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Abstract 

 

Ocean color measured from satellites provides daily global, synoptic views of spectral water-

leaving reflectances that can be used to generate estimates of marine inherent optical properties 

(IOPs). These reflectances, namely the ratio of spectral upwelled radiances to spectral 

downwelled irradiances, describe the light exiting a water mass that defines its color. IOPs are 

the spectral absorption and scattering characteristics of ocean water and its dissolved and 

particulate constituents. Because of their dependence on the concentration and composition of 

marine constituents, IOPs can be used to describe the contents of the upper ocean mixed layer.  

This information is critical to further our scientific understanding of biogeochemical oceanic 

processes, such as organic carbon production and export, phytoplankton dynamics, and responses 

to climatic disturbances. Given their importance, the international ocean color community has 

invested significant effort in improving the quality of satellite-derived IOP products, both 

regionally and globally. Recognizing the current influx of data products into the community and 

the need to improve current algorithms in anticipation of new satellite instruments (e.g., the 

global, hyperspectral spectroradiometer of the NASA Plankton, Aerosol, Cloud, ocean 

Ecosystem (PACE) mission), we present a synopsis of the current state of the art in the retrieval 

of these core optical properties. Contemporary approaches for obtaining IOPs from satellite 

ocean color are reviewed and, for clarity, separated based their inversion methodology or the 

type of IOPs sought. Summaries of known uncertainties associated with each approach are 

provided, as well as common performance metrics used to evaluate them. We discuss current 

knowledge gaps and make recommendations for future investment for upcoming missions whose 

instrument characteristics diverge sufficiently from heritage and existing sensors to warrant 

reassessing current approaches.  
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Highlights 

 

 Ocean color algorithms for obtaining marine inherent optical properties are reviewed 

 Known uncertainties associated with each approach and knowledge gaps are discussed 

 Common performance metrics used to evaluate the satellite retrievals are provided 

 Recommendations for future investment for upcoming satellite missions are presented 
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1 Introduction 

Understanding oceanic response to the Earth’s changing climate, the ocean’s role in land-ocean-

atmosphere carbon cycles, regional marine ecosystems’ responses to hazards, variations across 

systems, and the health of aquatic fisheries and other critical habitats – to name only a few – 

requires access to substantial volumes of marine biogeochemical information (IOCCG, 2008; 

IOCCG, 2009). Ocean color satellite instruments not only collect data on temporal and spatial 

scales that cannot currently be achieved by conventional in situ or aircraft sampling platforms, 

but also provide data records that allow retrospective analyses of spatiotemporal trends. These 

instruments provide estimates of spectral water-leaving radiances – the light exiting a water mass 

that defines its color, leading to the colloquial discipline name ocean color. The scientific 

community has invested significant effort in the development of algorithms to derive marine 

biogeochemical and optical quantities from satellite measurements of ocean color (IOCCG, 

2006; IOCCG, 2014). With these algorithms, ocean color data records provide invaluable 

resources to study global and large-scale regional (e.g., Southern Ocean and North Atlantic) 

carbon stocks (Allison et al., 2010; Duforet-Gaurier et al., 2010; Gardner et al., 2006; Loisel et 

al., 2002; Siegel et al., 2014; Siegel et al., 2005; Stramska, 2009; Stramska & Stramski, 2005), 

phytoplankton population diversity and succession (IOCCG, 2014), phytoplankton physiology 

(Westberry et al., 2016; Westberry & Siegel, 2006), and oceanic productivity (Antoine et al., 

1996; Behrenfeld et al., 2005; Saba et al., 2011; Uitz et al., 2010). 

 

The continuous global data record from polar orbiting ocean color satellites in low Earth orbit 

(LEO) now spans twenty years and includes, but is not limited to, data collected by the following 

instruments: the NASA Sea-viewing Wide Field of View Sensor (SeaWiFS; 1997-2010), the 

NASA Moderate Resolution Imaging Spectroradiometers onboard Terra (MODIST; 1999-

present) and Aqua (MODISA; 2002-present), the ESA Medium Resolution Imaging 

Spectrometer (MERIS; 2002-2012), the NASA-NOAA Suomi National Polar-orbiting 

Partnership Visible Infrared Imaging Radiometer Suite (VIIRS; 2012-present), and the ESA 

Ocean and Land Colour Instrument (OLCI; 2016-present). Over this time span, the number of 

derived data products increased substantially given improvements in computing power, better 

and more diverse in situ measurements, improved knowledge of ocean optics, unlimited access 

to the data records, and the varied instrument characteristics of the satellite missions (e.g., their 
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spectral, spatial, and temporal resolutions). The interest in using satellite data records to support 

coupled hydrodynamic-biological modeling efforts (Dutkiewicz et al., 2015; Gnanadesikan et al., 

2010; Mannino et al., 2016; Rousseaux & Gregg, 2015) and management and decision making 

activities (Schaeffer et al., 2015) has also grown. Looking forward, upcoming instruments, such 

as the spectrometer to be flown as part of the NASA Plankton, Aerosol, Cloud, ocean Ecosystem 

mission (PACE; launch planned for 2022), will extend current ocean color records and will 

provide improved sensing systems, including increased spectral resolution (and, possibly, 

polarization information from a second instrument) that will undoubtedly expand interest in 

ocean color data records and stimulate derived product development activities. 

 

Recognizing the current influx of data products into the community and the forthcoming need to 

develop enhanced approaches that exploit the characteristics of new instruments, we present a 

synopsis of the current state of the art in the retrieval of a core suite of properties used in 

studying ocean biogeochemistry, namely spectral marine inherent optical properties (IOPs). IOPs 

are insensitive to changes in the light field and encompass the absorption and scattering 

properties of seawater and its particulate and dissolved constituents. Ocean color satellite 

instruments measure the spectral radiance emanating from the top of the atmosphere, Lt() (W 

cm
-2

 nm
-1

 sr
-1

) at, at least, discrete visible (VIS; 400-700 nm) and near-infrared (NIR; 700-1000 

nm) wavelengths. Generally speaking, two approaches exist to retrieve IOPs from satellite 

measurements of ocean color. The first approach, used in standard agency processing (e.g., 

NASA, NOAA, and ESA), applies atmospheric correction (AC) algorithms to remove the 

contribution of the atmosphere from the total signal at the top of the atmosphere and produce 

estimates of remote-sensing reflectances, Rrs() (sr
-1

), the light exiting the water normalized to a 

hypothetical condition of an overhead Sun and no atmosphere (Gordon & Clark, 1980; Gordon 

& Wang, 1994) (paths 1  2  4 or 1  2  3  4 in Fig. 1). In the field, Rrs() is calculated 

as the ratio of water-leaving radiance, Lw() (W cm
-2

 nm
-1

 sr
-1

), to downwelling irradiance just 

above the air-sea interface, Es() (W cm
-2

 nm
-1

).  Since Rrs() is an apparent optical property, 

that is, it is dependent upon the details of the light field, field measurements are generally made 

as close to the time of the local satellite overpass(es) as possible. Algorithms are then applied to 

the Rrs() to produce estimates of geophysical properties, such as IOPs (IOCCG, 2006; Werdell 

et al., 2013a). The second approach relates Lt() directly to IOPs or an optical proxy for a 
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biogeochemical stock (Hu, 2009; Matthews et al., 2012; Wynne et al., 2013), circumventing the 

need for AC that can sometimes be confounded by absorbing aerosols and optically complex 

water masses (path 1  4 in Fig. 1).  

