the joint block.

Cut joints are used by SimMechanics when analyzing systems with closed kinematic chains. SimMechanics cuts (or opens) one of the joints in each of the closed loops of the system and then formulates a constraint that requires the joint to remain unbroken during the motion. The slider-crank mechanism forms a single closed loop, so SimMechanics will cut one of the joints. The "Advanced" tab allows the user to specify a joint to be the "preferred" joint to cut during the analysis. If the user does not specify which joint to cut,

```
이 Block Parameters: Spherical Joint
```

Spherical
Represents three rotational degrees of freedom. The follower (F) body pivots freely relative to the base (B) Body at the collocated Body coordinate system origins. Sensor ports can be added. Spherical joint cannot be actuated. Base-follower sequence determines sign of forward motion.

Connection parameters
Current base: CS1@Circular Crank (Disk, D)
Current follower:

Number of sensor / actuator ports:

Parameters

Axes Advanced
\square Mark as the preferred cut joint.

One joint in each independent closed loop will be automatically cut. Check box to make this joint preferred for cutting. SimMechanics will decide.

The dialog box for the body block of bar $A B$ indicates that the mass of the bar is $1(\mathrm{~kg})$ and its inertia matrix is consistent with that of a slender bar. The "Position" tab shows there are three coordinate systems associated with the bar. The origin of CS1 is collocated with the adjoining coordinate system which is CS1 of the circular crank. The origin of $\boldsymbol{C G}$ is at the midpoint of the bar, and the origin of $\boldsymbol{C S} \mathbf{2}$ is at the other end of
 the bar.

The "Visualization" and "Orientation" tabs of the dialog box of the body block are shown below. The Visualization tab indicates the geometry will be based on the coordinate systems defined for the body and the color will be red. As the information on the Orientation tab for this body is more complicated than in previous examples, a detailed explanation is necessary and provided in the following paragraphs.

As defined on the "Position" tab, the three coordinate systems of the bar are aligned along the \boldsymbol{x}-axis of the body and each coordinate system is aligned with the world system. In this position, one end of the bar is at the spherical joint at A and the other end points outward along the world's \boldsymbol{x}-axis. To realign the bar so that coordinate system CS2 is positioned at the location of the collar, a set of non-zero orientation angles must be provided on the Orientation tab.

In this case, a 3-2-1 body-fixed, orientation angle sequence is used to define the initial orientation of the bar's coordinate systems relative to the world system. The first rotation (angle θ_{1}) about the world z-axis rotates the bar from its position along the positive x-axis to a position along the projection of the bar on the xy plane. The second rotation (angle θ_{2}) about the bar's \boldsymbol{y}-axis elevates the bar into its correct initial position. A third angle is not needed.

The angles θ_{1} and θ_{2} are illustrated in the diagrams below. The point B_{p} represents the projection of point B onto the $x y$ plane. These angles may be calculated as follows

$$
\begin{aligned}
\theta_{1} & =180-\left[\left(\frac{180}{\pi}\right) \tan ^{-1}\left(\frac{6 a}{2 a}\right)\right]=180-\left[\left(\frac{180}{\pi}\right) \tan ^{-1}\left(\frac{6}{2}\right)\right] \\
& =108.435(\mathrm{deg})
\end{aligned}
$$

$$
\begin{aligned}
\theta_{2} & =-\left(\frac{180}{\pi}\right) \sin ^{-1}\left(\frac{3 a}{7 a}\right)=-\left(\frac{180}{\pi}\right) \sin ^{-1}\left(\frac{3}{7}\right) \\
& =-25.3769(\mathrm{deg})
\end{aligned}
$$

Note that angle θ_{2} must be negative to elevate the bar above the plane. See the formulae in the "Orientation Vector box" of the Orientation tab.

Body block: Slider (Collar) at B

The "Position" and "Orientation" tabs of the dialog box for the body block of the slider at B are shown below. The mass of the slider is $1(\mathrm{~kg})$ and its inertia matrix is consistent with that of a slender bar. Coordinate system CS1 of the slider is collocated with the adjoining coordinate system CS2 of bar $A B$, and the coordinate system $\boldsymbol{C G}$ is collocated with $\boldsymbol{C S}$. The slider coordinate systems $\boldsymbol{C S} \mathbf{2 - C S 5}$ define a simple rectangular shape.

