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Abstract  —  We developed a real-time PV power forecasting 

system for Tucson Electric Power using a combination of high-
resolution numerical weather prediction, satellite imagery, 
distributed generation (DG) production data, and irradiance 
sensors. The system provides forecasts with 10 second resolution 
for the first 30 minutes and 3 minute resolution out to 3 days.  
Forecasts out to 30 minutes are updated every 60 seconds based 
on new data from DG installations and irradiance sensors.  

Index Terms — forecasting, real-time systems, sensors, solar 
energy. 

I. INTRODUCTION 

The need for PV power forecasting to support grid 
integration is well established [1-4].  We describe an 
operational hybrid forecasting system that utilizes input from 
3 different sources: a high-resolution numerical weather 
prediction model, satellite imagery, and a network of 
distributed generation PV systems and irradiance sensors. Our 
forecasts are currently used at Tucson Electric Power to 
inform conventional generation resource allocation and to give 
system operators insight into behind-the-meter energy usage 
and generation. Our 10-second resolution short-term forecasts 
can help anticipate destabilizing ramp events, enable 
preemptive curtailment to avoid high ramp rates, and reduce 
the battery size needed to control ramp rates. Our long-term 
forecasts predict both solar and wind power production with 
3-minute resolution, enabling day-ahead forecasts of the 
possibility of high variability. Integrating the forecasting 
technologies into a single hybrid forecast will improve the 
forecast accuracy at all time horizons and present end-users 
with a straightforward and simple product. 

The field of solar power forecasting has quickly grown over 
the last several years. PV power forecasts have been made 
using numerical weather prediction [2, 5], satellite imagery [2, 
6], total sky imagers [2, 7], and sensor networks [8]. The work 
we present here is, to our knowledge, the first work that 
combines a short-term forecasting method (i.e. total sky 
imagers or sensor networks) with both medium-term satellite 
imagery and long-term numerical weather modeling. We also 
emphasize that the work we present here represents the 
analysis of true forecasts, rather than retrospective modeling 
and analysis of historical data. 

II. DATA SOURCES 

In this section we provide a summary of the 3 different 
components of our forecasting system: a WRF numerical 
weather model, satellite imagery, and a network of DG PV 
systems and irradiance sensors. 

A. Numerical Weather Prediction 

The backbone of our forecast is a suite of high-resolution 
Weather Research and Forecasting (WRF) mesoscale 
numerical weather models. Each day we run four different 
models initialized using the 6Z and 12Z GFS and NAM 
forecasts, plus one additional forecast using cloud assimilation 
from satellite imagery. The models use a 5.4 km outer domain 
spanning 28.5° longitude by 20.75° latitude, and a 1.8 km 
inner domain spanning 7.7° longitude by 5.3° latitude. The 
consistency, or lack thereof, of the multiple model runs 
provides one estimate of the uncertainty of the WRF forecasts. 
We typically run the 6Z forecasts out to 72 hours and the 12Z 
forecasts out to 48 hours. Variables directly relevant to 
renewable power forecasting, including GHI, DNI, 10 meter 
winds, 80 meter winds, and 2 meter temperature, are output 
every 3 minutes. Figure 1 shows WRF forecasts for a 25 MW 
single-axis tracker installation. 

The high spatial and temporal resolution of our WRF model 
enables direct prediction of local irradiance and variability, 
rather than relying on historical correlations between 
irradiance, variability and other model outputs. The high 
spatial resolution is also essential for accurate weather and 
irradiance modeling in regions with rapidly changing 
topography and land use, such as southern Arizona. 

We used the NREL SOLRMAP OASIS station at the 
University of Arizona [9] to compare the WRF model 
predictions of GHI to the measured GHI. Calculations of the 
daily average mean absolute error (MAE) and normalized 
MAE (NMAE) of the WRF model GHI predictions are shown 
in Table I and Table II. We only considered times of the day at 
which the solar altitude was greater than 10 degrees. The 
MAE shown here was calculated at 3-minute resolution and 
MAE statistics for hourly forecasts are approximately 25% 
smaller. Normalization was calculated with respect to the clear 
sky irradiance at each time bin. For this work, we restrict our 
analysis of the WRF model runs to the month of April so that 
we can more directly compare them to the network forecasting 



 

method discussed below and in reference [10]. Figure 2 shows 
the distribution and averages of the MAE errors for all 
forecast times. 

Our WRF models outperformed a clear sky forecast by 
approximately 20% on day 1, 10% on day 2, and 15% on day 
3. The curious observation that the day 3 forecast error is 
smaller than the day 2 forecast error is explained by the fact 
that not all models successfully run on all days and that clear 
days are significantly easier to forecast than cloudy days. 
Coincidentally, clear sky conditions were overrepresented in 
the models that ran out to 3 days.  

