
Reprinted from MONTHLY WEATHER REVIEW. Vol. 121. No. 10. October 1993

~~~Sa.-Iy

An Introduction to Wavelet Analysis in Oceanography and Meteorology:
With Application to the Dispersion of Yanai Waves

S. D. MEYERS. B. G. KEU.Y, ANDJ. J. O'BRIEN



2858 MONTHLY WEATHER REVIEW VOLUME 121

An Introduction to Wavelet Analysis in Oceanography and Meteorology:
With Application to the Dispersion of Yanai Waves

S. D. MEYERS, B. G. KEu.Y, AND J. J. O'BRIEN

Mesoscole Air-Sea Interaction Group, The Florida StQle Unillersity. Tallahassee. Florida

(Manuscript received 30 ~ 1992, in final form 4 May 1993)

ABSTRACT

Wavdet analysis is a relatively new technique that is an important addition to standard signal analysis methods.
Unlike Fourier analysis that yields an average amplitude and phase for each bannonic in a dataset. the wavelet
transform produces an "instantaneous" estimate or local value for the amplitude and phase of each bannonic,
This allows detailed study of nonstationary spatial or time-dependent signal characteristics.

The wavelet transform is discussed, examples are given, and some methods for preprocessing data for wavelet
analysis are compared. By studying the ~on ofYanai waves in a reduced gravity equatorial model, the
u~fulness of the transform is demonstrated. The group velocity is measured directly over a finite range of
wavenumbers by examining the time evolution of the transform. The results agree weD with linear theory at
higher wavenumber but the measured group velocity is reduced at lower wavenumbers, POSSIoly due to interaction
with the basin boundaries.

1. Introduction

a. The wavelet transform

The wavelet transform has shown promise in a di-
versity of scientific fields, but to date it has not been
much used in the oceanic and atmospheric sciences.
In part, this might be due to a lack of material dis-
cussing practical aspects of the technique. This article
therefore includes an introduction to the wavelet
transform as a tool for data analysis. For brevity, we
shall confine our discussion to the transform of a scalar
seriesf(t).

Wavelet analysis is based on the convolution off(t)
with a set of functions gab(t) derived from the trans-
lations and dilations (and rotations in higher dimen-
sions) of a mother wavelet g( t), where

It-b ) ; (1)

This is known as the continuous wavelet transform
since a and b may be varied continuously. Translation
parameter b corresponds to position or time if the data
is spatial or temporal, respectively. Dilation parameter
a then corresponds to scale length or temporal period.
Equation (2) expands a one-dimensional time series
into the two-dimensional parameter space (b, a) and
yields a local measure of the relative amplitude of ac-
tivity at scale a at time b. This is in contrast to the
Fourier transform that yields an average amplitude over
the entire dataset. Note, we have avoided the use of
the words "wavelength" or "frequency" in our de-
scription of the WT. Though wavelets have a definite
scale, they need not bear any resemblance to Fourier
modes (sines and COSines). However, a co1TeSpondence
between wavelength and scale a sometimes can be
achieved, as discussed in section 3.

To see the limitation of standard Fowier analysis
and the incentive for the development of wavelet anal-
ysis, consider the time series in Fig. la that changes
frequency halfway through the measurement. Compare
that to the signal in Fig. 1 b that is generated from the
simultaneous presence of both frequencies. These two
very different signals yield similar power spectra, shown
in Figs. 1 c,d, both being dominated by the same two
peaks. Without prior knowledge, it would be difficult
to know which signal produced which spectrum, since
information on signal evolution is lost during Fourier
analysis. Variations of the Fourier transform have been
used (e.g., Gabor 1946) in attempts to overcome this
limitation, but have met only with qualified success.