The orientation of all the coordinate systems of the slider are initially aligned with the world coordinate system, except CS1. CS1 is rotated relative to the world system about the world's \boldsymbol{y}-axis, so the z-axis of CS1 is perpendicular to plane AEB and initially aligned with the axis of the revolute joint between the bar and the slider. See the diagram to the right. The angle θ_{B} in the diagram represents the angle through which CS1 must be rotated. As shown in the dialog box, θ_{B} may be calculated as

$$
\theta_{B}=\left(\frac{180}{\pi}\right) \tan ^{-1}\left(\frac{3 a}{2 a}\right)=\left(\frac{180}{\pi}\right) \tan ^{-1}\left(\frac{3}{2}\right)=56.3099(\mathrm{deg})
$$

$\underline{\text { Revolute Joint: Connecting Bar } A B \text { to Slider (Collar) }}$
The dialog box for the revolute joint that connects bar $A B$ to the slider is shown in the panel to the right. The base is coordinate system CS2 of the bar, and the follower is coordinate system CS1 on the slider. Note the joint is specified (at the bottom of the box) as a revolute joint about the z-axis of the follower. As indicated above, the z-axis of the slider (follower) has been initially oriented perpendicular to plane AEB. As the system moves away from the initial configuration, the axis of the revolute joint will remain perpendicular to plane $A E B$.
 Cylindrical Joint: Connecting Slider (Collar) to Ground

The dialog box for the cylindrical joint that connects the slider to the fixed bar is shown in the panel to the right. The base of the joint is coordinate system CS2 of the fixed bar located at world coordinates $[0,6 a, 3 a]$, and the follower is the $\boldsymbol{C G}$ coordinate system of the slider. This joint has two primitive actions, one prismatic and one revolute. The prismatic primitive allows translation and the revolute primitive allows rotation of the slider about the world coordinate system's \boldsymbol{y}-axis. The coordinates of CS2 of the fixed bar are specified in its dialog box.
图 Block Parameters: Cylindrical Joint

Cylindrical

Represents one translational and one rotational degrees of freedom. Restricts the follower (F) to move relative to the base (B) Body along and around a common axis P1-R1. Primitive axes P1 and R1 must be aligned. P1 attached to base. R1 attached to follower. Listed order of primitives is order of motion during simulation. Sensor and actuator ports can be added. Base-follower sequence and axis direction determine sign of forward motion.
Connection parameters
\qquad Current follower: CG@Slider (Collar at B)

Number of sensor / actuator ports:

Parameters
Axes Advanced

Name	Primitive	Axis of Action $[\mathbf{x y ~ z}]$		Reference CS	
P1	prismatic	$[0,1,0]$		World	
R1	revolute	$[0,1,0]$		World	

Body block: Fixed Bar
The dialog box for the fixed bar that the slider moves along is shown to the right. Coordinate systems CS1 and CS3 mark the ends of the bar at $[0,0,3 a]$ and $[0,10 a, 3 a]$ in the world coordinate system, and coordinate system $\boldsymbol{C G}$ is located at the midpoint of the bar. Coordinate system CS2 is located at the cylindrical joint between bar $A B$ and the slider in the initial position.

Clearly, the fixed bar is parallel to the \boldsymbol{y}-axis of the world coordinate system. Not shown here is the "Visualization" tab which indicates the locations of the body's coordinate systems will be used to define the bar's geometry.

Crank Motion Subsystems:

The crank motion subsystems are very similar to those presented in Example 4. The subsystem that specifies the motion of the crank is connected to an actuator block, and the subsystem that measures the motion is connected to a sensor block. The measurement subsystem provides verification to the user that the motion specified is correctly implemented.

Bar $A B$ Measurement Subsystem:
The measurement subsystem for bar $A B$ and the dialog box for the body sensor are shown in the panels below. In this case, the body sensor is used to measure the angular velocity and angular acceleration of the bar. As the dialog box indicates, the components of the vectors are resolved in the directions of the world coordinate system. The drop down box in the Measurements section of the dialog box also allows the user to resolve the vector components in the directions of the local body coordinate system.

