An Orchestrated Survey on Automated Software Test Case Generation

Contributing Authors:
Saswat Anand, Stanford University, USA, Email: saswat@ cs.stanford.edu
Edmund Burke, University of Stirling, Scotland, UK, Email: e.k.burke @stir.ac.uk
Tsong Yueh Chen, Swinburne University of Technology, Australia, Email: tychen @swin.edu.au
John Clark, University of York, UK, Email: John.Clark@cs.york.ac.uk
Myra B. Cohen, University of Nebraska-Lincoln, USA, Email: myra@cse.unl.edu
Wolfgang Grieskamp, Microsoft Research, Redmond, USA, Email: wgrieskamp @ gmail.com
Mark Harman, University College London, UK, Email: mark.harman@ucl.ac.uk
Mary Jean Harrold, Georgia Institute of Technology, USA, Email: harrold@cc.gatech.edu
Phil McMinn, University of Sheffield, UK, Email: p.mcminn@sheffield.ac.uk

Orchestrators and Editors:
Antonia Bertolino, ISTI-CNR, Italy, Email: antonia.bertolino@isti.cnr.it
J. Jenny Li, Avaya Labs Research, USA, Email: jjli@avaya.com
Hong Zhu, Oxford Brookes University, UK, Email: hzhu@brookes.ac.uk

Abstract

Test case generation is among the most labour-intensive tasks in software testing and also one that has a strong impact on the
effectiveness and efficiency of software testing. For these reasons, it has also been one of the most active topics in the research
on software testing for several decades, resulting in many different approaches and tools. This paper presents an orchestrated
survey of the most prominent techniques for automatic generation of software test cases, reviewed in self-standing sections. The
techniques presented include: (a) structural testing using symbolic execution, (b) model-based testing, (c) combinatorial testing,
(d) random testing and its variant of adaptive random testing, and (e) search-based testing. Each section is contributed by world-
renowned active researchers on the technique, and briefly covers the basic ideas underlying the technique, the current state of art, a
discussion of the open research problems, and a perspective of the future development in the approach. As a whole, the paper aims
at giving an introductory, up-to-date and (relatively) short overview of research in automatic test case generation, while ensuring

comprehensiveness and authoritativeness.

Key words:

Adaptive random testing, Combinatorial testing, Model-based testing, Orchestrated Survey, Search-based software testing,
Software testing, Symbolic execution, Test automation, Test case generation

1. Introduction

Software testing is indispensable for all software develop-
ment. It is an integral part of software engineering discipline.
However, testing is labour-intensive and expensive. It is often
accounted for more than 50% of total development costs. Thus,
it is imperative to reduce the cost and improve the effectiveness
of software testing by automating the testing process. In fact,
there has been a rapid growth of practices in using automated
software testing tools. Currently, a large number of software
test automation tools have been developed and become avail-
able on the market.

* Please cite this paper as follows: Saswat Anand et al., 20xx, An Orches-
trated Survey on Automated Software Test Case Generation, Antonia Bertolino,
J. Jenny Li and Hong Zhu (Editor/Orchestrators), Journal of Systems and Soft-
ware x(y), xxCyy

Preprint submitted to Journal of Systems and Software

Among many testing activities, test case generation is one of
the most intellectually demanding tasks and also of the most
critical ones, since it can have a strong impact on the effective-
ness and efficiency of whole testing process (Zhu et al., 1997;
Bertolino, 2007; Pezze and Young, 2007). It is no surprise that
a great amount of research effort in the past decades has been
spent on automatic test case generation. As a result, a good
number of different techniques of test case generation has been
advanced and investigated intensively.! On the other hand, soft-
ware systems have become more and more complicated, for ex-
ample, with components developed by different vendors, using
different techniques in different programming languages and
even running on different platforms. Although automation tech-

ISee, for example, the Proceedings of IEEE/ACM Workshops on Au-
tomation of Software Test (AST’06 — AST’12). URL for AST’13: http:
//tech.brookes.ac.uk/AST2013/

February 11, 2013

niques for test case generation start gradually to be adopted by
the IT industry in software testing practice, there still exists a
big gap between real software application systems and prac-
tical usability of test case generation techniques proposed by
research. We believe that for researchers in software test au-
tomation it is highly desirable to critically review the existing
techniques, recognizing the open problems and putting forward
a perspective on the future of test case generation.

Towards such aim, this paper offers a critical review cover-
ing a number of prominent test case generation techniques and
does so by taking a novel approach that we call an orchestrated
survey. This consists of a collaborative work collecting self-
standing sections, each focusing on a key surveyed topic, in our
case a test generation technique, and independently authored by
world-renowned active researcher(s) of the topic. The surveyed
topics have been selected (and orchestrated) by the editors.

Generally speaking, test cases, as an important software ar-
tifact, must be generated from some information, that is some
other types of software artifacts. The types of artifacts that have
been used as the reference input to the generation of test cases
not exhaustively include: the program structure and/or source
code; the software specifications and/or design models; infor-
mation about the input/output data space, and information dy-
namically obtained from program execution. Thus, the tech-
niques we consider in this paper include:

1. symbolic execution and program structural coverage test-
ing;

model-based test case generation;

combinatorial testing;

adaptive random testing as a variant of random testing;
search-based testing.

A

Of course, automatic test case generation techniques may ex-
ploit more than one type of software artifacts as the input, thus
combining the above techniques to achieve better effectiveness
and efficiency. It is worth noting that there are many other au-
tomatic or semi-automatic test case generation techniques not
covered in this paper, for example, mutation testing, fuzzing
and data mutation testing, specification-based testing, metamor-
phic testing, etc. For keeping this paper within reasonable size,
we limited our selection to five most prominent approaches; fu-
ture endeavors could be devoted to complement this set with
further reviews: orchestrated surveys can in fact be easily aug-
mented with more sections.

Hence, after a brief report in the next section about the pro-
cess that we followed in conducting the survey, the paper is
organized as follows. In Section 3, Saswat Anand and Mary
Jean Harrold review typical program-based test case generation
techniques using symbolic execution. In Section 4, Wolfgang
Grieskamp focuses on model-based test case generation, which
is closely related to the currently active research area of model-
driven software development methodology. Sections 5 and 6
focus on data-centric test case generation techniques, i.e., com-
binatorial testing reviewed by Myra B. Cohen, and random test
and its variant of adaptive random testing reviewed by Tsong
Yueh Chen, respectively. Finally, in Section 7, Mark Harman,

Phil McMinn, John Clark, and Edmund Burke review search-
based approaches to test case generation.

2. About the Process of Orchestrated Survey

The idea behind this “orchestrated” survey, as we call it, orig-
inated from the desire of producing a comprehensive survey pa-
per on automatic test generation within the short timeframe of
this special section devoted to the Automation of Software Test
(AST). There are already several outstanding textbooks and sur-
vey papers on software testing. However, the field of software
testing is today so vast and specialized that no single author
could yield the expertise of all different approaches and could
be informed of the latest advances in every technique. So, typi-
cally surveys are necessarily focusing on some specific kind of
approach. We wanted a review that could somehow stand out
from the existing literature by offering a broad and up-to-date
coverage of techniques, yet without renouncing to depth and au-
thoritativeness in dealing with each addressed technique. Thus
we came out with this idea of selecting a set of techniques and
invited renowned experts of each technique to contribute with
an independent section.

For each of the included section, the review consists of a brief
description of the basic ideas underlying the technique, a survey
of the current state of art in the research and practical use of the
technique, a discussion of the remaining problems for further
research, and a perspective of the future development in the ap-
proach. While these reviews are assembled together to form a
coherent paper, each section remains an independently readable
and referable article.

For those authors who accepted our invitation, the submitted
sections have not been automatically accepted. Each section
underwent a separate peer-review process by at least two (often
three) reviewers, following the same standards of this journal
reviewing process, and some of them were subject to extensive
revision and a second review round before being accepted. The
five finally accepted sections were then edited in their format
and collated by us into this survey paper, which we proudly
offer as an authoritative source both to get a quick introduction
to research in automatic test case generation and as a starting
point for researchers willing to pursue some further direction.

3. Test Data Generation by Symbolic Execution

By Saswat Anand and Mary Jean Harrold *

2Acknowledgements: This research was supported in part by NSF CCF-
0541049, CCF-0725202, and CCF-1116210, and IBM Software Quality Inno-
vation Award to Georgia Tech.

Symbolic execution is a program analysis technique that analyzes
a program’s code to automatically generate test data for the pro-
gram. A large body of work exists that demonstrates the technique’s
usefulness in a wide range of software engineering problems, in-
cluding test data generation. However, the technique suffers from
at least three fundamental problems that limit its effectiveness on
real world software. This section provides a brief introduction to
symbolic execution, a description of the three fundamental prob-
lems, and a summary of existing well known techniques that ad-
dress those problems.

3.1. Introduction to Symbolic Execution

In contrast to black box test data generation approaches,
which generate test data for a program without considering
the program itself, white box approaches analyze a program’s
source or binary code to generate test data. One such white box
approach, which has received much attention from researchers
in recent years, uses a program analysis technique called sym-
bolic execution. Symbolic execution (King, 1975) uses sym-
bolic values, instead of concrete values, as program inputs, and
represents the values of program variables as symbolic expres-
sions of those inputs. At any point during symbolic execu-
tion, the state of a symbolically executed program includes the
symbolic values of program variables at that point, a path con-
straint on the symbolic values to reach that point, and a pro-
gram counter. The path constraint (PC) is a boolean formula
over the symbolic inputs, which is an accumulation of the con-
straints that the inputs must satisfy for an execution to follow
that path. At each branch point during symbolic execution, the
PC is updated with constraints on the inputs such that (1) if
the PC becomes unsatisfiable, the corresponding program path
is infeasible, and symbolic execution does not continue further
along that path and (2) if the PC is satisfiable, any solution of
the PC is a program input that executes the corresponding path.
The program counter identifies the next statement to be exe-
cuted.

int x, y; x=X, y=Y !
1 if(x > y){ PC: true
X = X+Yy; Tny \Fa‘lse
3 y=xy;)
4 X=Xy; x=X, y=Y x=X, y=Y
5 if(x-y>0) PC: X >Y PC: X <=Y
6 assert false;
7}
8 print(x, y) X=X+Y, y=Y
(a) PC: Xl> Y
4
Program x=X+Y, y=X
Path PC Input PC: X >Y
18 X<=Y X=1Y=1 l
1,2,3,4,5,8/X>Y & ¥X<=0 | X=2 Y=1 =Y. y=x_ |’
PC: X >Y
1,2,3,4,5,6| X>Y & Y-X>0 none

(c) TV

x=Y, y=X
PC:X>Y&YX>0

&I‘se

x=Y, y=X
PC:X>Y&YX<=0

(b)

Figure 1: (a) Code that swaps two integers, (b) the corresponding symbolic
execution tree, and (c) test data and path constraints corresponding to different
program paths.

To illustrate, consider the code fragment? in Figure 1(a) that
swaps the values of integer variables x and y, when the ini-
tial value of x is greater than the initial value of y; we refer-
ence statements in the figure by their line numbers. Figure 1(b)
shows the symbolic execution tree for the code fragment. A
symbolic execution tree is a compact representation of the exe-
cution paths followed during the symbolic execution of a pro-
gram. In the tree, nodes represent program states, and edges
represent transitions between states. The numbers shown at the
upper right corners of nodes represent values of program coun-
ters. Before execution of statement 1, the PC is initialized to
true because statement 1 is executed for any program input,
and x and y are given symbolic values X and Y, respectively.
The PC is updated appropriately after execution of if state-
ments 1 and 5. The table in Figure 1(c) shows the PC’s and
their solutions (if they exist) that correspond to three program
paths through the code fragment. For example, the PC of path
(1,2,3,4,5,8)is X > Y&Y — X <= 0. Thus, a program input that
causes the program to take that path is obtained by solving the
PC. One such program input is X = 2, Y = 1. For another ex-
ample, the PC of path (1,2,3,4,5,6) is an unsatisfiable constraint
X > Y&Y — X > 0, which means that there is no program input
for which the program will take that (infeasible) path.

Although the symbolic execution technique was first pro-
posed in the mid seventies, the technique has received much
attention recently from researchers for two reasons. First, the
application of symbolic execution on large, real world programs
requires solving complex and large constraints. During the last
decade, many powerful constraint solvers (e.g., Z3 (de Moura
and Bjgrner, 2008), Yices (Dutertre and de Moura, 2006),
STP (Ganesh and Dill, 2007)) have been developed. Use of
those constraint solvers has enabled the application of sym-
bolic execution to a larger and a wider range of programs.
Second, symbolic execution is computationally more expen-
sive than other program analyses. The limited computational
capability of older generation computers made it impossible to
symbolically execute large programs. However, today’s com-
modity computers are arguably more powerful than the super-
computers (e.g., Cray) of the eighties. Thus, today, the barrier
to applying symbolic execution to large, real world programs
is significantly lower than it was a decade ago. However, the
effectiveness of symbolic execution on real world programs is
still limited because the technique suffers from three fundamen-
tal problems—path explosion, path divergence, and complex
constraints—as described in Section 3.2. Those three problems
need to be addressed before the technique can be useful in real
world software development and testing.

Although symbolic execution has been used to generate test
data for many different goals, the most well known use of this
approach is to generate test data to improve code coverage and
expose software bugs (e.g., (Cadar et al., 2008; Godefroid et al.,
2008b; Khurshid et al., 2003)). Other uses of this approach
include privacy preserving error reporting (e.g., (Castro et al.,
2008)), automatic generation of security exploits (e.g., (Brum-

3This example, which we use to illustrate symbolic execution, is taken from
Reference (Khurshid et al., 2003).

ley et al., 2008)), load testing (e.g., (Zhang et al., 2011)),
fault localization (e.g., (Qi et al., 2009)), regression testing
(e.g., (Santelices et al., 2008)), robustness testing (e.g., (Ma-
jumdar and Saha, 2009)), data anonymization for testing of
database-based applications (e.g., (Grechanik et al., 2010)),
and testing of graphical user interfaces (e.g., (Ganov et al.,
2008)),

For example, Castro, Costa and Martin (2008) use symbolic
execution to generate test data that can reproduce, at the de-
veloper’s site, a software failure that occurs at a user’s site,
without compromising the privacy of the user. Zhang, Elbaum
and Dwyer (2011) generate test data that leads to a significant
increase in program’s response time and resource usage. Qi
et al. (2009) generate test data that are similar to a given pro-
gram input that causes the software to fail, but that do not cause
failure. Such newly generated test data are then used to lo-
calize the cause of the failure. Santelices et al. (2008) gen-
erate test data that exposes difference in program’s behaviors
between two versions of an evolving software. Majumdar and
Saha (2009) use symbolic execution to generate test data whose
slight perturbation causes a significant difference in a program’s
output.

A number of tools for symbolic execution are pub-
licly available. For Java, available tools include Sym-
bolic Pathfinder (Pasareanu and Rungta, 2010), JCUTE (Sen
and Agha, 2006), JFuzz (Jayaraman et al., 2009), and
LCT (Kidhkonen et al., 2011). CUTE (Sen et al., 2005),
Klee (Cadar et al., 2008), S2E (Chipounov et al., 2011),
and Crest* target C language. Finally, Pex (Tillmann and
de Halleux, 2008) is a symbolic execution tool for .NET lan-
guages. Some tools that are not currently publicly available,
but have been shown to be effective on real world programs in-
clude SAGE (Godefroid et al., 2008b) and Cinger (Anand and
Harrold, 2011).

3.2. Fundamental Open Problems

A symbolic execution system can be effectively applied to
large, real world programs if it has at least the two features:
(1) efficiency and (2) automation. First, in most applications of
symbolic execution based test data generation (e.g., to improve
code coverage or expose bugs), ideally, the goal is to discover
all feasible program paths. For example, to expose bugs effec-
tively, it is necessary to discover a large subset of all feasible
paths, and show that either each of those paths is bug free or
many of them expose bugs. Thus, the system must be able dis-
cover as many distinct feasible program paths as possible in the
available time limit. Second, the required manual effort for ap-
plying symbolic execution to any program should be acceptable
to the user.

To build a symbolic execution system that is both efficient
and automatic, three fundamental problems of the technique
must be addressed. Other problems’ arise in specific applica-

4Burnim and Sen, CREST: Auomatic test generation tool for C, URL:
http://code.google.com/p/crest/

SFor example, when symbolic execution is applied to open programs (i.e.,
parts of the program are missing), a problem arises in maintaining symbolic
values corresponding to reference type variables that store abstract data types.

tions of symbolic execution, but they are not fundamental to the
technique. Although a rich body of prior research® on symbolic
execution exists, these three problems have been only partially
addressed.

Path explosion. It is difficult to symbolically execute a sig-
nificantly large subset of all program paths because (1) most
real world software have an extremely large number of paths,
and (2) symbolic execution of each program path can incur high
computational overhead. Thus, in reasonable time, only a small
subset of all paths can be symbolically executed. The goal of
discovering a large number of feasible program paths is further
jeopardized because the typical ratio of the number of infeasi-
ble paths to the number of feasible paths is high (Ngo and Tan,
2007). This problem needs to be addressed for efficiency of a
symbolic execution system.

Path divergence. Real world programs frequently use mul-
tiple programming languages or parts of them may be available
only in binary form. Computing precise constraints for those
programs either requires an overwhelming amount of effort in
implementing and engineering a large and complex infrastruc-
ture or models for the problematic parts provided by the user.
The inability to compute precise path constraints leads to path
divergence: the path that the program takes for the generated
test data diverges from the path for which test data is generated.
Because of the path divergence problem, a symbolic execution
system either may fail to discover a significant number of feasi-
ble program paths or, if the user is required to provide models,
will be less automated.

Complex constraints. It may not always be possible to solve
path constraints because solving the general class of constraints
is undecidable. Thus, it is possible that the computed path con-
straints become too complex (e.g., constraints involving non-
linear operations such as multiplication and division and math-
ematical functions such as sin and log), and thus, cannot be
solved using available constraint solvers. The inability to solve
path constraints reduces the number of distinct feasible paths a
symbolic execution system can discover.

3.3. Existing Solutions

Although the three problems described in the previous sec-
tion have not been fully solved, many techniques have been
proposed to partially address them. In the following, we briefly
describe some of those techniques.

3.3.1. Techniques for Path Explosion Problem

Many techniques have been proposed to alleviate the path
explosion problem, and they can be classified into five broad
classes. Techniques in the first class avoid exploring paths
through certain parts of a program by using a specification
of how those parts affect symbolic execution. Some tech-
niques (Anand et al., 2008; Godefroid, 2007) automatically

6 A partial bibliography of papers published in the last decade on symbolic
execution and its applications can be found at http://sites.google.
com/site/symexbib/; Cadaretal. (2011) and Pasareanu and Visser (2009)
provide an overview of prior research on symbolic execution.

compute the specification, referred to as the summary in terms
of pre- and post-conditions by symbolic execution through all
paths of a function. Then, instead of repeatedly analyzing a
function for each of its call sites, the summary is used. Other
techniques (Bjgrner et al., 2009; Khurshid and Suen, 2005;
Veanes et al., 2010) use specifications that are manually cre-
ated. In some of those techniques (Bjgrner et al., 2009; Veanes
et al., 2010), specifications of commonly used abstract data
types such as strings and regular expressions are encoded in-
ternally in the constraint solver. One of the main limitations of
techniques in this class is that their generated path constraints
can be too large and complex to solve.

Techniques (Boonstoppel et al., 2008; Majumdar and Xu,
2009; Ma et al., 2011; Santelices and Harrold, 2010) in the sec-
ond class are goal driven: they avoid exploring a large number
of paths that are not relevant to the goal of generating test data
to cover a specific program entity (e.g., program statement). Ma
etal. (2011) explore only those paths that lead to the goal. Other
techniques (Boonstoppel et al., 2008; Majumdar and Xu, 2009;
Ma et al., 2011; Santelices and Harrold, 2010) use a program’s
data or control dependencies to choose and symbolically exe-
cute only a subset of relevant paths. However, these techniques
do not address the path explosion problem fully because their
effectiveness depends on the structure of data or control depen-
dencies, which can differ significantly between programs.

Techniques in the third class are specialized with respect to
a program construct or characteristics of a class of programs.
Some techniques (Godefroid and Luchaup, 2011; Saxena et al.,
2009) in the first category focus on analyzing loops in a pro-
gram in a smarter way because loops cause dramatic growth in
the number of paths. Other techniques (Godefroid et al., 2008a;
Majumdar and Xu, 2007) in this class aim to efficiently gen-
erate test data for programs that take highly structured inputs
(e.g., parser) by leveraging the program’s input grammar. Tech-
niques in this class are limited because they are specialized.