The WT produces "instantaneous" coefficients and

g",,(t) = L (-:-
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a(>O) and b are real. Any set of functions gab(t) con-
structed from ( I ) and meeting the conditions outlined
below are called wavelets. The convolution off(t) with
the set of wavelets is the wavelet transform (WT)
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produces the local nature of wavelet analysis, since the
coefficients T g{ b, a) are affected only by the signal in
the cone of influence (COI) about t = b. In practice,
the radius of the COI is the point I tl ='c beyond which
gab{x) no longer has significant value. Usually, 'c
cx: a, giving rise to conelike structures in the WT in
certain cases. The COI of the endpoints is an inlportant
consideration and will be discussed further in sec-
tion 2.

( ii) Also, g{ t) must have zero mean. Known as the
admissibility condition, this implies the invertability
of the WT. That is, the original signal can be obtained
from the wavelet coefficients using

f{t) = .!. II T ,{b, a) gab dadb
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FIG. 1. A limitation of standard Fourier analysis is illustrated; very
different signals can have very similar power spectra: (a) a mono-
chromatic signal that changes fi'equency halfway through the dataset,
(b) a signal comprised of two frequencies, (c) the JaW power spectn1In
of (a), and (d) the raw power spectrum of(b).

therefore can yield information on the evolution of
nonstationary processes.

The development of wavelet analysis began relatively
recently with Morlet (1983). A later collaboration
(Grossman and Morlet 1984) produced the continuous
wavelet transform in one dimension based on the set
of translations and dilations. Meyer ( 1985) extended
the technique to n dimensions, and Murenzi (1989)
included rotation. Three references are used for the
introduction to wavelet analysis: Farge ( 1992), Ruskai
et al. (1992), and Combes et al. (1989). Our goal in
this article is not to give a complete review of the wave-
let transform but to aid in its introduction to ocean-
ographers and meteorologists. The references contain
details on the history and uses of wavelets in a variety
of scientific applications.

In the following we continue with the introduction
to wavelet analysis. In section 2, a few methods for
preprocessing data for wavelet analysis are discussed
Two simple methods from Fourier analysis are tried
and shown to be inappropriate as they distort the end
regions of the WT. Another method, based on buffering
the ends of the data with additional points, is shown
to yield better results. Section 3 examines the dispersion
ofYanai waves and demonstrates how quantitative in-
formation not available from Fourier methods can be
obtained using the WT.

dw

(3)

If one is seeking "chirps" (short segments of linearly
increasing frequency), the wavelet

g(t) = eikl2!2eicle-t2!2 (4)

would be useful. If one knows the characteristics of the
signal or pattern being sought, the wavelet should be
chosen to have that same pattern. Large values of

b. Wavelet selection

To be a mother wavelet both fonnally and in prac-
tice, g(t) must have the following properties.

(i) It must be a function centered at zero and in the
limit as I t I - 00, g( t) - 0 rapidly. This condition

~= f<X)<X) Ig(;)12.
The caret indicates Fourier transform. For C-J to re-
main finite, g(O) must equal zero.

(ill) Wavelets are often regular; that is, g(", < 0)
= O. This simplifies the interpretation of the transform

because it eliminates confusion of measurements at '"
with those at -"'. Wavelets that are regular are also
called progressive.

(iv) Higher-order moments should vanish, allowing
for the study of high-order variations in the data. This
requirement can be relaxed, depending on the appli-
cation.

The quantitative result of a WT depends upon the
form of g( t). A clear example is the choice of complex
versus real wavelets. Complex wavelets allow the sep-
aration of the magnitude and phase of the data, whereas
real wavelets, loosely speaking, superpose both mea-
surements in the (b, a) plane. The complex transform
is more easily interpreted and is the type of wavelet
used in this article. Some examples of mother wavelets
were shown in Farge (1992) and Coulibaly( 1992), for
example. However, they represented only a few cases
from an infinite family of functions; many other wave-
lets are known or are under study.

The appropriate choice of g( t) is dictated by the
goals of the analysis. Suppose one is seeking the si-
multaneous presence of two frequencies, CJ and C2,
within a signal. An appropriate mother wavelet is

g(t) = (eic"eiC2')e-,2/2.