 
TABLE I 

MEAN ABSOLUTE ERROR (W/M2) OF GHI FORECAST (3 MIN. 
BINS) 

Day 6Z-
NAM 

6Z-
GFS 

6Z 12Z-
NAM 

12Z-
GFS 

12Z Mean Clear 
sky 

1 65.3 61.1 63.3 63.1 59.1 61.1 63.2 84.6 
2 79.8 73.4 77.0 70.5 68.0 69.3 73.9 84.6 
3 70.2 70.0 70.1 -- -- -- 70.1 84.6 
 

TABLE II 
NORMALIZED MEAN ABSOLUTE ERROR (W/M2) OF GHI 

FORECAST (3 MIN. BINS) 
Day 6Z-

NAM 
6Z-
GFS 

6Z 12Z-
NAM 

12Z-
GFS 

12Z Mean Clear 
sky 

1 .101 .091 .096 .097 .090 .094 .094 .125 
2 .120 .110 .115 .106 .102 .104 .109 .125 
3 .105 .105 .105 -- -- -- .105 .125 
 
 

 
 
Fig. 1. WRF forecasts of single axis tracker PV power production for 
up to five different daily model runs (thin lines) and their averages 
(thick green). The top image shows model runs starting on January 
29, 2014, the middle image shows models starting on January 30, and 
the bottom image shows model runs starting on January 31 so that 
one can observe how the forecast develops as new initialization data 
becomes available. The time axis is in MST. Figure 3 shows the 
satellite-derived irradiance on the variable afternoon of January 31. 
 
 



 

Fig. 2. GHI WRF forecast MAE and NMAE calculated every 3 
minutes (grey dots) vs. forecast hour. Blue, red, and green dots show 
the average MAE at that forecast time across all 6Z or 12Z forecasts 
in the month of April, 2014. Blue, red, and green lines show the daily 
average MAE for days 1, 2, and 3, respectively.  The data show a 
slight trend towards less accurate forecasts in the afternoons.  

B. Satellite Imagery 

Our WRF models, like all currently available numerical 
weather models, are insufficient to predict short-term 
variability with high confidence. The first method we use to 
predict short-term variability is satellite image processing. We 
use the visible and infrared channels of the GOES satellite 
imagery, combined with WRF model output, to determine the 
irradiance that reaches the ground. Figure 3 shows an example 
of the satellite derived irradiance map. The derived irradiance 
map can then be propagated forward in time using the WRF 
model wind speeds at the estimated cloud height. More 
sophisticated methods using image analysis algorithms do 
exist for satellite-based forecasting [2], however, we find that 
using the WRF model wind velocity is simple and still 
accurate for the majority of cloud systems in Southern 
Arizona. We will present a more detailed analysis of our 
satellite imagery forecasts in future work.   

 
 
Fig. 3. GOES derived irradiance centered near Tucson, Arizona. This 
image corresponds to approximately 1/31 13:00 MST in Figure 1. 

 

C. Network of irradiance sensors 

A network of PV systems and irradiance sensors forms the 
final forecasting tool in our collection [8, 10]. We use PV 
output from 10 utility-scale systems and 20 residential 
systems as a proxy for irradiance. Data loggers on these 
systems send us data every 2 seconds to 15 minutes, 
depending on the system. We have also developed custom 
irradiance sensors that communicate via cellular modems. 
These sensors send us 1-second resolution data every 60 
seconds. Figure 4 shows the network node locations and type. 

The first step in creating a forecast from this sensor network 
is to create clear sky profiles for each sensor. We determine 
the sensor clear sky profiles using filtered historical data. We 
then interpret deviations from the clear sky profile as 
shadowing from clouds. We calculate the clearness index for 



 

each sensor, and then calculate an interpolated clearness map 
across the forecasting domain. The WRF models’ predicted 
wind velocities at cloud height determine the speed, direction, 
and uncertainty of the clearness map propagation in time. 
Finally, the forecasted PV power is determined from the 
propagated clearness map.  For details, see [8, 10]. 
 

 
 
Fig. 4. Map of utility scale PV installations (suns), residential PV 
systems with data-monitoring hardware (blue and green pins), and 
custom-built irradiance sensors (red pins) used for PV power 
forecasting in the Tucson region. 

III. HYBRID FORECASTING 

We combine the WRF models, satellite imagery, and sensor 
network data into a single “hybrid forecast” for Tucson 
Electric Power. Figure 5 shows a comparison of the individual 
forecasts across 4 orders of magnitude in time. Network and 
persistence forecasts perform well for time scales shorter than 
30 minutes, and WRF models perform best at longer time 
horizons. We anticipate that expanding the sensor network 
will enable it to outperform WRF forecasts out to 1-2 hours. 
Additional work is needed to evaluate our GOES satellite-
based forecasts and combine them with the network and WRF 
forecasts. 
 

The forecasts and their confidence intervals are 
automatically refreshed every minute throughout the day as 
new model runs, satellite images, or network data becomes 
available. We currently supply these forecasts to TEP via a 
website for 13 utility-scale PV power plants and an aggregate, 
shown in Figure 6. The data from our network of rooftop PV 
installations also informs an estimate of real-time behind-the-
meter PV generation. We are working with TEP to integrate 
these forecasts into their Energy Management System.  
 

 

Fig. 5.  Comparison of forecasted GHI MAE for 5 different 
forecasting techniques as a function of forecast time horizon. The 
WRF model forecast errors are daily averages. 
  

 
 
Fig. 6.  Screenshot of website for delivering PV power forecasts to 
Tucson Electric Power. The day ahead forecasted total power 
production (thick green), measured utility scale solar (blue), 
measured distributed generation (red), and utility scale wind (thin 
green) is shown.  Actual production is shown in black. 
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