
An Investigation in Techniques used to Procedurally Generate Dungeon Structures 1 

 

 

 

 

 

 

 

 

An Investigation in Techniques used to Procedurally 
Generate Dungeon Structures 

By: Nathan Williams 

 

  



An Investigation in Techniques used to Procedurally Generate Dungeon Structures 2 

 

Abstract 

This project takes a look at understanding the ever increasingly popular topic of procedural 
content generation and it uses to generate structures that can be used as levels inside video games. 
With a focus on dungeon generation, several techniques are explored and compared to each other 

to gain an understanding of where each one may be appropriate to be used. Due to a desire to 
improve current techniques, new approaches are investigated and developed to help with some of 

the common problems found in dungeon generation.  



An Investigation in Techniques used to Procedurally Generate Dungeon Structures 3 

 

1 TABLE OF CONTENTS 

1 TABLE OF CONTENTS .............................................................................................................. 3 

2 INTRODUCTION ...................................................................................................................... 6 

2.1 BRIEF .................................................................................................................................... 6 

2.1.1 WHAT IS A DUNGEON? .................................................................................................................... 6 

2.1.2 WHY DUNGEONS?........................................................................................................................... 8 

2.2 PRODUCT ............................................................................................................................... 8 

2.3 EXISTING TECHNIQUES FOR GENERATING DUNGEONS ....................................................................... 9 

2.3.1 BINARY SPACE PARTITIONING BASED DUNGEONS .................................................................................. 9 

2.3.2 DELAUNAY TRIANGULATION DUNGEONS ........................................................................................... 13 

2.3.3 GRAPH GRAMMARS ....................................................................................................................... 16 

2.3.4 CELLULAR AUTOMATA .................................................................................................................... 18 

RESEARCH CONCLUSION .................................................................................................................. 19 

3 DESIGN ................................................................................................................................ 20 

3.1 INTRODUCTION ..................................................................................................................... 20 

3.2 TECHNOLOGY CHOICE ............................................................................................................. 20 

3.2.1 UNITY .......................................................................................................................................... 20 

3.2.2 DIREXTX/OPENGL ................................................................................................................... 21 

3.2.3 LIBGDX ....................................................................................................................................... 21 

3.2.4 CONCLUSION ................................................................................................................................ 21 

3.3 EVALUATION STRATEGY ........................................................................................................... 22 

3.3.1 PRODUCT EVALUATION .................................................................................................................. 22 

3.3.2 PROJECT EVALUATION .................................................................................................................... 22 

4 DEVELOPMENT ..................................................................................................................... 23 

4.1 DELAUNAY DUNGEON GENERATION ........................................................................................... 23 

4.2 BINARY SPACE PARTITIONING DUNGEON GENERATION ................................................................... 30 

4.3 CELLULAR AUTOMATA GENERATION ........................................................................................... 34 

5 TEST EVALUATION ................................................................................................................ 36 

5.1 IS THE STRUCTURE A DUNGEON ................................................................................................. 36 

5.2 IMPLEMENTATION DIFFICULTY .................................................................................................. 36 

5.3 GENERATION TIME ................................................................................................................. 37 

5.3.1 DELAUNAY GENERATION ................................................................................................................ 37 

5.3.2 BSP GENERATION ......................................................................................................................... 38 

5.3.3 CELLULAR AUTOMATA GENERATION ................................................................................................. 39 

5.3.4 ANALYSIS ..................................................................................................................................... 40 

5.4 MEMORY USAGE ................................................................................................................... 41 

5.4.1 DELAUNAY GENERATION ................................................................................................................ 41 

5.4.2 BSP GENERATION ......................................................................................................................... 42 

5.4.3 CELLULAR AUTOMATA GENERATION ................................................................................................. 43 

5.4.4 ANALYSIS ..................................................................................................................................... 44 

5.5 PRODUCT SWOT ANALYSIS ..................................................................................................... 45 



An Investigation in Techniques used to Procedurally Generate Dungeon Structures 4 

 

5.5.1 STRENGTHS .................................................................................................................................. 45 

5.5.2 WEAKNESSES ................................................................................................................................ 45 

5.5.3 OPPORTUNITIES ............................................................................................................................ 45 

5.5.4 THREATS ...................................................................................................................................... 45 

6 CONCLUSION ........................................................................................................................ 46 

6.1 PROJECT EVALUATION ............................................................................................................. 46 

6.2 FURTHER RESEARCH ............................................................................................................... 46 

6.3 PROJECT CONCLUSION ............................................................................................................ 47 

7 APPENDIX ............................................................................................................................ 48 

7.1 APPENDIX A – DUNGEON TILESET .............................................................................................. 48 

7.2  APPENDIX B – DELAUNAY GENERATION TIME RESULTS .................................................................. 49 

7.3 APPENDIX C – BSP GENERATION TIME RESULTS ............................................................................ 51 

7.4 APPENDIX D – CELLULAR AUTOMATA GENERATION TIME RESULTS..................................................... 53 

7.5 APPENDIX E – DELAUNAY GENERATION MEMORY RESULTS .............................................................. 55 

7.6 APPENDIX F – BSP GENERATION MEMORY RESULTS ...................................................................... 55 

7.7 APPENDIX G – CELLULAR AUTOMATA GENERATION MEMORY RESULTS .............................................. 55 

7.8 APPENDIX H – FIRST TERM DEVELOPMENT TIMETABLE ................................................................... 56 

7.9 APPENDIX I – SECOND TERM DEVELOPMENT TIMETABLE ................................................................. 57 

8 BIBLIOGRAPHY ..................................................................................................................... 58 

  



An Investigation in Techniques used to Procedurally Generate Dungeon Structures 5 

 

Figure 2.1– Screenshot from Rouge, showing the shape of the games dungeons ...................................... 7 
Figure 2.2 - Overview of a dungeon from The Legend of Zelda: A Link to the Past .................................. 7 
Figure 2.3 – Screenshot of a level from Spelunky .................................................................................................. 8 
Figure 2.4- Visual representation of dungeon space after one BSP split Retrieved from: 
http://roguebasin.roguelikedevelopment.org/index.php?title=Basic_BSP_Dungeon_generation 9 
Figure 2.5 – BSP Tree representation of dungeon space after one BSP split .............................................. 9 
Figure 2.6 - BSP Tree representation of dungeon space after two BSP splits .......................................... 10 
Figure 2.7– Visual representation of dungeon space after two BSP splits ................................................ 10 
Figure 2.8 – Visual representation of dungeon space after four BSP splits .............................................. 10 
Figure 2.9  – Visual representation of dungeon space after dungeon rooms added to leaf node ..... 11 
Figure 2.10 –Visual representation of dungeon space after leaf node sibling rooms connected ...... 12 
Figure 2.11 – Visual representation of fully connected dungeon ................................................................. 12 
Figure 2.12 – Development screenshot of TinyKeep by PhiGames ............................................................... 13 
Figure 2.13 – Generation of cells with rectangles. ............................................................................................. 13 
Figure 2.14 – Layout of cells after separation steering behaviour applied .............................................. 14 
Figure 2.15 – Final graph created by combining the Delaunay triangulation with the minimal 
spanning tree. .................................................................................................................................................................. 14 
Figure 2.16 – Example graph .................................................................................................................................... 16 
Figure 2.17– Example substitution rule ................................................................................................................. 16 
Figure 2.18 – Example graph after substitution ................................................................................................. 16 
Figure 2.19– Shape grammar showing alphabet, rules and output. ........................................................... 17 
Figure 2.20 – Comparison grid showing results of background research ................................................. 19 
Figure 3.1 – Technology choice comparison grid ............................................................................................... 21 
Figure 4.1– Inverse Square Law Separation formula ....................................................................................... 23 
Figure 4.2– Algorithm to find if a vertex is inside a hull .................................................................................. 23 
Figure 4.3– Function to calculate if point is inside triangle ........................................................................... 24 
Figure 4.4– Vertex being added to triangulation ............................................................................................... 24 
Figure 4.5– Illustration of Lawson flip in action ................................................................................................ 25 
Figure 4.6 – Illustration of quadrilateral of Incident edge ............................................................................. 25 
Figure 4.7– Screenshot of dungeon created by implementation .................................................................. 26 
Figure 4.8– Corridor Digger movement algorithm............................................................................................ 27 
Figure 4.9– Hashing Value Grid ................................................................................................................................ 28 
Figure 4.10– Grid representation of tiles in dungeon ....................................................................................... 28 
Figure 4.11– Grid representation of tiles in dungeon with hash value grid overlaid ........................... 28 
Figure 4.12– Screenshot of final output of Delaunay generation ................................................................ 29 
Figure 4.13– Representation of BSPNode class ................................................................................................... 30 
Figure 4.14– Screenshot of output after 5 BSP splits ........................................................................................ 31 
Figure 4.15– Representation of rooms in dungeon with connections......................................................... 32 
Figure 4.16– Visualization of Delaunay connection strategy ........................................................................ 32 
Figure 4.17– Visualization of Transitive Connect strategy ............................................................................ 33 
Figure 4.18– Screenshot of final output of BSP generation ............................................................................ 33 
Figure 4.19 – pseudo-code for the 4-5 rule......................................................................................................... 34 
Figure 4.20 – Screenshot of outputted structured of Cellular Automata generation ........................... 35 
Figure 5.1 – Grid of generation types compared against dungeon criteria .............................................. 36 
Figure 5.2 – Grid of generation types compared to difficulty criteria ........................................................ 36 
Figure 5.3 – Graph of Delaunay generation time with different room amounts .................................... 37 
Figure 5.4 – Graph of BSP generation time with different room amounts ............................................... 38 
Figure 5.5 - Graph of Cellular Automata generation time with different grid sizes .............................. 39 
Figure 5.6 – Graph of BSP and Delaunay generation time comparison ..................................................... 40 
Figure 5.7 - Graph of Delaunay RAM usage with different room amounts ............................................... 41 
Figure 5.8 - Graph of BSP RAM usage with different room amounts .......................................................... 42 
Figure 5.9 – Graph of Cellular Automata RAM Usage with different grid sizes ...................................... 43 
Figure 5.10 - Graph of BSP and Delaunay RAM usage comparison ............................................................. 44 

  

file:///D:/Users/Nathan/Desktop/04-01-2014-Dissertation.docx%23_Toc386830848
file:///D:/Users/Nathan/Desktop/04-01-2014-Dissertation.docx%23_Toc386830848
file:///D:/Users/Nathan/Desktop/04-01-2014-Dissertation.docx%23_Toc386830849
file:///D:/Users/Nathan/Desktop/04-01-2014-Dissertation.docx%23_Toc386830850
file:///D:/Users/Nathan/Desktop/04-01-2014-Dissertation.docx%23_Toc386830851
file:///D:/Users/Nathan/Desktop/04-01-2014-Dissertation.docx%23_Toc386830853
file:///D:/Users/Nathan/Desktop/04-01-2014-Dissertation.docx%23_Toc386830856
file:///D:/Users/Nathan/Desktop/04-01-2014-Dissertation.docx%23_Toc386830857
file:///D:/Users/Nathan/Desktop/04-01-2014-Dissertation.docx%23_Toc386830858
file:///D:/Users/Nathan/Desktop/04-01-2014-Dissertation.docx%23_Toc386830859
file:///D:/Users/Nathan/Desktop/04-01-2014-Dissertation.docx%23_Toc386830859
file:///D:/Users/Nathan/Desktop/04-01-2014-Dissertation.docx%23_Toc386830860
file:///D:/Users/Nathan/Desktop/04-01-2014-Dissertation.docx%23_Toc386830861
file:///D:/Users/Nathan/Desktop/04-01-2014-Dissertation.docx%23_Toc386830862
file:///D:/Users/Nathan/Desktop/04-01-2014-Dissertation.docx%23_Toc386830863
file:///D:/Users/Nathan/Desktop/04-01-2014-Dissertation.docx%23_Toc386830866
file:///D:/Users/Nathan/Desktop/04-01-2014-Dissertation.docx%23_Toc386830867
file:///D:/Users/Nathan/Desktop/04-01-2014-Dissertation.docx%23_Toc386830868
file:///D:/Users/Nathan/Desktop/04-01-2014-Dissertation.docx%23_Toc386830869
file:///D:/Users/Nathan/Desktop/04-01-2014-Dissertation.docx%23_Toc386830870
file:///D:/Users/Nathan/Desktop/04-01-2014-Dissertation.docx%23_Toc386830871
file:///D:/Users/Nathan/Desktop/04-01-2014-Dissertation.docx%23_Toc386830872
file:///D:/Users/Nathan/Desktop/04-01-2014-Dissertation.docx%23_Toc386830873
file:///D:/Users/Nathan/Desktop/04-01-2014-Dissertation.docx%23_Toc386830877
file:///D:/Users/Nathan/Desktop/04-01-2014-Dissertation.docx%23_Toc386830878
file:///D:/Users/Nathan/Desktop/04-01-2014-Dissertation.docx%23_Toc386830879
file:///D:/Users/Nathan/Desktop/04-01-2014-Dissertation.docx%23_Toc386830880
file:///D:/Users/Nathan/Desktop/04-01-2014-Dissertation.docx%23_Toc386830881
file:///D:/Users/Nathan/Desktop/04-01-2014-Dissertation.docx%23_Toc386830882
file:///D:/Users/Nathan/Desktop/04-01-2014-Dissertation.docx%23_Toc386830883
file:///D:/Users/Nathan/Desktop/04-01-2014-Dissertation.docx%23_Toc386830884
file:///D:/Users/Nathan/Desktop/04-01-2014-Dissertation.docx%23_Toc386830885
file:///D:/Users/Nathan/Desktop/04-01-2014-Dissertation.docx%23_Toc386830888
file:///D:/Users/Nathan/Desktop/04-01-2014-Dissertation.docx%23_Toc386830889
file:///D:/Users/Nathan/Desktop/04-01-2014-Dissertation.docx%23_Toc386830890
file:///D:/Users/Nathan/Desktop/04-01-2014-Dissertation.docx%23_Toc386830891