 

Algorithms for quantifying IOPs from ocean color adopt numerous forms and are used to 

generate varied optical data products to serve diverse purposes. The total IOPs, those that result 

from additive contributions of all water constituents with optical signatures, determine the 

propagation of light within an aquatic medium and, hence, the changes in the magnitude and 

spectral composition of the light field throughout the water column. They are the major 

determinants of Rrs() and thereby play a critical role in the interpretation of ultraviolet-to-near 

infrared remote-sensing data. The component IOPs associated with specific types of water 

constituents, such as phytoplankton, non-algal particles (NAP), and colored dissolved organic 

matter (CDOM), carry information about ocean properties and processes that have specific 

biological and biogeochemical significance, including standing stocks and rate processes of 

aquatic carbon pools. For example, spectral absorption coefficients of phytoplankton provide 

essential parameters for quantifying primary production (Bannister, 1974; Kiefer & Mitchell, 

1983; Lee et al., 1996b; Marra et al., 2007). Phytoplankton absorption coefficients arguably also 

provide the single best parameters for optically-based assessments of phytoplankton community 

composition that is typically described in terms of community size structure and pigment 

composition (Bracher et al., 2017; Brewin et al., 2011; Bricaud et al., 2007; Ciotti et al., 2002; 

Devred et al., 2011; Hirata et al., 2008; Hoepffner & Sathyendranath, 1993; Lohrenz et al., 2003; 

Moisan et al., 2011; Organelli et al., 2013; Sathyendranath et al., 2001; Sathyendranath et al., 

2005; Uitz et al., 2015). Likewise, spectral absorption coefficients of CDOM provide 

biogeochemically useful proxies of aquatic dissolved organic carbon (DOC) (Fichot & Benner, 

2011; Mannino et al., 2008; Matsuoka et al., 2012; Vantrepotte et al., 2015; Vodacek et al., 

1997), allowing the estimation of this carbon pool from optical measurements in some aquatic 

environments. 

 

The flow of this paper is as follows. First, we review the state of the art in approaches for 

obtaining IOPs from satellite ocean color. We separate the approaches based on common 

methods in either inversion methodology or the type of IOPs sought. We next provide summaries 
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of known uncertainties associated with the approaches and common performance metrics. Both 

of the latter merit (and could fill) full reviews, but doing so exceeds the scope of this review, so 

only synopses are provided. We then discuss knowledge gaps and recommendations for future 

investment and conclude with a discussion of recommendations for the upcoming missions, 

including PACE, whose instrument characteristics diverge sufficiently from heritage and existing 

sensors such that novel and/or refined approaches will be required to best exploit and take 

advantage of these characteristics. 

2 Heritage algorithmic approaches 

2.1 Equations and assumptions 

2.1.1 Relating Rrs() to IOPs 

Considerable effort has focused on the development of analytical frameworks for deriving 

unknown marine IOPs from sensor-observed Rrs(λ), recognizing that these frameworks cannot be 

exactly reduced to an analytical equation or expression (IOCCG, 2006). Mathematically, 

deriving IOPs requires solution of an inverse problem that can be solved by developing an 

appropriate forward model, F, that explicitly relates the observed quantity (in this case, Rrs(λ)) to 

a set of unknown variables-of-interest (IOPs): 

                   . (1) 

Given that Rrs(λ) is an apparent optical property (AOP) that depends on the geometry of the light 

field, F must explicitly or implicitly account for angular variations associated with illumination 

conditions. Once a suitable forward model has been developed, it is often possible to derive IOPs 

from sensor-observed Rrs(λ) using an inverse solution method: 

                    . (2) 

The inverse solution method is often mathematically ill-posed, however, as different 

combinations of IOPs can result in the same Rrs(λ) spectrum in the visible (VIS) domain (Defoin-

Platel & Chami, 2007; Sydor et al., 2004; Twomey, 1977). This is particularly the case when the 

number of independent observations (i.e. number of sensor VIS wavelengths) is small compared 

to the number of unknown IOP variables, or when uncertainty in the observed Rrs(λ) is high. 
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Historically, two distinct forward modeling approaches have been routinely used to develop the 

relationship between Rrs and IOPs: (1) scalar radiative transfer (RT) simulations; and (2) 

approximation to the RT such as the quasi-single scattering approximation (QSSA). RT 

simulations comprehensively quantify the fate of the incident downwelling photon flux as it 

interacts with optically significant constituent matter. The QSSA is a simplified analytical model 

that approximates Rrs(λ) as a function of spectral IOPs. Note that statistical and neural network 

approaches also exist that directly relate measured Rrs(λ) and IOPs, thus simplifying Eq. (1) 

further. We review these methods in Section 2.2.3. 

 

Many RT codes have been developed that compute Rrs(λ) from user-input IOPs and other key 

environmental parameters (e.g. sea surface state, atmospheric transmittance, solar geometry, 

viewing geometry, and water column depth). Historically, hydrological RT codes have been 

either Monte Carlo ray tracing-based methods (Boynton & Gordon, 2002; Gordon & Boynton, 

1998; Kattawar & Adams, 1989; Zhai et al., 2008) or direct solutions to the RT equation 

(Mobley et al., 1993), with the latter being most common in recent ocean optics studies. A 

substantial benefit of hydrologic RT codes is they can capture the effects of multiple scattering, 

inelastic radiative processes, and vertical water-column structure. In addition, hydrologic and 

atmospheric RT codes can be coupled to simulate sensor-observed Lt(λ). Note, however, that RT 

simulations can be computationally intensive, are conceptually complex, rely on accurate user 

inputs (e.g., IOP measurements or models), and can be limited by any assumptions associated 

with measurement gaps, including bio-optical models that may be used to parameterize input 

IOPs (Gordon et al. 1988). In addition, most RT codes in use are scalar and do not account for 

polarization. Including polarization may result in significantly different (≤50%) values relative to 

heritage scalar results (Harmel et al., 2012; Mobley, 2015), opening the door for retrieval of 

more information about atmospheric and oceanic particles.  

 

The QSSA was first derived for ocean color applications by Gordon (1973). Essentially, the 

QSSA assumes most scattering occurs in the forward direction and, accordingly, that the color 

and shape of the upward propagating light field is primarily determined by absorption and single-

scattering at large angles (rather than multiple scattering at small angles), respectively (Gordon, 
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1993). Using this assumption, several analytical expressions have been developed that 

approximate the sub-surface remote-sensing reflectance, rrs(λ) (sr
-1

) as a function of total 

absorption, a(λ) (m
-1

), and backscattering, bb(λ) (m
-1

) coefficients (Gordon et al., 1988; Morel, 

1988; Morel & Prieur, 1977). Alternatively, the QSSA can be used to model subsurface 

irradiance reflectance, R(λ) (unitless), defined as the ratio of subsurface upwelling irradiance, Eu
-

(), to subsurface downwelling irradiance, Ed
-
(), (both with units of W cm

-2
 nm

-1
). Other 

models have additionally included explicit dependencies on the volume scattering function 

(VSF) (Jerlov, 1976; Zaneveld, 1982; Zaneveld, 1995). The major benefit of QSSA models is the 

provision of an explicit analytical relation between IOPs and rrs(λ). Establishing this relationship, 

however, requires various assumptions of boundary conditions, such as an infinitely deep and a 

homogeneous water column. Furthermore, QSSAs cannot capture extreme multiple scattering 

effects, require an additional module to consider inelastic processes, do not account for the 

polarization, and are not as accurate as RT codes. Some formulations exist that address bottom 

reflectance (Lee et al., 1994; Lee et al., 1998a; Philpot, 1987; Sathyendranath & Platt, 1988), but 

we do not discuss them in detail in this review. 

 

2.1.2 Common QSSA equations 

Most contemporary ocean color applications employ QSSA models that express rrs(λ) as a 

function of IOPs. In these cases, it is necessary to convert the Rrs() observed by the satellite 

instrument to rrs(λ) using a relationship such as Lee et al. (2002): 

         
      

               
. (3) 

Note that in conventional NASA processing, the input Rrs() includes “exact” normalization to 

account for bidirectional reflectance distribution function (BRDF) effects (Morel et al., 2002).  