Techniques in the fourth class use specific heuristics to
choose a subset of all paths to symbolically execute, but while
still satisfying the purpose (e.g., obtain high code coverage)
of using symbolic execution. Anand, Pasareanu and Visser
(2009) proposed to store and match abstract program states dur-
ing symbolic execution to explore a subset of paths that are
distinguishable under a given state abstraction function. The
technique presented by Tomb, Brat and Visser (2007), which
uses symbolic execution to expose bugs, does not symbolically
execute paths that span through many methods. Finally, other
techniques (Chipounov et al., 2011; Godefroid et al., 2008b;
Majumdar and Sen, 2007; Pasareanu et al., 2008) in this class
use specific path exploration strategies that enable generation
of test data that cover deep internal parts of a program, which
are difficult to cover otherwise. Techniques in this class can fail
to discover program behavior that a systematic (but inefficient)
technique can discover because of their use of heuristics.

The fifth class consists of a technique presented by Anand,
Orso and Harrold (2007). Unlike all aforementioned techniques
that aim to reduce the number of program paths to symbolically
execute, this technique aims to reduce the overhead incurred
in symbolic execution of each path. The technique uses static

analysis to identify only those parts of a program that affect
computation of path constraints. Based on that information the
technique instruments the program such that the overhead of
symbolic execution is not incurred for the other parts of the
program.

3.3.2. Techniques for Path Divergence Problem

It is not possible to devise a technique that can entirely elim-
inate the manual effort required to implement a symbolic ex-
ecution system that can compute precise path constraints for
large, real world programs. Some manual effort is indispens-
able. However, two existing techniques aim to reduce the man-
ual effort. Godefroid and Taly (2012) proposed a technique that
automatically synthesizes functions corresponding to each in-
struction that is to be symbolically executed such that those
functions update the program’s symbolic state as per the seman-
tics of corresponding instructions. Anand and Harrold (2011)
proposed a technique that can reduce the manual effort that is
required to model parts of a program that cannot be symboli-
cally executed (e.g., native methods in Java). Instead of asking
the user to provide models for all problematic parts of a pro-
gram, their technique automatically identifies only those parts
that in fact introduce imprecision during symbolic execution,
and then asks the user to specify models for only those parts.

3.3.3. Techniques for Complex Constraints Problem
Techniques that address the problem of solving complex con-
straints can be classified into two classes. The first class con-
sists of two techniques. The first technique, referred to as dy-
namic symbolic execution (Godefroid et al., 2005) or concolic
execution (Sen et al., 2005). Using this technique, the program
is executed normally along the path for which the path con-
straint is to be computed with some program inputs that cause
the program to take that path. That path is also symbolically ex-
ecuted, and if the path constraint becomes too complex to solve,
it is simplified by replacing symbolic values with concrete val-
ues from normal execution. In the second technique, Pasareanu,
Rungta and Visser (2011) also proposed to use concrete val-
ues to simplify complex constraints. However, unlike dynamic
symbolic execution, they do not use concrete values obtained
from normal execution, but instead they identify a solvable part
of the complex constraint that can be solved, and use concrete
solutions of the solvable part to simplify the complex constraint.
Techniques (Borges et al., 2012; Souza et al., 2011; Lakhotia
et al., 2010) in the second class model the problem of finding
solutions of a constraint over N variables as a search problem
in a N-dimensional space. The goal of the search to find a
point in the N-dimensional space such that the coordinates of
the point represent one solution of the constraint. These tech-
niques use meta-heuristic search methods (Glover and Kochen-
berger, 2003) to solve such search problems. The advantage of
using meta-heuristic methods is that those methods can natu-
rally handle constraints over floating point variables and con-
straints involving arbitrary mathematical functions such as sin
and log. The limitations of such techniques arise because of
the incompleteness of the meta-heuristic search methods that
may fail to find solutions to a constraint, even if it is satisfiable.

3.4. Conclusion on Symbolic Execution

Symbolic execution differs other techniques for automatic
test-generation in its use of program analysis and constraint
solvers. However, it can be used in combination with those
other techniques (e.g., search-based testing). An extensive body
of prior research has demonstrated the benefits of symbolic ex-
ecution in automatic test-data generation. More research is
needed to improve the technique’s usefulness on real-world pro-
grams. The fundamental problems that the technique suffers
from are long-standing open problem. Thus, future research, in
addition to devising more effective general solutions for these
problems, should also leverage domain-specific (e.g., testing of
smart-phone software) or problem-specific (e.g., test-data gen-
eration for fault localization) knowledge to alleviate these prob-
lems.

4. Test Data Generation in Model-Based Testing

By Wolfgang Grieskamp

Model-based testing (MBT) is a light-weight formal method which
uses models of software systems for the derivation of test suites.
In contrast to traditional formal methods, which aim at verify-
ing programs against formal models, MBT aims at gathering in-
sights in the correctness of a program using often incomplete test
approaches. The technology gained relevance in practice since
around the beginning of 2000. At the point of this writing, in 2011,
significant industry applications exist and commercial grade tools
are available, as well as many articles are submitted to conferences
and workshops. The area is diverse and difficult to navigate.

This section attempts to give a survey of the foundations, tools,
and applications of MBT. Its goal is to provide the reader with in-
spiration to read further. Focus is put on behavioral, sometimes
also called functional, black-box testing, which tests a program
w.rt. its observable inputjoutput behavior. While there are many
other approaches which can be called MBT (stochastic, struc-
turallarchitectural, white-box, etc.), including them is out of scope
for this survey. Historical context is tried to be preserved: even if
newer work exists, we try to cite the older one first.

4.1. Introduction to Model-Based Testing

One can identify three main schools in MBT: axiomatic ap-
proaches, finite state machine (FSM) approaches, and labeled
transition system (LTS) approaches. Before digging deeper into
those, some general independent notions are introduced. In be-
havioral MBT, the system-under-test (SUT) is given as a black
box which accepts inputs and produces outputs. The SUT has
an internal state which changes as it processes inputs and pro-
duces output. The model describes possible input/output se-
quences on a chosen level of abstraction, and is linked to the
implementation by a conformance relation. A test selection al-
gorithm derives test cases from the model by choosing a finite
subset from the potentially infinite set of sequences specified by
the model, using a testing criterion based on a test hypothesis
justifying the adequateness of the selection. Test selection may
happen by generating test suites in a suitable language ahead of
test execution time, called offline test selection, or maybe inter-
vened with test execution, called online test selection.

4.1.1. Axiomatic Approaches

Axiomatic foundations of MBT are based on some form
of logic calculus. Gaudel summarizes some of the earliest
work going back to the 70ties in her seminal paper from
1995 (Gaudel, 1995). Gaudel’s paper also gives a framework
for MBT based on algebraic specification (see e.g. (Ehrig and
Mahr, 1985)), resulting from a decade of work in the area, dat-
ing back as early as 1986 (Bougé et al., 1986). In summary,
given a conditional equation like p(x) — f(g(x),a) = h(x),
where f, g, and & are functions of the SUT, « is a constant, p a
specified predicate, and x a variable, the objective is to find as-
signments to x such that the given equality is sufficiently tested.
Gaudel et.al developed various notions of test hypotheses, no-
tably regularity and uniformity. Under the regularity hypothesis
all possible values for x up to certain complexity » are consid-
ered to provide sufficient test coverage. Under the uniformity
hypothesis, a single value per class of input is considered suffi-
cient. In (Bougé et al., 1986) the authors use logic programming
techniques (see e.g. (Sterling and Shapiro, 1994)) to find those
values. In the essence, p is broken down into its disjunctive
normal form (DNF), where each member represents an atom
indicating a value for x. The algebraic approach can only test
a single function or sequence, and in its pure form it is not of
practical relevance today; however, it was groundbreaking at its
time, and the DNF method of test selection is mixed into vari-
ous more recent approaches.

Dick and Faivre introduced in (1993) a test selection method
for VDM (Plat and Larsen, 1992) models based on pre- and
post- conditions. The basic idea of using the DNF for deriving
inputs is extended for generating sequences as follows. A state
machine is constructed where each state represents one of the
conjunctions of the DNF of pre- and post conditions of the func-
tions of the model. A transition is drawn between two states S ;
and S, labeled with a function call f(x), if there exists an x
such that S| = pre(f(x)) and post(f(x)) = S,. On this state
machine, test selection techniques can be applied as described
in Sect. 4.1.2. A theorem prover is required to prove the above
implications, which is of course undecidable for non-trivial do-
mains of x, but heuristics can be used as well to achieve practi-
cal results.

The approach of Dick and Faivre was applied and extended
in (Helke et al., 1997). Also, (Legeard et al., 2002) is related to
it, as well as (Kuliamin et al., 2003). Today, the work of Wolff
et.al (2012) is closest to it. These authors use the higher-order
logic theorem prover system Isabelle (Paulson, 1994) in which
they encoded formalisms for modeling stateless and state-based
systems, and implemented numerous test derivation strategies
based on according test hypotheses. In this approach, the test
hypotheses are an explicit part of the proof obligations, leading
to a framework in which interactive theorem proving and testing
are seamlessly combined.

Models which use pre- and post conditions can be also in-
strumented for MBT using random input generation, filtered via
the pre-condition, instead of using some form of theorem prov-
ing/constraint resolution. Tools like QuickCheck (Claessen and
Hughes, 2000) and others are used successfully in practice ap-

plying this approach.

4.1.2. FSM Approaches

The finite state machine (FSM) approach to MBT was ini-
tially driven by problems arising in functional testing of hard-
ware circuits. The theory has later been adapted to the context
of communication protocols, where FSMs have been used for
a long time to reason about behavior. A survey of the area has
been given by Lee et.al in (1996).

In the FSM approach the model is formalized by a Mealy ma-
chine, where inputs and outputs are paired on each transition.
Test selection derives sequences from that machine using some
coverage criteria. Most FSM approaches only deal with deter-
ministic FSMs, which is considered a restriction if one has to
deal with reactive or under-specified systems.

Test selection from FSMs has been extensively researched.
One of the subjects of this work is discovering assumptions on
the model or SUT which would make the testing exhaustive.
Even though equivalence between two given FSMs is decid-
able, the SUT, considered itself as an FSM, is an unknown’
black-box, only exposed by its I/O behavior. One can easily
see that whatever FSM the tester supposes the SUT to be, in
the next step it can behave different. However, completeness
can be achieved if the number of states of the SUT FSM has
a known maximum, as Chow has shown in (1978) (see also
(Vasilevskii, 1973; Lee and Yannakakis, 1996)). A lot of work
in the 80s and 90s is about optimizing the number of tests re-
gards length, overlap, and other goals, resulting for example in
the Transition-Tour method (Naito and Tsunoyama, 1981) or
the Unique-Input-Output method (Aho et al., 1988).

Many practical FSM based MBT tools do not aim at com-
pleteness. They use structural coverage criteria, like transi-
tion coverage, state coverage, path coverage, etc. as a test se-
lection strategy (Offutt and Abdurazik, 1999; Friedman et al.,
2002). A good overview of the different coverage criteria for
FSMs is found, among others, in Legeard’s and Utting’s semi-
nal text book Practical Model-Based Testing (Utting and Leg-
eard, 2007).

Various refinements have been proposed for the FSM ap-
proach, and problems have been studied based on it. Huo and
Petrenko investigated the implications of the SUT using queues
for buffering inputs and outputs (Huo and Petrenko, 2005). This
work is important for practical applications as the assumption
of input and output enabledness, which assumes that the SUT
machine can accept every input at any time (resp. the model ma-
chine/test case every output), is not realistic in real-world test
setups. Hierons and Ural (2008); Hierons (2010) have inves-
tigated distributed testing. Hierons (2010) showed that when
testing from an FSM it is undecidable whether there is a strat-
egy for each local tester that is guaranteed to force the SUT into
a particular model state.

FSMs are not expressive enough to model real software sys-
tems. Therefore, most practical approaches use extended finite
state machines (EFSM). Those augment the control state of an
FSM with data state variables and data parameters for inputs
and outputs. EFSMs are described usually by state transition
rules, consisting of a guard (a predicate over state variables and

parameters), and an update on the state variables which is per-
formed when the rule is taken, which happens if the guard eval-
uates to true in a given state. In practice, many people just say
’state machine’ when in fact they mean an EFSM. A typical
instance of an EFSM is a statechart. In a proper EFSM, the
domains from which data is drawn are finite, and therefore the
EFSM can be unfolded into an FSM, making the foundations
of FSMs available for EFSMs. However, this has its practical
limitations, as the size of the expanded FSM can be easily astro-
nomic. A different approach than unfolding is using symbolic
computation on the data domains, applying constraint resolu-
tion or theorem proving techniques.

4.1.3. LTS Approaches

Labeled transition systems (LTS) are a common formalism
for describing the operational semantics of process algebra.
They have also been used for the foundations of MBT. An early
annotated bibliography is found in (Brinksma and Tretmans,
2000).

Tretmans described IOCO in (1996) and consolidated the
theory in (Tretmans, 2008). IOCO stands for input/output con-
formance, and defines a relation which describes conformance
of a SUT w.r.t. a model. Tretmans starts from traditional LTS
systems which consist of a set of states, a set of labels, a tran-
sition relation, and an initial state. He partitions the labels into
inputs, outputs, and a symbol for quiescence, a special output.
The approach assumes the SUT to be an input enabled LTS
which accepts every input in every state. If the SUT is not nat-
urally input enabled, it is usually made so by wrapping it in a
test adapter. Quiescence on the SUT represents the situation
that the system is waiting for input, not producing any output
by its own, which is in practice often implemented observing
timeouts.

As well known, an LTS spawns traces (sequence of labels).
Because of non-determinism in the LTS, the same trace may
lead to different states in the LTS. The IOCO relation essen-
tially states that a SUT conforms to the model if for every
suspension trace of the model, the union of the outputs of all
reached states is a superset of the union of the outputs in the
according trace of the SUT. Hereby, a suspension trace is a
trace which may, in addition to regular labels, contain the qui-
escence label. Thus the model has ’foreseen’ all the outputs
the SUT can produce. IOCO is capable of describing inter-
nal non-determinism in model and SUT, which distinguishes it
from most other approaches. There are numerous extensions of
I0CO, among those real-time extensions (Nielsen and Skou,
2003; Larsen et al., 2004) and extensions for symbolic LTS
(Frantzen et al., 2004; Jeannet et al., 2005) using parameter-
ized labels and guards. The effect of distributed systems has
been investigated for [OCO in (Hierons et al., 2008).

An alternative approach to the IOCO conformance relation
is alternating simulation (Alur et al., 1998) in the framework
of interface automata (IA) (de Alfaro and Henzinger, 2001).
While originally not developed for MBT, IA have been ap-
plied to this problem by Microsoft Research for the Spec Ex-
plorer MBT tool since 2004 (Campbell et al., 2005) (long ver-
sion in (Veanes et al., 2008)). Here, to be conforming, in a

given state the SUT must accept every input from the model,
and the model must accept every output from the SUT. This
makes testing conformance a two-player game, where inputs
are the moves of the tests generated from the model, with the
objective to discover faults, and outputs are the moves of the
SUT with the objective to hide faults. In contrast to IOCO,
IA does not require input completeness of the SUT, and treats
model and SUT symmetrically; however, it can only deal with
external non-determinism, which can be resolved in the step
it occurs (though extensions waiving this restriction are found
in (Aarts and Vaandrager, 2010)). The IA approach to con-
formance has been refined for symbolic transition systems by
Grieskamp et al. (2006a), which describes the underlying foun-
dations of Microsoft’s Spec Explorer tool. Veanes and Bjgrner
have provided a comparison between IOCO and IA in (Veanes
and Bjgrner, 2010), which essentially shows equivalence when
symbolic IA’s are used.

Both IOCO and IA do not prescribe test selection strategies,
but only a conformance relation. Test selection has been imple-
mented on top of those frameworks. For IOCO, test selection
based on coverage criteria has been investigated in (Groz et al.,
1996), based on metrics in (Feijs et al., 2002), and based on test
purposes in (Jard and Jéron, 2005). For IA, test selection based
on state partitioning has been described in (Grieskamp et al.,
2002), based on graph traversal and coverage in (Nachman-
son et al., 2004), and based on model slicing by model com-
position in (Grieskamp et al., 2006a; Grieskamp and Kicillof,
2006; Veanes et al., 2007). Test selection in combination with
combinatorial parameter selection is described in (Grieskamp
et al., 2009). Most of these techniques can be equally applied
to online testing (i.e. during the actual test execution) or to of-
fline testing (ahead of test execution). Algorithms for offline
test generation are generally more sophisticated as they cannot
rely on feedback from the actual SUT execution, and typically
use state space exploration engines, some of them off-the-shelf
model checkers (e.g. (Ernits et al., 2006)), others specialized
engines (e.g. (Jard and Jéron, 2005; Grieskamp et al., 2006b)).

In contrast to FSM approaches, even for a finite transition
system test selection may not be able to achieve state coverage
if non-determinism is present. That is because some of the tran-
sitions are controlled by the SUT, which may behave ’demonic’
regarding its choices, always doing what the strategy does not
expect. A *winning strategy’ for a finite LTS exists if whatever
choice the SUT does, every state can be reached. However, in
practice, models with non-determinism which guarantee a win-
ning strategy are rare. If the SUT can be expected to be ’fair’
regarding its non-determinism, this does not cause a problem,
as the same test only needs to be repeated often enough.

4.2. Modeling Notations

A variety of notations are in use for describing models for
MBT. Notations can be generally partitioned into scenario-
oriented, state-oriented, and process-oriented. Whether they
are textual or graphical (as in UML) is a cross-cut concern to
this. A recent standard produced by ETSI, to which various tool
providers contributed, collected a number of tool-independent

general requirements on notations for MBT following this tax-
onomy (ETS, 2011b).

4.2.1. Scenario-Oriented Notations

Scenario-oriented notations, also called interaction-oriented
notations, directly describe input/output sequences between
the SUT and its environment as they are visible from the
viewpoint of an outside observer ("gods view’). They are
most commonly based on some variation of message sequence
chart (Dan and Hierons, 2011), activity chart (flow chart) (Hart-
mann et al., 2005; Wieczorek and Stefanescu, 2010), or use case
diagram (Kaplan et al., 2008), though textual variations have
also been proposed (Grieskamp et al., 2004; Katara and Kervi-
nen, 2006).

Test selection from scenario-based notations is generally
simpler than from the other notational styles, because by nature
the scenario is already close to a test case. However, scenarios
may still need processing for test selection, as input parameters
need to be concretized, and choices and loops need expansion.
Most existing tools use special approaches and not any of the
axiomatic, FSM, or LTS based ones. However, in (Grieskamp
et al., 2006a) it is shown how scenarios can be indeed broken
down to an LTS-based framework in which they behave similar
as other input notations and are amenable for model composi-
tion.

4.2.2. State-Oriented Notations

State-oriented notations describe the SUT by its reaction on
an input or output in a given state. As a result the models state
is evolved and, in case of Mealy machine approaches, an output
maybe produced. State-oriented notations can be given in dia-
grammatic form (typically, statecharts) (Offutt and Abdurazik,
1999; Bouquet et al., 2007; Huima, 2007) or in textual form
(guarded update rules in a programming language, or pre/post
conditions on inputs, outputs and model state) (Dick and Faivre,
1993; Kuliamin et al., 2003; Grieskamp et al., 2003, 2011b).
They can be mapped to axiomatic, FSM, or LTS based ap-
proaches, and can describe deterministic or non-deterministic
SUTs.

4.2.3. Process-Oriented Notations

Process-oriented notations describe the SUT in a procedu-
ral style, where inputs and outputs are received and sent as
messages on communication channels. Process-algebraic lan-
guages like LOTOS are in use (Tretmans and Brinksma, 2003),
as well as programming languages which embed communica-
tion channel primitives (Huima, 2007). Process-oriented nota-
tions naturally map to the LTS approach.

4.3. Tools

There are many MBT tools around, some of them result of
research experiments, some of them used internally by an en-
terprise and not available to the public, and others which are
commercially available. Hartman gave an early overview in
2002 (Hartman, 2002), and Legeard and Utting included one
in their book from 2007 (Utting and Legeard, 2007). Since

then, the landscape has changed, and new tools are on the mar-
ket, whereas others are not longer actively developed. It would
be impossible to capture the entire market given more than a
short-lived temporary snapshot. Here, three commercial grade
tools are sketched which are each on the market for nearly ten
years and are actively developed. The reader is encouraged to
do own research on tools to evaluate which fit for a given ap-
plication; the selection given here is not fully representative.
For an alternative to commercial tools, one might also check
out Binder’s recent overview (Binder, 2012) of open-source or
open-binary tools.

4.3.1. Conformiq Designer

The Conformiq Designer’ (Huima, 2007) (formerly called
QTronic) has been around since 2006. Developed originally for
the purpose of protocol testing, the tool can be used to model
a variety of systems. It is based on UML statecharts as a mod-
eling notation, with Java as the action language. Models can
also be written entirely in Java. The tool supports composition
of models from multiple components, and timeouts for dealing
with real-time. It does not support non-determinism.