An Investigation in Techniques used to Procedurally Generate Dungeon Structures 6 

 

2 INTRODUCTION 

2.1 BRIEF 

Procedural Content Generation (PCG) is the “algorithmic creation of anything from 
background scenery to symphonies to storylines” (Lambe, 2012). PCG has been used in video 
games since the early 1980’s when “the limited capabilities of home computers in the early 
eighties constrained the space available to store game content” (Togelius, 2013). In modern 
times there are several advantages to developers when using PCG in games development. The 
use of PCG allows game developers to create large amounts of diverse game content in a much 
smaller time frame than it would have taken to make that content manually. An example of this 
is Borderlands 2 (Gearbox Software, 2012) where all the collectables in the game “are randomly 
generated so no two pieces of gear are the same” (Gearbox Software, 2012). PCG has also grown 
in use in Indie game development. Due to teams often being fairly small, the possibility to create 
large amounts of content procedurally that would have otherwise not been possible with a small 
team, becomes an attractive option. Minecraft (Mojang, 2009) an Indie game originally created 
by a single developer, used PCG to generate the entire game world which is “nine hundred 
million square kilometres” (Persson, 2010) in size. 

Level generation is a diverse topic in PCG as there are large variations on the 
characteristic of a level between different games. However in a lot of cases well known 
structures can be used, for example: 

 Dungeon structure 

 Cave structure 

 Island structure 

 Maze structure 

 Due to each of these subsections being large research areas in themselves the focus of 
this investigation will be largely on dungeon generation. 

2.1.1 WHAT IS A DUNGEON? 

Dungeon structures in video games have largely been connected with the ‘dungeon 
crawler’ and ‘rouge-likes’ genres of video games. These styles of games evolve around players 
exploring labyrinth style mazes in search of treasure.  One of the earliest uses of dungeons was 
in the game Rouge (Wichman, 1980) which used ASCII graphics to represent procedurally 
generated dungeons that consisted of square rooms connected together with corridors, as can 
be seen in Figure 2.1. Each ASCII character represents a different element of the dungeon, for 
example the ‘@’ symbol is the players location and the ‘#’ is a corridor. 

  



An Investigation in Techniques used to Procedurally Generate Dungeon Structures 7 

 

 

 

Figure 2.1– Screenshot from 

Rouge, showing the shape of the 
games dungeons 
Retrieved from: 

http://www.gamasutra.com
/db_area/images/feature/40

13/0601.jpg 

 

 

 

 

As hardware evolved so have dungeons in video games. The Legend of Zelda: A Link to 
the Past (Nintendo, 1991) has hand crafted dungeons with similarities to the ones in Rouge 
(Wichman, 1980) except with the notable difference that there are no corridors between rooms, 
and all rooms are a uniform sized and aligned on a grid, as can be seen in Figure 2.2. 

Figure 2.2 - Overview of a dungeon from The Legend of Zelda: A Link to the Past 

Retrieved from: http://www.zeldacapital.com/Games/maps_la/color_dungeon.png 

 

 



An Investigation in Techniques used to Procedurally Generate Dungeon Structures 8 

 

Both the previous examples demonstrate dungeons for games with a top down 
perspective of the game world. There are games that fit into the ‘platformer’ genre that have 
levels that consist of dungeon like structures using a side on perspective of the game world.  
Spelunky (Mossmouth , 2013) uses a mixture of hand crafted segments/rooms procedurally 
placed together to create its dungeon like levels, as can be seen in Figure 2.3. 

Figure 2.3 – Screenshot of a level from Spelunky 

Retrieved from: http://spelunkyworld.com/images/spelunky-ss12.jpg  

All the mentioned dungeons share a common characteristic. They are created using a 
‘room’ structure of some form and a method to connect the ‘rooms’ together. 

2.1.2 WHY DUNGEONS? 

 Dungeon structures can cover a diverse range of modifications allowing them the 
potential to be used in a large number of games. In the Indie game development scene there is 
an increasing number of games in development that are using procedurally generated 
dungeons. Some of these include: 

 Tinykeep (Phigames, 2013) 

 Delver (Priority Interrupt, 2013) 

 Dungeon Hearts 2 (Cube Roots, 2013)  

 Chasm (Discord Games LLC, 2013) 

 The recent increase in interest in the topic of procedural dungeon generation has 
created several discussions across the internet on techniques that could be used to solve the 
problem and developers sharing techniques they have invented with one another, making the 
timing appropriate for an investigation on the topic. 

2.2 PRODUCT 

The outcome of this research project will be several prototype programs that show off 
unique dungeon generation methods.  

The target users for the research in this report will be game developers interested in 
creating procedurally generated levels for their projects.  



An Investigation in Techniques used to Procedurally Generate Dungeon Structures 9 

 

2.3 EXISTING TECHNIQUES FOR GENERATING DUNGEONS 

2.3.1 BINARY SPACE PARTITIONING BASED DUNGEONS 

A Binary Space Partition (BSP) Tree is a data structure first conceived by Henry Fuchs in 
the early 1980’s, designed to be used to represent 3D objects in a virtual environment. BSP is a 
recursive process of splitting a domain into two pieces and storing the subsections in a Binary 
Tree structure. BSP has been used in a variety of computer graphic related problems. One 
example is its use in the game Doom(id Software, 1993) where “the image of a room in Doom 
would be essentially split up into a giant tree of leaves” (Kushner, 2003) using a BSP Tree. This 
technique created during the development of Doom has become an industry standard approach 
in the video games industry. 

 A BSP Tree can also be used to conveniently create and represent a dungeon structure, 
as is documented in the online Procedural Content Generation Wiki (pcg.wikidot.com, 2014). If 
a 2D or 3D space is defined for the dungeon to be created in, after one BSP split of the dungeon 
space, could result in the following:  

 

 

 

 

 

 

 

 

 

 

 

  

 

  

Dungeon 

A B 

Figure 2.4- Visual representation of dungeon space 

after one BSP split 
Retrieved from: 

http://roguebasin.roguelikedevelopment.org/i
ndex.php?title=Basic_BSP_Dungeon_generation 

 

Figure 2.5 – BSP Tree representation 

of dungeon space after one BSP split 



An Investigation in Techniques used to Procedurally Generate Dungeon Structures 10 

 

  The method used for the BSP spilt is crucial in order to create random variations each 
time a dungeon is generated. In order to achieve this, selected aspects of the BSP split needs to 
be randomised. First, the split needs to choose if it will be a horizontal or a vertical split. In 
Figure 2.4 the root node was split using a vertical split. The position of the spilt can likewise be 
randomized to be any distance from the left or top, depending on the split type, of the parent 
node it is splitting from. It is good practice to place a padding area around the sides of the split 
to avoid creating nodes that are consequently small in area and thus unusable. If a second split 
of the dungeon happens the results could be the following: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

After two splits it becomes more apparent how the dungeon space is being stored in the 
BSP Tree. Due to the Binary Tree representation of the dungeon, useful relationships between 
leaf nodes can be deduced. After four BSP splits the dungeon space will resemble the following: 

 

 

 

 
Figure 2.8 – Visual representation of dungeon space 

after four BSP splits 
Retrieved from:  

http://roguebasin.roguelikedevelopment.org/i
ndex.php?title=Basic_BSP_Dungeon_generation 

 

 
 
 
 
 
 

 

Dungeon 

A B 

A1 A2 B1 B2 

Figure 2.7– Visual representation of dungeon space 
after two BSP splits 

Retrieved from: 

http://roguebasin.roguelikedevelopment.org/i
ndex.php?title=Basic_BSP_Dungeon_generation 

 

Figure 2.6 - BSP Tree representation of dungeon 
space after two BSP splits 



An Investigation in Techniques used to Procedurally Generate Dungeon Structures 11 

 

The number of BSP splits that are done in the generation depends on the type of 
dungeon that is trying to be created and the size of the space allocated for the dungeon to begin 
with. As more splits occur, the max size of a dungeon room will become smaller, so it is 
important to balance these variables with one another.  

Once the dungeon space has been adequately split, the next step is to fill leaf nodes with 
dungeon rooms, the structures that will make the foundation shape of the dungeon. The 
implementation of the dungeon rooms can vary; some examples of what they could be are 
handmade tiles, procedurally generated shapes, or just basic rectangles. The distribution of the 
rooms can vary too from placing a room into every leaf node on the BSP tree to any randomized 
variation. Assume the dungeon rooms are represented by rectangles; the dungeon could look 
like the following after this stage: 

 

 

 

 

 

 

 

 

 

 

Connecting rooms together to create a fully connected dungeon is possible due to rooms 
being paired together by a parent node in the BSP tree. Rooms can be connected by adding 
corridors that span between room pairs. The implementation of the corridors can vary 
depending on use, using simple brute force methods (i.e. create corridors that go directly from 
one room to another, even if it intersects other rooms) or using approaches that use a path 
finding algorithms to smartly connect rooms. Begin by connecting sibling rooms (rooms inside 
leaf nodes that share a common parent). 
 
 

  

- dungeon room 

- leaf node 

Figure 2.9  – Visual representation of dungeon space after dungeon rooms are added to leaf node 

Retrieved from: 

http://roguebasin.roguelikedevelopment.org/index.php?title=Basic_BSP_Dungeon_generation 
 



An Investigation in Techniques used to Procedurally Generate Dungeon Structures 12 

 

 

 
 
 
 
 

Figure 2.10 –Visual representation of dungeon 

space after leaf node sibling rooms connected  
Retrieved from: 

http://roguebasin.roguelikedevelopment.org
/index.php?title=Basic_BSP_Dungeon_generat

ion 

 

 

 

 

By continuing the depth first iteration over the BSP Tree, connecting rooms in leaf nodes 
of the current node, to the current nodes sibling node until the root node of the BSP Tree is 
reached, will create a fully connected dungeon. 

 

 

 

 

Figure 2.11 – Visual representation of fully 

connected dungeon 
Retrieved from: 

http://roguebasin.roguelikedevelopment.org
/index.php?title=Basic_BSP_Dungeon_generat

ion 

  

 

 

 

 The BSP Tree technique has some nice properties due to the way the dungeon is stored 
in a BSP Tree. For example it is possible to add elements to the dungeon such as doors that are 
locked and require the player to find a key located in the dungeon in order to pass through it 
(Willems, 2010). By placing the key in dungeon space lower down the BSP Tree than the 
corresponding door it unlocks, you can ensure it is always possible to find the key i.e. the key 
isn’t placed behind the locked door making it impossible to progress. 

 However, with the BSP technique it is not possible to set a desired number of rooms to 
generate as there is only control over the number of BSP splits that occur, meaning all dungeons 
will generate with NumberOfSplits2 rooms. Lack of such control over number of rooms in the 
dungeon could be considered a negative attribute of the technique. 

  



An Investigation in Techniques used to Procedurally Generate Dungeon Structures 13 

 

2.3.2 DELAUNAY TRIANGULATION DUNGEONS  

TinyKeep (PhiGames, 2013) is a dungeon crawler game currently in development being 
created by PhiGames. The game relies heavily on procedurally generated dungeons. The games 
developers created a unique, custom made technique for generating the dungeons in the game. 
PhiGames discussed how this technique worked at the Manchester Unity User Group (M.U.U.G) 
meeting in 2013. 