We assume Rrs() to be normalized as such in this review, which effectively removes most of the 

effects of the Sun being off-zenith. The most commonly employed relationships to express rrs(λ) 

as a function of IOPs can be represented in the expression developed by (Gordon et al., 1988): 

               
 
          , (4) 

where the G() coefficients represent the combined influence of illumination conditions and 

geometry, sea surface properties, and the shape of the marine VSF and , u() is described as: 
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 (5) 

as obtained from the QSSA approximation. Eq. (4) has a unique positive solution for u() when 

rrs(λ) and G(λ) are all positive. Common methods for estimating the G() functions include 

Gordon et al. (1988), where G1() and G2() are spectrally fixed as 0.0949 and 0.0794 (see Lee 

et al. (2002) and Lee et al. (2011) for alternative coefficients) and the tabulated results of Morel 

et al. (2002), where G1() is estimated for given solar and sensor geometries and chlorophyll-a 

concentrations (Ca; mg m
-3

) and G2() is set to 0. Appendix A provides an alternate list of 

expressions for Eq. (4). In current practice, these methods for estimating G() cannot represent 

all illumination conditions and geometries, sea surface properties, and shapes of the particle 

VSF. Alternative representations of G() within a QSSA have emerged to address the 

uncertainties associated with these specific effects being poorly defined (see Section 5.3).  

 

2.1.3 Common IOP component definitions and equations 

The total spectral absorption coefficient is a conservative property and thus, by definition, can be 

expressed as the sum of all individual absorbing constituents: 

             
 
   , (6) 

where index i indicates the i
th
 of N total individual absorbing constituents. Practically, similar 

constituents are grouped into components (Roesler et al., 1989; Stramski et al., 2001): 

                      
   

   
            

    

   
             

     
    , (7)  

where the subscripts w, ph, nap, and cdom indicate contributions by water, phytoplankton, NAP, 

and CDOM and the index i may indicate a number of individual constituents (i.e., phytoplankton 

cells) or sub-components (i.e., multiple phytoplankton communities) enumerated as Nph. 

Similarly, Nnap and Ncdom are the number of different types of NAP and CDOM present. Further, 

each absorbing component can be expressed as the product of its normalized spectral absorption 

coefficient (shape; a*) and its magnitude (A): 

                        
    

   

   
               

    
    

   
                 

    
     
   , (8)  

where the term “normalized” is used here to describe the process of obtaining a representation of 

absorption spectral shape. Multiple approaches have been adopted (Bricaud et al., 1995; Bricaud 
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et al., 1998; Roesler et al., 1989), as expanded upon in Section 2.1.4, and the units of A and a* 

depend upon the choice of normalization. For example, when the phytoplankton component 

absorption spectrum is scaled to the chlorophyll-a concentration, the term Aph,i is equivalent to 

the chlorophyll-a concentration (mg m
-3

) and a*ph,i(λ) is the chlorophyll-a specific absorption 

coefficient (m
2
 mg

-1
) associated with the i

th
 phytoplankton type present. The shapes of anap(λ) 

and acdom(λ) are spectrally similar, and for simplicity, or when the degrees of freedom are low, 

they are often treated in combination: 

                          (9) 

where adg is a heritage term, namely absorption by detrital particulate matter and gelbstoff, 

although NAP encompasses more than detrital particulate matter (i.e., living and detrital 

particulate organic matter, exclusive of in vivo phytoplankton pigments, as well as inorganic 

particulates) and CDOM operationally includes sub-micron particles. The term Adg,i (m
-1

) is 

accordingly introduced for scaling the magnitude of the i
th

 normalized CDOM + NAP 

coefficient, adg*(λ) (unitless). The total absorption coefficient from Eq. (8) now becomes: 

                         
    

   

   
             

    
   

   
  (10) 

Note, however, that this simplification is not ubiquitous and several algorithms derive the 

acdom() and anap() components separately from one another, as described in Section 2.1.4.  

 

The total spectral backscattering coefficient can be similarly expanded as (Stavn & Richter, 

2008; Stramski et al., 2001): 

                         
   

   
            

    

   
  (11) 

As for absorption, we can express each constituent within the components of bb(λ) as the product 

of a normalized backscattering spectrum (shape; b*) and its magnitude (B). The total 

backscattering coefficient can thus be expressed as: 

                             
    

   

   
                 

    
    

   
  (12) 

As the two non-water backscattering components are considered spectrally similar, Eq. (12) is 

often reduced to: 
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  (13) 

For the inversion problem to be well-posed, the number of unknown IOP variables must not 

exceed the number of observed independent variables (spectral bands). Contemporary ocean-

color sensors are multi-spectral, having between 5 and 8 VIS bands suitable for use in inversion 

algorithms. We note, however, that the number of unknown parameters one can actually solve 

for may be significantly less than the number of bands available depending on the uncertainties 

in the measured input reflectances and the amount of un-correlated information within them (e.g. 

Twomey 1977). We expect that for future missions with hyperspectral spectrometers from the 

ultraviolet (UV; ~350 nm) to the NIR (~900 nm), such as PACE, the number of retrievable 

parameters will be much fewer than the number of wavebands, but the uncertainty in the 

retrieved parameters will be much lower. In the simplest formulation described by Eqs. (4), (5), 

(10) and (13) and with Np=Nph=1, only three normalized spectral shapes are required (a*ph(λ), 

a*dg(λ), and b*bp(λ)) and three unknown IOP magnitudes, (Aph, Adg and Bp), are retrieved. 

Methods used to partition a(λ) and bb(λ) into additional subcomponents and mathematical 

solution methods to invert IOPs from rrs(λ) are described in Sections 2.1.4 and 2.2, respectively.  

 

2.1.4 Approaches to Retrieving Component IOPs from Reflectance 

Broadly speaking, many variants of several approaches exist to invert Rrs(λ) or rrs(λ) to IOPs, all 

of which require varied degrees of knowledge of IOP component spectral shapes. Methods for 

assigning spectral shapes or partitioning total IOPs into their components, however, are not often 

mutually exclusive from the inverse solution method. Next, we present IOP spectral shape 

parameterization and partitioning approaches. A detailed discussion of solution methods is 

presented separately in Section 2.2. For the purposes of this section, it is convenient and 

necessary to introduce two solution concepts for deriving component IOPs: (A) a simultaneous 

solution of bbp(), aph(), and adg() (or, acdom() and anap()) (path 24 in Fig. 1); and (B) a 

two-part solution where first bbp() and a() are determined, then a() is subsequently 

decomposed into its components (path 234 in Fig. 1);. For reference, these two concepts 

map most directly to the solution methods presented in Sections 2.2.1 and 2.2.2. 
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2.1.4.1 Seawater absorption and backscattering 

A number of values for aw(λ) have been estimated from laboratory measurements of pure water 

samples (Pope & Fry, 1997) or modeled using in situ samples collected from hyper-oligotrophic 

regions of the ocean (Lee et al., 2015; Morel et al., 2007; Smith & Baker, 1981). Several sets of 

spectral bbw(λ) have been derived previously from theory (Buiteveld et al., 1994; Morel, 1974; 

Shifrin, 1988). Theoretical values from Zhang and Hu (2009) and Zhang et al. (2009) are 

considered the current state of the art, agreeing to within 2% on average with the only pure water 

scattering measurements made by Morel (1968). The vibrational states and thermodynamic 

properties of seawater, and hence its optical properties, vary with changes in temperature (T) 

and/or salinity (S) in specific spectral regions. Accordingly, recent efforts have focused on 

modeling the spectral shapes of aw(λ) (Pegau et al., 1997; Röttgers et al., 2014; Sullivan et al., 

2006; Twardowski et al., 1999) and bbw(λ) (Pegau et al., 1997; Röttgers et al., 2014; Zhang et al., 

2009) as functions of T and S. Satellite observations of sea surface temperature (SST; Kilpatrick 

et al. (2001)) and sea surface salinity (SSS; Lagerloef et al. (2008)), as well as climatological 

values (Antonov et al., 2010; Reynolds et al., 2002), have made it possible to implement T-S 

dependent bbw(λ) within inverse algorithms (Werdell et al., 2013b). 