Conformiq Designer has its own internal foundational ap-
proach, which is probably closest to LTS. A symbolic explo-
ration algorithm is at the heart of the test selection procedure.
The tool can be fed with a desired coverage goal (in terms of
requirements, diagram structure, or others) and will continue
exploration until this goal is reached. Requirements are anno-
tated in the model and represent execution points or transitions
which have been reached.

Conformiq Designer can generate test suites in various for-
mats, including common programming languages, TTCN-3,
and manual test instructions. The generated test cases can be
previewed as message sequence charts by the tool.

Conformiq Designer has so far been used in industrial
projects in telecommunication, enterprise IT, automotive, in-
dustrial automation, banking, defense and medical application
domains.

4.3.2. Smartesting Certifylt

The Smartesting Certifylt tool® (Legeard and Utting, 2010)
(formerly called Smartesting Test Designer) is around since
2002. Coming out of Legeard’s, Utting’s, and others work
around testing from B specifications (Abrial, 1996), the current
instance of the tool is based on UML statecharts, but also sup-
ports BPMN scenario-oriented models, and pre/post-condition
style models using UML’s constraint language OCL.

Smartesting Certifylt uses a combination of constraint solv-
ing, proof and symbolic execution technologies for test genera-
tion. Test selection can be based on numerous criteria, includ-
ing requirements coverage and structural coverage like transi-
tion coverage. The tools also supports test selection based on
scenarios (in BPMN), similar as Spec Explorer does. The tool
generates test suites for offline testing in numerous industry

7 /http://www.conformiq.com
8http://www.smartesting.com

standard formats, and supports traceability back to the model.
Non-determinism is not supported.

Certifylt is dedicated to IT applications, secure electronic
transactions and packaged applications such as SAP or Oracle
E-Business Suite.

4.3.3. Spec Explorer

Microsoft Spec Explorer is around since 2002. The current
major version, called Spec Explorer 2010, is the third incar-
nation of this tool family. Developed in 2006 and described
in (Grieskamp, 2006; Grieskamp et al., 2011b) it should not be
confused with the older version which is described in (Veanes
et al., 2008). Spec Explorer was developed at Microsoft Re-
search, which makes it in contrast to the other commercial tools
highly documented via research papers, and moved in 2007
into a production environment mainly for its application in Mi-
crosoft’s Protocol Documentation Program. The tool is inte-
grated into Visual Studio and shipped as a free extension for
VS.

The tool is intentionally language agnostic but based on the
Net framework. However, the main notations used for mod-
eling are a combination of guarded-update rules written in C#
and scenarios written in a language called Cord (Grieskamp and
Kicillof, 2006). The tool supports annotation of requirements,
and (via Cord) ways for composing models. Composing a state-
based model written in C# with a scenario expressing a test pur-
pose defines a slice of the potentially infinite state model, and
is one of the ways how engineers can influence test selection.

The underlying approach of Spec Explorer are interface au-
tomata (IA), thus it is an LTS approach supporting (external)
non-determinism. Spec Explorer uses a symbolic exploration
engine (Grieskamp et al., 2006b) which postpones expansion
of parameters until the end of rule execution, allowing to select
parameters dependent on path conditions. The tool supports on-
line and offline testing, with offline testing generating C# unit
tests. Offline test selection is split into two phases: first the
model is mapped into a finite IA, then traversal techniques are
run on that IA to achieve a form of transition coverage.

Spec Explorer has been applied, amongst various internal
Microsoft projects, in arguably the largest industry application
for MBT up to now, a 350 person year project to test the Mi-
crosoft protocol documentation against the protocol implemen-
tations (Grieskamp et al., 2011b). In course of this project, the
efficiency of MBT could be systematically compared to tradi-
tional test automation, measuring an improvement of around
40%, in terms of the effort of testing a requirement end-to-end
(i.e. from the initial test planning to test execution). Details are
found in (Grieskamp et al., 2011b).

4.4. Conclusion on Model-Based Testing

At the ETSI MBT user conference in Berlin in October
2011'°, over 100 participants from 40 different companies

9http://www.specexplorer.net
]Ohttp://www.model—based—testing.de/mbtuc 11/

came together, discussing application experience and tool sup-
port. Many of the academic conferences where general test
automation work is published (like ICST, ICTSS (formerly
TestCom/FATES), ASE, ISSTA, ISSRE, AST, etc.) regularly
see a significant share of papers around MBT. Two Dagstuhl
seminars have been conducted around the subject since 2004
(Brinksma et al., 2005; Grieskamp et al., 2011a); the report
from the last event lists some of the open problems in the
area. These all document a lively research community and very
promising application area.

5. Test Data Generation in Combinatorial Testing

By Myra B. Cohen'!

Combinatorial testing has become a common technique in the
software tester’s toolbox. In combinatorial testing, the focus
is on selecting a sample of input parameters (or configuration
settings), that cover a prescribed subset of combinations of the
elements to be tested. The most common manifestation of this
sampling is combinatorial interaction testing (CIT), where all
t-way combinations of parameter values (or configuration set-
tings) are contained in the sample. In the past few years, the lit-
erature on this area of testing has grown considerably, includ-
ing new techniques to generate CIT samples and applications to
novel domains. In this section we present an overview of combi-
natorial testing, starting at its roots, and provide a summary of
the two main directions in which research on CIT has focused
— sample generation and its application to different domains of
software systems.

5.1. Introduction to Combinatorial Testing

Throughout the various stages of testing, we rely on heuris-
tics to approximate input coverage and outcomes. Combinato-
rial testing has risen from this tenet as a technique to sample,
in a systematic way, some subset of the input or configuration
space. In combinatorial testing, the parameters and their in-
puts (or configuration options and their settings) are modeled
as sets of factors and values; for each factor, f;, we define a set
of values, {xi, x,...x;}, that partition the factor’s space. From
this model, test cases, or specific program configurations (in-
stances) are generated, selecting a subset (based on some cov-
erage criterion) of the Cartesian product of the values for all
factors; a program with five factors, each with three values, has
33 or 243 program configurations in total. CIT has traditionally
been used as a specification-based, system testing technique to
augment other types of testing. It is meant to detect one partic-
ular type of fault; those that are due to the interactions of the
combinations of inputs or configuration options. For instance,

1 Acknowledgements: The authors would like to thank the anonymous re-
viewers for their helpful comments. This work is supported in part by the
National Science Foundation through award CCF-0747009 and by the Air
Force Office of Scientific Research through awards FA9550-09-1-0129 and
FA9550-10-1-0406. Any opinions, findings, conclusions, or recommendations
expressed in this material are those of the authors and do not necessarily reflect
the position or policy of NSF or the AFOSR.

10

if the aim is to detect faults due to combinations of pairs of con-
figuration options, using combinatorial testing can satisfy this
test goal using only eleven configurations.

The roots of combinatorial testing come from the field of
statistics called design of experiments (Fisher, 1971; Cochran
and Cox, 1957). In the 1930s, R.A. Fisher (1971) described a
means to lay out crop experiments that combine independent
variables in a systematic way, in order to isolate their impact
on the observed outcomes. In 1985, Mandl used these ideas to
sample the combinations of parameter values in compiler soft-
ware through the use of orthogonal latin squares (Mandl, 1985).
Around the same time, Ostrand and Balcer (1988) developed
the Category Partition Method, and the Test Case Specification
Language (TSL), which gives us a way to model the factors
and values so that they can be combined. In TSL, test inputs (or
configurations) are modeled as categories and partitions, and
for each a set of choices are described which are equivalence
classes for testing. There are mechanisms to reduce the com-
binatorial space. Choices can be tagged as single, or error, or
predicates can be defined that describe dependencies such as
requires between elements. The full Cartesian product, that sat-
isfy these constraints, is then generated.

In 1992 Brownlie et al. (1992) presented an extension of
Mandl’s work called the Orthogonal Array Testing System,
OATS, in which they used orthogonal arrays to define the com-
binations of an AT&T email system; all pairs of factor-values
are tested exactly once. The work of Cohen et al. (1997, 1996)
leveraged a key insight, that all factor-values must be tested at
least once, lifting the exactly-once restriction of orthogonal ar-
rays. This led to the use of covering arrays and the core under-
pinnings of combinatorial interaction testing (or CIT) as is used
today. Out of this work came the Automatic Efficient Test Case
Generator (AETG), a greedy algorithm that generates covering
array samples and includes both a modeling language and test
process (Cohen et al., 1997, 1996).

Over the past several years we have seen a large increase
in the number of algorithms for generating CIT samples and
new applications that use CIT. We don’t attempt to provide a
complete survey of CIT (for a recent survey see (Nie and Leung,
2011)), but instead provide a short overview and highlight some
key research directions.

5.1.1. Example of CIT

In Figure 2(a) we show the View preferences tab from a ver-
sion of Microsoft Powerpoint. The user has seven configuration
options that they can customize. Some of the configuration op-
tions such as Ruler units have multiple settings to choose from.
We provide an enlargement of this selection menu which offers
the user the choice of Inches, Centimeters, Points or Picas in
Figure 2(b). Other options such as End with black slide are bi-
nary; the user can select or deselect this setting. In total we have
seven configuration-options, (factors) which we have shown as
columns in the table (Figure 2c). The first factor, Vertical ruler,
has two possible values, the second has four values, etc. In to-
tal, there are 2 x4 x 3 x2* or 384 unique configurations of View
preferences. In practice this is only a part of the configuration
space; if we combine this with the preferences from the Save

PowerPoint Preferences

CHE L

Edit Save

General | View

Spelling Ribbon AutoCorrect Compatibility .

Show

™ vertical ruler

Ruler units: | Inches

Default view for new presentations: | Normal View

Show

™ Vertical ruler

_ Ruler unit:
Slide show) Centimeters
Slide show navigation: | Pop-up menu button =) Default vi¢ points ins: | N
. 3) Picas
() End with black slide
™ Always mirror displays when switching to another view or application Slide show
™ Warn before a linked file, application, or macro is opened
(a) (b)
Vertical | Ruler Units | Default SS End with | Always Warn
Ruler View | Navigation Black Mirror | Before
Visible Inches Normal Pop-up Yes Yes Yes
Invisible | Centimeters | Slide None No No No
Points Outline
Picas
(c)
Figure 2: Modeling Configurations for Testing
Vertical | Ruler Units | Default SS End with Always Warn
Ruler View Navigation Black Mirror Before
Visible Centimeters | Outline Pop-up No No Yes
Invisible Inches Outline Pop-up No No No
Invisible lCentimeters Slide None Yes Yes Yes
Visible Picas Outline Pop-up Yes Yes No
Invisible lCentimeterS Normal Pop-up Yes Yes No
Visible Points Outline None Yes No Yes
Invisible Points Slide Pop-up No No No
Invisible Picas Slide Pop-up No Yes Yes
Invisible Points Normal None No Yes No
Visible Inches Normal None Yes No Yes
Visible Inches Slide Pop-up No Yes Yes
Invisible Picas Normal None Yes No No

Figure 3: 2-way CIT Sample for Figure 2

tab we have almost 25,000 configurations, and if we model the
entire preference space this becomes intractable; the literature
has reported the optimization configuration space of GCC (the
GNU Compiler Collection) (FreeSWF, 2012), an open source
widely used compiler framework, is in the order of 10%' (Co-
hen et al., 2008). If instead we sample the configuration space
so that we cover all pairs of combinations of each factor-value
we can achieve this using only twelve configurations. We show
one such sample in Figure 3. This sample constitutes a covering
array, defined next.

5.1.2. Covering Arrays

A covering array, CA(N;t,k,v), is an N X k array on v sym-
bols such that every N X ¢ sub-array contains all ¢-tuples from
the v symbols at least once. In a covering array ¢ is called the
strength and N is the sample size. The parameter 7 tells us how
strongly to test the combinations of settings. If # = 2 we call this

11

pairwise CIT. In Figure 3 all combinations of the factor-value
Ruler Units-Centimeters have been combined with all values
from Default View, but we can’t guarantee any specific combi-
nations of three (or more) factor-values are covered. We notice
that the factors have different numbers of values. We define a
more general structure next.

A mixed level covering array, MCA(N; t, (wWiw,...wy)), is an
N X k array on v symbols, where v = Zf;l w;, and each column
i (1 £i < k) contains only elements from a set of size w;
and the rows of each N X t subarray cover all #-tuples of values
from the 7 columns at least once. We typically use a shorthand
notation to equal consecutive entries in (w; : i < 1 < k). For
example three consecutive entries each equal to 2 can be writ-
ten as 23. Figure 3 is a mixed level covering array, with k = 7
and t = 2; an MCA(12;2,21413124). When we use the term
covering array for CIT we usually are referring to a mixed level
covering array. The minimization of the covering array sample

size (i.e. N) has been a focus of much work in this domain.
While it is has been shown that the upper bound on the size of a
covering array grows logarithmically in k (Cohen et al., 1997),
it is non-trivial to construct CIT samples. Some instances of
CIT construction have been shown to be NP Hard, such as find-
ing the minimal size given forbidden constraints (Colbourn et
al., 2004; Bryce and Colbourn, 2006).

5.2. Research Directions

The research on CIT has branched in two main directions.
The first direction develops methods and algorithms to generate
CIT samples, while the second direction refines CIT to work in
novel application domains. We highlight work in each direction
next.

5.2.1. CIT Generation

There is a long history of research on the mathematics of cov-
ering arrays which we do not attempt to cover, but instead refer
the reader to two excellent surveys, one by Colbourn (2004) and
another by Hartman and Raskin (2004). Mathematical tech-
niques may be probabilistic (i.e. they do not construct, but
prove existence of arrays), or provide direct constructions. Con-
structions are deterministic and produce arrays of known sizes,
but are not as general as heuristic methods, known only on a
limited subset of possible parameter settings for ¢, k and v. C.
Colbourn maintains a website with references of known array
sizes and associated techniques (Colbourn, 2012).

Heuristic techniques to generate CIT samples have domi-
nated the literature on CIT. The first algorithms were greedy,
of which there are two primary types. One class follows an
AETG-like mechanism (Cohen et al., 1997). Examples are the
Test Case Generator (TCG) (Tung and Aldiwan, 2000), Deter-
ministic Density Algorithm (DDA) (Colbourn et al., 2004), and
PICT (Czerwonka, 2006). One test case at a time is added (the
test case that increases the number of combinations that are
covered the most) and within each row, the algorithms greed-
ily chose the next best factor-value for inclusion. The heuris-
tics used to select the next best factor-value differentiate these
algorithms. Some newer variants of this algorithm, use meta-
heuristic search techniques (such as genetic algorithms, tabu
search, or ant colony optimization) to optimize selection of the
factors with-in a row (i.e. that part is no longer greedy), but still
retain the one row at a time greedy step (Bryce and Colbourn,
2007). A similar type of greedy algorithm, the Constrained
Array Test System (CATS) (Sherwood, 1994), was proposed
around the same time as AETG. It too selects test cases one at
a time, but full test cases are enumerated and then re-ordered,
so that the earliest test cases provide the greatest value towards
covering uncovered factor-values. A second class of greedy al-
gorithms are of the form used in the In Parameter Order Algo-
rithm (Tai and Lei, 2002; Lei et al., 2008). In IPO, the algo-
rithm begins with some number of factors k¥’ < k and expands
the size of the covering array horizontally (by increasing k") and
vertically (by adding new test cases to the sample to complete
coverage if needed).

Meta-heuristic search techniques have been used to gener-
ate CIT samples, working on the entire sample at once. Some

12

size of N, is chosen as a start. Guided by a fitness func-
tion, and a stochastic process to transition through the search
space, different solutions are tried and evaluated, until a cov-
ering array either is found for that N or a time-out has oc-
curred. N is then adjusted in subsequent iterations until the
smallest array is produced. Simulated annealing, has been the
most widely discussed meta-heuristic algorithm for construct-
ing covering arrays (Cohen et al., 2003a,c; Garvin et al., 2011).
Other approaches include genetic algorithms (Stardom, 2001),
tabu search (Nurmela, 2004) and constraint solvers (Hnich et
al., 20006).

Another primary direction for CIT research, has been gen-
erating samples that consider dependencies (or constraints) be-
tween factor-values, called Constrained CIT (CCIT). For ex-
ample, in Figure 2, suppose that the Vertical Ruler is not visi-
ble when using Picas because this functionality is unsupported.
We do not want to include this combination in our samples (it
will render the configuration infeasible). In CCIT satisfiability
solvers have been used to aid in the evaluation of legal combi-
nations of factor-values. In the work of Cohen et al., standard
meta-heuristic search algorithms and greedy algorithms for CIT
have been tightly-interwoven with SAT solvers to achieve this
goal. Calvagna and Gargantini (2009, 2010) and Grieskamp
et al. (2009) use solvers as the primary method to generate the
samples. And more recently Binary Decision Diagrams BDD’s
have been employed as a way to generate CCIT samples (Segall
et al., 2011).

5.2.2. CIT Application Domains

The original uses of CIT was for fest case generation where
the factors and their values are system inputs or parameters and
each row of the covering array is a test case (Brownlie et al.,
1992; Cohen et al., 1997, 1996; Dalal et al., 1998; Dunietz et al.,
1997). CIT has also been applied to test protocol conformance
(Grieskamp et al., 2009; Burroughs et al., 1994).

More recent work samples configurations to be tested (under
which many test cases will be run) (Qu et al., 2008; Yilmaz et
al., 2006; Kuhn et al., 2004; Kuhn and Okun, 2006; Fouché et
al., 2009; Dumlu et al., 2011). One type of configurable system,
a software product line, has been an area of active research on
CIT (Cohen et al., 2006; Perrouin et al., 2010). Software prod-
uct lines are systems of program families that have a well man-
aged asset base and feature model; from which one can derive a
CIT model (Cohen et al., 2006; Clements and Northrop, 2001).
McGregor (2001) first suggested that products in an SPL could
be sampled for testing using CIT. Cohen et al. (2006) described
a mapping from a feature model to a relational mode. Perrouin
et al. (2010) have more tightly integrated construction with the
feature model. There has been recent work that explores the
use of CIT when testing sequences (Kuhn et al., 2012; Yuan et
al., 2011). In traditional CIT, there is no notion of order (any
two columns of the covering array can be swapped as long as a
mapping is maintained for the concrete test cases to be applied).
In sequence-based CIT, each factor becomes a location within a
sequence, and the values within each factor are repeated at each
location. This has been used to test graphical user interfaces
(GUISs) (Yuan et al., 2011) and devices (Kuhn et al., 2012).

CIT has also been used to characterize the configuration op-
tion combinations that are likely to be the cause failures through
the use of classification trees (Yilmaz et al., 2006; Fouché et al.,
2009). More recently, Colbourn and McClary (2008) present
special types of covering arrays, called locating and detecting
arrays for the purpose of directly isolating the causes. Another
new direction for CIT is to tune the test process and coverage
through the use of variable strength covering arrays (Cohen
et al., 2003b), prioritization (Bryce and Colbourn, 2006; Qu
et al., 2008, 2007) and incremental covering arrays (Fouché et
al., 2009), where the size of ¢ can vary, the order of testing is
prescribed, or we generate increasingly stronger ¢ by re-using
existing tests from lower strength + when moving to higher z.

5.3. Conclusion on Combinatorial Testing

In this section we have presented an overview of combi-
natorial testing, defined the primary mathematical object on
which this research is based and presented some research di-
rections that are being pursued. This is a promising area of
research for automated software test generation, with opportu-
nities to enhance new domains of its application. Fruitful future
research directions for generating CIT samples includes auto-
mated model extraction, adapting to model evolution, and de-
veloping techniques that re-use or share information between
different test runs. In addition to applying CIT to novel appli-
cation domains, an area of potential for improvement in this di-
rection is the combination of program analysis techniques with
CIT to refine the sample space, and to target specific interac-
tions at the code (as opposed to only the specification) level.

6. Test Data Generation by Adaptive Random Testing
By Tsong Yueh Chen

Empirical studies have shown that failure-causing inputs tend
to form contiguous failure regions: consequently, non-failure-
causing inputs should also form contiguous non-failure regions.
Therefore, if previously executed test cases have not revealed a
failure, new test cases should be far away from the already ex-
ecuted non-failure-causing test cases. Hence, test cases should
be evenly spread across the input domain. It is this concept
of even-spreading of test cases across the input domain which
forms the basic intuition for adaptive random testing, a family
of test case selection methods designed to enhance the failure
detection effectiveness of random testing by enforcing an even
spread of randomly generated test cases across the input do-
main. This section provides a brief report on the state-of-the-art
of adaptive random testing.