 

 

 

 

 

 

 

 

 

 

 

The algorithm begins by creating a number of cells and creating a random rectangle 
inside each cell. The developers used Park-Miller Normal Distribution for the rectangle 
randomness as this “skews the size of the cells so that they are more likely to be of a small size” 
(Phi Dinh, 2013). The dungeon at this stage can be seen in Figure 2.13. 

The next step in the algorithm is to separate out the cells and stop them from 
overlapping each another, as they do in Figure 2.13.  

 

 

 

 

 

 

 

A separation steering behaviour based on the Inverse-square law is used to move all the 
cells so they are no longer overlapping. Separation steering behaviour algorithms first 
originated from the work done by Craig Reynolds in his paper from 1999 titled ‘Steering 
Behaviours for Autonomous Characters’. Although his worked was largely focused on trying to 
“simulate complex natural phenomenon” (Reynolds, 2013), his research has become used in a 
wide range of areas. After using a steering behaviour to separate the cells, cells that are over a 
set size become rooms. The results of this process can be seen in Figure 2.14.   

Figure 2.12 – Development screenshot of TinyKeep by PhiGames 

Retrieved from: http://tinykeep.com/media.html 
 

Figure 2.13 – Generation of cells with 

rectangles.  



An Investigation in Techniques used to Procedurally Generate Dungeon Structures 14 

 

 

 

 

 

 

 

 

 

 

All white space between cells at this stage should be filled with 1*1 unit sized cells. The 
developers then used Delaunay triangulation to construct a graph of all the rooms centre points. 
The graph formed after using Delaunay triangulation has a large number of connections 
between rooms. To generate a graph better suited for a dungeon structure Prim’s algorithm is 
used to find a minimal spanning tree of the original graph produced by the Delaunay 
triangulation.  

However the minimal spanning tree produced by Prim’s algorithm removes some 
interesting attributes from the graph, such as cycles, which make for a more interesting 
dungeon shape, in moderation. In order to maintain a small number of cycles in the final graph, 
a third graph is produced using a combination of both the graph produced by Delaunay 
triangulation and the graph of the minimal spanning tree, that keeps a small percentage (around 
%15) of the Delaunay triangulation graph in the final graph. 

 

 

 

 

 

 

 

 

 

 

Rooms are connected with corridors, depending on the position of the rooms to each 
other either a straight or a ‘Z’ shaped corridor will be used to connect the two rooms. In order to 
create less uniformed corridors the developers used a technique of re adding small cells from 
the original phase of the generation (after the steering behaviour was applied) that overlapped 
with the corridor that was added to connect the rooms. 

 

Red cells represent    
rooms 

Connection from original 
Delaunay  graph 

 
Connection from minimal 

spanning  tree 

Figure 2.14 – Layout of cells after separation steering 

behaviour applied 

Figure 2.15 – Final graph created by 

combining the Delaunay triangulation with 
the minimal spanning tree. 



An Investigation in Techniques used to Procedurally Generate Dungeon Structures 15 

 

The Delaunay Technique offers more precise control over the number of rooms 
generated in a dungeon in comparison to the BSP technique. The layout of the dungeons rooms 
are also less uniformed and the dungeon can contain more interesting shapes due to the 
influence of cycles in the connection graph. However, adding features such as locked doors and 
keys would be more complicated than in the BSP technique, as there is no stored ordered 
structure of the dungeons space. 

 

 

  



An Investigation in Techniques used to Procedurally Generate Dungeon Structures 16 

 

2.3.3 GRAPH GRAMMARS 

Graph grammars are a procedure used to re-write the contents of a graph, usually by 
using a set of rules that determine how the rewrite should work on a given ‘alphabet’. Originally 
used to describe languages, Graph grammars have begun to be applied in many areas of 
computer science due to “its graphical, declarative and formal nature” (Pérez, 2009). Consider 
the graph in Figure 2.16. If this graph was part of a grammar, then the alphabet for the grammar 
would be the characters ‘S’, ‘A’, ‘B’, ‘C’ and ‘D’. 

 

 

 

 

 

 

 

 

 

Substitution rules can be defined for the grammar in the graph in Figure 2.16. When 
applying a substitution rule the graph is searched for a sub-graph that matches the left hand 
side of a rule and then replaced with the right hand side of the rule. Consider the rule in Figure 
2.17. 

 

 

 

 

When the substitution rule in Figure 2.17 is applied to the graph in Figure 2.16 the 
results will be the graph in Figure 2.18. The node labelled ‘S’ will be removed from the graph 
and replaced by two nodes, ‘B’ and ‘A’ that are connected together. 

 

 

 

 

 

 

 

 

 

S
S 

B A

b

S
S 

A
S 

B 

C 

D 

B 

A
S 

B 

C 

D 

B 

B A

b

Figure 2.16 – Example graph 

Figure 2.17– Example substitution rule 

Figure 2.18 – Example graph after 

substitution 



An Investigation in Techniques used to Procedurally Generate Dungeon Structures 17 

 

There have been several unique attempts at using graph grammars within PCG for the 
application of video game. Joris Dormans and Sander Bakkes researched using graph grammars 
to generate levels around predefined missions. In their work the alphabet of the grammar 
consisted of specific game elements and the rules described what game space could contain, for 
example ‘Dungeon := monster, chest’. To generate the world space around the missions they 
used a concept similar to graph grammars, known as shape grammars. Graph grammars are 
limited in that they can only generate the connection between nodes, and not the in game 
structure of the dungeon. 

Shape grammars behave similar to graph grammars except the alphabet consist of 
shapes that can be used to construct larger shapes, through the grammars substitution rules. 
Figure 2.19 shows an example shape grammar from Joris and Bakkes research. In Figure 2.19 ‘a’ 
is the alphabet, ‘b’ is the substitution rules and ‘c’ is an example of an output that can be created 
using this grammar. 

 

 

 

 

 

 

 

 

 

 

 

Although the shape grammar in Figure 2.19 produces relatively simple maze style 
structures, there has also been cases where shape grammars have been used to generate more 
complicated shapes. In G. Stiny and W. J. Mitchell’s 1978 paper titled “The Palladian grammar” 
they defined a shape grammar that can generate structures that simulated the more complex 
nature of European style architecture created by architect Andrea Palladio. As such the 
technique could most likely be modified to generate dungeon structures by constructing an 
appropriate grammar. By combing a technique that uses both shape and graph grammars an 
entire dungeon could theoretically be generated. 

The graph grammar technique has the potential to offer far more control over the 
outputted dungeons than previous techniques, due to the easy nature of adding or changing 
substitution rules. However there is far less literature available on this technique related to 
dungeon generation and the implementation could be significantly more difficult than other 
techniques. 

 

  

Figure 2.19– Shape grammar showing alphabet, rules and output. 

Retrieved from: 
Generating Missions and Spaces for Adaptable Play Experiences, 

Joris Dormans & Sander Bakkes, 2011, p223 



An Investigation in Techniques used to Procedurally Generate Dungeon Structures 18 

 

2.3.4 CELLULAR AUTOMATA 

Cellular Automata “are discrete dynamical systems whose behaviour is completely 
specified in terms of a local relation” (Toffoli, 1987). The space in such a system is stored in a 
grid where each cell can be in one of a finite number of states. Originally conceived by Stanislaw 
Ulam as a way to simulate fluid in the 1950’s, Cellular Automata systems have gone on to be 
used in a large number of problems, often focused around Artificial Intelligence. 

Cellular Automata first found its use in game development when used for “modelling 
environmental systems like heat and fire, rain and fluid flow, pressure and explosions” 
(Johnson, 2010). Johnson put forward the idea of using Cellular Automata to generate cave 
structures in his paper ‘Cellular automata for real-time generation of infinite cave levels” 
published in 2010. The technique he investigated was an extension of a well-known rule set that 
can be used to generate cave like structures with Cellular Automata. 

The technique starts by filling an empty grid with random cells that are not empty. Once 
the noise is distributed onto the grid, several generations of the Cellular Automata are applied. 
During each generation, a cell examines the state of the cells around itself, and depending on the 
state of the cells around it, it either dies, or continues living throughout that generation. 

Through use of different rule sets that determine if a cell lives or dies, the results from 
the Cellular Automata can vary greatly. Although most past work related to Cellular Automata in 
regards to game level generation focuses on cave structures, it could be possible to generate 
more dungeon based structures depending on the rule set used for the generations. The 
appropriateness of this technique to dungeon generation is hard to judge through initial 
research.  



An Investigation in Techniques used to Procedurally Generate Dungeon Structures 19 

 

RESEARCH CONCLUSION 

Of all the techniques researched, the Delaunay triangulation and Binary Space 
Partitioning techniques suggest they would give the best results for dungeon generation. 
However the research has shown some areas of the technique could benefit from further work 
being done. For example, for both the Delaunay and BSP techniques, very little research was 
found on how to handle the connection of rooms during the generation, besides generic 
solutions that use either naïve approaches or path finding to solve the problem. It is possible 
new work can be done on room connection strategies. 

The Cellular Automata technique doesn’t stand out as appropriate to be used for dungeon 
generation on first look. However Cellular Automata’s are flexible systems that allow for the 
definitions of a vast array of different rules. It may be possible to use a new rule set to generate 
a dungeon that would meet the requirements of this investigation with some experimentation. 

Graph Grammars and their use in dungeon generation looks like a very promising area of 
research. Due to the little literature on the subject centred on dungeon generation it could 
require significant work to find approaches that work well, however it suggests it has the 
potential to give vast control over how the generation works, far more than any of the other 
techniques. 

A breakdown of the observations from the research done in this section can be seen in 
Figure 2.20. 

Technique 
Can Generate Fully 

Connected 
Dungeons? 

Can set fixed 
amount of rooms in 

generation? 

Requires connection 
strategy to connect 

rooms together? 
BSP Yes No Yes 
Cellular Automata Unknown No No 
Delaunay Yes Yes Yes 
Graph Grammars Yes Unknown No 

Figure 2.20 – Comparison grid showing results of background research 

 

 

  



An Investigation in Techniques used to Procedurally Generate Dungeon Structures 20 

 

3 DESIGN 

3.1 INTRODUCTION 

 There have been many different approaches to dungeon generation and a wide variety 
of techniques used. The development plan is to implement chosen techniques discussed in the 
background research section of this report to gain first-hand experience with the techniques. 
Then, using the knowledge gained throughout the development and the implementations of the 
techniques, comparisons will be made to analysis the effectiveness of each technique in 
accordance to the evaluation strategy outlined in section 3.3. 

The techniques that have been chosen to be implemented based on the background research 
are: 

 Delaunay generation 

 BSP generation 

 Cellular Automata generation 

The Graph Grammar technique will not be implemented due to the complexity of such an 
implementation, and the potential impact it could have on the project as a hole. 

3.2 TECHNOLOGY CHOICE 

 As general techniques and algorithms are being investigated, none of which are tied to 
any specific language or tool, the choice of technologies used to develop the products of this 
report will depend largely on the approach. Due to this, the language/software development kit 
(SDK) chosen should depend on personal knowledge of languages and their appropriateness to 
achieving the outlined goals. 

 As this investigation is largely focused on the techniques related to dungeon generation, 
it makes sense to choose a technology that abstracts away lower level graphics rendering to 
allow more time to be allocated to the development of the dungeon generation related 
techniques. Some possible languages/SDK’s that could be used are: 

 Unity (Unity Technologies) 

 DirectX (Microsoft) / OpenGL (Silicon Graphics inc.) 

 LibGDX (Badlogic games) 

3.2.1 UNITY 

Unity is a game engine with a built in Integrated development environment (IDE) that 
has “a powerful rendering engine fully integrated with a complete set of intuitive tools and 
rapid workflows to create interactive 3D and 2D content” (Unity Technologies, 2014). Unity is 
currently a popular engine, especially among indie developers. This is beneficial as any source 
code produced in the process of doing this project would be in a format already familiar to a 
large number of developers. Existing personal experience with the framework through the 
development of several projects greatly increases the viability of the technology as a choice for 
the project. 

However Unity is not open source and as such, if any problems were to occur with the 
engine during the development of the project, such as bugs in core features, complete reliance 
on Unity Technologies would be required to fix the issue. This would only be an issue if the bug 
is severe enough to stop progression of the project. It is unlikely such a severe bug will exist 
within an engine as mature as Unity. 



An Investigation in Techniques used to Procedurally Generate Dungeon Structures 21 

 

3.2.2 DIREXTX/OPENGL 

Both SDK’s are very mature platforms being maintained by large companies. They allow 
much more low level control over rendering than an engine such as Unity, but at the cost of 
greater complexity to develop with. Using these SDK’s combined with C++ would allow very 
precise control over memory management allowing the possibility to produce implementations 
of given generation techniques in the most optimised form. However having only moderate 
experience working with DirectX and C++, implementations would take longer, and be more 
difficult. 

