An Introduction to VLSI (Very Large Scale Integrated) Circuit Design

Presented at EE1001
 Oct. 16th, 2012

By Hua Tang

The First Computer

The Babbage Difference Engine (1832)
 25,000 parts
 cost: $£ 17,470$

The first electronic computer (1946)

Digital Integrated Circuits²nd

First Transistor (Bipolar)

First transistor Bell Labs, 1948
(c) Digital Integrated Circuits²nd

Introduction

The First Integrated Circuits

> Bipolar logic 1960's

ECL 3-input Gate Motorola 1966

Basic IC circuit component: MOS transistor

MOS: Metal Oxide Semiconductor

Intel 4004 Micro-Processor

> 1971
> 1000 transistors
> $<1 \mathrm{MHz}$ operation $10 \mu \mathrm{~m}$ technology
(0) Digital Integrated Circuits²nd

Intel Pentium (IV) microprocessor

2001
42 Million transistors
1.5 GHz operation $0.18 \mu \mathrm{~m}$ technology

More recent Processors 2006

291 Million transistors
3 GHz operation
65nm technology
2007
800 Million transistors
2 GHz operation
45 nm technology (the biggest change in CMOS transistor technologies in 40 years)

2010 Core i7
1.2 Billion transistors
3.3 GHz operation

32nm technology

Moore's Law

- In 1965, Gordon Moore noted that the number of transistors on a chip doubled every 18 to 24 months.
- He made a prediction that semiconductor technology will double its effectiveness every 18 months

Moore's law in Microprocessors

Transistors on Lead Microprocessors double every 2 years

© Digital Integrated Circuits ${ }^{2 n d}$
Courtesy, Intel
Introduction

Frequency

Lead Microprocessors frequency doubles every 2 years
© Digital Integrated Circuits ${ }^{\text {2nd }}$
Courtesy, Intel
Introduction

Not Only Microprocessors

Cell Phone

HDTV
PDA

Digital Integrated Circuits ${ }^{2 n d}$
Introduction

What is a MOS Transistor?

A Switch!

An MOS Transistor

MOS Transistors - Types and Symbols

NMOS

PMOS

The CMOS Inverter: A First Glance

CMOS Inverter First-Order DC Analysis

$$
V_{i n}=V_{D D}
$$

$V_{i n}=0$

Transient Response

The delay
Essentially determines the clock speed of the processor

Static CMOS (Complementary MOS)

PUN and PDN are dual logic networks

NMOS Transistors in Series/Parallel Connection

Transistors can be thought as a switch controlled by its gate signal NMOS switch closes when switch control input is high
$X \underset{Y}{\frac{1}{2}} \frac{1}{B} \quad Y=X$ if A and B

$$
Y=X \text { if } A \text { OR B }
$$

NMOS Transistors pass a "strong" 0 but a "weak" 1

PMOS switch closes when switch control input is low

$$
Y=X \text { if } \bar{A} O R \bar{B}=\overline{A B}
$$

PMOS Transistors pass a "strong" 1 but a "weak" 0

Example Gate: NAND

$$
\begin{aligned}
& \text { PDN: } \mathrm{G}=\mathrm{A} \mathrm{~B} \Rightarrow \quad \text { Conduction to GND } \\
& \text { PUN: } \mathrm{F}=\overline{\mathrm{A}}+\overline{\mathrm{B}}=\overline{\mathrm{AB}} \Rightarrow \quad \text { Conduction to } \mathrm{V}_{\mathrm{DD}} \\
& \overline{G\left(I n_{1}, I n_{2}, I n_{3}, \ldots\right)} \equiv F\left(\overline{I n_{1}}, \overline{I n_{2}}, \overline{I n_{3}}, \ldots\right)
\end{aligned}
$$

Example Gate: NOR

Full-Adder

\boldsymbol{A}	\boldsymbol{B}	$C_{\boldsymbol{i}}$	\boldsymbol{S}	$\boldsymbol{C}_{\boldsymbol{o}}$
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