6.1. Introduction to Adaptive Random Testing

Random Testing (RT) is one of the most fundamental and
most popular testing methods. It is simple in concept, easy
to implement, and can be used on its own or as a component
of many other testing methods. It may be the only practically
feasible technique if the specifications are incomplete and the
source code is unavailable. Furthermore, it is one of the few

13

testing techniques whose fault detection capability can be the-
oretically analysed. Adaptive Random Testing (ART) (Chen
et al., 2010, 2004) has been proposed as an enhancement to
RT. Several empirical studies have shown that failure-causing
inputs tend to form contiguous failure regions, hence non-
failure-causing inputs should also form contiguous non-failure
regions (White and Cohen, 1980). Therefore, if previous test
cases have not revealed a failure, new test cases should be far
away from the already executed non-failure-causing test cases.
Hence, test cases should be evenly spread across the input do-
main. It is this concept of even spreading of test cases across
the input domain, which forms the basic intuition of ART. Anti-
random testing (Malaiya, 1995) also aims at even spreading of
test cases across the input domain. However, a fundamental
difference is that ART is a nondeterministic method and anti-
random testing is in essence a deterministic method with the
exception of the first test case which is randomly chosen. An-
other difference is that anti-random testing requires testers to
specify the number of test cases in advance, whereas there is no
such a constraint for ART.

To facilitate discussion, it is first necessary to define some
terminology. By failure rate, we mean the ratio of the number
(or size) of failure-causing inputs to the number (or size) of
the set of all possible inputs (hereafter referred to as the input
domain). By failure patterns, we mean the distributions and
geometry of the failure-causing inputs. By efficiency, we refer
to the computation time required, with lower computation time
indicating higher efficiency. Strictly speaking, efficiency should
also include memory, but memory will not be considered in this
section due to space limitations and the lack of implementation
details such as the data structures used. By effectiveness, we
refer to the fault detection capability which can be measured by
the effectiveness metrics including P-measure, E-measure, F-
measure, etc. The F-measure is defined as the expected number
of test cases required to detect the first failure; the P-measure
is defined as the probability of detecting at least one failure;
and the E-measure is defined as the expected number of failures
detected. A set of test cases is assumed when using P-measure
or E-measure.

RT is a popular testing method and ART has been originally
proposed as an enhanced alternate to RT. This section will focus
on the state-of-the-art of ART from the perspective of using
RT as a baseline. We will only compare ART to RT, and not
compare ART to other testing methods. We are interested in
the problem that when RT has been chosen as a viable testing
method for a system, is it worthwhile to use ART instead?

As a reminder to avoid any confusion and misunderstand-
ing, cost-effectiveness in this section refers to the fault de-
tection capability achieved for the resources spent. Some re-
searchers (such as Arcuri and Briand (2011)) used the term “ef-
fective” where we use “cost-effective”, therefore, when com-
paring across papers, such a difference in the meanings should
be noted. We decide to deal with effectiveness and efficiency
separately in this section because such an approach will give
us a better picture about which aspect or direction shall be im-
proved.

6.2. Various ART Algorithms

Various approaches have been identified to implement the
concept of even spreading of test cases across the input do-
main. As a consequence, a number of different ART algo-
rithms have been developed (Chan et al., 2006b; Chen et al.,
2004, 2009, 2004; Ciupa et al., 2008; Lin et al., 2009; Liu et
al., 2011; Mayer, 2005; Shahbazi et al., 2012; Tappenden and
Miller, 2009). The major approaches include:

1. Selection of the best candidate as the next test case from
a set of candidates. This approach first generates a set of
random inputs as candidates from which the best candi-
date, as defined against set criteria, is selected as the next
test case.

2. Exclusion. In each round of test case generation, this ap-
proach first defines an exclusion region around each al-
ready executed test case. Random inputs are generated
one by one until one input is outside all exclusion regions
of the already executed test cases, and then this input is
selected as the next test case.

3. Partitioning. This approach uses the information about the
location of already executed test cases to divide the input
domain into partitions, and then to identify a partition as
a designated region from which the next test case will be
generated.
Test profiles. Instead of using a uniform test profile as
normally adopted by RT, this approach uses a specially de-
signed test profile which is able to achieve an even spread-
ing of test cases over the input domain. Dynamic adjust-
ment of the test profile during testing is required in this
approach.

5. Metric-driven. Distribution metrics, such as discrepancy
and dispersion, are normally used to measure the degree of
even distribution for a set of points. Instead of being used
as a measurement metric, this approach uses the distribu-
tion metrics as selection criteria to select new test cases
such that a more even distribution of the resultant test cases
could be obtained.

The above is not an exhaustive list, but rather gives some of the
most popular approaches. Furthermore, it should be noted that
for each approach, different methods can be used to achieve an
even spreading of test cases. Therefore, many ART algorithms
have been developed. For example, the most popular algo-
rithm taking the first approach is the Fixed-Sized-Candidate-Set
ART (hereafter referred to as FSCS-ART) (Chen et al., 2004) in
which a fixed-size candidate set of random inputs is first gen-
erated whenever a new test case is needed. For each candidate
set, a selection criterion is applied to select the best candidate
as the next test case. Adopted selection criteria include maxi-
min, maxi-maxi, maxi-sum, etc. For maxi-min, the distance (or
dissimilarity in the case of non-numeric inputs) between each
candidate and its nearest already executed test case is first cal-
culated. The candidate with the largest such distance is then
selected as the next test case. For maxi-sum, the distances be-
tween each candidate and all the already executed test cases are
first summed. The candidate with the highest such sum is then

14

selected as the next test case. Intuitively speaking, inputs near
the boundaries of the input domain will have a higher probabil-
ity of being selected as test cases when maxi-min is used instead
of maxi-sum. In other words, different ART algorithms have
different effectiveness performance, efficiency performance and
characteristics which in turn give rise to different favourable
and unfavourable conditions for their applications.

As FSCS-ART is the first published ART algorithm and has
been the most cited ART algorithm since the inception of ART,
some previous studies have treated FSCS-ART and ART as
equivalent or exchangeable. We would like to emphasize that
FSCS-ART is only one of the many members of the family
of ART algorithms, and FSCS-ART is not equivalent to ART
which refers to the family of testing methods in which test cases
are random and evenly spread across the input domain. Obvi-
ously, the strengths and weaknesses of a particular ART algo-
rithm for a specific type of software are not necessarily valid
nor expected to be similar for other ART algorithms.

For numeric input domains, the distance (or dissimilarity)
metric used to measure “far apart” is easily and naturally de-
fined. However, the choice of a distance metric for non-numeric
input domains may not be straightforward. We have proposed a
generic distance metric based on the concept of categories and
choices (Kuo, 2006; Merkel, 2005). Ciupa et al. (2008) have
proposed a specific distance metric for object-oriented soft-
ware. Tappenden and Miller (2013) have proposed a specific
distance metric for cookies collection testing of web applica-
tions. It is understood that there are currently investigations
into the application of ART in input domains involving strings,
trees, finite state machines, etc.

6.3. Effectiveness

In the studies of ART, the adopted effectiveness metrics in-
clude F-measure, P-measure and the time to detect the first fail-
ure. Obviously, different effectiveness metrics have different
strengths and weaknesses, and there is no single best effective-
ness metric. Also, it is common that a testing method is better
than another testing method with respect to one effectiveness
metric, but worse if measured against another metric. There-
fore, a metric may be appropriate in one scenario but inappro-
priate in another. The selection of an appropriate metric is in
itself a challenging problem.

The F-measure has been the most frequently used metric to
compare the effectiveness of ART and RT. Chen et al. (2004)
compared RT and ART using 12 open source numerical analy-
sis programs written in C++, with seeded faults. For three out
of these 12 programs, there was no significant difference be-
tween the F-measures of ART and RT; for one program, the F-
measure of ART was about 90% of the F-measure of RT; and for
the remaining eight programs, the F-measure of ART was be-
tween 50% and 75% of the F-measure of RT. Ciupa et al. (2008)
compared RT and ART using real-life faulty versions of object-
oriented programs selected from the EiffleBase Library. Their
results showed that the average F-measure of ART was about
19% of the F-measure of RT. Lin et al. (2009) compared RT
and their ART using six open source Java software artifacts with
seeded faults. The average F-measures for ART and RT were

142 and 1,246, respectively. In the study conducted by Zhou et
al. (2013), they used four numerical programs written in C from
GNU Scientific Library with seeded faults. They used two ART
algorithms, and hence there were eight comparison scenarios
between ART and RT. Their results showed that in one of the
eight comparison scenarios, the F-measure of ART was about
107% of the F-measure for RT, and for the remaining seven out
of the eight comparison scenarios, the F-measure of ART was
between 25% and 75% of the F-measure for RT. Tappenden and
Miller (2009) used simulations to compare ART and RT. They
observed that “All of the testing methods (eAR, FSCS, RRT,
and the Sobol sequence) s-significantly outperformed RT with
respect to the block failure pattern.”, “With respect to the strip
pattern, [...] ART methods s-significantly outperformed RT for
all failure rates.”, and “Point pattern simulation yielded results
similar to the strip pattern; ART methods performed slightly
better, and not worse than RT, with s-significant effect sizes
ranging from r=0.009 to r=0.030.". Arcuri and Briand have
observed that for one mutant of a program, the F-measures for
RT and ART were 72,237 and 56,382, respectively (see Table
4 in (Arcuri and Briand, 2011)). So, there has been a general
consensus that ART is better than RT with respect to the F-
measure. The superiority of ART over RT with respect to the
F-measure is intuitively expected as the concept of even spread-
ing of test cases originates from the objective of hitting the con-
tiguous failure regions using fewer test cases. Furthermore, the
F-measure improvement is quite significant and is in no way
diminished by any potential challenge to previous experiments’
validity.

A recent analytical study (Chen and Merkel, 2008) proves
that even if we know the shapes, sizes and orientations of the
failure regions, but not their locations, it is impossible to have
a strategy that guarantees the detection of a failure with its F-
measure being less than half of the F-measure for RT. In other
words, 50% of RT’s F-measure is an upper bound of the effec-
tiveness improvement that we can possibly achieve when we
know the sizes, shapes and orientations of the failure regions
(in reality, we are not able to know the sizes, shapes and orien-
tations of the failure regions prior to testing). Since ART never
uses nor assumes such information, ART shall not have a lower
F-measure than the optimal strategy which is designed accord-
ing to such information. When interpreted with the simulation
and experimental results of the F-measures of ART, this theoret-
ical result implies a rather surprising but most welcome conclu-
sion that ART is close to the optimal strategy, and that the upper
bound is indeed a tight bound. As shown in the proofs and ex-
amples in (Chen and Merkel, 2008), technically speaking, the
optimal strategy is to construct a grid of test cases according
to the sizes, shapes and orientations of the failure regions. An
even spreading of test cases is a lightweight approach to imple-
ment an approximation to such a grid, and hence ART can be
viewed as a lightweight approach to implementing the optimal
strategy. In other words, it seems unlikely that there are other
testing techniques which can use significantly fewer test cases
than ART to detect the first failure, unless there is access to the
information about the locations of the failure regions, which is
usually not possible. An immediate conclusion is that future

15

research shall be focused on either how to use the information
of the location of failure-causing input to develop new testing
strategies that can outperform ART (for example, see (Zhou et
al., 2013)), or how to improve the efficiency of ART by reduc-
ing the cost for test case generation (for example, see (Chan et
al., 2006a; Chen et al., 2006b)).

As pointed out by Arcuri and Briand (2011), previous em-
pirical studies or simulations only involved failure rates larger
than 107, and hence were perhaps not comprehensive enough.
Therefore, it is worthwhile to conduct further experiments to
verify whether or not ART does still have a lower F-measure
than RT for extremely low failure rates. However, both the
proofs of the theoretical analysis (Chen and Merkel, 2008) and
the results of a simulation study (Chen et al., 2007) about the
impact of the geometry of failure regions show that the fewer
the distinct failure regions are, the better performance of F-
measure ART has. This implies that ART will have a better F-
measure performance than RT at later stages (relatively fewer
distinct failure regions and lower failure rates) than at earlier
stages (relatively more distinct failure regions and higher fail-
ure rates) of software development. As far as we know, all exist-
ing ART algorithms tend to achieve increasingly even spread-
ing with more test cases. In other words, lower failure rates
are actually favourable scenarios for ART with respect to F-
measures. We are not aware of any work showing that at lower
failure rates, RT has a lower F-measure than ART. Obviously,
it is worthwhile to see more experimental data on this aspect.
In summary, there is no challenge to the fact that ART has a
significantly lower F-measure than that of RT.

Chen et al. (2006a) have used simulations to compare the P-
measure between ART and RT, and have found that ART out-
performs RT. Recently, Shahbazi et al. (2012) have proposed an
innovative approach to use the concept of Centroidal Voronoi
Tessellations to evenly spread random test cases over the input
domain and developed RT-RBCVT and RT-RBCVT-Fast meth-
ods, which also belong to the ART approach as they evenly
spread random test cases over the input domain. A very impor-
tant result is that their RT-RBCVT-Fast method is of the same
order of computational complexity as RT. In the application of
their methods, the size of a set of test cases is defined first. In
both their simulations, which used various types of failure pat-
terns, and their empirical analysis, which used mutants, the RT-
RBCVT method consistently demonstrated higher P-measures
than RT, as reported that “RBCVT is significantly superior to
all approaches for the block pattern in the simulation frame-
work at all failure rates as well as the studied mutants at all test
set sizes. Although the magnitude of improvement in testing
effectiveness results is higher for the block pattern compared to
the point pattern, the results demonstrate statistically significant
improvement in the point pattern”.

In Arcuri and Briand’s empirical analysis using mutants (Ar-
curi and Briand, 2011), it was reported that ”Although the re-
sults in Figure 3 suggest that ART can be better than random
testing (the odds ratios are lower than 0.5 in most cases), the
results in Figure 4 show that ART is still very unlikely to de-
tect faults. In most of the cases the P-measure is lower than
0.01, i.e., ART would have less than 1% chance of finding fail-

ure”. By definition, the P-measure for RT or ART is a func-
tion of the size of the test set. Furthermore, the value of the
P-measure for RT or ART will be increased if the size of the
test set is increased. As an example for illustration, consider
a program with failure rate of 0.0001. On average, RT needs
to use 10,000 test cases to detect a failure. In other words, the
P-measure for RT using 10,000 test cases will be very close to
1. Thus, if the size of the test set is chosen to be 100,000, then
the P-measure for both RT and ART will be even closer to 1.
On the other hand, if the size of the test set is chosen to be 10,
then obviously the P-measures for RT and ART will be close
to 0. Furthermore, for the scenarios of using 100,000 and 10
test cases, the differences between their P-measures for RT and
ART, if any, are likely to be very small. Therefore, when com-
paring the P-measures of RT and ART, a full range of the sizes
of the test set should be used in order to get a comprehensive
and meaningful comparison. However, this problem may not
occur when RT (or ART) is compared to other testing strategies
which require a particular number of test cases for a specific
program. Suppose that a program has k paths. For path cover-
age testing, a set of k test cases is required. In this case, when
P-measure is used as the effectiveness metric to compare RT
and path coverage testing, it is not only meaningful but also fair
that a random test set of k elements for RT should be compared
with a path coverage test set of k elements, irrespectively of the
failure rate for the program under test. This specific value of k
is not arbitrarily chosen and there is a justification. However,
when P-measure is used to compare RT and ART, an immedi-
ate question is what should be the appropriate size of the test
set used, simply because the size of the test set has significant
impact on the returned values of the P-measure. Hence, the
F-measure is more appropriate than the P-measure in the com-
parison of RT and ART.

Compared to the F-measure, the P-measure has been less of-
ten used in evaluating ART. Nevertheless, all studies have con-
sistently shown that ART outperforms RT with respect to the
P-measure. This universal observation is consistent with an
analytical result that the P-measure of the Proportional Sam-
pling Strategy (PSS) is not lower than that of RT (Chen et al.,
2001). PSS is a test case selection strategy for subdomain test-
ing, which allocates a number of test cases to a subdomain in
proportion to the subdomain’s size. PSS is in fact an ART al-
gorithm, using a partitioning approach. Thus, it is intuitively
appealing to expect the P-measure of other ART algorithms to
be not lower than that of RT. Furthermore, it is important to
note that PSS has been proved to be a necessary and sufficient
condition for partition testing to outperform RT with respect to
the P-measure. With regard to the E-measure, PSS and RT have
been theoretically proved to have the same E-measure (Chen et
al., 2001).

In addition to the F-measure and P-measure, the amount of
time to taken to detect the first failure (or fault) has been used
as a performance metric by Ciupa et al. (2008) in their investi-
gation using real-life faulty programs, and Lin et al. (2009) in
their investigation using open source Java programs with seeded
faults. Strictly speaking, the measurement of the time to detect
the first failure is better interpreted as a cost-effectiveness met-

16

ric rather than an effectiveness metric. Ciupa et al. found that
ART required an average of 1.6 times the amount of time re-
quired by RT to detect the first failure, but Lin et al. found that
ART required an average of 0.13 times the amount. The ap-
parently different observations are understandable, because this
metric depends on the characteristics of the programs, which
are different in these two studies. Ciupa et al. have proposed
using a clustering technique to reduce the distance computation
overheads, with the basic idea being to only compute the dis-
tances to the cluster centres, rather than to each of the already
executed test cases. Their preliminary study shows “an average
improvement of the time to first fault over ARTOO of 25% at
no cost in terms of faults found”. Since the time to detect first
failure for ART is 1.6 times that for RT in their study, a 25%
improvement is in fact a very encouraging result that justifies
more research being conducted in this area.

In summary, both simulations as well as empirical analyses
using real-life faulty programs and mutants have consistently
shown that ART outperforms RT with respect to the P-measure
and the F-measure, but ART may still use less time to detect
the first failure than RT, despite the fact that ART requires more
computation time for test generation because of the additional
task of evenly spreading the test cases across the input domain.

6.4. Efficiency

Compared to RT, ART algorithms are expected to use more
computation time and memory because of the additional task
of evenly spreading the test cases (Chen et al., 2004). As ex-
plained above, we will only consider computation time in this
section. Obviously, different ART algorithms have different or-
ders of complexity for the generation of test case, ranging from
the highest order of n,n log n, to n, where n denotes the number
of already executed test cases. Intuitively speaking, algorithms
with higher orders of complexity for test case generation are ex-
pected to have better even spreading of test cases, and hence are
expected to have a better fault detection capability. Such an ex-
pectation normally occurs but not always. Since different meth-
ods are used to achieve an even spread of test cases, we have dif-
ferent ART algorithms, each of which has its own strengths and
weaknesses, as well as favourable and unfavourable conditions
for its application. For example, a conventional implementa-
tion of FSCS-ART has n? complexity. Therefore, it would be
inappropriate to apply FSCS-ART to programs with very small
failure rates, unless the program execution time and test setup
time are considerably larger than the time required by FSCS-
ART to generate a test case.

There exist general techniques that are applicable to most of
the ART algorithms to reduce their cost of test case generation.
As discussed above, Ciupa et al. (2008) have proposed to use
the technique of clustering to reduce the distance computation
overheads, and have obtained positive results. Another tech-
nique is called mirroring (Chen et al., 2006b). Its basic idea is
to divide the input domain into k partitions, of which one parti-
tion is referred to as the source partition and the other partitions
are referred to as the mirror partitions. ART is applied only
on the source partition to generate test cases within it. With

simple mappings, the test cases generated in the source parti-
tion are mapped into the mirror partitions to generate new test
cases within themselves. For FSCS-ART, its test case genera-
tion overheads can be effectively reduced by a factor of (1/k).
Another technique is called forgetting (or aging) (Chan et al.,
2006a). Instead of using all already executed test cases to de-
termine the next test case, we use only a portion or a constant
number of already executed test cases to determine the next test
case. If the option of a constant number of already executed
test cases is used, the order of complexity for generating the
next test case will be independent of n. Generally speaking,
when a reduction method for distance computations is applied,
the reduction may bring in new kinds of overheads and may be
at the expense of the fault detection capability. However, such
a deterioration of fault detection capability does not always oc-
cur. One instance is observed by Ciupa et al. (2008) in their
investigation on the technique of clustering that “an average im-
provement of the time to first fault over ARTOO of 25% at no
cost in terms of faults found”. Apart from Ciupa et al.’s study
which involved real-life faulty programs, other investigations
into the impact of reduction techniques have used simulations
and mutants. Therefore, it is important to have further experi-
ments using real-life faulty programs to investigate the impact
of these general reduction techniques on the efficiency of ART.

6.5. Frameworks for Cost Effective Application of ART

After discussing the effectiveness and efficiency of ART, we
are now ready to discuss how to apply ART in practice. As a
reminder, this section only compares ART and RT. Therefore,
our objective is to determine how to use ART as a cost-effective
alternate to RT when RT has been chosen as a viable testing
method to test a system.

There are two possible application scenarios, one with a fixed
number of test cases (equivalently, a limited resource) and the
other without such a constraint. For the first scenario, our rec-
ommendation is to use Tappenden and Miller’s RT-RBCVT-
Fast method, because it has the same order of computational
complexity as RT but it has a higher P-measure than RT.