3.2.3 LIBGDX 

 LibGDX is a framework for Java built around the popular Light Weight Java Game 
Library (LWJGL), which acts as a wrapper for OpenGL in Java. LibGDX is popular among indie 
developers due to being free to use and actively in development. Large amounts of personal 
experience have been gained with the framework through the completion of personal projects. 
Due to its popularity among indie developers, this again makes it an attractive choice to develop 
in. LibGDX is maintained by a much smaller community and is a less mature platform than Unity 
as well, making the likelihood for severe bugs more likely. 

3.2.4 CONCLUSION 

Figure 3.1 – Technology choice comparison grid 

Due to the quick nature of developing in Unity and previous experience with the engine, 
the generation techniques will be implemented using the Unity engine. This will allow for focus 
on the technical areas related to the implementations rather than the technology being used to 
develop in. The produced source codes will be useable to a high volume of users who already 
work within the environment. 

  

Technology Open source? 
Has growing 

user base? 

Adequate 
personal 

knowledge? 

Is appropriate 
for the 

development 
of the product? 

Unity No Yes Yes Yes 
DirextX/OpenGL No Yes No Yes 
LibGDX Yes Yes Yes Yes 



An Investigation in Techniques used to Procedurally Generate Dungeon Structures 22 

 

3.3 EVALUATION STRATEGY 

3.3.1 PRODUCT EVALUATION 

The produced dungeon generations will be evaluated and analysed in several areas, the 
primary areas include: 

 Generation time – The time from start to end of the generation process will be timed for 
several sample points (based off number of rooms in the dungeon) across the different 
generation techniques. 
 

 Memory usage – By using a profiler (such as the built in profiler to Unity) the amount of 
Random Access Memory (R.A.M) different generation techniques use can be assessed 
and measured. 
 

 Is the structure generated a dungeon? – The following criteria will be judged on the 
implementation to determine if the structure created is a dungeon: 

o Clearly definable rooms present in the dungeon 
o Rooms do not overlap with one another 
o All rooms fully connected to dungeon (i.e no areas are disconnected from the 

dungeon) 

Depending on the appropriateness to the implementation as well as time constraints, there 
is the possibility for several secondary evaluations to take place, these include: 

 Flexibility – A common feature (such as doors and keys) will be added into the 
implementations and the difficulty of adding such feature will be assessed. 
 

 Appropriateness for use in game – Interviews with level designers discussing what 
attributes the generated dungeon lacks or does well. 
 

 Implementation difficulty – A rating will be given for the difficulty of the implementation 
that is asserted using attributes such as, implementation time and number of problems 
that occurred during implementation. 
 

 Code complexity – An estimate of the complexity of the code solutions will be attained 
either using Cyclomatic complexity or Henry Kafura’s information flow measure. 

3.3.2 PROJECT EVALUATION 

The success of this project requires the creation of several prototype generations. As such, 
provided two or more working prototypes of different generation techniques are created, data 
can be collected and analysed. The projects quality and worth will depend on: 

 The number of different prototyped generation techniques being successfully 
implemented. 
 

 The completion of the product evaluation as mentioned in previous sections for all 
prototyped generations. 

 

  



An Investigation in Techniques used to Procedurally Generate Dungeon Structures 23 

 

4 DEVELOPMENT 

4.1 DELAUNAY DUNGEON GENERATION 

 To begin the Delaunay generation a number of randomly sized rooms had to be 
randomly placed around the centre of the scene. At this stage the inverse square separation 
steering behaviour is applied to the rooms to stop any overlapping between rooms. The formula 
for the inverse square separation behaviour that was used is as follows: 
 

 

 

 

 

 

 

The values for K and maxAcceleration in Figure 4.1 were derived by experimenting to 
find what produced a working output. Besides moving rooms to avoid overlap it was also 
important to keep all rooms aligned to a 1*1 unit grid, to ensure later stages of the 
implementation would work correctly. 

 Next, the Delaunay triangulation of the rooms had to be constructed. The research on 
the subject revealed there are several well-known algorithms to construct the Delaunay 
triangulation of a group of vertices (in this case the rooms). It was decided to use the 
Incremental algorithm, although other algorithms (such as QuickHull) had lower average Big O 
complexity, Incremental was the easiest to understand and implement. Due to this it was 
decided to implement this algorithm first, and if it was discovered to have sufficient problems, 
try another one later. As documented by Bernd Gärtner in his lecture ‘Delaunay Triangulation: 
Incremental Construction’, to begin the triangulation a large triangle that contains all the rooms 
had to be created. This triangle is often referred to as the Omega Triangle. 

 The algorithm proceeds by adding the vertices one at a time into the triangulation, 
maintaining the Delaunay property of the triangulation at all times. The first step to adding a 
vertex to the triangulation is to locate which sub triangle it is located inside of. 

 Finding if a point was inside a triangle proved to be more difficult than originally 
anticipated, however an algorithm that can detect if a point is inside a convex or concave hull 
was originally used, and functioned perfectly. The algorithm worked as follows: 

 

 

 

 

 

 

  

Strength = min(k / (distance * distance), maxAcceleration) 

Distance = the distance between overlapping rooms 

K = 2000 

maxAcceleration = 5 (units per frame) 

1. Create a point that is outside the hull (point Y) 
2. Produce a line segment connecting the point in 

question (point X) to the new point Y. 
3. Loop around all edge segments of the hull. Check if 

the segment intersects with XY 
4. If the number of intersections counted is even, X is 

outside the hull, Otherwise X is inside the hull 

Figure 4.1– Inverse Square Law Separation formula 

Retrieved from: Artificial Intelligence for Games (Millington, 2009) 

Figure 4.2– Algorithm to find if a vertex is inside a hull 

Retrieved from: http://stackoverflow.com/a/16909956 



An Investigation in Techniques used to Procedurally Generate Dungeon Structures 24 

 

Although the algorithm in Figure 4.2 worked, the complexity for implementing it was 
higher than it needed to be for the problem, as several helper functions for line intersections 
were required to make it work. At a later date, a mathematical function was discovered that 
solved this same problem as seen in Figure 4.3. 

 

 

 

 

 

 

 

 

 Due to the less complex implementation of the function in Figure 4.3 compared to the 
algorithm in Figure 4.2, it was decided to change the technique used to the later. This decision 
was largely done due to concerns about maintaining a codebase that was quickly increasing in 
complexity and becoming difficult to understand. 

 Once it is known which triangle the vertex being added is within, that triangle is broken 
into three new triangles that connect to the edges of the original triangle from the new vertex, 
as demonstrated in Figure 4.4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

function SameSide(p1,p2, a,b) 

    cp1 = CrossProduct(b-a, p1-a) 

    cp2 = CrossProduct(b-a, p2-a) 

    if DotProduct(cp1, cp2) >= 0 then return true 

    else return false 

 

function PointInTriangle(p, a,b,c) 

    if SameSide(p,a, b,c) and SameSide(p,b, a,c) 

        and SameSide(p,c, a,b) then return true 

    else return false 

Figure 4.3– Function to calculate if point is inside triangle 

Retrieved from: http://www.blackpawn.com/texts/pointinpoly/ 

 

Figure 4.4– Vertex being added to triangulation 



An Investigation in Techniques used to Procedurally Generate Dungeon Structures 25 

 

Once the new triangles are added to the triangulation, all the incident edges (edges from 
the original triangle that were replaced) are considered dirty, as it is possible the addition of 
this new vertex has made them no longer Delaunay. There are a number of techniques that can 
be used to assess if these edges are still Delaunay. The technique used in this implementation is 
known as the Lawson flip documented in Charles L. Lawson 1971 paper Transforming 
Triangulations.  

The Lawson flip works by flipping the incident edge in the quadrilateral formed by the 
two triangles sharing the incident edge. Figure 4.5 illustrates these changes with the new vertex 
‘s’ being added to the triangulation. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 There are several techniques that can be used to decide if an edge should be flipped. 
Some of them require calculating circumcircles of the triangles and checking if other vertices lay 
within their circumcircles in accordance with Thale’s Theorem. However during the research 
done at this stage another technique was discovered that requires only adding up the angles of 
adjacent vertices in the quadrilaterals being examined (Berg, 2010). Consider Figure 4.6. 

 

 

 

 

 

 

 

 

  

α 
γ In

ci
d

en
t 

E
d

ge
 

Vertex being added 

Figure 4.5– Illustration of Lawson flip in action 

Retrieved from: Delaunay Triangulation: Incremental Construction (Gärtner, 2014) 

 

Figure 4.6 – Illustration of quadrilateral of Incident edge 



An Investigation in Techniques used to Procedurally Generate Dungeon Structures 26 

 

 

If the angle γ is added to the angle α in Figure 4.6 and the sum is greater than 180° then 
it is known that this new triangle is not Delaunay and the edge should have Lawson’s flip 
applied. 

 Once again, the technique that was simplest to understand was used, even if it wasn’t 
necessarily the most efficient. In this case that was the angle adding method to determine if 
edges needed to be flipped. As only the length of edges was known, research had to be 
undertook on how to calculate the angle of a triangle using only the lengths of the edges, which 
was found to be a straight forward math equation. 

However, making the Delaunay triangulation function that uses edge flipping work 
correctly took a substantial amount of time and was significantly difficult. Due to the several 
areas of research that were required in such a function, the recursive nature of the function, and 
apparent randomness of errors, it was difficult to debug and track down problems. However 
after much perseverance, the function did eventually work. This success can be contributed to 
choosing the simplest methods to solving problems when possible, and avoiding unnecessary 
complexity unless it was actually required. 

The next stage of the implementation requires calculating the minimal spanning tree of 
the Delaunay triangulation. There are two well-known and commonly used algorithms for 
solving the minimal spanning tree problem, Prim’s algorithm and Kruskal’s algorithm. In this 
scenario neither algorithm had any characteristics in particular that made them more 
appropriate than the other. Due to this Prim’s algorithm was chosen to be used.  

Implementing Prim’s algorithm and then creating a final graph for the dungeon that 
merged a small percentage of edges from the Delaunay triangulation graph into the minimal 
spanning tree was relatively straight forward. Figure 4.7 shows what the implementation 
outputted at this stage looks like. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7– Screenshot of dungeon created by 

implementation 



An Investigation in Techniques used to Procedurally Generate Dungeon Structures 27 

 

 It was now appropriate to convert the 2D representation of a dungeon that was created 
at this stage into a 3D game world. To begin with the 2D squares that represent rooms were 
converted into 3D rooms made out of floor tiles and surrounded by wall tiles. Because all the 2D 
squares were aligned to a 1*1 grid during the first part of the implementation, and all tiles are 
1*1 units in size, every tile at this stage is correctly aligned to a grid. 

 Because working with a grid is easier than working directly with 3D objects a class that 
can convert the world at this stage into a 2D grid was created. It may seem counter intuitive to 
construct a 2D grid of a 3D world; however this makes it easier and more efficient to check what 
surrounds any given object, which will be important later in the implementation. 

One of the more difficult problems with the 3D conversion is the connection strategy 
that is used to join rooms together. Not much literature was found on the problem during 
research, and as such a simple algorithm was created to solve the problem. The technique 
created was a naïve approach that required creating a ‘Digger’, which would position itself at 
the centre of one room, and move to the centre of another, turning all tiles to floors surrounded 
by walls as it moved. Figure 4.8 shows the movement algorithm for this ‘Digger’. 

 

 

 

 

 

 

 

 

This Digger took advantage of the grid representation of the world, and worked by 
setting grid cells to be floors rather than working in 3D space. Due to having this grid 
representation of the world, implementing this technique was far simpler than it would have 
been otherwise. 

Once all the rooms were connected appropriately (i.e. connected to the rooms they were 
connected to on the graph created by the Delaunay triangulation and minimal spanning tree 
merged together) the implementation was left with a simple 3D representation of the dungeon. 
However all walls in the dungeon were simply white cubes, which wouldn’t be appropriate for 
use in a game. To create a properly tiling dungeon requires over 50 separate wall tile pieces for 
every combination of how walls could be situated around each other. A royalty free tile set is 
used in this implementation as can be seen in Appendix A. To calculate which tile each 
individual wall should use is done by making use of a technique known as bit masking. 

Bit masking works by calculating a hash value for each wall, then using that hash value 
to decide which tile to use. The hash value is calculated by checking the 8 tiles around any given 
wall and adding values depending on if there are walls there, and where they are located 
(Driver, 2010). See Figure 4.9 for the hash value grid. 