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I T 6( b, a) I will then indicate where J( t) has the desired
form.

Not only are there trade-offs in choosing g( t) but
there are considerations when choosing a and b. For
example, the continuous wavelet transform can yield
redundant information since small changes in a or b
are often insignificant. A more efficient choice is to
choose a discrete set of a and b such that the gab(t)
constitute an orthogonal basis set. The WT at any pa-
rameter value can then be found using a suitable in-
terpolation scheme. There is much discussion of these
discrete wavelets in the literature, as they are useful in
fields such as image compression and multiresolution
analysis.

c. Wavelet algorithms

There are several algorithms to implement a WT,
and only two will be discussed here. The references
detail other methods under development, particularly
those involving discrete wavelets. Here, we discuss the
continuous transform.

The simplest method is direct numerical integration.
Knowingf(t) and g(t), one can compute the transform
at arbitrary points in parameter space using a discre-
tized form of ( 2 ). The drawback of this technique is
that it is time consuming. If one integrates over 0 < a
~ land 0 < b ~ J, the integration time goes as lJ2.

An alternative is to exploit the convolution theorem
and do the WT in spectral space:

..
Tb(b, a) = aJ/2 eib...g*(acu)/(cu)dcu. (5)

This allows the use of optimized fast Fourier transform
(FFT) routines and results in a much faster transform,
with CPU time going as IJI~J. To use this method,
g( cu) should be known analytically and the data must
be preprocessed to avoid errors from the FFT algo-
rithms. In particular, the discrete form of (5) will pro-
duce an artificial periodicity in the WT if f( t) is not
periodic. This is demonstrated in the examples herein,
and different methods for dealing with the problem are
discussed Issues of aliasing and bias in FFT routines
are well known and need not be discussed here.

b. The mesh in all the plates indicates the COI of the
endpoints. Consider the first endpoint t = O. For b
< r c, the wavelet has significant values at t < 0 where
there is no signal. Hence, there is a steady degradation
in the WT as b approaches O.

Regions where I T g( b, a) I are large indicate high
correlation between the data and the wavelet. In Fig.
2, the modulus clearly indicates the abrupt change in
the frequency of the signal by the shift of the large
coefficients to a different scale. The phase indicates the
cycling of the signal from -1r to 1r and allows for the
location of wave crests in the signal. One can count
the number of waves in a simple signal such as the one
shown here. The branchings at larger a are due to the
larger wavelets (large a) detecting more than one cycle.
Note the convergence of the phase lines toward higher
frequency (smaller a) in the middle of the transfonn.
This indicates when the frequency shifted, and gen-
erally occurs at any singularity (sudden changes in fre-
quency or phase) in the signal. Interpretation of phase
plots for more complicated signals can be nontrivial.

In the WT phase, and to a lesser extent in the mod-
ulus, activity is indicated at many scales, though the
signal is locally monochromatic. Although there is a
"best" choice for the scale (a = O(» in the modulus,
the nonzero correlations between the wavelets and data
produce nonzero transfonn values at scales away from
O(). This can lead to confusion when trying to determine
which scales are present in the data; one method for
dealing with this problem is discussed in the next sec-
tion.

Note in Fig. 2 the curvature of the modulus at the
end regions. The line of maximum wavelet coefficient
bends to meet artificial periodic boundary conditions,
falsely indicating frequency changes at the beginning
and end of the signal. This demonstrates the generic
problem when using ( 5 ) on nonperiodic data-the WT
can induce a periodicity into the transfonn, greatly
distorting the infonnation at the end regions. This is
a critical problem when the initial and final signal
characteristics are very different.