Now, let us consider the other scenario. Since different pro-
grams may have different execution times, different test setup
times and different test case generation times, obviously an
ART algorithm may be cost-effective for one program, but not
cost-effective for another, as compared with RT. Therefore,
for a given program, it is a challenging problem to select a
cost-effective ART algorithm, let alone to select the most cost-
effective ART algorithm. Let us explain the difficulty by first
visiting the problem of selecting a cost-effective sorting algo-
rithm for a given file. Similar to ART, there are many sorting
algorithms which have different orders of computation com-
plexity, and favourable and unfavourable conditions for their
applications. However, when we are going to do sorting, nor-
mally we have some information about the file to be sorted.
Such information will help us to choose an appropriate sorting
algorithm. For example, if the file is known to be nearly or-
dered, we would use bubble-sort instead of quick-sort; if the file
is known to be random or nearly random, then quick-sort rather

17

than bubble-sort should be used. Similarly, if we know the ex-
ecution time, test setup time and failure rate of the software
under test, we would be able to use the information about test
case generation complexity for an ART algorithm to determine
whether it is more cost-effective than RT to test the software.
But, in reality, though we may know some information about
the execution time and test setup time of the software under test,
we do not know its failure rate. In other words, we do not have
sufficient information to determine whether an ART algorithm
is more cost-effective than RT for this given software. Then,
does it mean that ART is practically useless, as we are not able
to determine whether an ART algorithm is more cost-effective
than RT for the given program? The answer is no. Some po-
tential frameworks for cost-effective applications of ART are
presented as follows.

A simple framework is to successively apply RT-RBCVT-
Fast with test sets of sizes ny,n»,ns,---,n;. An estimation of
the failure rate should first be made, which is then used to de-
termine the value of n;. An over estimation of the failure rate is
recommended. As an example for illustration, if some available
information (such as, past testing history and program size) sug-
gests that the failure rate for the software under test is not less
than 0.001, then we may assume the estimated failure rate to be
0.01. With a failure rate of 0.01, RT needs to use on average
100 test cases in order to detect failure. Thus, we may set n; =
100. If RT-RBCVT-Fast cannot find failure with a random set
of 100 test cases, then one of the many possible ways is to set
ny, ns, --- and ny such that ny, = 2ny,n3 = 2ny, - -+, n = 2ny_q,
and successively apply RT-RBCVT-Fast using test sets of sizes
np, n3, « - and .

Another framework can be built upon the technique of adap-
tive testing. By adaptive testing, it basically means that in the
process of software testing, a testing method may be replaced
by another testing method in response to some on-line collected
feedbacks (Cai, 2002). Suppose we are required to test a pro-
gram P. Let E denote its average execution time and G(n)
denote its generation time for the n™ test case. Since the F-
measure of ART shall not be less than half of the F-measure
of RT (as proved analytically (Chen and Merkel, 2008)), obvi-
ously it is only worthwhile to continue ART if G(n) is less than
E. Suppose that we have ART-A, ART-B and ART-C whose test
case generation complexities are of the orders of n, nlogn, and
n, respectively. As a note, normally the higher the order of com-
plexity is, the higher the fault detection effectiveness an ART
algorithm has. Here, we assume ART-A performs better than
ART-B which in turn performs better than ART-C, with respect
to F-measure or P-measure. We shall start testing with ART-A
first until we reach G(n) > E. Then, we use ART-B until we
reach a new n’ such that G(n’) > E. Then, we use ART-C un-
til we reach a new n’’ such that that G(n”’) > E. By then, we
may apply RT-RBCV-Fast successively with different test sets
as explained in the immediately preceding paragraph, or use
the general reduction techniques to keep the cost of generating
a new test case steady (such as, the technique of forgetting us-
ing a constant number of already executed test cases in distance
computation).

The above sketches of the frameworks are very high level,

but they are conceptually feasible. Obviously, a lot of tech-
nical details need to be defined in the actual application. Also,
new types of overheads may be introduced. Therefore, the cost-
effectiveness of these proposed frameworks needs to be vali-
dated by experimental analysis involving real-life programs.

6.6. Applications of ART and Tools

Compared to RT, ART has been applied to fewer real-life
programs. However, we expect a growth in the application of
ART to real-life programs, because more and more efficient
ART algorithms have been emerging. Chen et al. (2004) have
applied ART to testing open source numerical analysis pro-
grams written in C++, using mutants. Ciupa et al. (2008) have
compared RT and ART using real-life faulty versions of object-
oriented programs selected from EiffelBase Library. Their ex-
perimental results showed that ART used significantly fewer
test cases to detect the first failure than RT (0.19 times), but
ART used more time to detect the first failure than RT (1.6
times). Also observed is that ART revealed faults that RT did
not reveal in the same allocated time. Igbal et al. (2011) have
compared RT, ART and Search-Based Testing using Genetic
Algorithms and the (1+1) Evolutionary Algorithm. Their study
included a real-life real-time embedded system which was a
seismic system. They have observed that ART was the best
performer, but “there is a 9% probability of wrongly claiming
that ART is better than RT if that is actually not the case” (Igbal
et al., 2011). Hemmati et al. (2010, 2011) have used ART to
test a safety monitoring component of a safety-critical con-
trol system written in C++ and a core component of a video-
conference system written in C. Tappenden and Miller (2013)
have used Evolutionary ART in their cookie collection testing
of six open-source web applications. Faults were detected in
five out of the six web applications. Their results showed that
Evolutionary ART was an effective testing method. Lin et al.
(2009) have used six open source Java software artifacts with
manually seeded faults in evaluating their ART method. Five
of the six subjects were from Apache common library and the
other was Siena.

With regard to the automated ART tools, AutoTest (Ciupa et
al., 2008) supports ART for object-oriented programs. A very
good design feature of AutoTest is to use ARTOO as a plug-in
strategy for input generation. With such a feature, other ART
algorithms could be easily supported by AutoTest. In the study
by Shahbazi et al. (2012), programs were developed to sup-
port FSCS-ART, Restricted Random Testing (ART by Exclu-
sion), Evolutionary ART, RBCVT and RBCVT-Fast.!2 Igbal et
al. (2011) have developed an automated test framework which
can support ART to test real-time embedded systems, and the
framework has been found effective. Lin et al. (2009) have de-
veloped the tool ARTGen that supports the testing of Java pro-
grams using a divergence-oriented approach to ART. The ma-
jority of ART algorithms consist of two processes, namely, a
process for random generation of inputs and a process to ensure

2The software is available at URL: http://www.steam.ualberta.
ca/main/Papers/RBCVT

18

an even spreading of test cases across the input domain. In fact,
the majority of the processes of ensuring an even spreading of
test cases are quite simple. Therefore, it is not difficult to build
one’s own ART tool on top of a random test case generator. In
other words, it should be quite straightforward to plugin ART’s
even spreading component into an existing RT tool.

6.7. Future Challenges and Work

1. Majority of the previous ART investigations involved sim-
ulations and failure rates greater than 1076, Therefore, it is
important to have more investigations which will involve
lower failure rates using real-life faulty programs or mu-
tants. Empirical analysis is required to validate the con-
jecture that lower failure rate is a favourable condition for
ART with respect to F-measure, as discussed above.

2. As explained above, further research should be focused
on reducing the cost of test case generation for ART al-
gorithms in order to enhance their cost-effectiveness. So
far, the investigated reduction techniques include cluster-
ing, mirroring and forgetting. With the exception of Ciupa
et al.’s preliminary investigation on the technique of clus-
tering, which involved real-life faulty programs, other in-
vestigations on the general reduction techniques only in-
volved simulations and mutants. Though Ciupa et al.’s re-
sults are very positive for the technique of clustering, the
impact of the other reduction techniques should be further
analysed using more real-life programs.

3. The proposed framework for how to apply ART using
the technique of adaptive testing has been briefly outlined
above. The sketches of the framework are very high level
but the framework is conceptually feasible. A lot of tech-
nical details need to be defined in actual application, such
as, how to deal with the already executed test cases after
switching from one ART algorithm to another ART algo-
rithm. Obviously, its feasibility needs to be validated by
experimental analysis involving real-life programs.

. Failure patterns provide valuable information to help us
to develop new and effective test case selection strategies.
We coined this area as failure-based testing. The domain
test strategy proposed by White and Cohen (1980) is not
only a fault-based testing strategy as stated by them, but
also a failure-based testing technique. It is indeed the first
failure-based testing technique. Its target is the domain
fault which gives rise to a specific failure pattern in the
input domain. The concept of geometry is applied to the
resultant failure pattern to design test cases that guarantee
to detect the relevant fault. ART is a failure-based testing
method using the most primitive information of the conti-
guity of failure-causing inputs. Since failure patterns also
have other information, there is still great potential ben-
efit to be gained from the use of this other information
to develop new testing strategies. The search-based test-
ing community has developed many searching techniques,
some of which may become, or be adapted to become, new
search techniques for failure regions.

6.8. Conclusion on Adaptive Random Testing

All existing investigations have consistently shown that
ART outperforms RT with respect to the F-measure and P-
measure. These investigations include simulations and exper-
imental analysis using both mutants and real-life faulty pro-
grams. The positive results of these simulation and experimen-
tal investigations are consistent with the interpretations and re-
sults of the theoretical analysis. Though the scope of existing
investigations may not be considered sufficiently comprehen-
sive (Arcuri and Briand, 2011), the superiority of ART over
RT with respect to the F-measure and P-measure is unlikely to
be challenged. Nevertheless, more comprehensive experiments
on the F-measure and P-measure of RT and ART will still be
worthwhile.

Compared to RT, ART has the additional task of evenly
spreading the test cases. Therefore, ART will unavoidably con-
sume more computation time and memory than RT. Hence, it is
understandable that an ART algorithm is not necessarily more
cost-effective than RT for a given program, despite the fact that
it is superior to RT with respect to the F-measure and the P-
measure. On the other hand, with respect to the metric of time
required to find the first failure or fault, RT is not always su-
perior to ART even though ART incurs more computation time
than RT. This is also understandable because the characteristics
of the programs under test will affect the value of this metric.
Obviously, the characteristics of the program under test must be
considered when determining whether an ART algorithm will
be more cost-effective than RT.

Since its inception, the ART research has been focused on
the development of new algorithms which would have a lower
F-measure. As explained above, a recent analytical result shows
that ART is in fact a lightweight approach to implementing the
optimal strategy which is essentially equivalent to constructing
a grid of test cases according to the sizes, shapes and orienta-
tions of the failure regions. An immediate conclusion is that
ART has great potential to be a cost-effective alternate to RT.
Attention should then be shifted from the effectiveness to the
efficiency of ART, that is, to the reduction in time and space
complexity, in order to make ART a cost-effective alternate to
RT. Conceptually speaking, reduction in the computation and
memory overheads are possible but may be at the expense of the
degree of even spreading which in turn may affect the effective-
ness. However, the recently published method of RT-RBCVT-
Fast shows that ART can indeed serve as a cost-effective al-
ternate to RT, because it has the same order of computational
complexity as RT.

7. Test Data Generation in Search-Based Software Testing

By Mark Harman, Phil McMinn, John Clark and Edmund
Burke 13

13 Acknowledgements: The authors would like to thank Yue Jia for Figure 4.

19

Search Based Software Testing (SBST) is a branch of Search
Based Software Engineering (SBSE), in which optimisation al-
gorithms are used to automate the search for test data that max-
imises the achievement of test goals, while minimising testing
costs. There has been much interest in SBST, leading to several
recent surveys. This paper presents some emerging challenges
and open problems for the development of this exciting research
agenda. These include hybrids of SBST and DSE (Dynamic
Symbolic Execution); optimizing to best handle demands of the
oracle; co-evolving tests and software simultaneously; “hyper-
heuristics” where SBST may be integrated into other aspects
of SBSE, e.g. requirements prioritisation; and optimization of
failures for ease of debugging.

7.1. Introduction to Search-Based Testing

As this paper shows, the problem of automatically generating
test inputs is hard. For example, even the most basic activities,
such as seeking to cover a branch in the code involve reach-
ability questions that are known to be undecidable in general
(Weyuker, 1979). The testing community has therefore focused
on techniques that seek to identify test sets that cover near op-
timal sets of branches in reasonable time. Many of these tech-
niques are covered in other sections of this paper.

This section is concerned with the area of Search-Based Soft-
ware Testing (SBST). SBST is a branch of Search-Based Soft-
ware Engineering (SBSE) (Harman and Jones, 2001), in which
optimisation algorithms are used to automate the search for test
data that maximises the achievement of test goals, while min-
imising testing costs. There has been much interest in SBST,
leading to several recent surveys. This section presents some
emerging challenges and open problems for the development of
this exciting research agenda.

SBST is the process of generating test cases (or often the in-
puts of test cases) using search-based optimisation algorithms,
guided by a fitness function that captures the current test objec-
tive. SBST has been applied to a wide variety of testing goals
including structural (Harman and McMinn, 2010; McMinn et
al., 2012a; Michael et al., 2001; Tonella, 2004), functional (We-
gener and Biihler, 2004), non-functional (Wegener and Grocht-
mann, 1998) and state-based properties (Derderian et al., 2006).

Search-based approaches have been developed to address
a wide and diverse range of domains, including testing ap-
proaches based on agents (Nguyen et al., 2009), aspects (Har-
man et al., 2009), interactions (Cohen et al., 2003), integration
(Colanzi et al., 2011; Briand et al., 2002), mutation (Harman
et al., 2011; Zhan and Clark, 2005), regression (Walcott et al.,
2006; Yoo et al., 2009), stress (Grosso et al., 2005) and web
applications (Alshahwan and Harman, 2011).

In all approaches to SBST, the primary concern is to define a
fitness function (or set of fitness functions) that capture the test
objectives. The fitness function is used to guide a search-based
optimisation algorithm, which searches the space of test inputs
to find those that meet the test objectives. Because any test ob-
jective can, in principle, be re-cast as a fitness function, the ap-
proach is highly generic and therefore widely applicable (as the
foregoing list of testing applications demonstrates). There are
many different search-based optimisation algorithms to choose

from, though much of the literature has tended to focus on evo-
lutionary algorithms (Harman, 2011).

There are several surveys of these aspects of SBST (Afzal
et al., 2009; Ali et al., 2010; Harman et al., 2009; McMinn,
2004, 2011). In these surveys the reader can find more detailed
treatments of the work on SBST for non-functional properties
(Afzal et al., 2009), Empirical evidence regarding SBST (Ali
et al., 2010), as well as overviews of techniques (Harman et
al., 2009; McMinn, 2004; McMinn et al., 2012a). Therefore, in
this section, we do not seek to provide yet another ‘overview’ of
SBST. Rather, we focus on some of the exciting and challenging
avenues that lie ahead for future work in this rapidly growing
research and practitioner community.

In describing these future directions we seek to consider
work which is already underway as well as more ‘blue skies’
directions for open challenges that could yield major break-
throughs. For example, we consider work underway on co-
evolution and management of oracle cost as well as work on
hybridising SBST with other test data generation techniques,
such as Dynamic Symbolic Execution (DSE), a topic covered in
more detail elsewhere in this paper. The oracle problem is im-
portant because the automation of testing requires automation
of the checking of outputs as well as the generation of inputs.
Co-evolution is interesting and important because it fits so well
the way in which the testing process operates, as we shall see.

In all these emerging areas we can expect more work in the
immediate future. We also consider open challenges such as the
problem of migrating from generation of test cases to genera-
tion of testing strategies using search and optimising the insight
that can be gained from SBST.

7.2. Hybrids of SBST and DSE

The Dynamic Symbolic Execution (DSE) approach (Gode-
froid et al., 2005) to handling dynamic data structures proved
very effective, leading Lakhotia et al. (2008) to incorporate
DSE’s approach into SBST. Conversely, SBST handles float-
ing point computation well, while DSE is limited by the power
of the constraint solvers available (which typically cannot solve
floating point constraints efficiently). Naturally, therefore, one
might expect that the advantage of combining the two tech-
niques, will be that the strengths of one can overcome the short-
comings of the other.

This led several authors to develop approaches to augment
DSE with search-based approaches to solving floating point
computations. Lakhotia et al. (2010) used a local search to
augment the Pex DSE-based testing tool from Microsoft, while
Souza et al. (2011) augmented ‘standard’ constraint solving
with a Particle Swarm optimiser to improve the performance
of Symbolic PathFinder.

The first authors to propose a combination of SBST and DSE
to produce a hybrid were Inkumsah and Xie (2007) who intro-
duced the EVACON framework, which composes the two ap-
proaches, reporting the first results for a combined DSE/SBST
approach. The AUSTIN search-based software testing tool also
provides hybrid capabilities, for which results have been re-
ported to compare SBST and DSE for ‘out of the box’ test data
generation (Lakhotia et al., 2010).

20

Baars et al. (2011) developed a new approach to SBST, in
which symbolic execution is integrated into the search by aug-
menting the fitness function used to guide SBST. In a way, this
work ‘does for SBST, what DSE does for constraint based test-
ing’. However, the differences between SBST and DSE mean
that the modifications to symbolic execution, required to make
it scalable, are also different. That is, whereas DSE performs
a complete symbolic execution using concrete values, Baars et
al. use a purely symbolic execution with no concrete values,
but apply it only to local regions of code to improve the fitness
function.

Harman et al. also combined DSE and SBST to produce the
first approach to test data generation for strong (and higher or-
der) mutation testing (Harman et al., 2011). They use DSE to
achieve weak mutation adequacy, following a variant of the ap-
proach of Liu et al. (2006); Papadakis and Malevris (2010).
This approach generates constraints, the satisfaction of which
yields weak mutation adequacy. To extend this to strong mu-
tation adequacy Harman et al. search the space of additional
conjuncts for constraints to augment those that extend weak to
strong. The fitness function seeks maximal control flow disrup-
tion in order to increase the likelihood of strong adequacy.

As this recent work demonstrates, there is much activity at
the interface between SBST and DSE that is producing a form
of ‘crossover and mutation’ of the two approaches. Because
of their complementary nature we can expect to see more work
on the combination of these two promising test data generation
techniques. The proliferation of publicly available tools that
support both approaches, and hybrids thereof, creates a rich in-
frastructure from which future research can draw.

7.3. Handling the Oracle

Testing involves examining the behaviour of a system in or-
der to discover potential faults. Determining the desired cor-
rect behaviour for a given input is called the Oracle Problem.
Manual testing is expensive and time consuming, particularly
because of the manual effort devoted to solving the oracle prob-
lem. This is the Human Oracle Cost. We need to develop SBST
algorithms and methods that automatically generate test inputs
that reduce Human Oracle Cost, thereby significantly reducing
the overall cost of testing. We also need search-based tech-
niques that can help to generate test oracles as well as test cases
(Fraser and Zeller, 2010).

Of course, the cost of generating test inputs by hand is high.
This has driven the growth of the Search-Based Testing research
area. Indeed, over 340 papers have been published in the area
according to a recent survey (Harman et al., 2009). However,
despite this considerable publication output, there is very little
work on either reducing the Oracle Cost (Harman et al., 2010;
McMinn et al., 2010) or using SBST to generate oracles (Fraser
and Zeller, 2010).

Most previous work concentrates on the problem of search-
ing for good test inputs, but it does not address the equally
important problem of reducing the cost of checking the output
produced in response to the inputs generated. The current state
of the art in SBST thus addresses only the benefit half of the
testing problem: that of generating inputs that meet the testing

criterion. It fails to address the other half of the problem: the
cost of checking the output produced.

This is simply not realistic for many testing applications; it
assumes that all that matters to the tester is the achievement of
the highest possible coverage, at any cost. However, a tester
might, for example, prefer an approach that achieves 85% cov-
erage with 30 test cases, over an alternative that achieves 90%
coverage with 1,000 test cases. Or, the tester may prefer a
test suite that lowers the comprehension cost of individual test
cases, by minimising test case verbosity (Fraser and Zeller,
2011) and maximising readability (McMinn et al., 2012b).

Fortunately the SBST paradigm naturally generalises to
multi-objective optimisation formulations, thereby allowing us
to develop techniques that balance the multiple objectives of
cost and benefit. If we can measure the oracle cost then we can
make it a minimisation objective in our SBST test data gen-
eration approach. This will mean that all approaches to test
data generation will be naturally multi-objective (Harman et al.,
2007), because they will need to balance cost and benefit. This
is a natural step forward for SBST, since testing is all about
balancing cost and benefit. We know that exhaustive testing is
impossible so we wish to achieve maximum benefit (ultimately
fault finding, measured through surrogates such as coverage)
for minimum cost (ultimately monetary, measured through sur-
rogates such as effort and time).

7.4. Opportunities for Co-evolution

With co-evolutionary computation, two or more populations
evolve simultaneously, using possibly different fitness func-
tions. In competitive co-evolution the idea is to capture a
predator—prey model of evolution, in which both evolving pop-
ulations are stimulated to evolve to better solutions. In co-
operative co-evolution, the idea is to symbiotically co-evolve
several populations, each relying on the other to work in con-
cert as part of a larger system that contains them.

Adamopoulos et al. (2004) were the first to suggest the ap-
plication of co-evolution for SBST, arguing that this could be
used to evolve sets of mutants and sets of test cases, where the
test cases act as predators and the mutants as their prey. For
testing, the competitive model has hitherto proved best suited,
since test cases make natural predators.