 

2.1.4.2 Phytoplankton, NAP, and CDOM absorption  

Partitioning total absorption, a(), into several broadly-defined components associated with 

CDOM, phytoplankton, and NAP is possible because of the availability of routine experimental 

methodologies for determinations of acdom(λ), aph(λ), anap(λ), and ap(λ) (= anap(λ) + aph(λ)) 

(Bricaud et al., 1981; Bricaud & Stramski, 1990; Ferrari & Tassan, 1999; Kishino et al., 1985; 

Miller et al., 2002; Mitchell et al., 2003; Mitchell & Holm-Hansen, 1991; Pegau et al., 2003; 

Röttgers & Doerffer, 2007; Röttgers et al., 2007; Stramski et al., 2015; Twardowski et al., 1999), 

with the understanding that interpretation of these components remains constrained by their 

operational definitions and measurement protocols. For example, whereas acdom(λ) is defined by 

the 0.2 μm pore size of the filter used to establish the dissolved fraction of the sample, ap(λ) is 

typically measured with a filter-pad method by collecting particles on GF/F glass-fiber filters 

(Mitchell et al., 2003). Thus, the filter-pad method does not account for a certain fraction of 

particulate absorption associated with submicron particles (Stramski, 1990) and closure in the 
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nominal size range 0.2 m to 0.7 m is lacking unless the missing fraction is measured (Simeon 

et al., 2003). Note that partitioning a(λ) in the actual methodological sense is practically 

equivalent to partitioning of the non-water absorption coefficient, anw(λ) = a(λ) - aw(λ), because 

aw(λ) is assumed to be known (see above).  

 

2.1.4.2.1 Simultaneous partitioning methodology 

Most heritage IOP models pursue a simultaneous solution (path 24 in Fig. 1), which requires 

assumptions about the spectral shapes of aph(λ) and adg(λ). These approaches often parameterize 

a single spectral shape for a*ph(λ) based on in situ measurements (Garver & Siegel, 1997; 

Maritorena et al., 2002; Roesler & Perry, 1995; Sathyendranath et al., 1989), multiple a*ph(λ) 

spectra associated with different pigment-based taxonomic groups (Roesler & Boss, 2003; 

Roesler et al., 2004; Werdell et al., 2014), or as empirically-derived Gaussian-based 

approximations to measurements (Hoge & Lyon, 1996; Lee et al., 1996a). Spectral variations in 

a*ph(λ) do exist, however, due to the types and relative concentrations of phytoplankton present 

and their physiological responses to growth conditions including light, nutrient availability, and 

temperature. This leads to temporal, spatial and depth variations in the spectral shapes of a*ph(λ) 

that are encountered in the ocean. During pixel-by-pixel processing a*ph(λ) is either treated as a 

spectral constant or a bio-optical model is used in an attempt to capture its variability. 

Commonly used approaches for parameterizing a*ph(λ) are summarized in Table 1.  

 

A fixed shape for a*dg(λ) is typically modeled with the exponential function: 

     
                , (14) 

where the exponential decay coefficient, Sdg, which typically varies between 0.01 and 0.02 nm
-1

 

(Roesler et al., 1989), is assigned as a constant value (Hoge & Lyon, 1996; Maritorena et al., 

2002; Roesler & Perry, 1995). The choice of Sdg is sometimes based on region-specific in situ 

measurements (Brando et al., 2012), global in situ datasets (Lee et al., 2009), or by optimally 

tuning the inverse algorithm’s bio-optical parameters with a training dataset (Maritorena et al., 

2002). Alternatively, the approach of Lee et al. (2009) estimates Sdg dynamically from an 

empirical dependence on the blue to green reflectance ratio: 

            
     

                       
, (15) 
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where the reference wavelength, 55x, is centered on the greenest wavelength of the satellite 

instrument (e.g. 555 nm for SeaWiFS and 547 nm for MODIS). This method does not permit Sdg 

to fall below 0.015 nm
-1

 and predicts a decrease in Sdg as water becomes clearer (through an 

increasing 443-55x ratio), which has not been ubiquitously observed, particularly in the presence 

of photobleaching.  Generally speaking, the magnitudes of Sdg (or Sg) and adg(440) (or ag(440)) 

share an inverse relationship (Bricaud et al. 2012), a model parameterization explored in Brewin 

et al. (2015a). Twardowski et al. (2004) suggested that exponential relationships do not 

accurately represent the spectral shape of CDOM, offering power-laws as the alternative and 

demonstrating that Sdg values will vary dependent on specified spectral range used to compute it 

(see also Nelson and Siegel (2002)). Most recently, Cael and Boss (2017) demonstrated that a 

stretched exponential provides a better model than Eq. (14) or a power-law for adg(). 

 

2.1.4.2.2. Two-step partitioning methodology 

Many emerging IOP models pursue a two-step solution (path 234 in Fig. 1) for partitioning 

a(λ) into its subcomponents. One pathway begins with decomposing of anw(λ) into ap(λ) and 

acdom(λ) and then subsequently subdividing ap(λ) into aph(λ) and anap(λ). (Bricaud & Stramski, 

1990; Cleveland & Perry, 1994; Hoepffner & Sathyendranath, 1993; Lin et al., 2013; Morrow et 

al., 1989; Roesler et al., 1989; Wang et al., 2008; Zheng & Stramski, 2013a). This multiple-step 

approach has had limited applicability within the remote sensing context, primarily because of 

difficulties in directly estimating ap() and acdom() from ocean color measurements. Currently, 

the most common pathway involves partitioning of anw(λ) into aph(λ) and adg(λ) (Eq. (10)); for 

examples of partitioning methods in this category see Table 2. 

 

Despite its convenience within the remote-sensing paradigm, combining anap(λ) and acdom(λ) into 

one term, adg(λ), has disadvantages when linking IOPs to ocean biogeochemical processes. NAP 

and CDOM can originate from different sources, are affected by different physical and 

biogeochemical processes and are associated with different pools and residence times in the 

ocean. In addition, NAP is assumed to contribute to scattering significantly while CDOM’s 

contribution is assumed negligible. As such, they cannot always be expected to demonstrate 

strong covariation in coastal or open ocean waters. Furthermore, while NAP and CDOM both 

show an exponential decrease in absorption with increasing wavelength, their spectral slopes are 
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typically considerably different, with Snap and Scdom encompassing 0.005-0.015 nm
-1

 and 0.01-

0.03 nm
-1

, respectively (Babin et al., 2003; Roesler et al., 1989; Tzortziou et al., 2007). 

Ultimately, retrieving Scdom from satellite observations is desirable as it provides a reliable 

indicator of the source, molecular size, aromatic content and extent of photochemical versus 

microbial degradation of organic matter in aquatic environments (e.g. Blough & Green, 1995; 

Chin et al., 1994; Helms et al., 2008; Tzortziou et al., 2011). Similarly, retrieving Snap may 

enable the relative proportions of mineral and organic matter to be determined (Babin et al., 

2003). As such, effort has focused on the development of partitioning approaches to derive aph(λ) 

and separate adg(λ) into anap(λ) and acdom(λ) (Chang & Dickey, 1999; Claustre et al., 2000; Dong 

et al., 2013; Gallegos & Neale, 2002; Lin et al., 2013; Schofield et al., 2004; Zheng et al., 2015). 

 

Similar to other categories of absorption partitioning models, methods developed to partition 

a(λ) into aph(λ), anap(λ), and acdom(λ) typically carry significant limitations associated with 

restrictive assumptions about model outputs, the use of ancillary input data, and region-specific 

parameterizations. Several models employ a single spectral shape or a linear combination of a 

small number of predefined spectral shapes for a*ph(λ) (Devred et al., 2011; Gallegos & Neale, 

2002; Schofield et al., 2004). Nearly all assume an exponential function for the spectral shapes of 

both a*nap(λ) and a*cdom(λ), in some cases with a fixed value for one of the two (Dong et al., 

2013). Many use empirical parameterizations requiring input ancillary data, such as Ca (Claustre 

et al., 2000), Rrs(λ) and/or bb (λ) (Dong et al., 2013), or even direct measurements of acdom(λ) 

(Chang & Dickey, 1999). Furthermore, most models in this category have features or 

parameterizations that reflect intended applicability only to specific regions or in situ 

measurements taken with specific instruments (Chang & Dickey, 1999; Claustre et al., 2000; 

Gallegos & Neale, 2002; Schofield et al., 2004; Zheng et al., 2015).  