The subsystem splits each of the vectors into components and plots their time histories. The "History" tabs on "Parameters" menu of the scopes indicate that these signals are also sent to the MATLAB workspace using a structure with the associated time values. The name of the angular velocity structure is "barAngularVelocity" and the name of the angular acceleration structure is "barAngularAcceleration".

Cylindrical Joint Measurement Subsystem:

The measurement subsystem for the cylindrical joint and the dialog box for the joint sensor are shown in the panels below. In this case, the sensor is used to measure the velocity and acceleration of the slider along the joint axis. Using the dialog box, the user can measure results associated with either the "P1" (translational) or "R1" (rotational) primitives associated with the joint. In this case the dialog box indicates the sensor is connected to the translational primitive and is measuring the velocity and acceleration of the slider along the joint axis.

The "History" tabs on "Parameters" menu of the scopes indicate that these signals are also sent the the MATLAB workspace using a structure with the associated time values. The name of the velocity structure is "sliderVelocity" and the name of the acceleration structure is "sliderAcceleration".

Y Block Parameters: Slider Prismatic Primitive Sensor \times					
Joint Sensor Measures linear/angular position, velocity, acceleration, computed force/torque and/or reaction force/torque of a Joint primitive. Spherical measured by quaternion. Base-follower sequence and joint axis determine sign of forward motion. Outputs are Simulink signals. Multiple output signals can be bundled into one signal. Connect to Joint block to see Connected to primitive list.					
Measurements					
Primitive Outputs					
Connected to primitive:	P1			-	
\square Position		Units:	m	,	
\checkmark Velocity		Units:	m / s	\checkmark	
\square Acceleration		Units:	$\mathrm{m} / \mathrm{s}^{\wedge} 2$	-	
\square Computed force		Units:	N	*	
OK		Cancel	He		

Results:
When the MATLAB script is executed, model input variables are defined, the SimMechanics model executed, SimMechanics results are plotted in Figures 1-7, analytical results are calculated at $t=0$ and displayed in the MATLAB command window, and finally, analytical results are calculated for $t \geq 0$ and plotted in Figures 8-11. When the SimMechanics model is executed, an animation window opens to display the system in motion.

A snapshot of the animation of the system at $t=1.29$ (sec) is shown below. As previously noted, the slider is depicted as a rectangle for animation purposes. Using this approach clearly shows that the slider rotates and translates along the y-direction as the crank rotates. This rotational motion could be measured by connecting a sensor to the "R1" primitive of the cylindrical joint.

SimMechanics Model Results:

The script generates eleven plot figures as it executes. Figures 1-3 are used to verify that the angular motion of the crank has been correctly calculated and are not shown here. Figures 4-5 show the world components of the angular velocity and angular acceleration of bar AB and are shown in the first set of plots below. The velocity and acceleration of the slider are plotted in Figures 6-7 and are shown in the second set of plots. Data cursors have been used to show values at $t=1(\mathrm{sec})$.

Results generated using the analytical equations from Unit 8 are plotted in Figures 8-11. The results (not shown here) are found to be identical to those generated by SimMechanics.

Increasing the Quality of the Animation:
As presented above, the body geometry of the disk was determined using an "Equivalent ellipsoid from the mass properties", and the body geometries of the arm, slider, and fixed arm were determined by the locations of the body coordinate systems as indicated on the "Visualization" tabs of the body dialog boxes. As in Example 4, the animation results for this example can be improved using external stereolithographic files to provide the geometries of the bodies.

Three improved animation windows are shown below. The figure on the top left shows the position of the system from a prospective like that shown above for the previous model. The other two figures each show the position of the system from a prospective that more clearly shows the nature of the revolute joint between the bar and the slider. Note that a third angle was used to orient bar $A B$ so the fork would be aligned to accept the slider.