In an attempt to impose periodicity on the signal,
method II preprocesses f( t) with a cosine window

/(4) - /(It)[2. Examples of wavelet analysis

The WT of the signal in Fig: la is a classic example
in wavelet literature and will be examined with four
different data preparation methods. All follow (5) and
use the Morletwaveletg(t) = elcte-12/2. Method I does
not involve any preparation of the data, and the trans-
forDl is computed without considering the properties
of FFr routines. The result is presented in Fig. 2, with
the amplitude and phase shown separately. As in all
the transforDls shown here. the vertical axis is the in-
verted scale Q, so the corresponding wavenumber in-
creases on the vertical axis. The horizontal axis is time

k = 0, 1, . . " (N - 1); (6)

N is the total number of data points. The resulting WT
no longer has the false end regions, because it has ef-
fectively lost those areas. as seen in Fig. 3, which is
clearly an unacceptable effect. A window with steep
cutoffs would not eliminate as much data but would
produce only a small correction to the distortion of
the end regions.

Method III involves detrendingf(tJ and removing
the mean, a standard procedure when computing FFfs.
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FIG. 2. Wavelet transform of the signal in Fig. 1a usingf(t) that

was not ~lIdjtjoned. The cbanp: in ~ueocy is clearly indicated
by the shift in the wavelet modulus maximum. False results are pr0-
duced at the end relioDS sin~ the data is not periodic. (a) Modulus:
the ooIors ~t val1a from the minimum (Nue) to the maximum
(white). (b) Phase: the colors represent values from -or (blue) to...
(white). The veItica1 axis is the inverted a scale. The mesh indicates
the COt (r" = 2a for the Morld wavelet). The color bar is used in
this figure and rig. 8 with the minimum and maximum adjusted for
eacbpiot.
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FK). 8. The modulus of the WI of the heilht fJdds in Fig. 7.
Vertical axis is the wavelength X given by Eq. (12), and the horizontal
axis is distance acro8 the model basin. Note the ~on of the
tongue from the upper left toward the lower richt in time, com-
spondins to the changes in wavelength as the Yanai waves disperse
across the basin: (a) 80. (b) 140. and (c) 200 days. White is the
maximum coefficient, and blue is the minimum. The radius of the
COI mesh is r. = 2X/l.2.

'211

The result is shown in Fig. 4. Again, errors in the wave-
let coefficients appear as they did with method 1.
Though methods II and III are common methods for
preparing data for Fourier analysis, they are inadequate
for wavelet analysis.

Method IV, though developed independently by the
authors, has already been investigated by other re-
searchers (Bamier 1992, personal communication).
The data f( Ik) is buKered on either side with a tail that
goes to zero, as indicated in Fig. 5. After the WT is
complete, the regions corresponding to the tails are
discarded, yielding Fig. 6. This method eliminates the
problem of non periodic data and does not introduce
significant distortions of the end regions. The length
of the buffers are chosen empirically. When the buffers
are too short, distortions as in Fig. 2 are found but
lessen as the buffer length is increased. Various forms

of the buff~ can be chosen. Here, we used a very
simple form, but suggest for future applications
matching not just the endpoint values but their deriv-
atives as well. Even better would be a form that matches
the endpoint frequency, amplitude, and phase, which
is conceivable for simple signals, and would arguably
eliminate most of the problems ~ted with the COI
at the endpoints. Of course, if the end regions are un-
important, their WT can be ignored.

A frequent comment about wavelet analysis is that
it is difficult to obtain more than qualitative infor-
mation (such as detecting the frequency change in the
preceding example). This may be so in some cases; in
others it is possible to obtain quantitative information
that would be difficult if not im~ble to obtain by
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FIG. 3. ContoUlS of the wavelet traDsfonn of the signa1 in Fig. la

usinaf(t) that was preconditioned using a a>Sine window. The in-
formation in the end regions is now lost: (a) modulus; (b) phase.
The negative contours are dashed.

traditional Fourier analysis. As a practical illustration
of wavelet analysis we will directly measure the dis-
persion ofYanai waves in an ocean model. The results
indicate general agreement with linear theory except
near the eastern boundary where the wave propagation
appears to slow. The spectral ocean model used to cre-
ate the data is described by Kelly ( 1992) .