 

2.1.4.3 Particulate backscattering 

The total backscattering coefficient of seawater, bb(), is most commonly represented as a sum 

of only two components, the pure seawater backscattering coefficient free from particulate 

matter, bbw(), and the particulate backscattering coefficient, bbp() (Eq. (13)). The pure seawater 

component is assumed to be known a priori or predictable as described previously. Particulate 
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backscattering is typically assumed to include the contributions from all kinds of suspended 

particles pooled together into a single particulate component, bbp(). In some models, the 

particulate component has been further partitioned into two components such as organic and 

inorganic particle components (Bukata et al., 1995), large-sized and small-sized particle 

components (Roesler & Perry, 1995), and phytoplankton and NAP components (Brando et al., 

2012) (Eq. (11)). 

 

Many IOP models adopt a power-law to describe the spectral shape of b*bp() (Gordon & Morel, 

1983; Morel & Prieur, 1977): 

     
          , (16) 

where Sbp typically varies between 0 and 3, largely driven by varying proportions of large and 

small particles (Reynolds et al., 2016; Sathyendranath et al., 1989; Stramska et al., 2003). Note, 

this relationship is not exhaustively based on in situ or laboratory measurements and deserves 

systematic evaluation in the future. Stramska et al. (2003) and Reynolds et al. (2016) show in 

situ determinations of backscattering versus wavelength and the power function for these data.  

Based on bbp() values from 394 to 852 nm collected in the Arctic, Reynolds et al. (2016) 

reported the range of Sbp from 0.13 to 3.01 with the majority of data (80%) between 0.5 and 1.5, 

a median value of 1, and a mean value of 1.5. In some inverse models, the value of Sbp is treated 

as constant based on in situ measurements with values of 0.5 used in coastal waters and values of 

1.0 for oceanic waters (Mobley, 1994). When rrs(λ) are known, methods to estimate Sbp from 

rrs(λ) or Ca also exist (Table 3). Roesler and Boss (2003) proposed an alternative approach that 

does not assume a power-law spectra for particulate backscattering, but rather assumes a 

spectrally constant particulate back-scattering ratio, (λ)= bbp(λ) / bp(λ) and a power-law 

spectral dependence for particulate beam attenuation, Sc (which is consistent with 

measurements): 

                     
 

  
 
   

        , (17) 

where, λ0 is a reference wavelength and cp() is the particulate beam attenuation coefficient at 

λ0. For ap(), a priori assumptions about the spectral shape of the model output of particulate 

backscattering components can be highly restrictive, especially for application at arbitrary time 
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and location within the global ocean. Loisel and Stramski (2000) developed an approach that 

does not require a priori assumptions about the spectral shape of output IOPs by providing 

solutions for bb() and a() at different light wavelengths independently. The particulate 

component bbp() is calculated from bb() by subtracting the known or assumed values of bbw(). 

Similarly, anw() is calculated by subtracting the known or assumed values of aw() from a(. 

Loisel and Stramski (2000) provides one example where absorption components must be 

retrieved in a second step from the derived anw(), as described above. 

 

2.2 Solution methods 

2.2.1 Semi-analytical inversion approaches 

Semi-analytical inversion algorithms (SAAs) estimate marine IOPs from sensor-observed Rrs() 

using a combination of empiricism and radiative transfer theory. SAAs attempt to simultaneously 

estimate the magnitudes of aph(λ), adg(λ), and bbp(λ) (Brando et al., 2012; Brewin et al., 2015a; 

Bukata et al., 1995; Devred et al., 2006; Garver & Siegel, 1997; Hoge & Lyon, 1996; IOCCG, 

2006; Maritorena et al., 2002; Roesler & Perry, 1995; Wang et al., 2005; Werdell et al., 2013a). 

These SAAs generally assign constant spectral values for aw(λ) and bbw(λ), parameterize the 

spectral dependency of the IOPs of non-water constituents (a*ph(λ), a*dg(λ), and b*bp(λ)) for all 

sensor bands in the VIS part of the spectrum, or at a few specific bands, and retrieve the 

magnitudes of these constituents (Aph, Adg, and Bbp). They primarily differ only in the 

assumptions employed to define component IOP spectral shapes (see Sections 2.1.4), the inverse 

relation between rrs(λ) and IOPs (see Section 2.1.2), and the mathematical method applied to 

calculate the magnitude of the component IOPs.  

 

Generally speaking, SAAs fall into four broad classes based on their solution method: (i) 

nonlinear spectral optimization, (ii) direct linear inversion, (iii) spectral deconvolution, and (iv) 

bulk inversion (Table 4). SAA methods (i) and (ii) use Rrs() and normalized spectral shapes as 

inputs and estimate the amplitudes for absorption and backscattering components via linear or 

nonlinear least squares inversion of Eqs. (4) and (5). Roesler and Perry (1995), for example, used 

the nonlinear least-squares Levenberg-Marquardt optimization scheme. Hoge and Lyon (1996) 
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later showed the problem could be linearized and, thus, directly solved by simple linear matrix 

inversion (single solution). The system is over-determined when the number of input Rrs() 

wavelengths exceeds the number of unknowns, in which case the single solution obtained is the 

best in the least-square sense (Wang et al., 2005). These two classes best represent the 

simultaneous solution described as concept (A) in Section 2.1.4.  

 

SAA method (iii), spectral deconvolution, assigns spectral shapes for some components and 

proceeds in a step-wise fashion to sequentially determine the component IOPs, unlike methods 

(i) and (ii) that iteratively run the forward model to find the optimal solution of the amplitudes. 

Examples of class (iii) are described in Lee et al. (2002) and Smyth et al. (2006). Note that SAAs 

in this class first determine total absorption and backscattering (unlike spectral optimization 

approaches) and, therefore, can be employed to explore multiple approaches to decompose a() 

and bbp() into their component parts (for reference, path 234 in Fig. 1). A key difference 

between the spectral deconvolution and the other methods is that there is no residual difference 

between input and output Rrs() spectra in the bulk inversion scheme, whereas residual 

differences between input and output Rrs() spectra are inherent to the other inversion schemes 

(with the residuals used as performance metrics, see Section 4, or to assign spectral variations to 

retrieved absorption constituents not captured by input spectral shapes (Roesler & Perry, 1995)). 

Accordingly, spectral deconvolution approaches are inherently sensitive to biases in sensor-

observed Rrs() data due to sensor miscalibration and/or sub-optimal AC. 

 

Finally, SAAs in method class (iv), bulk inversions, do not assign shape-components – that is, 

they do not predefine spectral shapes for the absorption or backscattering coefficients when 

deriving the total absorption coefficients. The approach introduced in Loisel and Stramski (2000) 

is a widely used example. In practice, SAAs in this class determine IOPs at each wavelength 

independently and, therefore, can be used to calculate spectral shape functions (e.g., Sbp) 

dynamically. These SAAs, however, require additional assumptions and/or intermediate 

products, such as spectral diffuse attenuation coefficients of downwelling irradiance (Kd(); m
-1

). 

Appendix A of Werdell et al. (2013a) provides a detailed discussion of these broad SAA classes. 
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An emerging generation of SAAs adopts ensemble approaches, employing either ranges of 

shape-components (Brando et al., 2012; Wang et al., 2005) or on-the-fly identification of optical 

water types, which can conceptually be used to assign corresponding shape-components (Moore 

et al., 2009; Vantrepotte et al., 2012). In the former, ranges of shape-components for unknown 

parameters are applied iteratively. The final unknown parameters are either calculated as the 

median of all valid values retrieved during the iteration, or selected from a range of retrievals 

based on threshold and/or best-fit metrics. In the latter, shape-components are dynamically 

assigned for each satellite pixel based on an environmental classification metric, thus minimizing 

assumptions that singular shape-components represent all water types and conditions at all times.  

 

2.2.2 Look-up-table approaches 

Look-up table (LUT) solution methods first use a forward model to generate a database of Rrs(λ) 

and/or Lt(λ). Each Rrs(λ) or Lt(λ) spectrum in the LUT corresponds to a unique combination of 

water column properties (IOPs and, if relevant, depth and seafloor reflectance) and atmospheric 

properties (if relevant, cloud cover, surface conditions, and sun geometry). The LUT is 

constructed by running a forward model (QSSA or RT) for each combination of parameters to be 

considered (Hedley et al., 2009; Liu & Miller, 2008; Mobley et al., 2005). The IOPs used in the 

forward modeling arise from either in situ datasets or are generated with bio-optical models 

using constituent-specific parameterizations, such as mass-specific properties at reference 

wavelengths and associated spectral shape functions (see Sections 2.1.3 and 2.1.4).  