Exercises:

10.1 Write a MATLAB script to convert a 2-3-1 body-fixed orientation angle sequence to an equivalent set of Euler parameters. Check your results as in Example 1. You can make use of the scripts provided above or you can write your own.
10.2 Write a MATLAB script to calculate the velocity and acceleration of point A at a series of times starting in the position shown with $\theta=0$. Resolve the components of the two vectors in the disk-fixed system. At $t=0$ the coordinate systems of all the bodies are aligned, and all relative angular accelerations are constant. Use the following data:

$$
\begin{array}{ll}
L=0.5(\mathrm{~m}) & r=0.25(\mathrm{~m}) \\
\dot{\omega}_{2}=3\left(\mathrm{rad} / \mathrm{s}^{2}\right)=\mathrm{constant} & \omega_{2}(t=0)=2(\mathrm{rad} / \mathrm{s}) \\
\dot{\omega}_{1}=4\left(\mathrm{rad} / \mathrm{s}^{2}\right)=\mathrm{constant} & \omega_{1}(t=0)=3(\mathrm{rad} / \mathrm{s}) \\
\dot{\omega}_{3}=5\left(\mathrm{rad} / \mathrm{s}^{2}\right)=\mathrm{constant} & \omega_{3}(t=0)=4(\mathrm{rad} / \mathrm{s})
\end{array}
$$

Plot the disk-fixed components of ${ }_{\sim}^{R}{\underset{\sim}{D}},{ }^{R}{\underset{\sim}{\alpha}}_{D},{ }^{R}{\underset{\sim}{X}}_{A}$, and ${ }^{R} \underset{\sim}{a}$ for $0 \leq t \leq 3(\mathrm{sec})$.
10.3 Develop a Simulink model to calculate the motion for the system of Exercise 10.2. Plot your results and compare them with the script results from Exercise 10.2. Use a script to define the necessary variables, run the Simulink model, and plot the results.
10.4 Develop a SimMechanics model to calculate the motion for the system of Exercise 10.2. Use a column length of 1.5 (m) and attach the arm two-thirds of the way up the column. Plot your results and compare them with the script results from Exercise 10.2 and the Simulink results from Exercise 10.3. Use a script to define the necessary variables, run the SimMechanics model, and plot the results.
10.5 The system shown consists of bar $A B$ whose ends are connected to collars that slide along the two fixed poles. The collar at B can only translate along the horizontal bar (prismatic joint), while the collar at A can both translate and rotate relative to the vertical bar (cylindrical joint). The bar is connected to the collar at B using a ball and socket joint, and it is connected to the collar at A using a pin joint. Neglect the size of the collars. Use the
 following data:

$$
a=0.3(\mathrm{~m}) \quad b=0.6(\mathrm{~m}) \quad c=0.2(\mathrm{~m}) \quad u(t)=0.1 \sin (2 \pi t) \quad(\mathrm{m})
$$

Write a script to calculate ${ }^{R}{\underset{\sim}{\omega}}_{A B},{ }^{R}{\underset{\sim}{\alpha}}_{A B},{ }_{\sim}^{R}{\underset{\sim}{B}}^{R},{ }_{\sim}^{R} \underset{B}{ }$. Plot the results for $0 \leq t \leq 2$ (sec).
10.6 Develop a Simulink model for the same calculations. Plot your results and compare them with the script results from Exercise 10.5. Use a script to define the necessary variables, run the Simulink model, and plot the results.
10.7 Develop a SimMechanics model for the same calculations. Plot your results and compare them with the script results from Exercise 10.5 and the Simulink results from Exercise 10.6. Use a script to define the necessary variables, run the SimMechanics model, and plot the results.

References:

1. H. Baruh, Analytical Dynamics, McGraw-Hill, 1999
2. T.R. Kane, P.W. Likins, and D.A. Levinson, Spacecraft Dynamics, McGraw-Hill, 1983
3. T.R. Kane and D.A. Levinson, Dynamics: Theory and Application, McGraw-Hill, 1985
4. R.L. Huston, Multibody Dynamics, Butterworth-Heinemann, 1990
5. H. Josephs and R.L. Huston, Dynamics of Mechanical Systems, CRC Press, 2002
6. R.C. Hibbeler, Engineering Mechanics: Dynamics, $13^{\text {th }}$ Ed., Pearson Prentice Hall, 2013
7. J.L. Meriam and L.G. Craig, Engineering Mechanics: Dynamics, $3^{\text {rd }}$ Ed, 1992