3. Dispersion of Yanai waves

Instability waves in the equatorial regions of the
world's oceans have been under study since the mid-
1970s. Interest began following the observations made
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FIG. 6. Wavelet transform of the sisnal in Fig. S. There is mum
less distortion in the end regions of the data. Buft'er Ienath was 100
data points.

FIG. 4. Wavelet transfonn of the signal in Fig. la usingf(t)
that was demeaned and detrendeci; (a) and (b) as in Fig. 3.

during the GARP (Global Atmospheric Research
Project) Atlantic Tropical Experiment ( GATE) in the
summer of 1974 (Duing et al. 1975). Occurring in a
narrow frequency band, with periods around 25 days
and zonal wavelengtlis of about 1000 kIn, their struc-
ture has been shown to be dynamically similar to Yanai
waves (mixed Rossby-gravity waves) both in the ob-
servations (Weisberg and Horigan 1981; Tsai 1990)
and in the numerical models (Cox 1980; Kindle and
Thompson 1989; Woodberry et al. 1989). The waves
propagate westward and upward with a group velocity
that is eastward and downward ( Weisberg et al. 1979;
Cox 1980). The zonal phase and group velocities are
about 33-73 cm s-J and 16 cm S-I, respectively
(Weisberg et al. 1979). Similar oscillations were ob-
served along the equatorial front in the eastern tropical
Pacific using satellite imagery (Legeckis 1977).

As a result of these observations, it was hypothesized
that they were generated by a meridional shear insta-
bility between the westward-flowing South Equatorial
Current (SEC) and the eastward-flowing North Equa-
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FIG. 9. The transform maximums comspooding to the dispersion
tongues. The evolution of the tine in time gives the aroup velocity.
Note the gradual Battening of the lines in the western region.

1h,4(x, y) = :2[h(x, y) - h(x, -y»), (8)

which shows a wavelength increasing eastward across
the basin. Since the h(x, y) field for a Yanai wave is
antisymmetric about the equator, measurements of h,4
help isolate the relatively small-amplitude Yanai waves
from the large-amplitude symmetric structures (e.g.,
Kelvin waves). Cross-longitudinal measurements of
h,4(x, y = +3°) are shown for 80,140, and 200 model
days in Fig. 7. It is clear that wavenumber depends on
longitude and that the waves are propa~ting energy
eastward. A similar wave pattern was found in a re-
duced gravity model by Kindle and Thompson ( 1989).
Though power spectra would indicate which wave-
numbers are present, no understanding of the spatial
characteristics could be achieved.

In contrast, the WTs clearly show the structure of
the wave field and its development in time. FIgUre 8

l (see p. 2861) shows the modulus of the transform at. 80, 140, and 200 days, which indicates the waves as a

tongue of high values stretching progressively farther
1 across the basin. The vertical coordinate is the Fourier

mode that corresponds to wavelet scale (Appendix).
To obtain quantitative results from the transforms,

15 the modulus is scanned along each scale for local max-
imum, revealing the "spine" of the dispersion tongue.

140d (The result of a scan over the entire transform is

sometimes called a "skeleton.") Since it is at these local
maximum that the maximum correlation of the wave-
let and f( t) occurs, we a.uume it is the motion of the
maximum points that best indicate the dynamics. The
points in Fig. 9 are the maximum points corresponding

15 to the dispersive tongues in the modulus of ~veral
d WTs. Using these results, we can now directly obtain

the range of scales involved and the distance that they
have propa~ted. Measuring the displacement of the
spine at each scale over time yields the group speed
c,.(a). Note in Fig. 9 that the total displacement of the

\;. - lines is greater at the smaller wavenumbers. indicating

larger group velocity.
5 The relation between the wavenumber k of the Fou-

rier modes and the scale a is not fully understood and
may not be useful with irregular wavelets. However,
in the case of the Morlet wavelet a relation can be ob-
tained by transforming a monochromatic signal as dis..

torialCountercunent(NECC)(Pbilander 1976,1978).