 

To derive IOPs, the sensor-observed Rrs(λ) or Lt(λ) for a given image pixel is compared with the 

spectra stored in the LUT. The LUT is searched until an entry or suite of entries is found that 

best match the sensor-observed spectrum. A best match is determined once the cost function 

(distance measure) achieves a pre-defined threshold, in a manner similar to spectral optimization. 

The returned IOP solution is defined as that which corresponds to the closest-matching forward-

modeled Rrs(λ) or Lt(λ) in the LUT. If the search returns a solution set – all spectra within a 

prescribed uncertainty tolerance, ε, of the measured spectrum – the solution might be computed 

as the average of all associated parameters consistent with the retrieved spectra. An advantage to 

this approach is that ε can be defined as a function of known sources of uncertainty, such as 

those associated with the remote sensor and data/parameterizations used to generate the database, 
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and the divergence of the various consistent solutions can provide a measure of the uncertainty in 

retrieved IOPs. The cost function can be spectrally weighted to account for band-specific 

instrument noise and sensitivity to constituent variability. 

 

Mobley et al. (2005) and Liu and Miller (2008) constructed RT-based LUTs using the 

commercial software HydroLight (Mobley & Sundman, 2008). Mobley et al. (2005) generated a 

LUT containing 41,591 spectra for various combinations of water constituent IOPs, bottom type 

reflectance, water depth, sun angle, wind speed, and sky conditions from their study region. The 

approach was developed for inverting airborne-based hyperspectral Rrs(λ) imagery to derive 

IOPs, seafloor type, and water-column depth without the need for in situ ancillary data. Liu and 

Miller (2008) used a Ca-based bio-optical model to parameterize IOPs and included inelastic 

scattering effects, resulting in a LUT with 22,575 individual spectra. Their LUT-derived IOPs 

compared well with both in situ and model-simulated hyperspectral data. 

 

The LUT methodology offers several useful features. It does not require uniqueness of solution 

and can return a suite of solutions with which an estimate of uncertainty can be derived for each 

retrieved parameter. Inelastic processes can be easily incorporated in forward models, such as Ca 

and CDOM fluorescence if robust quantum efficiencies are well described. LUTs can be easily 

tuned to a region of interest based on known environmental conditions, thus reducing the 

required search space. While it is typical to assume vertical homogeneity within the water 

column, vertical structure can, in principle, be included. The LUT methodology also includes a 

number of limitations. The utility of the LUT requires accurate characterization of the IOPs and 

because limited analytic or empirical models (e.g., Ca-based IOP models) are used, the internal 

dependences may not reflect natural sources of variability and non-covariability. Generating the 

LUT with RT code can be computationally expensive, although this is generally an infrequent 

investment. Searching for solutions can also be computationally expensive. Even with limited 

sets of IOPs (e.g., ten a*() or b*(), the number of spectra in the LUT database will be 100
m
, 

where m is the number of different constituents. This burden can be eased somewhat using 

suitable LUT search algorithms and with improved computational power. Hedley et al. (2009), 

for example, dynamically constructed a LUT by adaptively constraining model runs to reduce the 

LUT size. Each sensor-observed Rrs(λ) is projected onto principle component space and passed 
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through a binary decision tree until it is optimally matched with similar spectra. Hedley et al. 

(2009) found this approach to be computationally comparable to spectrum matching approaches 

(c.f. SAA class (i) methods), such as Levenberg-Marquardt nonlinear optimization. 

 

2.2.3 Empirical approaches 

Empirical algorithms derive IOPs from some predictor variable(s), typically sensor-observed 

Rrs(λ) or derived parameters (e.g. Ca), using a large data set derived from in situ observations or 

AOP/IOP datasets synthesized using RT modeling. Most approaches follow statistical methods 

including, but not limited to, univariate polynomial regression (Lee et al., 1998b), multiple linear 

regression (MLR) (Mannino et al., 2014), principal component regression (PCR) (Craig et al., 

2012), and machine learning algorithms (Chang, 2015; Doerffer & Schiller, 2007; Ioannou et al., 

2011; Jamet et al., 2012). While these approaches diverge from the RT and QSSA methods and 

spectral shape parameterizations presented to this point, their inclusion in this review remains 

relevant as they provide viable methods for deriving IOPs from satellite ocean color radiometry.   

 

Several univariate empirical models relate an IOP to Ca using both linear and non-linear 

regression methods (Bricaud et al., 1995; Gordon & Morel, 1983; Huot et al., 2008; Loisel & 

Morel, 1998; Morel, 1988). While these methods are useful for oceanic waters where 

phytoplankton dominate the in-water optical field, they can be confounded in optically complex 

waters with elevated CDOM and high inorganic particle loads. Univariate methods also exist that 

predict IOPs as a function of Rrs() (Lee et al., 1998b; Stramska et al., 2003; Stramski et al., 

1999). The empirical model developed by Lee et al. (1998b), for example, relates the total 

absorption coefficient at a green or red reference wavelength to a rrs() band ratio via polynomial 

regression. This model initiates the quasi-analytical algorithm (QAA, the SAA class (iii) 

inversion scheme of Lee et al. (2002)). It is important to recognize that such empirical 

relationships often form the base of the spectral shape parameterizations presented in Section 

2.1.4, such as Eq. (15) and the contents of Tables 1 and 3, and thereby inherently reside within 

the some of the SAA and LUT inversion methods reviewed above. 
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MLR models allow IOPs to be derived from sets of multiple predictors, for example, absolute 

Rrs(λ) values, Rrs(λ) differences, and/or Rrs(λ) ratios. Mannino et al. (2014) and Cao et al. (2018), 

for example, demonstrated an MLR that effectively derived acdom(λ) and Scdom from Rrs(λ). 

MLRs, however, become unstable when the set of predictor variables exhibits co-linearity (that 

is, one or more of the predictor variables are highly correlated). To address this, a data reduction 

method is often employed to decrease the number of variables used in the model. Mannino et al. 

(2014) used a stepwise backward approach and reduced the number of input Rrs(λ) from five to 

two. Other approaches, such as principal component analysis (PCA; an orthogonal linear 

transform, also known as empirical orthogonal function (EOF) analysis (Preisendorfer & 

Mobley, 1988)), can also be used to reduce dimensionality of the predictor variable set without 

an appreciable loss of information (Barnes et al., 2014; Craig et al., 2012; Soja-Woźniak et al., 

2017).  

 

Using principal component regression (PCR; a combination of PCA and MLR), Craig et al. 

(2012) developed an algorithm for deriving Ca and aph(λ) from Rrs(λ) in optically complex 

waters. The first four PCs were used in an MLR model as they cumulatively explained over 99% 

of variance in the Rrs() predictor dataset. Similarly, Fichot et al. (2008) and Cao et al. (2014) 

used a PCR model to retrieve Kd(λ) in the range 320-490 nm from multi-spectral Rrs(λ) for a 

variety of water bodies ranging from oligotrophic to turbid estuarine systems. Barnes et al. 