Various forms of testing and bug fixing have been attacked
using competitive co-evolution. Arcuri et al. also used co-
evolution to evolve programs and their test data from specifica-
tions (Arcuri, 2008; Arcuri and Yao, 2007) using co-evolution.
Arcuri (2008); Arcuri and Yao (2008) also developed a co-
evolutionary model for bug fixing, in which one population es-
sentially seeks out patches that are able to pass test cases, while
test cases can be produced from an oracle in an attempt to find
the shortcomings of a current population of proposed patches.
In this way the patch is the prey, while the test cases, once again,
act as predators.

We can expect to see work in which various software arte-
facts and their test cases are co-evolved. The test cases will
be evolved to find counter examples that demonstrate that the
artefacts being evolved are not yet optimal. The artefacts

21

Hyper-heuristic
Requirements and Testing

/

[Tactics for Hyper-heuristic

Requirements Engineering

N

Requirements Requirements
Selection Prioritisation

SoftwareTesting

N

Test Data Test Data
Prioritisation

J [Tactics for Hyper-heuristic]

Generation

Requirements Software
Engineering Testing

Software Engineering

Figure 4: Hyper-Heuristic SBSE: using Hyper Heuristics, we may be
able to develop tactics an strategies that will unite different software
engineering activities with SBST.

can then be re-evolved to produce new versions for which the
counter examples no longer apply. Through iteration of this
co-evolutionary cycle we seek to obtain, not only high quality
artefacts, but also test cases that can be used to demonstrate
their effectiveness.

7.5. Hyper-Heuristic Software Engineering
One key question for the SBSE/SBST research agenda is

“Can we radically increase automation by integrating
SBST with other forms of SBSE?”

Consider the two connected trees depicted in Figure 4. The
lower tree is a sub-tree of software engineering defined by the
ACM classification system. Existing work on SBSE is currently
applied at the leaves of this tree. More work can and will surely
be done, across the community, within each of the leaves to
better address instances of each software engineering problem.
However, such approaches, on their own, can only offer opti-
misation of a narrow set of very similar engineering activities.
That is we will have optimised test input generation and (sepa-
rately) optimised requirements prioritisation. What we will still
need is to find ways to unite the two so that we can have op-
timised tests generated from requirements, with requirements
prioritised in a manner that takes account of testability.

To solve this larger software engineering challenge, SBST
needs to make a transition from solving instances to automati-
cally finding tactics that solve instances. This will increase the
abstraction level at which we apply SBSE, as indicated in the
upper tree in Figure 4, drawing together sets of related software
engineering activities. For instance, we shall be able to com-
bine different kinds of test data generation, searching for im-
proved tactics that deploy each to maximise their effectiveness
and minimise cost, automatically tailoring the methodology to
suit the particular test problem in hand.

In this way, we would be making a leap from tactics that
solve classes of problems to strategies that cross the existing

software engineering boundaries, as illustrated by the top node
of the upper tree in Figure 4. Ultimately, the goal would be to
unify previously poorly connected areas of software engineer-
ing activity within a single computational search process. This
would be a kind of ‘Hyper-Heuristic Software Engineering’.

As an example of the possibilities for Hyper-Heuristic Soft-
ware Engineering, suppose we succeed in combining require-
ments optimisation (Zhang et al., 2008) with SBST. We shall
now be able to optimise the selection of requirements based,
not only on traditional aspects of SBSE for requirements (cus-
tomer satisfaction, cost etc.), but also on the implications for re-
gression testing (coverage achievable, test execution time). We
would reach the pinnacle (the root) of the upper tree in Figure 4
with Hyper-Heuristic Requirements and Testing. However, we
could go further still in our quest for a unified Hyper-Heuristic
Software Engineering.

Suppose we now also manage to draw SBSE for project plan-
ning (Antoniol et al., 2011; Chicano and Alba, 2005) into our
Hyper-Heuristic Software Engineering framework. We will
then have a combined approach to optimised, requirements,
project planning and testing. Instead of merely discussing re-
quirements choices devoid of their technical and managerial
consequences, we can use our combined automated approach
to check the implications of requirement choices on the project
plan used to staff the project and implement the requirements.
We can also explore implications for regression testing and seek
multi-objective solutions that balance the competing objectives
of requirement choices, effective implementation plans and ef-
ficient and effective regression testing.

Armed with a hyper heuristic software engineering tool, de-
cision makers could then enter negotiations armed able to re-
spond in real time to changing requirement choices with anal-
ysis and results on the implications for the cost and duration
of the project and its testing. This would not be merely ‘bet-
ter requirements engineering’ or ‘better testing’; it would be
a fundamentally different approach to software development in
which optimisation would be at the heart; a lingua franca within
which decisions could be made about requirements, design and
testing with detailed investigation of their consequences. Grad-
ually, as hyper heuristic software engineering strategies draw in
more of the process, the information available would be further
enriched, bringing together aspects of marketing, negotiation,
customer relations, project management, design and testing.

7.6. Optimising and Understanding Failures

Some failures are caused by exceptionally long and complex
sequences of actions and events. This makes it theoretically
hard (and sometimes practically impossible) to find the fault or
faults that cause the failure. Therefore, a natural yet challenging
and important question to ask is:

“Can we simplify the failure to make it easier to de-
bug?”

In some ways, this problem is related to the oracle cost prob-
lem, described in Section 7.3. That is, if we can reduce the cost
of understanding the output of a test, then we reduce the oracle

22

cost to the human. On the other hand, there is also a human cost
in understanding the input to a test. If a long sequence (and/or a
complex sequence) of actions is required to replicate a failure at
the developers’ site, the engineers may find it too complicated
to understand the causes of the failure, and therefore to difficult
to find the fault(s) that cause failure.

Suppose we can capture the failing behaviour with an asser-
tion (or some such similar mechanism). Now we can have a
fitness function that measures how close a test case comes to
causing a failure to manifest itself. This would be one potential
fitness function. If we can additionally measure the complexity
of a test case then we can seek to minimize this, while maximis-
ing similarity to the failure of interest; another multi-objective
formulation of test data generation.

A natural starting point for failures, would be ‘wrong values
in variables’, since this would be easy to capture within existing
SBST frameworks: fitness computation would be no different
to that for branch coverage. One could use a simple testability
transformation (Harman, 2008; McMinn et al., 2009) to insert a
branch that captures the failing behaviour and seek to cover the
branch. A starting point for test complexity would be simply
the length of the input sequence required to reveal the fault.
The challenge will be in finding supporting fitness functions
and ways to smooth an otherwise rather ‘spiky’ landscape in
order to provide guidance to shorter test inputs that manifest
the desired failure.

7.7. Conclusion on Search-Based Testing

Search Based Software Testing (SBST) is a branch of Search
Based Software Engineering (SBSE) which (re)formulates test
objectives as fitness functions to guide automated search proce-
dures. This provides a way to automate test generation for many
different forms of testing. The approach is supremely general
and astonishingly widely applicable because any test objective
that can be measured is a candidate for this transformation into
a fitness function. There surely remain many exciting, impor-
tant and productive test objectives that have yet to be attacked
using this SBSE reformulation, thereby providing many fruitful
avenues for future work.

8. Conclusion and Acknowledgement

This paper presents a survey of some most prominent tech-
niques of automated test data generation, including symbolic
execution, model-based, combinatorial, adaptive random and
search-based testing.

The survey has been carried out following the novel ap-
proach of orchestrated surveys. We believe that, by coordinat-
ing renowned specialists of carefully selected topics, the ap-
proach has the merit of balancing breadth with depth of the sur-
vey to produce one article of reasonable size.

Editing this paper is new to the editors. The editors would
like to thank the authors of the sections for their participation
and excellent work carried out in the project. The editors would
also like to express their appreciation to the reviewers of the
sections. Their constructive and critical comments are invalu-
able to the success of the project. The editors are most grateful

to Prof. Hans van Vliet, the Editor-in-Chief of the Journal of
Systems and Software, for his support to this project and valu-
able advices and direction given to the editors of the paper, as
well as for his patience during the long process of the project.

References

Aarts, F., Vaandrager, F. W., 2010. Learning I/O automata. In: Gastin, P.,
Laroussinie, F. (Eds.), CONCUR, Springer. pp. 71-85.

Abrial, J. R., 1996. The B-Book: Assigning Programs to Meanings. Cambridge
University Press, New York, NY, USA.

Adamopoulos, K., Harman,M. and Hierons, R. M., 2004. How to overcome
the equivalent mutant problem and achieve tailored selective mutation using
co-evolution. In: Proc. of the 2004 Conference on Genetic and Evolutionary
Computation (GECCO ’04), pp. 1338-1349. LNCS 3103/2004, Springer.

Afzal, W., Torkar, R. and Feldt, R. , 2009. A systematic review of search-
based testing for non-functional system properties. Information and Soft-
ware Technology 51(6), 957-976.

Aho, A., Dahbura, A., Lee, D., Uyar, M., 1988. An optimization technique
for protocol conformance test generation based on UIO sequences and ru-
ral Chinese postman tours. In: Aggarwal, S., Sabnani, K. (Eds.), Protocol
Specification, Testing, and Verification VIII, North-Holland. pp. 75-86.

de Alfaro, L., Henzinger, T. A., 2001. Interface automata. In: ESEC / SIGSOFT
FSE, pp. 109-120.

Ali, S., Briand, L. C., Hemmati, H. and Panesar-Walawege, R. K., 2010. A
systematic review of the application and empirical investigation of search-
based test-case generation. IEEE Transactions on Software Engineering.
36(6), 742-762.

Alshahwan, N. and Harman, M., 2011. Automated web application testing us-
ing search based software engineering. In: Proc. of the 26" IEEE/ACM In-
ternational Conference on Automated Software Engineering (ASE’11), pp.
3-12.

Alur, R., Henzinger, T. A., Kupferman, O., Vardi, M. Y., 1998. Alternating
refinement relations. In: Sangiorgi, D., de Simone, R. (Eds.), CONCUR,
Springer. pp. 163-178.

Anand, S., Godefroid, P., Tillmann, N., 2008. Demand-driven compositional
symbolic execution. In: Proc. of the 14th International Conference on Tools
and Algorithms for the Construction and Analysis of Systems, pp. 367-381.
Springer.

Anand, S., Harrold, M. J., 2011. Heap cloning: Enabling dynamic symbolic
execution of Java programs. In: Proc. of the 26th IEEE/ACM International
Conference on Automated Software Engineering (ASE’11), pp. 33—42.

Anand, S., Orso, A., Harrold, M. J., 2007. Type-dependence analysis and pro-
gram transformation for symbolic execution. In: Proc. of the the 13th In-
ternational Conference on Tools and Algorithms for the Construction and
Analysis of Systems, pp. 117-133.

Anand, S., Pasareanu, C. S., Visser, W., 2009. Symbolic execution with ab-
straction. International Journal on Software Tools for Technology Transfer
11, 53-67.

Antoniol, G., Di Penta, M. and Harman, M., 2011. The use of search-based op-
timization techniques to schedule and staff software projects: An approach
and an empirical study. Software — Practice and Experience 41(5), 495-
519.

Arcuri, A., 2008. On the automation of fixing software bugs. In: Proc. of
the Doctoral Symposium of the IEEE International Conference on Software
Engineering (ICSE 08), pp. 1003-1006. ACM.

Arcuri, A. and Briand, L., 2011. Adaptive random testing: An illusion of
effectiveness? In: Proc. of the 20th International Symposium on Software
Testing and Analysis, pp. 265-275.

Arcuri, A. and Yao, X., 2007. Coevolving programs and unit tests from their
specification. In: Proc. of the 22nd IEEE/ACM International Conference on
Automated Software Engineering (ASE’07), pp. 397-400. ACM.

Arcuri, A. and Yao, X., 2008. A novel co-evolutionary approach to automatic
software bug fixing. In: Proc. of the IEEE Congress on Evolutionary Com-
putation (CEC *08), pp. 162—-168. IEEE Computer Society.

Baars, A., Harman, M., Hassoun, M., Lakhotia, Y. K., McMinn, P., Tonella,
P. and Vos, T., 2011. Symbolic search-based testing. In:Proc. of the 26"
IEEE/ACM International Conference on Automated Software Engineering
(ASE’11), pp. 53 - 62.

23

Bertolino, A., 2007. Software testing research: achievements, challenges,
dreams. In: Proc. of the 1st Workshop on Future of Software Engineering
(FOSE ’07) at ICSE 2007, pp. 85 - 103.

Binder, B., 2012. Open source tools for model-based testing.
http://www.robertvbinder.com/robertvbinder.com/
open-source-tools-for-model-based-testing.

Bjgrner, N., Tillmann, N., Voronkov, A., 2009. Path feasibility analysis for
string-manipulating programs. In: Proc. of the International Conference on
Tools and Algorithms for the Construction and Analysis of Systems, pp.
307-321.

Boonstoppel, P., Cadar, C., Engler, D. R., 2008. RWset: Attacking path ex-
plosion in constraint-based test generation. In: Proc. of the International
Conference on Tools and Algorithms for the Construction and Analysis of
Systems, pp. 351-366.

Borges, M., d’Amorim, M., Anand, S., Bushnell, D., Pasareanu, C., 2012. Sym-
bolic execution with interval constraint solving and meta-heuristic search.
In: Proc. of the International Conference on Software Testing, Verification
and Validation, pp. 111-120.

Bougé, L., Choquet, N., Fribourg, L., Gaudel, M. C., 1986. Test sets generation
from algebraic specifications using logic programming. Journal of Systems
and Software 6, 343-360.

Bouquet, F., Grandpierre, C., Legeard, B., Peureux, F., Vacelet, N., Utting,
M., 2007. A subset of precise UML for model-based testing, in: A-MOST,
ACM. pp. 95-104.

Briand,L. C., Feng, J. and Labiche, Y., 2002. Using genetic algorithms and
coupling measures to devise optimal integration test orders. In: Proce. of
International Conference on Software Engineering and Knowledge Engi-
neering (SEKE’02), pp. 43-50.

Brinksma, E., Grieskamp, W., Tretmans, J., 2005. 04371 summary — perspec-
tives of model-based testing. In: Brinksma, E., Grieskamp, W., Tretmans, J.
(Eds.), Perspectives of Model-Based Testing, Internationales Begegnungs-
und Forschungszentrum fiir Informatik (IBFI), Schloss Dagstuhl, Germany,
Dagstuhl, Germany. URL http://drops.dagstuhl.de/opus/
volltexte/2005/364.

Brinksma, E., Tretmans, J., 2000. Testing transition systems: An annotated bib-
liography. In: Cassez, F., Jard, C., Rozoy, B., Ryan, M.D. (Eds.), MOVEP,
Springer. pp. 187-195.

Brownlie, R., Prowse, J., Phadke, M. S., 1992. Robust testing of AT&T
PMX/StarMAIL using OATS, AT& T Technical Journal 71 (3), 41-47.

Brucker, A., Wolff, B., 2012. On theorem prover-based testing. Formal Aspects
of Computing, 1-3910.1007/s00165-012-0222-y.

Brumley, D., Poosankam, P., Song, D. X., 0002, J. Z., 2008. Automatic patch-
based exploit generation is possible: Techniques and implications. In: Proc.
of the IEEE Symposium on Security and Privacy, pp. 143-157.

Bryce, R., Colbourn, C., 2006. Prioritized interaction testing for pair-wise
coverage with seeding and constraints, Journal of Information and Software
Technology 48 (10), 960-970.

Bryce, R. C., Colbourn, C. J., 2007. One-test-at-a-time heuristic search for in-
teraction test suites. In: Proc. of the Conference on Genetic and Evolutionary
Computation (GECCO’07), Search Based Software Engineering Track, pp.
258-2609.

Burroughs, K., Jain, A., Erickson, R. L., 1994. Improved quality of protocol
testing through techniques of experimental design. In: Supercomm/IC: Proc.
of IEEE International Conference on Communications, pp. 745 — 752.

Cadar, C., Dunbar, D., Engler, D. R., 2008. KLEE: Unassisted and automatic
generation of high-coverage tests for complex systems programs. In: Proc.
of the Symposium on Operating Systems Design and Implementation, pp.
209-224.

Cadar, C., Godefroid, P., Khurshid, S., Pasareanu, C. S., Sen, K., Tillmann, N.,
Visser, W., 2011. Symbolic execution for software testing in practice: pre-
liminary assessment. In: Proc. of the International Conference on Software
Engineering (ICSE’11, pp. 1066-1071.

Cai, K.-Y., 2002. Optimal software testing and adaptive software testing in
the context of software cybernetics. Information and Software Technology,
44(14), 841-855.

Calvagna, A. and Gargantini, A., 2009. Combining satisfiability solving and
heuristics to constrained combinatorial interaction testing. In: Proc. of the
3rd International Conference on Tests and Proofs (TAP’09), pp. 27-42.

Calvagna, A. and Gargantini, A., 2010. A formal logic approach to constrained
combinatorial testing, Journal of Automated Reasoning 45, 331-358.

Campbell, C., Grieskamp, W., Nachmanson, L., Schulte, W., Tillmann, N.,

Veanes, M., 2005. Testing concurrent object-oriented systems with spec
explorer. In: Fitzgerald, J., Hayes, 1.J., Tarlecki, A. (Eds.), FM, Springer.
pp. 542-547.

Castro, M., Costa, M., Martin, J. P, 2008. Better bug reporting with better pri-
vacy. In: Proc. of the International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS’08), pp. 319—
328.

Chan, K. P,, Chen, T. Y. and Towey, D., 2006. Forgetting test cases. In:Proc. of
the 30th Annual International Computer Software and Application Confer-
ence (COMPSAC’06), pp. 485-492.

Chan, K. P, Chen, T. Y. and Towey, D., 2006. Restricted random testing:
Adaptive random testing by exclusion. International Journal of Software
Engineering and Knowledge Engineering 16(4), 553-584.

Chen, T. Y., Eddy, G. R., Merkel, G. and Wong, P. K., 2004. Adaptive ran-
dom testing through dynamic partitioning. In:Proc. of the 4th International
Conference on Quality Software (QSIC’04, pp. 79-86.

Chen, T. Y., Kuo, F.-C. and Liu, H., 2009. Adaptive random testing based on
distribution metrics. Journal of Systems and Software 82(9), 1419-1433.
Chen, T. Y., Kuo, F.-C. and Merkel, R. G., 2006. On the statistical properties
of testing effectiveness measures. Journal of Systems and Software 79(5),

591-601.

Chen, T. Y., Kuo, F.-C., Merkel, R. G. and Ng, S. P., 2004. Mirror adaptive
random testing. Information and Software Technology 46(15), 1001-1010.

Chen, T. Y., Kuo, E-C., Merkel, R. G. and Tse, T. H., 2010. Adaptive random
testing: the ART of test case diversity. Journal of Systems and Software
83(1), 60-66.

Chen, T. Y., Kuo, F.-C. and Zhou, Z. Q., 2007. On favourable conditions for
adaptive random testing. International Journal of Software Engineering and
Knowledge Engineering 17(6), 805-825.

Chen, T. Y., Leung, H. and Mak, I. K., 2004. Adaptive random testing. In:Proc.
of the 9th Asian Computing Science Conference, LNCS 3321, pp. 320-329.

Chen, T. Y. and Merkel, R. 2008. An upper bound on software testing effective-
ness. ACM Transactions on Software Engineering and Methodology 17(3),
16:1-16:27.

Chen, T. Y., Tse, T. H. and Yu, Y. T. 2001. Proportional sampling strategy:
A compendium and some insights. Journal of Systems and Software 58(1),
65-81.

Chicano, F. and Alba, E., 2005. Management of software projects with GAs.
In: Proc. of the 6 Metaheuristics International Conference (MIC’05).

Chipounov, V., Kuznetsov, V., Candea, G., 2011. S2e: a platform for in-vivo
multi-path analysis of software systems. In: Proc. of the 16th International
Conference on Architectural Support for Programming Languages and Op-
erating Systems (ASPLOS’11), pp. 265-278.

Chow, T., 1978. Testing software design modeled by finite-state machines.
IEEE Transactions on Software Engineering 4, 178—187.

Ciupa, I., Leitner, A. Oriol, M. and Meyer, B., 2008. ARTOO: Adaptive ran-
dom testing for object-oriented software. In: Proc. of the 30th International
Conference on Software Engineering (ICSE’08), pp. 71-80.

Claessen, K., Hughes, J., 2000. QuickCheck: a lightweight tool for random
testing of haskell programs. In: Odersky, M., Wadler, P. (Eds.), Proc. of the
5th ACM SIGPLAN International Conference on Functional Programming
(ICFP’00), ACM. pp. 268-279.

Clements, P., Northrop, L. M., 2001. Software Product Lines: Practices and
Patterns, Addison Wesley.

Cochran, W. G., Cox, G. M., 1957. Experimental Designs, 2nd Edition, J.
Wiley & Sons, Inc., New York.