 

 

1. If startPosition.x < targetPosition.x then x +=1 until 
x = targetPosition.x 
else 
x -= 1 until x = targetPosition.x 

 
2. If startPosition.z < targetPosition.y then z +=1 until 

z = targetPosition.z 
else 
z -= 1 until z = targetPosition.z 

 

Figure 4.8– Corridor Digger movement algorithm 



An Investigation in Techniques used to Procedurally Generate Dungeon Structures 28 

 

 

 

 

 

 

 

Figure 4.9– Hashing Value Grid 

If the yellow square labelled ‘#’ in Figure 4.9 is the wall tile you are trying to find the 
hash value for, then if any of the tiles in the 8 squares around it contain a wall, the value of that 
square in the hash value grid is added to the hash. For example, consider the grid representation 
in Figure 4.10. 

 

      
 

      

              

              

              

  
          

 

Figure 4.10– Grid representation of tiles in dungeon 

When the hashing value grid is applied to the scenario in Figure 4.10 the values added to 
the hash can be seen in Figure 4.11. 

 

    
1 0 4 

    

    
8 # 16 

    

    
0 0 0 

    

              

  
          

 

Figure 4.11– Grid representation of tiles in dungeon with hash value grid overlaid 

 

 

1 2 4 

8 # 16 

32 64 128 

Cell that is wall 

Wall cell hash is being calculated for 

Cell that is floor 



An Investigation in Techniques used to Procedurally Generate Dungeon Structures 29 

 

Only surrounding grid squares that are walls have the values added to the hash value. In 
the scenario in Figure 4.11, the hash for the yellow cell labelled ‘#’ would be 1 + 4 + 8 + 16 = 29. 
Checking the values of cells surrounding a wall is extremely quick due to being stored in a grid. 
If a grid structure was not constructed physical collisions would have had to of been checked 
between wall tiles and that would have been significantly slower and more difficult to 
implement than doing grid look ups. This is one of the areas where using the grid structure has 
the most benefits. 

Making the hashing function work was relatively straight forward, however assigning 
hash values to individual tiles took a long time. Tiles can have up to 10 different hashes that 
correspond to that tile. Over 160 hashes have been manually assigned and there is most likely 
still some missing. A better approach likely exists. For 2D hash mapping there are well known 
layouts to align tiles on texture atlases to make them automatically work with the hash values. 
However no such conversion was found for a 3D tile set, although one likely exists, due to the 
common nature of this problem. Due to this area not being a main focus of the project, the 
manual solution was taken, although future research into the subject would be beneficial. 

The implementation for the Delaunay dungeon generation was now complete at this 
stage. Figure 4.12 shows the final results of the program. 

 

 

  

Figure 4.12– Screenshot of final output of Delaunay generation 



An Investigation in Techniques used to Procedurally Generate Dungeon Structures 30 

 

4.2 BINARY SPACE PARTITIONING DUNGEON GENERATION 

To begin the Binary space partitioning implementation a large square is created and put 
in the scene. This square represents the total space available to the dungeon. The next step was 
to implement a function that would handle the partitioning of the start square into smaller 
partitions. The splitting function works relatively simply. It randomly chooses between a 50% 
chance of splitting horizontally or vertically. It then chooses a random position within the 
partition to split at, with a set margin from either edge of the partition to avoid creating a very 
small child partition after the split. 

Once a function existed to split a partition, a data structure was needed to store the BSP 
tree in. A BSP node class was created which stored the partition data it represented, as well as 
references to three more BSP nodes, a left child, right child and parent. A Visual representation 
of this class can be seen in Figure 4.13. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

By using this structure the BSP tree was constructed by creating new BSP nodes for both 
newly created partitions when a split occurs and setting them as children to the current 
partitions BSP node. This required beginning the implementation by creating a BSP node that 
has no parent assigned to it and setting the partitions from the first split as its children. After 5 
splits of the BSP results in what can be seen in Figure 4.14  

 

 

Partition 
Data 

BSPNode BSPNode 

Left Child Right Child 

BSPNode 

BSPNode 

Parent 

Figure 4.13– Representation of BSPNode class 



An Investigation in Techniques used to Procedurally Generate Dungeon Structures 31 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Next stage of the implementation was adding rooms to all leaves of the tree. Finding 
leaves to put rooms in required doing a breadth first traversal of the tree, and adding rooms to 
any nodes that didn’t have children. With rooms added, a 2D grid was constructed in the same 
manner as done in the Delaunay triangulation and a 3D world representation of the dungeon 
was created. Rooms were sized to be the same size as the partition they were in, with a 1*1 unit 
margin around all edges. 

 The first stage in connecting rooms was to connect all leaf nodes to their sibling. Nodes 
are considered siblings if they share the same parent node. The connection strategy used to 
connect the rooms in the 3D space was the same strategy reused from the Delaunay 
triangulation implementation. Once siblings are connected a recursive function was written that 
continues the depth first traversal connecting sibling nodes higher up the tree, until the root 
node is reached. One quirk of this implementation is that once the traversal is higher than the 
parents of leaves, a node does not actually contain a room directly. As such a function was 
written that for any given node, it would traverse the tree downwards through its children until 
a room can be found, and that room would be used for the connection at that part of the 
traversal. 

At this stage the dungeon was complete, however it was noted that with the use of the 
connection strategy that was used, often when two rooms were connected, the connection 
strategy would naïve pass right through other rooms to achieve the connection, if they laid on 
the path taken. Research found that a path finding algorithm may be appropriate, to connect 
rooms while avoiding other rooms. However, due to rooms being nearly the entire size of the 
partition they were in, there was very little empty space for corridors to be added in around 
other rooms, even with the use of a path finding algorithm.  

Figure 4.14– Screenshot of output after 5 BSP splits 



An Investigation in Techniques used to Procedurally Generate Dungeon Structures 32 

 

As such a custom technique was created to try and avoid the number of unwanted 
intersections with rooms when creating corridors. This technique was named the Transitive 
Connect strategy. The strategy relies on the transitive relationships between room connections, 
to find the two closes rooms that are connected to the target rooms through transitivity. 
Consider Figure 4.15. 

 

 

 

 

 

 

 

 

 

If room ‘A’ was connected to room ‘E’ using the connection strategy from the Delaunay 
generation the results would be as seen in Figure 4.16. 

 

 

 

 

 

 

 

 

 

 

As can be noted in Figure 4.16 the new corridor would intersect directly through room 
‘C’ and room ‘F’. The idea behind the Transitive Connect is to find the two closes rooms that can 
be connected that would connect the target rooms together through transitivity. Figure 4.17 
illustrates how this connection would work in the same scenario as Figure 4.16. 

 

 

  

A 

C 

B 

D 

F 

 
E 
 

A 

C 

B 

D 

F 

 
E 
 

Figure 4.15– Representation of rooms in dungeon with connections 

Figure 4.16– Visualization of Delaunay connection strategy 



An Investigation in Techniques used to Procedurally Generate Dungeon Structures 33 

 

 

 

 

 

 

 

 

 

 

 

As can be observed in Figure 4.17 the Transitive Connect connects room ‘C’ with room 
‘D’ in order to fulfil the connection of room ‘A’ to room ‘E’, as these two rooms are closes 
together in Euclidean distance and the new connection between them connects room ‘A’ to 
room ‘E’ through transitivity.  

Although the Transitive Connect improved the intersecting room problem, it did not 
eliminate it completely, as it is still possible for there to be a room in the path of the corridor 
being dug by it between the two closes rooms. However, this method was deemed satisfactory 
for this implementation, and once the auto tiling of dungeon walls was applied, the dungeon was 
complete. Figure 4.18 shows a dungeon produced by the implementation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

A 

C 

B 

D 

F 

 
E 
 

Figure 4.17– Visualization of Transitive Connect strategy 

Figure 4.18– Screenshot of final output of BSP generation 



An Investigation in Techniques used to Procedurally Generate Dungeon Structures 34 

 

4.3 CELLULAR AUTOMATA GENERATION 

To begin the Cellular Automata generation a grid is filled with random noise. Reusing the 
grid structure made in previous generations made this step straight forward. To fill the grid 
with noise required simply looping through the grid and for each cell, using a random number 
generator to determine if the cell should be set to ‘0’ or ‘1’. 

Once the grid was filled with noise, 3 generations of the Cellular Automaton was performed 
on the grid. The rule set used for the Cellular Automaton in known as the 4-5 rule and can be 
seen in Figure 4.19. 

 

 

 

 

 

 

 

 

 

 

Implementing the generations is the same process as filling the grid with random noise. 
The grid is iterated through and each cell is individually considered with the rule set seen in 
Figure 4.19. Once the 3 generations of the rule had been applied, a 3d representation of the 
dungeon could be created fairly simply by looping through the grid again and creating the 
appropriate tile for each grid cell into world space. Calculating the position of each tile was 
simple as each unit in the grid could represent one unit in world space. There was initially a 
problem with some grid cells being in negative world space. To solve this problem the grid was 
positioned in the world in a place that ensured it was always positive on both the x and z axis.  

Reusing the auto tiling functions from previous generations left the implementation with 
the final result. Figure 4.20 shows the final result of the generation. 

 

 

 

  

If cell is alive 
 If 4 or more surrounding cells are alive 
   set cell to alive 
 else 
  set  cell to dead 
else 
 if 5 or more surround cells are alive 
  set cell alive 
 else 
  set cell to dead 

Figure 4.19 – pseudo-code for the 4-5 rule 
Retrieved from: 

http://www.roguebasin.com/index.php?title=Cellular_Auto
mata_Method_for_Generating_Random_Cave-Like_Levels 

 



An Investigation in Techniques used to Procedurally Generate Dungeon Structures 35 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Several different rule sets for the Cellular Automaton were experimented with during the 
development of the generation, however non produced ideal results except for the 4-5 rule, as 
such this rule was decided on to be used for the final implementation. This could suggest an 
explanation why very little literature was found on the use of Cellular Automata for use in level 
generation passed cavern structures in the background research, due to it being difficult to 
control the out of the technique in a meaningful way. 

  

Figure 4.20 – Screenshot of outputted structured of Cellular 
Automata generation 



An Investigation in Techniques used to Procedurally Generate Dungeon Structures 36 

 

5 TEST EVALUATION 

The created prototype generations will be evaluated using the evaluation strategy outline 
in section 3.3. The three primary evaluation categories will be used to conduct the evaluation as 
well as one secondary evaluation strategy.  

5.1 IS THE STRUCTURE A DUNGEON? 

In section 3.3.1 three criteria were identified that would be used to determine if 
generated structures were valid to be accepted as a dungeons The output of the implemented 
generations will be considered and determine if they meet the requirements outlined. Figure 5.1 
shows the results of each generation judged against the outlined requirements. 

Figure 5.1 – Grid of generation types compared against dungeon criteria 

As is shown in Figure 5.1 both the Delaunay and BSP generation satisfies the criteria for 
being considered a dungeon. However the Cellular Automata generation fails as it does not 
produce rooms in the generation, and not all areas of the generation are fully connected 
together, i.e. there are areas that are impossible to get to inside the structure. 

5.2 IMPLEMENTATION DIFFICULTY 

To estimate the difficulty of the implementation of different techniques, several criteria 
will be considered from the experience gained during the development of the prototypes. By 
considering these criteria, a personal estimate rating will be given to each technique to 
represent the difficulty of the implementation. 

Generation Type 
Implementation 

time (hours) 
Debugging time 

(hours) 
Total Difficulty 

rating (1-5*) 
Delaunay 60 10 4 

BSP 20 3 3 
Cellular Automata 3 0.2 1 

Figure 5.2 – Grid of generation types compared to difficulty criteria 

*1 the implementation was very straightforward, not very challenging. 
  5 the difficult was extremely difficult, many challenging problems encountered. 

Figure 5.2 demonstrates that the Delaunay generation was the most challenging to 
implement, taking roughly 3x the time as the BSP generation, and required the most amount of 
time to debug. The BSP generation was moderately difficult, but did not require as much relative 
time to find problems with the generation. The Cellular Automata generation was significantly 
less time consuming to implement that the other two generation techniques and required far 
less time to debug.  

Generation Type 
Are there clearly 
definable rooms 
in the structure? 

Do rooms 
overlap with 
one another? 

Are all rooms 
fully 

connected to 
the Dungeon? 

Does the 
structure 

qualify as a 
Dungeon? 

Delaunay Yes No Yes Yes 
BSP Yes No Yes Yes 

Cellular Automata No No No No 



An Investigation in Techniques used to Procedurally Generate Dungeon Structures 37 

 

0

1

2

3

4

5

6

7

8

2 4 8 16 32 64 128

Ti
m

e
 (

S)
 

Number of Rooms 

Delaunay Generation Time 

5.3 GENERATION TIME 

The Generation time of the implementation is measured using a built in function to 
Unity named ‘Time.realtimeSinceStartup’. The function is described in the Unity Documentation 
as “The real time in seconds since the game started (Read Only)” (Unity Technologies, 2014). 
For the Delaunay and BSP generation a consistent sample size of room numbers was used to try 
and give a fair comparison. The generations were measured 5 times for each different room 
count and the results averaged out to get the final value. 