(2014) used PCR to derive Kd(λ) in the UV from satellite-observed Rrs(λ) in optically shallow 

reef waters. Thus far, the limitation of PCA-based approaches appears to be reliance on training 

with region-specific data in order to perform optimally. One might also argue that PCR 

approaches are not mechanistic. Careful interpretation of the spectral behavior of the principal 

component (PC) loadings, however, can reveal coherent features that are clearly related to 

absorption, fluorescence, and scattering processes (Craig et al., 2012; Fichot et al., 2008; Soja-

Woźniak et al., 2017). Barnes et al. (2014) noted that PCs that cumulatively explain the bulk of 

the variance in the predictor dataset do not always serve as the best predictor variables but they 

can be used to identify important physical or biological driving forces a posteriori. They 

proposed that consideration of all PCs during MLR development and their reduction through 

suitable variable selection procedures (for example, stepwise forward addition) may be more 

robust.  
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Advanced machine learning methods exist to derive IOPs, including artificial neural networks 

(D'Alimonte et al., 2012; Doerffer & Schiller, 2007; Ioannou et al., 2011; Ioannou et al., 2013; 

Tanaka et al., 2004) and gene expression programming (Chang, 2015). Artificial neural networks 

(ANNs) have shown promise for retrieving Kd(λ), constituent matter concentrations (Ca and 

NAP), and acdom(λ) (Chen et al., 2014a; D'Alimonte et al., 2012; Doerffer & Schiller, 2007; 

Dzwonkowski & Yan, 2005; Schiller & Doerffer, 1999; Tanaka et al., 2004). ANN approaches 

also exist solely for deriving IOPs (Chen et al., 2014b; Chen et al., 2015; Ioannou et al., 2011; 

Ioannou et al., 2013). Krasnopolsky and Schiller (2003) recommended training two ANNs that 

act as forward and inverse models, respectively. By employing the forward and inverse ANNs in 

concert, an ANN-based algorithm can then dynamically assess its retrieval skill and flag poor 

quality values (Doerffer & Schiller, 2007). Ioannou et al. (2011) demonstrated an ANN-based 

approach using independent validation data and benchmarking with the SAAs of Lee et al. 

(2002) and Maritorena et al. (2002). They also demonstrated ANN handling of noise (10-20%) in 

the input Rrs() dataset without compromised performance. Like all empirical approaches, 

however, machine learning methods require a large Rrs()/IOP training dataset (order of 1,000 

records per Ioannou et al. (2011) and order of 100,000 records per Doerffer and Schiller (2007)) 

that spans a wide range of optical conditions. Accordingly, ANN approaches are often tuned and 

applied regionally (D'Alimonte et al., 2012; Doerffer & Schiller, 2007); however, through the 

appropriate use of RT modeling and/or in situ datasets, the development of globally-applicable 

ANN-based algorithms has been demonstrated (Chen et al., 2014b; Ioannou et al., 2011). 

3 Sources and derivation of uncertainties 

3.1 IOP measurement uncertainties 

In situ and laboratory measurements of IOPs are used to develop and refine algorithms and to 

assess their performance. For algorithm development, IOP measurement uncertainties, and any 

associated assumptions required where IOP measurements are lacking, propagate directly into 

the algorithms. For performance assessment, IOP measurement uncertainties must be considered 

to isolate satellite instrument performance, along with uncertainties in the radiometric 

measurements serving as algorithm input. This section briefly summarizes known uncertainties 
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in and limitations of relevant IOP measurements and their potential impacts on remote-sensing 

algorithms and products. The NASA Ocean Optics Protocol series 

(https://oceancolor.gsfc.nasa.gov/docs/technical) has far greater detail on this subject. In general, 

availability of more than one technology to measure a parameter (e.g. instrumental closure) may 

improve estimates of the true uncertainty associated with a parameter of interest. 

 

3.1.1 In situ absorption, attenuation, and total scattering measurements 

The community standard approach for measuring in situ a(λ) and c(λ) for the last twenty years 

has been WET Labs ac meters (Twardowski et al., 1999; Zaneveld et al., 1992). These 

instruments have two flow tubes, typically 0.25 m in length, with the a(λ) tube having a 

reflective quartz sleeve and the c(λ) tube having a non-reflective matt black finish. Total 

scattering is then calculated as b(λ) = c(λ) - a(λ). Measurements made with ac meters have 

associated uncertainties due to their inability to measure exactly these parameters (e.g., finite 

acceptance angle, inability to collect all the scattered light), the effect of flow in and around each 

flow tube that possibly disrupts/disaggregates and reorients particles, random electronic noise, 

and bias errors due to factors such as calibration uncertainty.  

 

All ac meters require periodic calibration to some reference medium, typically purified water, to 

track drift. With careful attention to instrument protocols and repetition in calibrations, 

uncertainties of 0.005 to 0.01 m
-1

 and 0.01 to 0.015 m
-1

 are achievable for absorption and 

attenuation, respectively.  Note that these values vary spectrally, with the largest uncertainties 

near 400 nm. Instrument drift remains of particular concern when working in clear waters, where 

calibrations are carried out daily to ensure data quality. Absorption and attenuation 

measurements also require correction for the dependence of pure water absorption on T and S in 

the NIR (Pegau et al., 1997; Sullivan et al., 2006). Because these corrections can be significant, 

associated uncertainties in a(λ) and c(λ) are expected to be greater in the NIR relative to the VIS.  

 

An ongoing area of research focuses on quantifying the correction for the reflective flow tube for 

a(λ) that does not direct all scattered light towards a diffuse director, and can be of order 30-50% 

of the derived absorption coefficient (Stockley et al. 2017). Zaneveld et al. (1994) suggested 

several approaches for this scattering correction, all with assumptions and associated 
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uncertainties. Their baseline correction, traditionally applied to bench-top spectrophotometers, 

subtracts the NIR offset, which assumes that scattering does not vary spectrally. Their 

proportional correction incorporates the observed spectral scattering variability and assumes a 

spectrally constant ratio of the scattering correction to an approximation of total scattering. Both 

corrections also assume null absorption in the NIR, which does not follow many recent 

observations in areas where NAP concentrations are significant (Babin & Stramski, 2004; 

Bowers & Binding, 2006; McKee et al., 2013; Rottgers et al., 2014; Röttgers & Gehnke, 2012; 

Stramski et al. 2004b; Stramski et al., 2007;Tassan & Ferrari, 1995; Tassan & Ferrari, 2003), 

leading to approaches that assume some fraction of the NIR signal is due to absorption.  

 

3.1.2 Laboratory absorption measurements 

Absorption measurement of discrete samples is performed using bench-top spectrophotometers. 

These instruments typically lack the sophisticated optics of the ac meters (i.e., collimated beams, 

reflective tubes, detector-side diffusers) and have 10-cm maximal cuvette pathlengths. In dilute 

ocean waters, this necessitates concentration of particulate matter, while in more complex 

waters, scattering by suspended particulates leads to substantially overestimated absorption 

estimates. Since the 1980s, the traditional approach has been to concentrate the particulate matter 

onto filters and measure directly in the spectrophotometer in transmission mode (Kiefer & 

SooHoo, 1982). The advantage of filtering samples, aside from concentrating particulate matter, 

is the separation of the absorbing components. The filtration separates CDOM from the 

particulate matter. CDOM absorption can be accurately measured in a cuvette due to the 

negligible scattering. Particulate matter absorption can be measured directly on the filter.  

 

Glass fiber filters are the standard as they have a small nominal pore size (0.7 m for Whatman 

GF/F, the recommended brand and model) and a relatively spectrally flat spectrophotometric 

signature, with relatively low uncertainty (Roesler, 1998; Stramski et al., 2015). The highly 

scattering glass fibers significantly increase the optical pathlength, increasing substantially the 

signal to noise. This effect can be corrected using a pathlength amplification factor, β, 

determined using a variety of empirical approaches based upon paired measurements in 

suspensions and on filters (Allali et al., 1997; Arbones et al., 1996; Bricaud & Stramski, 1990; 

Cleveland & Weidemann, 1993; Finkel & Irwin, 2001; Lohrenz, 2000; Mitchell, 1990; Moore et 
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al., 1995; Nelson et al., 1998; Stramska et al., 2003; Tassan & Ferrari, 1995). The lack of 

consensus in  results from the suspension measurements used to construct the correction being 

prone themselves to scattering errors similar to those in the ac meters, but with less information 

for correction. Recent progress has been made to better constrain β (Lefering et al., 2016; 

Röttgers & Gehnke, 2012; Stramski et al., 2015). Stramski et al. (2015), for example, provide a 

protocol for measuring absorption by placing the filter inside a large diameter commercially-

available integrating sphere (Labsphere, Inc), which optimizes the collection of scattered light by 

the glass fiber filter over the traditional transmission mode measurements. The dual beam 

configuration allows the absorption by the directly transmitted beam to be separated from the 

absorption by beams scattered by the sphere. At present, β remains quantified for the VIS range 

only, and preliminary analysis of the UV region suggests large uncertainties due to the 

combination of one or more of the following: weak lamp strength, weak detection capabilities, 

and strong absorption by the integrating sphere itself and the glass fiber filters, as well as 

possible instability of the particulate absorption signal in the UV over short temporal scales. The 

analysis in the UV remains an active area of investigation. 