A more recent study by Weisberg and Weingartner
( 1988) showed that the generation region of the waves
is slightly to the south of the boundary between the
SEC and the NECC. Nevertheless, there is a general
agreement that for the eastern tropical Atlantic and
Pacific the waves are caused by a latitudinal shear in-
stability. A different mechanism bas been proposed for
the western Indian Ocean where the waves are more
likely to be boundary forced (Kindle and Thompson
1989; Woodberry et at 1989; Moore and McCreary
1990 ). A hypothesis that the waves in this region result
from cross-equatorial wind stress bas been presented,
with the preferred frequency selection around 2S days
being due to the dispersive properties ofYanai waves
(Kelly 1992). We now discuss how the wavelet trans..
form was useful in supporting this idea.

The linear dispersion relation for Yanai waves
(Moore and Philander 1977) is

(J' .8

k=---, (7)C u

where k is the wavenumber, q is the frequency, and c
= (g'H)1/2, From (7), Yanai waves with westward
phase speed have eastward group velocity with Cg in-creasing as k - 0 - so the longer waves propagate faster.

This is reflected in the pattern of the measured anti-
symmetric height field
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FIG. 7. Croa-IoDiitudinal sections at ~ diffClent days of the
beigbt field aioOI3°N. Note the change in wavdength with longitude:
(a) SO. (b) 140. and (c) 200 days.
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found in the ocean may be due to the dispersion of
Yanai waves; the longer, faster waves leave the western
region after roughly 100 days.
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FIG. 10. The measured dispersion relatiOD &om the WT. En'Or

ban are based on the standard deviation of the measwm velocity.
The theoretical value is shown as the solid curve. Waveuumbers are
assumed to be k = 2.1 (2-r)a-' , .

cussed in the Appendix. Such a transform would have
a structure as in FIg. 6 but with a single maximum of
the modulus in a. The line of maximum correlation
yields a conversion from wavelet scale to Fourier
wavelength. For the Morlet wavelet with c = 5 (used
in the WT in this article), the wavelength is given by
A ~ .l.2a.1lUs allows us to compare the measurements
of propagation speed with the theoretical speed at con-
ventional wavenumbers.

The results of the measured Cg are compared with
theoretical values in Fig. 10. There is general aareement
with the linear theory in the range &om approximately
k = -0.005 rad km-1 to k = -0.02 lad kin-I. (Note,
we deal only with k < 0.) For smaller k the measured
Cg diverges from the theoretical value, possibly due to
the finite size of the basin. When the maxima for all
the days under study are plotted together, one can see
a sudden decrease in the propagation speed of wave-
lengths 8bove 1600 kin when they near the eastern
boundary. This scale corresponds to the value of k
where the drop-off in Cg occurs. To test this we ex.
paDded the basin domain from IS 000 to 22 SOO km,
while keeping the same number of modes in the spectral
model. In the longer domain there is no drop-off of
the measured group velocity ~t lower wavenumber
since the longer waves do not have time to encounter
the eastern boundary during 200 model days.

As mentioned in Kelly ( 1992), in the western region
of the basin Yanai waves exist only in a limited range
of k. Examining Fig. 9, one can see a gradual flattening
of the curves in the western basin as time progresses,
indicating a narrowing of the range of wavenumbers.
The waves remaining in the west are several hundred
kilometers in wavelength, as observed in the Indian
Ocean. This suggests that the narrow range of periods

L: f/!{x)dx = 1.

The addition of the scaling functions to the set of
wavelets allows for the decomposition of functions that
are not square integrable.

Frequently used with discrete wavelets [following
the notation of Farge (1992)] \lIifix) that are defined
by \lIij(x) = 2j/~2jx - i), the reconstruction equation
forf(x) is then

+~
f(x) = L < ~ If(x»~(x)

;--~

+~ +~

+ k k (+Ii !/(X»+iJ{x)
j-6 i--~

(9)

4. Summary
The wavelet transfonn promises to be a useful tool

in oceanography and meteorology. For the purpose of
data analysis, the continuous transfonn in spectral
space is useful and efficient. However, standard meth-
ods for preprocessing data for Fourier analysis are in-
sufficient for wavelet analysis. The best method ex-
amined here is that of buffering the ends of the signal
with points that smoothly go to zero. The region of the
transfonn corresponding to these points is then dis-
carded after the transfonn. Without this buffering, a
signal whose properties are different near its ends will
result in a WT that has been forced to periodicity at
all scales through a distortion (in some cases severe)
of the end regions. The greater the aperiodicity of the
signal, the greater the distortion.