The Binary Adder

$$
\begin{aligned}
\mathbf{S} & =\mathbf{A} \oplus \mathbf{B} \oplus \mathbf{C}_{\mathbf{i}} \\
& =\mathbf{A} \overline{\mathbf{B}} \overline{\mathbf{C}}_{\mathbf{i}}+\overline{\mathbf{A}} \mathbf{B} \overline{\mathbf{C}}_{\mathbf{i}}+\overline{\mathbf{A}} \overline{\mathbf{B}} \mathbf{C}_{\mathbf{i}}+\mathbf{A B C} \\
\mathbf{C}_{\mathbf{0}} & =\mathbf{A B}+\mathbf{B C} \mathbf{C}_{\mathbf{i}}+\mathbf{A} \mathbf{C}_{\mathbf{i}}
\end{aligned}
$$

Complimentary Static CMOS Full Adder

The Ripple-Carry Adder

SRAM Memory cell

The add-up

32-bit adder:
 >3,000
 32-bit comparator: >3,000 32-bit multiplier:
 >50,000 1k SRAM:
 6,000

Design Metrics

- How to evaluate performance of a digital circuit (gate, block, ...)?
- Cost
- Reliability
- Scalability
- Speed (delay, operating frequency)
- Power dissipation
- Energy to perform a function

Future Design Challenges

- Processor architecture (multiple-core; interconnections)
\square Semi-conductor materials (current leakage; process variation)
- Power consumption (power density; thermal dissipation)

Career in VLSI design
 VLSI circuit design and design automation

-Intel, IBM, AMD, Texas Ins., Agilent,...

- Qualcomm, Broadcom, Samsung,...
-Micron, Seagate, WesternDigital...
- Cadence, Synopsys, MentorGraphics...
-Xilinx, Altera,

VLSI Design: FFT Butterfly

- Widely used in signal processing
- Design Butterfly Unit for 2-point FFT
- Components include multiplier, adder, subtractor, and data management

8-point FFT composed of 12 butterflies
Image from www.cmlab.csie.ntu.edu.tw/cml/dsp/training/coding/transform/fft.html

By: Spencer Strunic Matt Webb

FFT Butterfly Unit Layout

Digital Integrated Circuits ${ }^{2 n d}$

VLSI Design: 8-bit CPU

\square Registers

- Store data
- Manipulate data
\square ALU
- Select between many different operations to output
a Adder
- Adds two 8-bit numbers
- Multiplier
- Multiplies two 8-bit numbers

By: Brian Linder
Matt Leines

8-bit CPU Layout

Digital Integrated Circuits²nd

FIR Filter

-FIR - Finite-Impulse Response
aInvolves calculations of finite convolution sums in discrete-time systems
-Useful for Digital Signal Processing
-Equation -

$$
y[n]=\sum_{k=0}^{N-1} h[k] x[n-k]
$$

$\square x$ is the input signal, h is the finite impulse response, y is the sum output and N is the order of the filter

By: Craig Bristow Joliot Chu

FIR Filter System Design

Module 1 - Control Module
Module 2 - Input Module
Module 3 - Coefficients Module

Module 4 - Arithmetic Module
Module 5 - Results Storage

A Delta-Sigma Converter for WCDMA

Digital Integrated Circuits ${ }^{2 n d}$
By: Matt Webb, Hairong Chang Introduction

Nowdays, many electronic systems on a single chip have both analog and digital (called Mixed-signal SoC (System on Chip))

From Texas Instruments

(c) Digital Integrated Circuits²nd

Introduction

Why A-D Interface?

Analog World

- Nature is analog, not digital.
- A-D interface's role is "translator".

Contact Information:

Office: MWAH 276
 Hour:
 3-5pm MW
 Phone: 726-7095
 Email: htang@d.umn.edu
 Http: www.d.umn.edu/~htang