5.3.1 DELAUNAY GENERATION 

The full data used to construct the graph in Figure 5.3 can be seen in Appendix B. 

The results of the generation time tests as seen in Figure 5.3 do not yield anything 
unexpected. As more rooms are generated in the dungeon the generation time takes longer. 128 
rooms was the largest to the power of 2 test that could be completed, as the results show in 
Appendix B, the program crashed when trying any room number of 265 or greater. The results 
suggest here that the generation length is largely linked to the number of rooms generated, and 
could become substantially long if a large number of rooms are used.  

Figure 5.3 – Graph of Delaunay generation time with different room amounts 



An Investigation in Techniques used to Procedurally Generate Dungeon Structures 38 

 

0

0.5

1

1.5

2

2.5

3

3.5

4

2 4 8 16 32 64 128 256

Ti
m

e
 (

S)
 

Number of Rooms 

BSP Generation Time 

5.3.2 BSP GENERATION 

The full data used to construct the graph in Figure 5.4 can be seen in Appendix C. 

 The results of the generation time test shown in Figure 5.4 produced some interesting 
and unexpected results. As more rooms are generated, up to around 64 rooms, the generation 
time actually decreases, then after 64 rooms starts to rise again. There are some possible 
explanations for this behaviour. Because in the BSP generation the size of the dungeon space 
stays consistent, regardless of room numbers generated, this means with only 1 split of the BSP 
tree, you end up with two very large rooms that cover the entire dungeon space. Tiling these 
rooms will require far more walls than would be present in a dungeon with more splits, as there 
is less empty space between rooms in the dungeon. As such, as you add more splits, you actually 
add more empty space (because of the padding between partitions when adding rooms). This 
could suggest why less splits take longer to generate. However a dungeon with 256 rooms takes 
around 1.5 seconds to generate, giving this generation method a fast execution time in large 
dungeons, but performs slow in small dungeons. 

  

Figure 5.4 – Graph of BSP generation time with different room amounts 



An Investigation in Techniques used to Procedurally Generate Dungeon Structures 39 

 

0

0.5

1

1.5

2

2.5

3

2500 5625 10000 15625 22500 30625 40000

Ti
m

e
 (

S)
 

Number of Cells in Grid 

Cellular Automata Generation Time 

5.3.3 CELLULAR AUTOMATA GENERATION 

The full data used to construct the graph in Figure 5.4 can be seen in Appendix D. Due to 
the way the Cellular Automata generation works it was not possible to measure generation time 
against number of rooms in the dungeon, as there are no defined rooms in the dungeon. As such 
the generation time was measured against the size of the grid used to store the dungeon. 

 

The graph in Figure 5.5 shows that as the grid gets larger the time it takes to generate the 
dungeon takes longer. There is some level off of the increase in time around a grid size of 20,000 
to 30,000. The reason for this level off is unclear. However a generalized observation can be 
made that as more cells are added to the dungeon, the longer it takes to generate. The largest 
test shows a 2.5 second generation time, which would in most cases, probably be satisfactory in 
the use of a game. 

  

Figure 5.5 - Graph of Cellular Automata generation time with different grid sizes 



An Investigation in Techniques used to Procedurally Generate Dungeon Structures 40 

 

0

1

2

3

4

5

6

7

8

2 4 8 16 32 64 128 256

Ti
m

e
 (

S)
 

Number of Rooms 

Generation Time Comparison 

BSP Generation Time

Delaunay Generation Time

5.3.4 ANALYSIS 

By comparing the results of the generation time tests, observations can be made about the 
effectiveness of each generation.  Due to the generation test for the Delaunay generation and 
BSP generation using the same test samples it is possible to create a graph comparing the 
results of the two generations. 

As can be observed in Figure 5.6 the Delaunay generation proves faster for dungeons with 
smaller rooms, up to the 16 room count. After this point the BSP generation becomes the faster 
generation. As can also be observed, the Delaunay generation is significantly slower than the 
BSP generation when generating large dungeons (over 64 rooms in size). 

However, it is difficult to make a comparison using the Cellular Automata generation 
against the other generation types due to there being no common attribute to measure the 
generation time against, as that technique doesn’t have definable rooms. Observations can be 
made showing that largest test size done with the Cellular Automata generation executed 
significantly faster than the Delaunay generation, and roughly on par with the BSP generation, 
however, the actual sizes of the dungeons being compared in unclear. 

Furthermore, a similar problem exists with the comparison between the BSP generation 
and the Delaunay generation. Although dungeons with equal number of rooms were compared, 
the actual size of the dungeons is unspecified. The BSP generation requires creating a large 
space at the start of the generation that the entire dungeon generation would exists within. This 
space could be variable in size and still have the same number of rooms as the Delaunay 
generation. Reliably generating same size dungeons across techniques is difficult due to the 
techniques working in different ways. 

As such, the cross comparison of these different techniques in terms of generation time 
has questionable value. In the tests done the techniques did roughly generate equal size 
dungeons; however the accuracy of this is unmeasured. If it is accepted that the dungeon sizes 
used were equal enough in size, then the results of the comparison do have value.  

 

 

  

Figure 5.6 – Graph of BSP and Delaunay generation time comparison 



An Investigation in Techniques used to Procedurally Generate Dungeon Structures 41 

 

5.4 MEMORY USAGE 

The memory usage of each implementation was measured using the Unity Pro Profiler, 
which gives access to statistics on the programs execution such as total memory used. 
Rendering was disabled during the tests so that the memory usage was not increased by 
rendering. 

5.4.1 DELAUNAY GENERATION 

The full data used to construct the graph in Figure 5.7 can be seen in Appendix E. 

 

Figure 5.7 - Graph of Delaunay RAM usage with different room amounts 

 Similar to the results observed in the generation time for the Delaunay generation, as 
larger dungeons are generated more RAM is used to store the dungeon. This would be expected 
due to the generation adding in more rooms that are not otherwise present in dungeons with 
smaller room counts. Each room would have to be stored in memory which would account for 
the increase in RAM usage.  

0

50

100

150

200

250

2 4 8 16 32 64 128

R
A

M
 (

M
.B

) 

Number of Rooms 

Delaunay RAM Usage 



An Investigation in Techniques used to Procedurally Generate Dungeon Structures 42 

 

5.4.2 BSP GENERATION 

The full data used to construct the graph in Figure 5.8 can be seen in Appendix F. 

 

Figure 5.8 - Graph of BSP RAM usage with different room amounts 

 The results from the BSP RAM usage tests are fairly interesting, but when considered, 
are quite logical. As can be seen in Figure 5.8 the difference in RAM usage from the smallest 
dungeon to the largest is relatively small, only having a difference of about 15mb. The RAM 
usage goes up very little when more rooms are generated, in most cases. When considering how 
the technique works, this can be explained. The generation method creates one large area for 
the dungeon, and then split it up more and more depending on how many rooms are required. 
Because of this the dungeon size is the same if there are 2 rooms, or if there are 256 rooms. The 
only attribute that changes is how many segments the dungeon is broken into between the 
different room counts. As the dungeon isn’t getting larger as rooms are added it is logical than 
the RAM usage stays roughly the same. The small increase in RAM that is seen can be possibly 
related to there being more tiles in dungeons with higher room counts. 

 

 

 

 

  

55

60

65

70

75

80

2 4 8 16 32 64 128 256

R
A

M
 (

M
.B

) 

Number of Rooms 

BSP RAM Usage 



An Investigation in Techniques used to Procedurally Generate Dungeon Structures 43 

 

5.4.3 CELLULAR AUTOMATA GENERATION 

The full data used to construct the graph in Figure 5.9 can be seen in Appendix G. 

 

Figure 5.9 – Graph of Cellular Automata RAM Usage with different grid sizes 

The results of the Cellular Automata RAM tests as seen in Figure 5.9 do not yield anything 
unexpected. As the number of cell in the grid increases, so does the RAM usage of the dungeon. 
The increase is consistent across all data points. This would be expected as larger size grids are 
created for larger dungeons, and as the grid gets larger, more RAM would be required to store it. 

  

0

50

100

150

200

250

300

2500 5625 10000 15625 22500 30625 40000

R
A

M
 (

M
.B

) 

Number of Cells in Grid 

Cellular Automata RAM Usage 



An Investigation in Techniques used to Procedurally Generate Dungeon Structures 44 

 

5.4.4 ANALYSIS 

The RAM usage tests have the same potential problem as discussed in section 5.3.4, due 
to the potential different sizes of the dungeons. However, as mentioned before, effort was put in 
to ensure the dungeons were roughly the same size, as far as was possible to achieve. 

Figure 5.10 shows the comparison between the Delaunay and BSP generations RAM 
usage test results. 
 

 

Figure 5.10 - Graph of BSP and Delaunay RAM usage comparison 

As can be seen in Figure 5.10 the BSP generation uses less RAM than the Delaunay 
generation in all test samples. This would suggest that BSP is a more efficient method in terms 
of memory consumption. However, the RAM usage is fairly similar up to around the 32 room 
generations, and it is only after that point in which the Delaunay generation starts using 
significant more RAM. 

The Cellular Automata results are harder to compare with the other generations again 
because of the lack of consistent sample data to compare against. It can be observed than the 
RAM usage of the generation starts around roughly the same amount as the other generations 
and the largest test sample is slightly larger than the largest Delaunay generation test sample.  

 

 

  

0

50

100

150

200

250

2 4 8 16 32 64 128

R
A

M
 (

M
.B

) 

Number of Rooms 

RAM Usage Comparison 

Delaunay

BSP



An Investigation in Techniques used to Procedurally Generate Dungeon Structures 45 

 

5.5 PRODUCT SWOT ANALYSIS 

To assess the value of the produced product an S.W.O.T analysis will be undertaken to 
identify key characteristics of the product. Doing an S.W.O.T analysis helps “maximizes the 
potential of the strengths and opportunities while minimizing the impact of the weakness and 
threats” (ERC, 1998) of the evaluated software. 

5.5.1 STRENGTHS 

The key strengths to the product are: 

 Three unique generation techniques were implemented and tested 

 New room connection strategy was created (Transitive connect strategy). 

 Data was collected and analysed from each unique generation technique. 

 Cross comparisons and conclusions were drawn from collected data 

5.5.2 WEAKNESSES 

 Evaluations did not use consistent metrics across all generations 

 Data was only collected on one set of hardware 

 1 of the 3 techniques did not produce a structure that qualified as a dungeon 

5.5.3 OPPORTUNITIES 

 More research areas have been identified through the project that could be further 
investigated, such as Graph Grammars and Shape Grammars. 

5.5.4 THREATS 

 Produced structures were not analysed from a level design perspective. Only 
analytically against hard metrics. 

The analysis of the product highlights that there are several strong points to the product 
however the weakness shows that some of the strengths may not be as full proof as they seem 
at first look when examined more closely. However, the product does meet the requirements 
initially set out when the investigation began. All primary evaluation strategies were applied to 
created generations and results were obtained as to the evaluation strategy stated in section 
3.3. 

 The threats highlight how even though generations were created and evaluated, at no point 
a design perspective was considered on the created generations. Due to this it is potentially 
possible that the created generations have no practical use in actual games development. This is 
potentially a large issue with the investigation as the object was to investigate techniques more 
thoroughly in the hope to help game developers make informed choices on which technique to 
use in their projects. If the techniques aren’t useable in a games development, the results found 
during the evaluation will have little value to game developers. 

However, it is unlikely this is the scenario, as there are examples of such techniques already 
being used in commercial projects. For example, TinyKeep (PhiGames, 2014) uses the Delaunay 
technique for its dungeon generation and Pixel Dungeon (Watabou, 2014) uses a BSP method 
for its dungeon generation, suggesting at least these two techniques are applicable for use in 
games development. 

  



An Investigation in Techniques used to Procedurally Generate Dungeon Structures 46 

 

6 CONCLUSION 

6.1 PROJECT EVALUATION 

The success of the project was outlined in section 3.3.2 to be linked to two main factors. 
The first being the number of successful generation techniques that were implemented. 
Through the development of the product three different techniques were implemented out of 
four that were identified in section 2.3. As such, in regards to the first factor, the product was 
comprehensive, and met the requirements set out for the project. More work could be done by 
doing an implementation of a generation technique based around Graph Grammars. This was 
not completed during this project due to the complexity of the technique. It was analysed as a 
threat to the project to try and undertake the work required to complete the implementation. 
Judging by the experience gained implementing and evaluating the first three techniques, this 
choice proved to be a beneficial one to the project. 