Cohen, D. M., Dalal, S. R., Parelius, J., Patton, G. C., 1996. The combinatorial
design approach to automatic test generation. IEEE Software 13 (5), 83-88.

Cohen, D. M., Dalal, S. R., Fredman, M. L., Patton, G. C., 1997. The AETG
system: an approach to testing based on combinatorial design. IEEE Trans-
actions on Software Engineering 23 (7), 437-444.

Cohen, M. B., Colbourn, C. J., Gibbons, P. B., Mugridge, W. B., 2003. Con-
structing test suites for interaction testing. In: Proc. of the 25th International
Conference on Software Engineering (ICSE’03), pp. 38—48.

Cohen, M. B., Colbourn, C. J., Collofello, J., Gibbons, P. B., Mugridge, W. B.,
2003. Variable strength interaction testing of components. In: Proc. of the
27th IEEE International Computer Software and Applications Conference
(COMPSAC’03), pp. 413-418.

Cohen, M. B., Colbourn, C. J., Ling, A. C. H., 2003. Augmenting simulated
annealing to build interaction test suites. In: Proc. of the 14th IEEE Inter-
national Symposium on Software Reliability Engineering (ISSRE’03), pp.

24

394-405.

Cohen, M. B., Dwyer, M. B., Shi, J., 2006. Coverage and adequacy in software
product line testing. In: Proc. of the ISSTA 2006 Workshop on the Role of
Architecture for Testing and Analysis (ROSATEA ’06), pp. 53—63.

Cohen, M. B., Dwyer, M. B. Shi, J. ,2008. Constructing interaction test suites
for highly-configurable systems in the presence of constraints: A greedy
approach. IEEE Transactions on Software Engineering 34 (5), 633-650.

Cohen, M. B., Gibbons, P. B., Mugridge, W. B. and Colbourn, C. J., 2003.
Constructing test suites for interaction testing. In:Proc. of the 25th Inter-
national Conference on Software Engineering (ICSE’03), pp. 38-48. IEEE
Computer Society.

Colanzi, T. E., Assuncdo, W. K. G., Vergilio, S. R. and Pozo, A. T.R., 2011. In-
tegration test of classes and aspects with a multi-evolutionary and coupling-
based approach. In: Proc. of the 3rd International Symposium on Search
Based Software Engineering (SSBSE ’11). Springer.

Colbourn, C. J., 2004. Combinatorial aspects of covering arrays. Le Matem-
atiche (Catania) 58, 121-167.

Colbourn, C. J., 2012. Covering array tables. Available at http://www.
public.asu.edu/~ccolbou/src/tabby/catable.html.

Colbourn, C. J., Cohen, M. B., Turban, R. C. , 2004. A deterministic den-
sity algorithm for pairwise interaction coverage. In: Proc. of the IASTED
International Conference on Software Engineering, pp. 345-352.

Colbourn, C., McClary, D., 2008. Locating and detecting arrays for interaction
faults. Journal of Combinatorial Optimization 15 (1), 17-48.

Czerwonka, J., 2006. Pairwise testing in real world. In: Proc. of the Pacific
Northwest Software Quality Conference, pp. 419-430.

Dalal, S. R., Jain, A., Patton, G., Rathi, M., Seymour, P., 1998. AETG’"web:
a Web based service for automatic efficient test generation from functional
requirements. In: Proc. of the 2nd IEEE Workshop on Industrial Strength
Formal Specification Techniques (WIFT’98), pp. 84-85.

Dan, H., Hierons, R.M., 2011. Conformance testing from message sequence
charts, in: Proc. of the 4th IEEE International Conference on Software Test-
ing, Verification and Validation (ICST’11), pp. 279-288. IEEE Computer
Society.

Derderian, K., Hierons, R., Harman, M. and Guo, Q., 2006. Automated
Unique Input Output sequence generation for conformance testing of FSMs.
The computer Journal 49(3), 331-344.

Dick, J., Faivre, A., 1993. Automating the generation and sequencing of
test cases from model-based specifications. In: Woodcock, J., Larsen, P.G.
(Eds.), FME ’93: Industrial-Strength Formal Methods, LNCS 670, pp. 268—
284. Springer.

Dumlu, E., Yilmaz, C., Cohen, M. B., Porter, A., 2011. Feedback driven adap-
tive combinatorial testing. In: Proc. of the 2011 International Symposium on
Software Testing and Analysis ISSTA’11), pp. 243-253.

Dunietz, 1. S., Ehrlich, W. K., Szablak, B. D., Mallows, C. L., Tannino, A.,
1997. Applying design of experiments to software testing. In: Proc. of
the 19th International Conference on Software Engineering, (ICSE’97), pp.
205-215.

Dutertre, B., de Moura, L., 2006. A Fast Linear-Arithmetic Solver for
DPLL(T). In: Proc. of the 18th International Conference on Computer Aided
Verification (CAV’06), pp. 81-94.

Ehrig, H., Mahr, B., 1985. Fundamentals of Algebraic Specification 1: Equa-
tions and Initial Semantics. volume 6 of Monographs in Theoretical Com-
puter Science. An EATCS Series. Springer.

Ernits, J. P, Kull, A., Raiend, K., Vain, J., 2006. Generating tests from efsm
models using guided model checking and iterated search refinement. In:
(Havelund et al., 2006). pp. 85-99. pp. 85-99.

ETSI, 201 1b. Requirements for Modelling Notations. Technical Report ES 202
951. ETSL

Fisher, R. A., 1971. The Design of Experiments, 8th Edition. Hafner Publishing
Company, New York.

Fouché, S., Cohen, M. B., Porter, A., 2009. Incremental covering array fail-
ure characterization in large configuration spaces. In: Proc. of the 18th In-
ternational Symposium on Software Testing and Analysis (ISSTA’09), pp.
177-187.

Feijs, L. M. G., Goga, N., Mauw, S., Tretmans, J., 2002. Test selection, trace
distance and heuristics. In: Schieferdecker, 1., Konig, H., Wolisz, A. (Eds.),
Testing of Communicating Systems XIV, Applications to Internet Technolo-
gies and Services, Proceedings of the IFIP 14th International Conference on
Testing Communicating Systems (TestCom 2002), pp. 267-282. Kluwer.

Frantzen, L., Tretmans, J., Willemse, T. A. C., 2004. Test generation based on

symbolic specifications, in: Grabowski and Nielsen (2005). pp. 1-15.

Fraser, G. and Zeller, A., 2010. Mutation-driven generation of unit tests and
oracles. In:Proc. of the 19th International Symposium on Software Testing
and Analysis (ISSTA’10), pp. 147-158. ACM.

Fraser, G. and Zeller, A., 2011. Exploiting common object usage in test case
generation. In:Proc. of the International Conference on Software Testing,
Verification and Validation (ICST’11), pp. 80-89. IEEE.

Free Software Foundation, 2012. GNU GCC compiler collection, Available at
http://gcc.gnu.org/.

Friedman, G., Hartman, A., Nagin, K., Shiran, T., 2002. Projected state ma-
chine coverage for software testing. In: Proc. of the 2002 International Sym-
posium on Software Testing and Analysis (ISSTA’02), pp. 134-143.

Ganesh, V., Dill, D. L., 2007. A decision procedure for bit-vectors and arrays.
In: Proc. of the 19th International Conference on Computer Aided Verifica-
tion (CAV’07), pp. 519-531.

Ganov, S. R., Killmar, C., Khurshid, S., Perry, D. E., 2008. Test generation
for graphical user interfaces based on symbolic execution. In: Proc. of the
3rd IEEE/ACM International Workshop on Automation of Software Test
(AST’08), pp. 33-40.

Garvin, B. J., Cohen, M. B., Dwyer, M. B., 2011. Evaluating improvements to a
meta-heuristic search for constrained interaction testing. Empirical Software
Engineering (EMSE) 16 (1), 61-102, Feb.

Gaudel, M. C., 1995. Testing can be formal, too. In: Mosses, P. D., Nielsen,
M., Schwartzbach, M.I. (Eds.), TAPSOFT’95: Proc. of the 6th International
Joint Conference on Theory and Practice of Software Development, LNCS
915, pp. 82-96. Springer.

Glover, F., Kochenberger, G. (Eds.), 2003.
Springer.

Godefroid, P., 2007. Compositional dynamic test generation. In: Proc. of the
34th annual ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages (POPL’07), pp. 47-54.

Godefroid, P., Kiezun, A., Levin, M. Y., 2008a. Grammar-based whitebox
fuzzing. In: Proc. of the ACM SIGPLAN 2008 Conference on Programming
Language Design and Implementation (PLDI’08), pp. 206-215.

Godefroid, P., Klarlund, N. and Sen, K., 2005. DART: directed automated
random testing. In: V. Sarkar and M. W. Hall, editors, Proc. of the ACM
SIGPLAN 2005 Conference on Programming Language Design and Imple-
mentation (PLDI’05), pp. 213-223. ACM.

Godefroid, P., Levin, M. Y., Molnar, D. A., 2008b. Automated whitebox fuzz
testing. In: Proc. of the 15th Annual Network and Distributed System Secu-
rity Symposium (NDSS’08).

Godefroid, P., Luchaup, D., 2011. Automatic partial loop summarization in
dynamic test generation. In: Proc. of the 2011 International Symposium on
Software Testing and Analysis (ISSTA’11, pp. 23-33.

Godefroid, P., Taly, A., 2012. Automated synthesis of symbolic instruction
encodings from I/O samples. In: Proc. of the ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI’ 12, pp. 441—
452.

Grabowski, J., Nielsen, B. (Eds.), 2005. Formal Approaches to Software Test-
ing, 4th International Workshop, FATES 2004, Linz, Austria, September 21,
2004, Revised Selected Papers. LNCS 3395, Springer.

Grechanik, M., Csallner, C., Fu, C., Xie, Q., 2010. Is data privacy always good
for software testing?, in: Proc. of the IEEE 21st International Symposium
on Software Reliability Engineering (ISSRE’10), pp. 368-377.

Grieskamp, W., 2006. Multi-paradigmatic model-based testing. In: (Havelund
et al., 2006), pp. 1-19.

Grieskamp, W., Gurevich, Y., Schulte, W., Veanes, M., 2002. Generating fi-
nite state machines from abstract state machines. In: Proc. of the 2002 In-
ternational Symposium on Software Testing and Analysis (ISSTA’02), pp.
112-122.

Grieskamp, W., Hierons, R. M., Pretschner, A., 2011a. 10421 Summary
— Model-Based Testing in Practice, in: Grieskamp, W., Hierons, R. M.,
Pretschner, A. (Eds.), Model-Based Testing in Practice, Schloss Dagstuhl
- Leibniz-Zentrum fuer Informatik, Germany, Dagstuhl, Germany. URL
http://drops.dagstuhl.de/opus/volltexte/2011/2925.

Grieskamp, W., Kicillof, N., 2006. A schema language for coordinating con-
struction and composition of partial behavior descriptions. In: Whittle, J.,
Geiger, L., Meisinger, M. (Eds.), Proc. of the 2006 International Work-
shop on Scenarios and State Machines: Models, Algorithms, and Tools
(SCESM’06), ACM. pp. 59-66.

Grieskamp, W., Kicillof, N., Stobie, K., Braberman, V. A., 2011b. Model-

Handbook of Metaheuristics.

25

based quality assurance of protocol documentation: tools and methodology.
Software Testing, Verification and Reliability (STVR) 21, 55-71.

Grieskamp, W., Kicillof, N., Tillmann, N., 2006a. Action machines: a frame-
work for encoding and composing partial behaviors. International Journal
of Software Engineering and Knowledge Engineering 16, 705-726.

Grieskamp, W., Nachmanson, L., Tillmann, N., Veanes, M., 2003. Test case
generation from AsmL specifications. In: Borger, E., Gargantini, A., Ric-
cobene, E. (Eds.), Abstract State Machines, Springer. p. 413.

Grieskamp, W., Qu, X., Wei, X., Kicillof, N., Cohen, M. B., 2009. Interaction
coverage meets path coverage by smt constraint solving. In: Nuifez, M.,
Baker, P., Merayo, M.G. (Eds.), Proc. of the Joint Conference of the 21st
IFIP International Conference on Testing of Communicating Systems and
9th International Workshop on Formal Approaches to Testing of Software
(TESTCOM/FATES’09), LNCS 5826, pp. 97-112. Springer.

Grieskamp, W., Tillmann, N., Schulte, W., 2006b. XRT - exploring runtime for
.net - architecture and applications. Electr. Notes Theor. Comput. Sci. 144,
3-26.

Grieskamp, W., Tillmann, N., Veanes, M., 2004. Instrumenting scenarios in a
model-driven development environment. Information & Software Technol-
ogy 46, 1027-1036.

Grosso, C. D., Antoniol, G., Penta, M. D., Galinier, P. and Merlo, E., 2005.
Improving network applications security: a new heuristic to generate stress
testing data. In: GECCO 2005: Proc. of the 2005 conference on Genetic
and evolutionary computation, volume 1, pp. 1037-1043. ACM.

Groz, R., Charles, O., Renévot, J., 1996. Relating conformance test coverage
to formal specifications. In: Gotzhein, R., Bredereke, J. (Eds.), Proc. of the
IFIP TC6/6.1 International Conference on Formal Description Techniques
IX/Protocol Specification, Testing and Verification XVI (FORTE’96), pp.
195-210. Chapman & Hall.

Harman, M., 2008. Open problems in testability transformation. In: Proc. of
the 1st International Workshop on Search Based Testing (SBT*08), Keynote
paper.

Harman, M., 2011. Software engineering meets evolutionary computation.
IEEE Computer, 44(10), 31-39.

Harman, M., Islam, F., Xie, T. and Wappler, S., 2009. Automated test
data generation for aspect-oriented programs. In: Proc. of the 8 Interna-
tional Conference on Aspect-Oriented Software Development (AOSD’09),
pp. 185-196.

Harman, M., Jia, Y. and Langdon, B.,2011. Strong higher order mutation-
based test data generation. In: Proc. of the 8 European Software Engineer-
ing Conference and the ACM SIGSOFT Symposium on the Foundations of
Software Engineering (ESEC/FSE ’11), pp. 212-222. ACM.

Harman, M. and Jones, B. F.,, 2001. Search based software engineering. Infor-
mation and Software Technology 43(14):833-839.

Harman, M., Kim, S. G., Lakhotia, K., McMinn, P. and Yoo, S., 2010. Opti-
mizing for the number of tests generated in search based test data generation
with an application to the oracle cost problem. In: Proc. of the 3" Inter-
national Workshop on Search-Based Software Testing (SBST’10), pp. 182 -
191.

Harman, M., Lakhotia, K. and McMinn, P., 2007. A multi-objective approach
to search-based test data generation. In: Proc. of the 9" Annual Conference
on Genetic and Evolutionary Computation(GECCO’07), pp. 1098 — 1105.
ACM Press.

Harman, M., Mansouri, A. and Zhang, Y., 2009. Search based software engi-
neering: A comprehensive analysis and review of trends techniques and ap-
plications. Technical Report TR-09-03, Department of Computer Science,
King’s College London, April.

Harman, M. and McMinn, P., 2010. A theoretical and empirical study of
search based testing: Local, global and hybrid search. IEEE Transactions
on Software Engineering 36(2), 226-247.

Hartman, A., 2002. Model-Based Test Generation Tools. Technical Re-
port. AGEDIS Consortium. http://www.agedis.de/documents/
ModelBasedTestGenerationTools_cs.pdf.

Hartman, A. and Raskin, L., 2004. Problems and algorithms for covering
arrays. Discrete Math 284, 149 — 156.

Hartmann, J., Vieira, M., Foster, H., Ruder, A., 2005. A UML-based approach
to system testing. Innovations in Systems and Software Engineering (ISSE)
1(1), 12-24.

Havelund, K., Niiiez, M., Rosu, G., Wolff, B. (Eds.), 2006. Formal Approaches
to Software Testing and Runtime Verification, First Combined International
‘Workshops, FATES 2006 and RV 2006, Seattle, WA, USA, August 15-16,

2006, Revised Selected Papers. LNCS 4262, Springer.

Helke, S., Neustupny, T., Santen, T., 1997. Automating test case generation
from Z specifications with Isabelle. In: Bowen, J.P., Hinchey, M.G., Till,
D. (Eds.), Proc. of the 10th International Conference of Z Users on The Z
Formal Specification Notation (ZUM’97), pp. 52—71.Springer.

Hemmati, H., Arcuri, A., and Briand, L. 2010. Reducing the cost of model-
based testing through test case diversity. In: Proc. of the 22nd IFIP Interna-
tional Conference on Testing Software and System (ICTSS’10), pp. 63-78.

Hemmati, H., Arcuri, A. and Briand, L. 2011. Empirical investigation of the
effects of test suite properties on similarity-based test case selection. In:
Proc. of the 4th International Conference on Software Testing, Verification
and Validation (ICST’11, pp. 327-336.

Hierons, R. M., 2010. Reaching and distinguishing states of distributed sys-
tems. SIAM J. Comput. 39, 3480-3500.

Hierons, R. M., Merayo, M. G., Niiez, M., 2008. Implementation relations
for the distributed test architecture. In: Suzuki, K., Higashino, T., Ulrich,
A., Hasegawa, T. (Eds.), Testing of Software and Communicating Systems:
Proc. of the Joint Conference of the 20th IFIP TC 6/WG 6.1 International
Conference on Testing of Software and Communicating Systems and the
8th International Workshop on Formal Approaches to Testing of Software
(TestCom/FATES’08).. LNCS 5047, pp. 200-215.Springer.

Hierons, R. M., Ural, H., 2008. The effect of the distributed test architecture on
the power of testing. Comput. J. 51, 497-510.

Hnich, B., Prestwich, S., Selensky, E., Smith, B., 2006. Constraint models for
the covering test problem. Constraints 11, 199-219.

Huima, A., 2007. Implementing conformiq qtronic. In: Petrenko, A., Veanes,
M., Tretmans, J., Grieskamp, W. (Eds.), Testing of Software and Com-
municating Systems: Proc. of the Joint Conference of the 19th IFIP In-
ternational Conference on Testing of Communicating Systems and 7th In-
ternational Workshop on Formal Approaches to Testing of Software (Test-
Com/FATES’07), LNCS 4581, pp. 1-12.Springer.

Huo, J., Petrenko, A., 2005. Covering transitions of concurrent systems through
queues. In: Proc. of the 16th IEEE International Symposium on Software
Reliability Engineering, (ISSRE’05), pp. 335-345.

Inkumsah, K. and Xie, T., 2007. Evacon: a framework for integrating evo-
lutionary and concolic testing for object-oriented programs. In: Stirewalt,
R.E.K., Egyed, A. and Fischer, B., editors, Proc. of the 22nd IEEE/ACM In-
ternational Conference on Automated Software Engineering (ASE’07), pp.
425-428. ACM.

Igbal, M. Z., Arcuri, A. and Briand, L. 2011. Automated system testing of real-
time embedded systems based on environment models. Technical Report
2011-19, Simula Research Laboratory.

Jard, C., Jéron, T., 2005. TGV: theory, principles and algorithms. International
Journal on Software Tools for Technology Transfer (STTT) 7, 297-315.
Jayaraman, K., Harvison, D., Ganeshan, V., Kiezun, A., 2009. A concolic
whitebox fuzzer for Java. In: Proc. of the 1st NASA Formal Methods Sym-

posium, pp. 121-125.

Jeannet, B., Jéron, T., Rusu, V., Zinovieva, E., 2005. Symbolic test selection
based on approximate analysis. In: Halbwachs, N., Zuck, L.D. (Eds.), Proc.
of the 11th international conference on Tools and Algorithms for the Con-
struction and Analysis of Systems (TACAS’05), pp. 349-364. Springer.

Kaplan, M., Klinger, T., Paradkar, A. M., Sinha, A., Williams, C., Yilmaz, C.,
2008. Less is more: A minimalistic approach to UML model-based confor-
mance test generation. In: Proc. of The 1st IEEE International Conference
on Software Testing Verification and Validation (ICST’08), pp. 82-91.IEEE
Computer Society.

Katara, M., Kervinen, A., 2006. Making model-based testing more agile: A use
case driven approach. In: Bin, E., Ziv, A., Ur, S. (Eds.), Haifa Verification
Conference, pp. 219-234. Springer.

Kihkonen, K., Launiainen, T., Saarikivi, O., Kauttio, J., Heljanko, K., Niemel4,
I, 2011. LCT: An open source concolic testing tool for Java programs. In:
Proc. of the 6th Workshop on Bytecode Semantics, Verification, Analysis
and Transformation (Bycode’11), pp. 75-80.

Khurshid, S., Pasareanu, C., Visser, W., 2003. Generalized symbolic execution
for model checking and testing. In: Proc. of the 9th International Confer-
ence on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS’03), pp. 553-568.

Khurshid, S., Suen, Y. L., 2005. Generalizing symbolic execution to library
classes, in: Proc. of the 6th Workshop on Program Analysis for Software
Tools and Engineering (PASTE’05), pp. 103—110.