We demonstrate the usefulness of the WT by ex-
amining the dispersion ofYanai waves. The transfonn
modulus clearly reveals the propagation of the different
wavelengths across the basin. By scanning the modulus,
Cg( k) is measured directly and shown to agree with
linear theory, though there is a reduction in propaga-
tion speed of the longer wavelengths. The narrowing
of the range of wavelengths in the western region ob-
served supports the hypothesis that the narrow range
of frequencies observed in the western equatorial
oceans is a consequence of Yanai wave dispersion.
These results could not be obtained using standard
Fourier techniques.

The use of wavelets goes beyond simple data analysis,
and a full discussion is beyond the scope of the paper,
but a couple of references might suggest possible future
applications. An extension of wavelet analysis, called
multiresolution analysis. adds the scaling /unctions
<p(x) to the set of wavelets, where in contrast to con-
dition (i) in section 1,
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which in this case becomes

I T,(b, a)12 = ae-(ako-c)2. (AI)

To find the scale a of maximum correlation, we set
the derivative of (A I ) with respect to a equal to zero
and obtain

I + 2ckoa - 2k3a2 = O. (A2)

Two solutions arise but only one is realistic. The pre.
ferred solution is

Qo - ~ [ ..!. + !.:!~£l~ 1
ko ko..

Using ko = 2...>..01, the solution becomes a linear re-
lation betWeen wavelet scale and Fourier wavelength,

c + (24: C2)1/~]>..0. (A3)

The other solution is a decreasing function of >"0 and
is disregarded. Equation (AI) can also be obtained for
a real monochromatic signal with any progressive
wavelet.

Note, it follows from (2) that any linear superpo-
sition of periodic modes will result in separate local
maxima, each described as above. The WT of any
function

Of more direct interest to the reader might be recent
attempts to model two- and three-dimensional fluids
in wavelet space. A representation of the three-dimen-
sional Navier-Stokes equation in wavelet space is given
by Meneveau ( 1991 ), with the emphasis on reducing
the number of degrees of freedom necessary for mod-
eling fluid turbulence. Zimin (1981), antecedent to
the formal development of wavelets, studied the Na-
vier-Stokes equation in terms of basis functions lo-
calized in space and time. In one of the few papers
based on the work of Zimin that has been translated
into English, Aristov and Frick (1988, 1989) present
a study of convection in a rotating fluid

like previous hot topics in science, the WTshows
much promise but solid results have been difficult to
achieve. The works of Meneveau (1991) and Zimin
( 1981) are far from final results; several more years
are probably needed for those subjects to mature.
However, for applications such as described in section
3 of this article, the WT is sufficiently developed that
it can now be used with confidence as a tool in the
oceanic and atmospheric sciences.
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f(x) = ~ Aflik]x (A4)

j

will have modulus maxima at aj = [c + (2 + C2)1/2]
x (2k»-I.

APPENDIX

Wavelet Scales and Fourier Wavelengths

The relation between wavelet scale and the more
common Fourier wavelength is not necessarily
straightforward. For example, some wavelets are highly
irregular without any dominant periodic Components.
In those cases it is probably a meaningless exercise to
fmd a relation between the two disparate measures of
distance. However, in the case of the Morlet wavelet,
which is a periodic function enveloped by a Gaussian,
it seems more reasonable. Using

2g(x) = eicxe-x 12,

we take the transform of eikoX using (5)

Tg(b, a) = al/2 i: dkeiNcH(k)e-(ak-C)2/2o(k - kG).
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