The second factor linked to the success of the project was determined as the completion 
of the evaluations of the generations. All created generations were evaluated using the primary 
criteria determined in section 3.3.1. One secondary criterion was evaluated as well. As such, the 
evaluation of the generations was largely comprehensive. The integrity of the evaluation 
strategies was questioned, and potential problems were identified. There are further metrics 
that could be evaluated from the secondary evaluation criteria, leaving room for further work in 
the area. As discovered during the evaluations of each generation, it was found to be difficult to 
accurately measure any metric across different generations, due to the non-uniformed size of 
each dungeon. It was has been learnt through undertaking this process that creating test 
strategies can be difficult, and much attention has to be considered to unifying and formalizing 
the testing strategy’s. 

The time management of the project compared to the expected timetables created during 
the initial stages of the project as can be seen in Appendix H and Appendix I, has varied fairly 
significantly. Some of the main reasons for this variation were a large misunderstanding of how 
long the initial research would take, compared to how long it took in reality. Having never 
researched any topic in as much depth as this report covers, it is understandable that the 
prediction was incorrect. This report has help bring awareness to how long research takes and 
the knowledge learnt will help with the planning of future projects. 

6.2 FURTHER RESEARCH 

Several areas of the investigating undertaken have either lead to new topics that were 
not possible to research in the time frame of this investigation or demonstrated weakness in the 
approach that was taken. 

Further research into Graph Grammar and Shape Grammar based dungeon generation 
would be largely beneficial for the investigation. The initial background research demonstrates 
large amounts of potential for the technique, especially related to generating dungeons around 
level design requirements. The research into this topic would relate to another area that needs 
further work from the evaluation strategies. Evaluating the potential use a dungeon has in terms 
of game design and level design is needed. Learning new approaches on how to accurately test 
different generation techniques with different metrics, such as metrics related to the level 
design feasibility of a generated dungeon, would be beneficial. This area would also help avoid 
the problems encountered with the evaluation strategies used in this evaluation, where the 
compared data wasn’t completely consistent. 



An Investigation in Techniques used to Procedurally Generate Dungeon Structures 47 

 

These are the main areas of further research that have been identified through doing 
this investigation. The investigation itself could be broaden by looking at different types of 
dungeon generations, such as for levels with side on perspective instead of top down/3D. 

6.3 PROJECT CONCLUSION 

There have been many successes achieved during the completion of this project. The main 
success is the implementation of the different algorithms. The Delaunay one was particularly 
challenging and many new programming related techniques were learnt through the process of 
completing the implementation, such as how triangulation works, its purpose, and many 
different problems calculating triangulations can help solve, such as finding a convex hull of a 
group of polygons. 

Some areas of the project have been less successful, even some areas related to the 
implementations of the generation techniques. For example, no proper use of Software Quality 
Assurance (SQA) was applied during the development of the prototypes, leaving potentially 
lower quality demo’s than would of otherwise been created with the use of SQA. Other less 
successful areas have been outline in previous sections, such as the problems found with the 
evaluation strategy. 

However, the entire project has been a great learning experience, and the areas that were 
less successful were the most useful to learn from. The project has successfully achieved the 
goals it set out to achieve, to at least a satisfactory level. The conclusions drawn from the 
evaluation strategy, although possibly not precisely accurate, do show how the different 
generations work from a high level perspective, for example, the BSP tree will always only 
require roughly as much memory as the first split requires, whereas the Delaunay dramatically 
increases in memory consumption as more rooms are added. Information such as this, derived 
from the evaluation strategy, can be useful for a game developer to know when trying to choose 
a technique for their game. As the focus of the report, was to help game developers make more 
informed decisions on techniques to use, the results found in this report can indeed help them 
do that. 

Dungeon generation is a very broad and complex area of PCG. This project has helped 
further the formalization of the subject, and scratched the very surface of an otherwise deep and 
ever increasing area of computer games development. The future for the topic is exciting and 
only just beginning. 

 
 
 
 
 



An Investigation in Techniques used to Procedurally Generate Dungeon Structures 48 

 

7 APPENDIX 

7.1 APPENDIX A – DUNGEON TILESET 

A render of the tiles used in the tile set all three dungeon generations used, as retrieved from http://opengameart.org/content/3d-dungeon-tileset (08/03/2014) 
Special thanks to OpenGameArt.org member ‘Skorpio’ for making this tile set freely available to be used and Liam Bower for exporting the individual models 

 
 



An Investigation in Techniques used to Procedurally Generate Dungeon Structures 49 

 

7.2 APPENDIX B –  DELAUNAY GENERATION TIME RESULTS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Test Number Number of Rooms Generation Time (S) 
1 2 0.3394571 
2 2 0.3045621 
3 2 0.3647743 
4 2 0.3073522 
5 2 0.3528039 

Average Time: 0.33378992 

Test Number Number of Rooms Generation Time (S) 
1 4 0.4056896 
2 4 0.403481 
3 4 0.3748098 
4 4 0.3676056 
5 4 0.3530588 

Average Time: 0.38092896 

Test Number Number of Rooms Generation Time (S) 
1 8 0.4904901 
2 8 0.4970773 
3 8 0.566237 
4 8 0.4703249 
5 8 0.5374306 

Average Time: 0.51231198 

Test Number Number of Rooms Generation Time (S) 
1 16 0.7454771 
2 16 0.6809146 
3 16 0.6903022 
4 16 0.7244036 
5 16 0.714299 

Average Time: 0.7110793 

Test Number Number of Rooms Generation Time (S) 
1 32 1.18694 
2 32 1.231536 
3 32 1.225295 
4 32 1.181989 
5 32 1.156056 

Average Time: 1.1963632 

Test Number Number of Rooms Generation Time (S) 
1 64 2.103427 
2 64 2.008343 
3 64 2.09196 
4 64 2.09456 
5 64 2.107467 

Average Time: 2.0811514 



An Investigation in Techniques used to Procedurally Generate Dungeon Structures 50 

 

 

 

 

 

 

 

 

 

 

 

*Program crashed when trying to execute test 

 

 

  

Test Number Number of Rooms Generation Time (S) 
1 128 6.702223 
2 128 6.406401 
3 128 6.930064 
4 128 7.070667 
5 128 6.594977 

Average Time: 6.7408664 

Test Number Number of Rooms Generation Time (S) 
1 256 N/A* 
2 256 N/A* 
3 256 N/A* 
4 256 N/A* 
5 256 N/A* 

Average Time: N/A* 



An Investigation in Techniques used to Procedurally Generate Dungeon Structures 51 

 

7.3 APPENDIX C – BSP GENERATION TIME RESULTS 

 

 

 

 

 

 

 

 

Test Number Number of BSP Splits Number of Rooms Generation Time (S) 
1 1 2 4.011813 
2 1 2 3.647554 
3 1 2 3.642833 
4 1 2 3.790057 
5 1 2 3.6146 

 Average Time: 3.7413714 

Test Number Number of BSP Splits Number of Rooms Generation Time (S) 
1 2 4 1.94444 
2 2 4 1.967834 
3 2 4 1.845763 
4 2 4 1.911388 
5 2 4 1.893493 

 Average Time: 1.9125836 

Test Number Number of BSP Splits Number of Rooms Generation Time (S) 
1 3 8 1.132471 
2 3 8 1.126262 
3 3 8 1.108531 
4 3 8 1.127339 
5 3 8 1.171568 

 Average Time: 1.1332342 

Test Number Number of BSP Splits Number of Rooms Generation Time (S) 
1 4 16 0.8044382 
2 4 16 0.8281473 
3 4 16 0.8192808 
4 4 16 0.8231851 
5 4 16 0.8345353 

 Average Time: 0.82191734 

Test Number Number of BSP Splits Number of Rooms Generation Time (S) 
1 5 32 0.7047508 
2 5 32 0.7018908 
3 5 32 0.6938654 
4 5 32 0.7016528 
5 5 32 0.6939383 

 Average Time: 0.69921962 



An Investigation in Techniques used to Procedurally Generate Dungeon Structures 52 

 

 

 

 

 

  

Test Number Number of BSP Splits Number of Rooms Generation Time (S) 
1 6 64 0.6918635 
2 6 64 0.6915058 
3 6 64 0.677397 
4 6 64 0.6931908 
5 6 64 0.6945659 

 Average Time: 0.6897046 

Test Number Number of BSP Splits Number of Rooms Generation Time (S) 
1 7 128 0.8196436 
2 7 128 0.8137906 
3 7 128 0.8209357 
4 7 128 0.8082628 
5 7 128 0.827222 

 Average Time: 0.81797094 

Test Number Number of BSP Splits Number of Rooms Generation Time (S) 
1 8 256 1.576295 
2 8 256 1.603643 
3 8 256 1.605789 
4 8 256 1.584035 
5 8 256 1.610196 

 Average Time: 1.5959916 



An Investigation in Techniques used to Procedurally Generate Dungeon Structures 53 

 

7.4 APPENDIX D –  CELLULAR AUTOMATA GENERATION TIME RESULTS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Test Number Grid Size Generation Time (S) 
1 2500 0.1845215 
2 2500 0.184239 
3 2500 0.1888523 
4 2500 0.2016415 
5 2500 0.1983151 

Average Time: 0.19151388 

Test Number Grid Size Generation Time (S) 
1 5625 0.3972754 
2 5625 0.3881872 
3 5625 0.3946814 
4 5625 0.3614752 
5 5625 0.3806881 

Average Time: 0.38446146 

Test Number Grid Size Generation Time (S) 
1 10000 0.7183257 
2 10000 0.6317485 
3 10000 0.6768797 
4 10000 0.6120695 
5 10000 0.6408353 

Average Time: 0.65597174 

Test Number Grid Size Generation Time (S) 
1 15625 1.057225 
2 15625 1.057225 
3 15625 1.02399 
4 15625 1.132226 
5 15625 1.067459 

Average Time: 1.067625 

Test Number Grid Size Generation Time (S) 
1 22500 1.388806 
2 22500 1.520416 
3 22500 1.455273 
4 22500 1.550743 
5 22500 1.470464 

Average Time: 1.4771404 



An Investigation in Techniques used to Procedurally Generate Dungeon Structures 54 

 

 

 

 

 

 

 

 

 

 

  

Test Number Grid Size Generation Time (S) 
1 30625 1.52603 
2 30625 1.531386 
3 30625 1.583579 
4 30625 1.465613 
5 30625 1.551985 

Average Time: 1.5317186 

Test Number Grid Size Generation Time (S) 
1 40000 2.689693 
2 40000 2.694524 
3 40000 2.742126 
4 40000 2.818364 
5 40000 2.59924 

Average Time: 2.7087894 



An Investigation in Techniques used to Procedurally Generate Dungeon Structures 55 

 

7.5 APPENDIX E – DELAUNAY GENERATION MEMORY RESULTS 

 

 

 

 

 

 

  * Program crashed when trying to execute test 

7.6 APPENDIX F – BSP GENERATION MEMORY RESULTS 

 

7.7 APPENDIX G –  CELLULAR AUTOMATA GENERATION MEMORY RESULTS 

 

 

 

 

 

 

 

Test Number Number of Rooms R.A.M Usage (~MB) 
1 2 82 
2 4 85 
3 8 88 
4 16 97 
5 32 98 
6 64 129 

7 128 204 

8 256 N/A* 

Test Number Number of BSP Splits Number of Rooms R.A.M Usage (~MB) 
1 1 2 65 
2 2 4 68 
3 3 8 68 
4 4 16 69 
5 5 32 69 
6 6 64 70 

7 7 128 74 

8 8 256 78 

Test Number Grid Size R.A.M Usage (~MB) 
1 2500 66 
2 5625 73 
3 10000 93 
4 15625 128 
5 22500 152 
6 30625 192 

7 40000 248 



An Investigation in Techniques used to Procedurally Generate Dungeon Structures 56 

 

7.8 APPENDIX H – FIRST TERM DEVELOPMENT TIMETABLE 

. 

 

 

 

 

 

 

 

 
        

Week 
Commencing         

Task 17/11/2013 24/11/2013 01/12/2013 08/12/2013 15/12/2013 22/12/2013 29/12/2013 05/01/2013 12/01/2013 

                    

Interview users for requirements                   

Look for research material                   

Develop Evaluation Strategy                   

Begin write up of initial research                   

Create Initial Test Strategy                   

Prototype Initial Generation Methods                   
Reflected on initial findings and 
approach                   



An Investigation in Techniques used to Procedurally Generate Dungeon Structures 57 

 

7.9 APPENDIX I – SECOND TERM DEVELOPMENT TIMETABLE 

The time allocated to this project has been broken down into weeks, with each week assigned a task that needs to be completed during the week. Two weeks 
have been given to allow for the work load from other modules around hand in times and one week is reserved for either working on secondary evaluations if 
the project is running smoothly or catching up on past tasks that may not have been completed during their designated slot. 
 