King, J. C., 1975. A new approach to program testing. In: Programming

26

Methodology. LNCS Vol. 23, pp. 278-290.

Kuhn, D., Higdon, J., Lawrence, J., Kacker, R., Lei,, Y.,2012. Combinatorial
methods for event sequence testing. In: Proc. of the 5th IEEE International
Conference on Software Testing, Verification and Validation (ICST *12), pp.
601-609.

Kuhn, D. and Okun, V., 2006. Pseudo-exhaustive testing for software. In:
Proc. of the 30th NASA/IEEE Software Engineering Workshop (SEW’06),
pp. 153-158.

Kuhn, D., Wallace, D. R., Gallo, A. M., 2004. Software fault interactions and
implications for software testing. IEEE Transactions on Software Engineer-
ing 30 (6), 418-421.

Kuliamin, V. V., Petrenko, A. K., Kossatchev, A., Burdonov, I. B., 2003. The
UniTesK approach to designing test suites. Programming and Computer
Software 29, 310-322.

Kuo, E.-C., 2006. On Adaptive Random Testing. PhD thesis, Faculty of Infor-
mation and Communication Technologies, Swinburne University of Tech-
nology.

Lakhotia, K., Harman, M. and McMinn, P., 2008. Handling dynamic data
structures in search based testing. In: Proc. of the 10™ annual conference
on Genetic and evolutionary computation (GECCO’08), pp. 1759 — 1766.
ACM Press.

Lakhotia,K., McMinn,P. and Harman, M., 2010. An empirical investigation
into branch coverage for C programs using CUTE and AUSTIN. Journal of
Systems and Software, 83(12), 2379-2391.

Lakhotia, K., Tillmann, N., Harman, M., de Halleux, J., 2010. Flopsy - Search-
based floating point constraint solving for symbolic execution. In: Proc. of
the 23rd IFIP International Conference on Testing Software and Systems
(ICTSS’10), pp. 142-157.

Larsen, K. G., Mikucionis, M., Nielsen, B., 2004. Online testing of real-time
systems using UPPAAL, in: Grabowski and Nielsen (2005). pp. 79-94. pp.
79-94.

Lee, D., Yannakakis, M., 1996. Principles and methods of testing finite state
machines - a survey. In: Proceedings of the IEEE 84(8), 1090-1123. IEEE
Computer Society Press.

Legeard, B., Peureux, F., Utting, M., 2002. Automated boundary testing from
Z and B. In: Eriksson, L. H., Lindsay, P. A. (Eds.), FME 2002:Formal
methods-Getting IT Right, LNCS 2391, pp. 21-40. Springer.

Legeard, B., Utting, M., 2010. Model-based testing — next generation functional
software testing. Journal of Software Technology 12. http://journal.
thedacs.com/issue/52/145.

Lei, Y., Kacker, R., Kuhn, D. R., Okun, V., Lawrence, J., 2008. Ipog-ipog-
d: efficient test generation for multi-way combinatorial testing. Software
Testing Verification and Reliability 18, 125-148.

Lin, Y., Tang, X., Chen, Y. and Zhao, J., 2009. A divergence-oriented ap-
proach to adaptive random testing of Java programs. In: Proc. of the 2009
IEEE/ACM International Conference on Automated Software Engineering
(ASE’09), pp. 221-232.

Liu, M.-H., Gao, Y.-F,, Shan, J.-H., Liu, J.-H., Zhang, L. and Sun, J.-S.,2006.
An Approach to Test Data Generation for Killing Multiple Mutants. In:
Proc. of the 22nd IEEE International Conference on Software Maintenance
(ICSM’06), pp. 113-122.

Liu, H., Xie, X., Yang,J., Lu, Y., and Chen, T. Y. 2011. Adaptive random
testing through test profiles. Software: Practice and Experience, 41(10),
1131-1154.

Ma, K. K., Khoo, Y. P, Foster, J. S., Hicks, M., 2011. Directed symbolic
execution. In: Proc. of the 18th International Conference on Static Analysis
(SAS’11), pp. 95-111.

Malaiya, Y. K., 1995. Antirandom testing: Getting the most out of black-box
testing. In: Proc. of the 6th International Symposium on Software Reliability
Engineering (ISSRE’95, pp. 86-95.

Mandl, R., 1985. Orthogonal Latin squares: an application of experiment de-
sign to compiler testing. Communications of the ACM 28 (10), 1054—1058.

Majumdar, R., Saha, I., 2009. Symbolic robustness analysis. In: Proc. of the
30th IEEE Real-Time Systems Symposium (RTSS’09), pp. 355-363.

Majumdar, R., Sen, K., 2007. Hybrid concolic testing. In: Proc. of the 29th
International Conference on Software Engineering (ICSE’07), pp. 416-426.

Majumdar, R., Xu, R. G., 2007. Directed test generation using symbolic gram-
mars. In: Proc. of the 22nd IEEE/ACM International Conference on Auto-
mated Software Engineering (ASE’07), pp. 134-143.

Majumdar, R., Xu, R. G., 2009. Reducing test inputs using information par-
titions. In: Proc. of the 21st International Conference on Computer Aided

Verification (CAV’09), pp. 555-569.

Mayer, J., 2005. Lattice-based adaptive random testing. In: Proc. of the 20th
IEEE/ACM International Conference on Automated Software Engineering
(ASE’05), pp. 333-336.

McGregor, J. D., 2001. Testing a software product line. Tech. rep. No. cmu/sei-
2001-tr-022, Carnegie Mellon Software Engineering Institute.

McMinn, P, 2004. Search-based software test data generation: A survey. Soft-
ware Testing, Verification and Reliability 14(2), 105-156.

McMinn, P, 2011. Search-based software testing: Past, present and future. In:
Proc. of the 4th International Workshop on Search-Based Software Testing
(SBST 2011), pp. 153-163. IEEE.

McMinn, P., Binkley, D. and Harman, M., 2009. Empirical evaluation of a nest-
ing testability transformation for evolutionary testing. ACM Transactions on
Software Engineering Methodology, 18(3), 11:1-11:27.

McMinn, P., Harman, M., Hassoun, Y., Lakhotia, K. and Wegener, J., 2012.
Input domain reduction through irrelevant variable removal and its effect on
local, global and hybrid search-based structural test data generation. IEEE
Transactions on Software Engineering 38(2), 453—477.

McMinn, P., Shahbaz, M. and Stevenson, M., 2012. Search-based test input
generation for string data types using the results of web queries. In: Proc.
of the 5th International Conference on Software Testing, Verification and
Validation (ICST’12).

McMinn, P, Stevenson, M. and Harman, M., 2010. Reducing qualita-
tive human oracle costs associated with automatically generated test data.
In:Proc. of the 1*' International Workshop on Software Test Output Valida-
tion (STOV’10), pp. 1-4.

Merkel, R. G., 2005. Analysis and Enhancements of Adaptive Random Test-
ing. PhD thesis, School of Information Technology, Swinburne University
of Technology.

Michael, C., McGraw, G. and Schatz, M., 2001. Generating software test data
by evolution. IEEE Transactions on Software Engineering 27(12), 1085-
1110.

de Moura, L. M., Bjgrner, N., 2008. Z3: An efficient SMT solver. In: Proc.
of the 14th International Conference on Tools and Algorithms for the Con-
struction and Analysis of Systems (TACAS’08), pp. 337-340.

Nachmanson, L., Veanes, M., Schulte, W., Tillmann, N., Grieskamp, W., 2004.
Optimal strategies for testing nondeterministic systems. In: Avrunin, G. S.,
Rothermel, G. (Eds.), Proc. of the 2004 ACM SIGSOFT International Sym-
posium on Software Testing and Analysis (ISSTA’04), pp. 55-64.

Naito, S., Tsunoyama, M., 1981. Fault detection for sequential machines by
transition-tours. In: Proc. of the 11th annual International Symposium on
Fault-Tolerant Computing (FTCS’81), pp. 238-243.

Ngo, M. N., Tan, H. B. K., 2007. Detecting large number of infeasible paths
through recognizing their patterns. In: Joint meeting of the European Soft-
ware Engineering Conference and the ACM SIGSOFT Symposium on the
Foundations of Software Engineering, pp. 215-224.

Nguyen, C., Perini, A., Tonella, P., Miles, S., Harman, M. and Luck, M.,
2009. Evolutionary testing of autonomous software agents. In: Proc. of the
8" International Conference on Autonomous Agents and Multiagent Sys-
tems (AAMAS’09), pp. 521-528.

Nie, C., Leung, H., 2011. A survey of combinatorial testing. ACM Computing
Surveys 43 (2), 1-29.

Nielsen, B., Skou, A., 2003. Automated test generation from timed automata.
International Journal on Software Tools for Technology Transfer (STTT) 5,
59-77.

Nurmela, K., 2004. Upper bounds for covering arrays by tabu search. Discrete
Applied Mathematics 138 (1-2), 143-152.

Offutt, A. J., Abdurazik, A., 1999. Generating tests from UML specifications.
In: France, R. B., Rumpe, B. (Eds.), Proc. of the 2nd International Confer-
ence on The Unified Modeling Language: Beyond the Standard (UML’99),
pp. 416-429. Springer.

Ostrand, T. J. and Balcer, M. J., 1988. The category-partition method for speci-
fying and generating functional tests. Communications of the ACM 31, 678—
686.

Papadakis, M. and Malevris, N., 2010. Automatic mutation test case gener-
ation via dynamic symbolic execution. In: Proc. of the 21st International
Symposium on Software Reliability Engineering (ISSRE’10).

Pasareanu, C. S., Mehlitz, P. C., Bushnell, D. H., Gundy-Burlet, K., Lowry, M.
R., Person, S., Pape, M., 2008. Combining unit-level symbolic execution
and system-level concrete execution for testing NASA software. In: Interna-
tional Symposium on Software Testing and Analysis (ISSTA’08), pp. 15-26.

27

Pasareanu, C. S., Rungta, N., 2010. Symbolic PathFinder: Symbolic execution
of Java bytecode. In: Proc. of the 25th IEEE/ACM International Conference
on Automated Software Engineering (ASE’10), pp. 179-180.

Pasareanu, C. S., Rungta, N., Visser, W., 2011. Symbolic execution with mixed
concrete-symbolic solving. In: Proc. of 2011 International Symposium on
Software Testing and Analysis (ISSTA’11), pp. 34—44.

Pasareanu, C. S., Visser, W., 2009. A survey of new trends in symbolic exe-
cution for software testing and analysis. International Journal on Software
Tools for Technology Transfer 11, 339-353.

Paulson, L. C., 1994. Isabelle - A Generic Theorem Prover (with a contribution
by T. Nipkow). LNCS 828, Springer.

Perrouin, G., Sen, S., Klein, J., Baudry, B., Traon, Y. 1., 2010. Automated and
scalable t-wise test case generation strategies for software product lines. In:
Proc. of the Third International Conference on Software Testing, Verification
and Validation (ICST’10), pp. 459-468.

Pezzeé, M. and Young, M., 2007. Software Testing and Analysis - Process,
Principles and Techniques. Wiley.

Plat, N., Larsen, P. G., 1992. An overview of the iso/vdm-sl standard. SIG-
PLAN Notice. 27, 76-82.

Qi, D., Roychoudhury, A., Liang, Z., Vaswani, K., 2009. Darwin: An approach
for debugging evolving programs. In: Proc. of the 2009 Joint meeting of
the European Software Engineering Conference and the ACM SIGSOFT
Symposium on the Foundations of Software Engineering, pp. 33-42.

Qu, X., Cohen, M. B. and Rothermel, G., 2008. Configuration-aware regres-
sion testing: An empirical study of sampling and prioritization. In: Proc. of
the 2008 International Symposium on Software Testing and Analysis (IS-
STA’08), pp. 75-85.

Qu, X., Cohen, M. B. and Woolf, K. M., 2007. Combinatorial interaction re-
gression testing: A study of test case generation and prioritization. In: Proc.
of the 23rd International Conference on Software Maintenance (ICSM’07),
pp- 255-264.

Santelices, R. A., Chittimalli, P. K., Apiwattanapong, T., Orso, A., Harrold, M.
J., 2008. Test-suite augmentation for evolving software. In: Proc. of the 23rd
IEEE/ACM International Conference on Automated Software Engineering
(ASE’08), pp. 218-227.

Santelices, R. A., Harrold, M. J., 2010. Exploiting program dependencies for
scalable multiple-path symbolic execution. In: Proc. of the 2010 Interna-
tional Symposium on Software Testing and Analysis (ISSTA’10), pp. 195—
206.

Saxena, P., Poosankam, P., McCamant, S., Song, D., 2009. Loop-extended
symbolic execution on binary programs. In: Proc. of the 2010 International
Symposium on Software Testing and Analysis (ISSTA’10), pp. 225-236.

Segall, I., Tzoref-Brill, R., Farchi, E., 2011. Using binary decision diagrams
for combinatorial test design. In: Proc. of the 2011 International Symposium
on Software Testing and Analysis (ISSTA’11), pp. 254-264.

Sen, K., Agha, G., 2006. CUTE and jCUTE: Concolic unit testing and explicit
path model-checking tools. In: Proc. of the 18th International Conference
on Computer Aided Verification (CAV’06), pp. 419-423.

Sen, K., Marinov, D., Agha, G., 2005. CUTE: A concolic unit testing engine for
C, in: proc. of the 2005 Joint meeting of the European Software Engineer-
ing Conference and the ACM SIGSOFT Symposium on the Foundations of
Software Engineering, pp. 263-272.

Shahbazi, A., Tappenden, A. F. and Miller, J., 2012. Centroidal voronoi tessel-
lations - a new approach to random testing. IEEE Transactions on Software
Engineering (in press).

Sherwood, G. B., 1994. Effective testing of factor combinations. In: Proc. of
the 3rd International Conference on Software Testing, Analysis & Review
(STAR’94), pp. 151-166.

Souza, M., Borges, M. d’Amorim, M. and Pasareanu, C. S., 2011. CORAL.:
Solving complex constraints for symbolic pathfinder. In: M. G. Bobaru,
K. Havelund, G. J. Holzmann, and R. Joshi (eds.), NASA Formal Meth-
ods - Third International Symposium (NFM’11), LNCS 6617, pp. 359-
374 .Springer.

Stardom, J., 2001. Metaheuristics and the search for covering and packing
arrays, Master’s thesis, Simon Fraser University.

Sterling, L., Shapiro, E. Y., 1994. The Art of Prolog - Advanced Programming
Techniques, 2nd Ed. MIT Press.

Tai, K. C. and Lei Y., 2002. A test generation strategy for pairwise testing.
IEEE Transactions on Software Engineering 28 (1), 109-111.

Tappenden, A. and Miller, J., 2009. A novel evolutionary approach for adaptive
random testing. IEEE Transactions on Reliability 58(4), 619-633.

Tappenden, A. and Miller, J., 2013. Automated cookie collection testing. ACM
Transactions on Software Engineering and Methodology (in press).

Tillmann, N., de Halleux, J., 2008. Pex-White box test generation for NET. In:
Proc. of the 2nd International Conference on Tests and Proofs (TAP’08), pp.
134-153.

Tomb, A., Brat, G. P, Visser, W., 2007. Variably interprocedural program anal-
ysis for runtime error detection. In: Proc. of the 2007 International Sympo-
sium on Software Testing and Analysis (ISSTA’07), pp. 97-107.

Tonella, P., 2004. Evolutionary testing of classes. In: Proc. of the 2004 ACM
SIGSOFT International Symposium on Software Testing and Analysis (IS-
STA *04), pp. 119-128. ACM.

Tretmans, J., 1996. Test Generation with Inputs, Outputs, and Repetitive Qui-
escence. Software—Concepts and Tools 17, 103-120.

Tretmans, J., 2008. Model Based Testing with Labelled Transition Systems. In:
Hierons, R., Bowen, J., Harman, M. (Eds.), Formal Methods and Testing,
pp. 1-38. Springer-Verlag.

Tretmans, J., Brinksma, E., 2003. TorX: Automated model based testing. In:
Proc. of the 1st European Conference on Model-Driven Software: Founda-
tions and Applications (ECMDA-FA’05), pp. 31-43.

Tung, Y., Aldiwan, W. S., 2000. Automating test case generation for the new
generation mission software system. In: Proc. of the IEEE Aerospace Con-
ference, pp. 431-437.

Utting, M., Legeard, B., 2007. Practical Model-Based Testing - A Tools Ap-
proach. Morgan Kaufmann.

Vasilevskii, M., 1973. Failure diagnosis of automata. Kibernetika , 98—108.

Veanes, M., Bjgrner, N., 2010. Alternating simulation and IOCO. In: Petrenko,
A., da Silva Simio, A., Maldonado, J. C. (Eds.), Proc. of the 22nd IFIP WG
6.1 International Conference on Testing Software and Systems (ICTSS’10),
pp. 47-62. Springer.

Veanes, M., Campbell, C., Grieskamp, W., Schulte, W., Tillmann, N., Nach-
manson, L., 2008. Model-based testing of object-oriented reactive systems
with Spec Explorer. In: Hierons, R. M., Bowen, J. P., Harman, M. (Eds.),
Formal Methods and Testing, pp. 39-76. Springer.

Veanes, M., Campbell, C., Schulte, W., 2007. Composition of model pro-
grams. In: Derrick, J., Vain, J. (Eds.), Proc. of the 27th IFIP WG 6.1 In-
ternational Conference on Formal Methods for Networked and Distributed
Systems (FORTE’07), pp. 128-142. Springer.

Veanes, M., de Halleux, P., Tillmann, N., 2010. Rex: Symbolic regular ex-
pression explorer. In: Proc. of the 3rd International Conference on Software
Testing, Verification and Validation (ICST’10), pp. 498-507.

Walcott, K. R., Soffa, M. L., Kapthammer, G. M. and Roos, R. S., 2006. Time
aware test suite prioritization. In: Proc. of the International Symposium on
Software Testing and Analysis (ISSTA’06), pp. 1 — 12. ACM Press.

Wegener, J. and Biihler, O., 2004. Evaluation of different fitness functions for
the evolutionary testing of an autonomous parking system. In:Genetic and
Evolutionary Computation Conference (GECCO 2004), LNCS 3103. pp.
1400-1412. Springer.

Wegener, J. and Grochtmann, M., 1998. Verifying timing constraints of real-
time systems by means of evolutionary testing. Real-Time Systems 15(3),
275 - 298.

Weyuker, E. J., 1979. Translatability and decidability questions for restricted
classes of program schemas. SIAM Journal on Computing 8(4), 587-598.

White, L. J. and Cohen, E. I., 1980. A domain strategy for computer program
testing. IEEE Transactions on Software Engineering 6(3), 247-257.

Wieczorek, S., Stefanescu, A., 2010. Improving testing of enterprise systems
by model-based testing on graphical user interfaces. In: Sterritt, R., Eames,
B., Sprinkle, J. (Eds.), Proc. of the 2010 17th IEEE International Conference
and Workshops on the Engineering of Computer-Based Systems (ECBS’10),
pp. 352-357.

Yilmaz, C., Cohen, M. B. and Porter, A., 2006. Covering arrays for efficient
fault characterization in complex configuration spaces. IEEE Transactions
on Software Engineering 31 (1), 20-34.

Yoo, S., Harman, M., Tonella, P. and Susi, A., 2009. Clustering test cases to
achieve effective and scalable prioritisation incorporating expert knowledge.
In: Proc. of the 2009 ACM International Conference on Software Testing
and Analysis (ISSTA 09), pp. 201-212.

Yuan, X., Cohen, M. and Memon, A., 2011. GUI interaction testing: Incor-
porating event context. IEEE Transactions on Software Engineering 37 (4),
559 -574.

Zhan, Y. and Clark, J. A., 2005. Search-based mutation testing for simulink
models. In: H.-G. Beyer and U.-M. O’Reilly, editors, Proc. of the 2005 Ge-

28

netic and Evolutionary Computation Conference (GECCO’05), pp. 1061-
1068. ACM.

Zhang, Y., Finkelstein, A. and Harman, M., 2008. Search based requirements
optimisation: Existing work and challenges. In: Proc. of the International
Working Conference on Requirements Engineering: Foundation for Soft-
ware Quality (REFSQ’08), LNCS 5025, pp. 88-94. Springer.

Zhang, P., Elbaum, S. G., Dwyer, M. B., 2011. Automatic generation of load
tests. In: Proc. of the 26th IEEE/ACM International Conference on Auto-
mated Software Engineering (ASE’11), pp. 43-52.

Zhou, B., Okamura, H. and Dohi T., 2013. Enhancing performance of random
testing through Markov chain Monte Carlo methods. IEEE Transactions on
Computers 62(1), 186 — 192.

Zhu, H., Hall, P. A. V. and May, J. H. R., 1997. Software unit test coverage and
adequacy. ACM Computing Surveys 29(4), pp. 366—427.

