

Interconnect Performance Requirements			
	Technology Generation		
	1.0 µm	0.1 µm	
MOSFET Intrinsic Switching Delay	~ 10 ps	~1 ps	
Interconnect Response Time (L _{int} = 1 mm)	~ 1 ps	~ 100ps	
Clock Frequency	~ 30 MHz	~ 2-3.5 GHz	
Supply Current (V _{dd} = 5.0, 1.0 V)	~ 2.5 A	~ 150 A	
Maximum Number of Wiring Levels	3	7-8	
Maximum Total Wire Length per Chip	~ 100 m	~ 5000 m	
Chip Pad Count	~200	~ 2000, 4000	
araswat		5524////	
tanford University 3		EE311/Interconnect	

Г

Carbon Nanotubes with Finite Electron Mean Free Path

- Even initially perfect nanotubes become disordered once they are physisorbed on a surface.
- Due to interference between incident and scattered electron waves, nanotube resistance increases exponentially with length:

$$R = R_0 e^{\frac{L}{2L_0}}$$

 R_0 : Resistance of defect free nanotube-bundles, theoretically: h/(4e2n)

*L*₀: Electron mean free path *L*: Length

Naeemi, Meindl (IEDM 2004)

iraswat		
anford University	8	EE311/Interconnect