Task 01/02/2014 08/02/2014 15/02/2014 22/02/2014 01/03/2014 08/03/2014 15/03/2014 22/03/2014 

Finish background research   
       BSP Implementation 

 
  

      TinyKeep implementation 
  

    
    Shape Grammar implementation                 

 

 

 

 

 

 

 

 

 

 

 

Task 29/03/2014 01/04/2014 08/04/2014 15/04/2014 22/04/2014 29/04/2014 01/05/2014 

Other module hand ins     
    

  

Primary Evaluation 
  

  
   

  

Secoundary Evaluation/Recovery 
   

    
 

  

Final write up / Conclusion               



An Investigation in Techniques used to Procedurally Generate Dungeon Structures 58 

 

 

8 BIBLIOGRAPHY 

 
Adams, D. (2002). Automatic Generation of Dungeons for Computer Games. University of 
Sheffield. Retrieved from: 
http://www.dcs.shef.ac.uk/intranet/teaching/public/projects/archive/ug2002/pdf/u9da.pdf 
 
Angry Fish Studios. (2011). Bitmasking Infographic [web log post]. Retrieve from: 
http://www.angryfishstudios.com/2011/04/adventures-in-bitmasking/ 
 
Barton, M.  Loguidice, B. (2009, May, 05). Gamasutra - The History of Rogue: Have @ You, You 
Deadly Zs. Retrieved from: 
http://www.gamasutra.com/view/feature/132404/the_history_of_rogue_have__you_.php?page
=2 
 
Basic Dungeon Generation. (2012, October, 26).  Retrieved from: 
http://roguebasin.roguelikedevelopment.org/index.php?title=Basic_BSP_Dungeon_generation 
 
Berg, Mark de (2010). Computational geometry: algorithms and applications (3rd edition). 
Springer: Berlin. ISBN: 9783540779742 
 
Cube Roots. (2014). Dungeon Hearts 2 [Computer Software]. 
 
Cube Roots. (2014). Dungeon Hearts 2 Independent Gaming Source topic. Retrieved from: 
http://forums.tigsource.com/index.php?topic=35116.0 
 
Dinh, P. (2013). Procedural Dungeon Generation Algorithm Explaines. Retrieved from: 
http://www.reddit.com/r/gamedev/comments/1dlwc4/procedural_dungeon_generation_algor
ithm_explained/  
 
Driver, S. (2010). A Bitwise Method For Applying Tilemaps [web log post]. Retrieved from: 
http://www.saltgames.com/2010/a-bitwise-method-for-applying-tilemaps/ 
 
Discord Games. (2014). Chasm [Computer Software]  
 
Discord Games. (2014). Chasm Independent Gaming Source topic. Retrieved from: 
http://forums.tigsource.com/index.php?topic=30117.0 
 
Discord Games. (2014). Official website. Retried from: http://www.chasmgame.com/ 
 
Dormans, J. (2010) Adventures in level design: Generating missions and spaces for action 
adventure games. Retrieved from: 
http://www.jorisdormans.nl/pdf/dormans2010_AdventuresInLevelDesign.pdf 
 
Dormans, J. Bakkes, S. (2011). Generating Missions and Spaces for Adaptable Play Experiences. 
IEE Transactions on Computational Intelligence and AI in Games. volume 3. Retrieved from: 
http://sander.landofsand.com/publications/Dormans_Bakkes_-
_Generating_Missions_and_Spaces_for_Adaptable_Play_Experiences.pdf 
 
ERC (1998). SWOT Analysis. Retrieved from: http://erc.msh.org/quality/ittools/itswot.cfm 

 

http://www.dcs.shef.ac.uk/intranet/teaching/public/projects/archive/ug2002/pdf/u9da.pdf
http://www.angryfishstudios.com/2011/04/adventures-in-bitmasking/
http://www.gamasutra.com/view/feature/132404/the_history_of_rogue_have__you_.php?page=2
http://www.gamasutra.com/view/feature/132404/the_history_of_rogue_have__you_.php?page=2
http://roguebasin.roguelikedevelopment.org/index.php?title=Basic_BSP_Dungeon_generation
http://forums.tigsource.com/index.php?topic=35116.0
http://www.reddit.com/r/gamedev/comments/1dlwc4/procedural_dungeon_generation_algorithm_explained/
http://www.reddit.com/r/gamedev/comments/1dlwc4/procedural_dungeon_generation_algorithm_explained/
http://www.saltgames.com/2010/a-bitwise-method-for-applying-tilemaps/
http://forums.tigsource.com/index.php?topic=30117.0
http://www.chasmgame.com/
http://www.jorisdormans.nl/pdf/dormans2010_AdventuresInLevelDesign.pdf
http://sander.landofsand.com/publications/Dormans_Bakkes_-_Generating_Missions_and_Spaces_for_Adaptable_Play_Experiences.pdf
http://sander.landofsand.com/publications/Dormans_Bakkes_-_Generating_Missions_and_Spaces_for_Adaptable_Play_Experiences.pdf
http://erc.msh.org/quality/ittools/itswot.cfm


An Investigation in Techniques used to Procedurally Generate Dungeon Structures 59 

 

Firemana. (2013). Stack Overflow answer [web log post]. Retrieved from: 
http://stackoverflow.com/a/16909956 
 
Fuchs, H. (1980). On visible surface generation by a priori tree structures. 124-133. Retrieved 
from: http://dl.acm.org/citation.cfm?id=807481 
 
Gärtner, B. (N.D). Delaunay Triangulation: Incremental Construction. Retrieved from: 
http://www.ti.inf.ethz.ch/ew/courses/CG13/lecture/Chapter%207.pdf 
 
Gearbox Software. [gearboxsoftware]. (2013, August, 31). Borderlands 2: An Introduction by Sir 
Hammerlock. Retrieved from: http://www.youtube.com/watch?v=oUu-FzRFYZA 
 
Infolet.org. (N.D). Find Area of Rectangle, Triangle and Circle in C#. Retrieved from: 
http://www.infolet.org/2012/11/calculate-area-of-rectangle-triangle-circle-in-c.html 
 
Johnson, L. Yannakakis, G.N. Togelius, J. (2010). Cellular automata for real-time generation of 
infinite cave levels. Retrieved from: http://www.itu.dk/people/yannakakis/a7-Johnson.pdf 
 
Kushner, D. (2003). Masters of Doom. United States, Random House, Inc. 
 
Lawson, C.L. (1972). Transforming Triangulations. Pages 365-372. Retrieved from: 
http://www.diku.dk/hjemmesider/ansatte/rfonseca/literature/lawson/index.html 
 
Linden, R.V.D. Lopes, R.  Bidarra, R. (2013). Designing Procedurally Generated Levels. Retrieved 
from: http://graphics.tudelft.nl/~rafa/myPapers/bidarra.RvdL.IDP13.pdf 
 
Millington, I. Funge, J. (2009). Artificial Intelligence for Games. (2nd edition).Massachusetts: 
Elsevier. ISBN: 978-0-12-374731-0 
 
Mossmouth. (2013). Spelunky [Computer Software]. 
 
Naughtyyt (03/04/2013) Graph Grammar based Procedural Generation for a Rougelike [Video 
File]. Retrieved from: http://www.youtube.com/watch?v=RAtdFKiqs34&feature=youtu.be 
 
Naughty (2013) Graph Grammar and Voronoi based Level Generation for a Roulgelike – Work in 
Progress. Retrieved from: 
http://www.reddit.com/r/gamedev/comments/1bne5o/graph_grammar_and_voronoi_based_l
evel_generation/ 
 
Persson, M. (2010, March, 02). Clearing up the world size math. [Web log post]. Retrieved from: 
http://notch.tumblr.com/post/422515389/clearing-up-the-world-size-math 
 
Phigames (2013). TinyKeep - A 3D Dungeon Crawler. Retrieved from: 
http://tinykeep.com 
 
PhiGames. (2014). Tiny Keep [Computer Software]. 
 
Prim, R.C. (1957). Shortest Connection Networks And Some Generalizations. Retrieved from: 
http://www3.alcatel-lucent.com/bstj/vol36-1957/articles/bstj36-6-1389.pdf 
 
Quendus (2014/04/04) Re: Graph Grammar and Voronoi based Dungeon Generation [web log 
post]. Retrieved from: 
http://forums.roguetemple.com/index.php?PHPSESSID=e3ss1jbg8rm4khb2dja9qg2ma4&topic
=3222.msg26626#msg26626 
 

http://stackoverflow.com/a/16909956
http://dl.acm.org/citation.cfm?id=807481
http://www.ti.inf.ethz.ch/ew/courses/CG13/lecture/Chapter%207.pdf
http://www.youtube.com/watch?v=oUu-FzRFYZA
http://www.infolet.org/2012/11/calculate-area-of-rectangle-triangle-circle-in-c.html
http://www.itu.dk/people/yannakakis/a7-Johnson.pdf
http://www.diku.dk/hjemmesider/ansatte/rfonseca/literature/lawson/index.html
http://graphics.tudelft.nl/~rafa/myPapers/bidarra.RvdL.IDP13.pdf
http://www.youtube.com/watch?v=RAtdFKiqs34&feature=youtu.be
http://www.reddit.com/r/gamedev/comments/1bne5o/graph_grammar_and_voronoi_based_level_generation/
http://www.reddit.com/r/gamedev/comments/1bne5o/graph_grammar_and_voronoi_based_level_generation/
http://notch.tumblr.com/post/422515389/clearing-up-the-world-size-math
http://tinykeep.com/
http://www3.alcatel-lucent.com/bstj/vol36-1957/articles/bstj36-6-1389.pdf
http://forums.roguetemple.com/index.php?PHPSESSID=e3ss1jbg8rm4khb2dja9qg2ma4&topic=3222.msg26626#msg26626
http://forums.roguetemple.com/index.php?PHPSESSID=e3ss1jbg8rm4khb2dja9qg2ma4&topic=3222.msg26626#msg26626


An Investigation in Techniques used to Procedurally Generate Dungeon Structures 60 

 

Reynolds, C (2004). Steering Behaviors For Autonomous Characters. Retrieved from: 
http://www.red3d.com/cwr/steer/ 
 
Scott, J. (N.D). Point in triangle test. Retrieved from: 
http://www.blackpawn.com/texts/pointinpoly/ 
 
Skorpio. (2012). 3D Dungeon Tileset[web log post]. Retrieved from: 
http://opengameart.org/content/3d-dungeon-tileset 
 
Stiny, G. (1978). The Palladian grammar. Environment and Planning B, volume 5, pages 5-18. 
Retrieved from: https://www.andrew.cmu.edu/course/48-
747/subFrames/readings/Stiny&Mitchell.thePalladianGrammar.pdf 
 
Toffoli, T. Margolus, N. (1987). Cellular Automata Machines: A New Environment for Modeling. 
Massachusetts: MIT Press.  
 
Togelius, J.  Nelson, M.J. Shaker N. (2013). Procedural Content Generation in Games. University of 
Copenhagen. Retrieved from: http://pcgbook.com/  
 
Toy, M. Wichman, G. Arnold, K. Lane, J. (1980). Rouge [Computer Software]. 
 
Unity Technologies. (2014). Unity documentation for Time.realtimeSinceStartup. Retrieved from: 
https://docs.unity3d.com/Documentation/ScriptReference/Time-realtimeSinceStartup.html 
 
USNW Austrillia. (1998). Delaunay Triangulation Algorithms. Retrieved from: 
http://www.cse.unsw.edu.au/~lambert/java/3d/delaunay.html 
 
Velasco, P.P.P (2009) Matrix Graph Grammars as a Model of Computation. Retrieved from: 
http://arxiv.org/pdf/0905.1202.pdf 
 
Watabou. (2014). Pixel Dungeon [Computer Software] 
 
Willems, S. (2010) Random Dungeon Generation [Web log post]. Retrieved from: 
http://www.saschawillems.de/?page_id=395 
 
 

 

 

http://www.red3d.com/cwr/steer/
http://www.blackpawn.com/texts/pointinpoly/
http://opengameart.org/content/3d-dungeon-tileset
https://www.andrew.cmu.edu/course/48-747/subFrames/readings/Stiny&Mitchell.thePalladianGrammar.pdf
https://www.andrew.cmu.edu/course/48-747/subFrames/readings/Stiny&Mitchell.thePalladianGrammar.pdf
http://pcgbook.com/
https://docs.unity3d.com/Documentation/ScriptReference/Time-realtimeSinceStartup.html
http://www.cse.unsw.edu.au/~lambert/java/3d/delaunay.html
http://arxiv.org/pdf/0905.1202.pdf
http://www.saschawillems.de/?page_id=395