The filter pad approach also offers a capability for separating the particulate absorption into 

contributions by phytoplankton and NAP. Kishino et al. (1985) proposed the method of 

measuring the particulate sample, then returning the filter pad to the filtration cup and gently 

adding methanol to extract the pigments from the cell, filtering the methanol through and rinsing 

gently with filtered seawater to remove the methanol. The remaining material is the non-

pigmented particulate matter, NAP, which is then scanned again. After correction for pathlength 

amplification (which will be different for the particulate and NAP scans), the phytoplankton 

absorption is calculated by difference. The more accurate description of this component is the 

absorption by phytoplankton pigments in vivo as the NAP does include the non-pigmented 

phytoplankton cellular material. Samples with phycobilipigments such as phycoerithrin require 

an additional treatment with hot water or phosphate buffer (Roesler & Perry, 1995) or buffered 

Milli-Q water (Sobiechowska-Sasim et al., 2014) to extract the water-soluble pigments. 

Oxidation with bleach is another approach (Doucha & Kubin, 1976; Ferrari & Tassan, 1999; 

Röttgers & Gehnke, 2012), although rather than removing the pigments from the sample, the 

oxidized pigment molecules remain on the filter and their absorption shifts to the far blue and 

UV portion of the spectrum, and thus should be used with caution. Some investigators have also 
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explored the separation of the NAP into organic and inorganic components using combustion or 

chemical oxidation (Estapa & Mayer, 2010; Werdell & Roesler, 2003). The efficacy remains 

elusive because the treatment impacts the absorbing material and because the inorganic particles 

often have an organic coating. When that coating is removed, the underlying mineral absorption 

properties are revealed but, in this case, the sum of the components is not conserved. 

 

Uncertainties associated with the spectrophotometric approach vary between instruments, but for 

a quality dual beam benchtop model, absorbance resolution is of order 10
-4

, which translates into 

a signal to noise ratio of about 10
3
. To avoid self-shading and multiple scattering, target 

absorbances should fall between ~0.1 and ~0.4 (van de Hulst, 1957), which may require the use 

of multiple cuvette pathlengths or filter volumes over the UV-VIS range. Generally speaking, 

filters should not be overloaded such that absorbance exceeds 0.4 to avoid artifacts associated 

with self-shading (and additional enhancement of multiple scattering).  In contrast, with regard to 

spectrophotometric measurements on suspension, absorbances measured in the beam attenuation 

configuration should remain generally below ~0.13 to keep the optical thickness (the product of 

beam attenuation and pathlength) below 0.3 (i.e., the single scattering regime) (Mitchell et al., 

2003). The variability associated with the filter pad measurement includes filter-to-filter 

variations, pathlength amplification uncertainties, and sample handling uncertainties. 

Furthermore, the associated uncertainties for replicate samples far exceed the instrument 

resolution and are typically of order a few percent. It should also be noted that the sample 

condition can yield higher uncertainties due to uneven distribution of material on the filter. This 

is often due to gelatinous or polysaccharides in the sample. In such cases, multiple readings per 

filter and replicate filters are required to reduce uncertainties. 

 

3.1.3 VSF and backscattering measurements 

The coefficients b(λ) and bb(λ) can be computed from VSF measurements via straightforward 

integration, however, only several prototype sensors capable of VSF measurements over broad 

angular ranges exist (e.g. Chami et al., 2014; Harmel et al., 2016; Lee & Lewis, 2003; 

Twardowski et al., 2012). The Multi Angle Scattering Optical Tool (MASCOT), calibrated with 

NIST-traceable micro spherical beads and measuring the VSF in 10
o
 increments from 10

o
 to 170

o
 

relative to the incident beam, has demonstrated uncertainties of ≤2% at each angle and ~1% for 
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integrated bb(λ) (Sullivan et al., 2013; Twardowski et al., 2012). The Multispectral Volume 

Scattering Meter (MVSM) (Berthon et al., 2007; Lee & Lewis, 2003; Zhang et al., 2012) 

measures the VSF with an angular resolution of 0.25° from 0.5 to 179° at eight wavelengths. The 

MVSM and the MASCOT can be used with the Sequoia Scientific LISST-100X that measures 

the VSF at 532 nm from 0.07° to 13.9° (e.g. Slade & Boss, 2006). The combination of the 

measurements by these two instrument forms a more complete angular resolution of the VSF at 

532 nm and inter-instrument comparisons shows agreement to within 10% in both forward and 

backward angles (Zhang & Gray, 2015). At the time of this writing, the new Sequoia Scientific 

LISST-VSF had not been fully characterized. 

 

The WET Labs ECO-BB and HOBI Labs Hydroscat instruments provide commercially available 

spectral backscattering sensors that make a VSF measurement with broad angular weighting at a 

single fixed geometry (the ECO-BB has a centroid angle of 124° and the Hydroscat has a 

centroid angle of 140°). In addition, WET Labs ECO-VSF sensors make a VSF measurement at 

several fixed geometries (centroid angles at 104°, 131°, and 150°). Estimation of bb(λ) from 

these instruments requires a conversion coefficient, χ, that is specific to each angular 

measurement geometry (Sullivan et al., 2013). Historical χ factors have been based on both 

modeled and/or measured VSF shape analyses that effectively assume a single constant, 

representative shape for natural waters (Berthon et al., 2007; Boss & Pegau, 2001; Chami et al., 

2006; Maffione & Dana, 1997; Oishi, 1990; Sullivan & Twardowski, 2009; Zhang et al., 2014). 

Typically, derivations of χ adopt a spectrally independent VSF shape in the backward direction. 

This assumption has been examined both theoretically and experimentally, where in many cases, 

the shape has been found to be spectrally independent within measurement uncertainties (e.g. 

Berthon et al., 2007; Boss & Pegau, 2001; Maffione & Dana, 1997; Mobley et al., 2002; 

Twardowski et al., 2001; Ulloa et al., 1994; Vaillancourt et al., 2004; Whitmire et al., 2007; 

Whitmire et al., 2010). That said, the conditions for applicability of this assumption remain under 

active investigation (Chami et al., 2006; Harmel et al., 2016; Jonasz & Fournier, 2007; Sullivan 

& Twardowski, 2009; Zhang et al., 2014; Zhang et al., 2017). Current estimation of uncertainties 

associated with applying χ to derive bb(λ) range from 1-2% when the geometry of the VSF 

measurement is well known and the centroid of the measurement is near 120° (Sullivan et al., 

2013). After calibration with NIST-traceable micro-spherical beads and analytical derivation of 
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angular weighting functions, WET Labs ECO sensors show total estimated uncertainties of ≤5% 

(Sullivan et al., 2013), whereas HOBI Labs (Bellevue, WA) Hydroscat sensors are calibrated 

using a Spectralon plaque and with similar estimated uncertainties. Instrumental closure between 

a Hydroscat and a Wet Labs ECO-VSF showed differences < 2% (Boss et al., 2004). A recent 

comparison of three WET Labs single angle backscattering sensors (ECO-FLBB, ECO-BB and 

MCOMS) deployed on hundreds of profiling floats, however, found consistent differences of up 

to 30%, which is inconsistent with the above discussion (Poteau et al., 2017).  At the time of this 

writing, this discrepancy results from the manufacturer applying the wrong calibration constant, 

with steps underway to provide a remedy (A. Barnard, WET Labs, personal communication).  

 

All scattering sensors suffer from attenuation along the path. A correction is typically warranted 

when the pathlength between source, sample volume, and receiver exceeds several cm (Sullivan 

et al., 2013; Twardowski et al., 2012). For WET Labs ECO sensors, this correction is <1% when 

absorption (including water) is <0.5 m
-1

. For the Hydroscat, which has a pathlength of 0.15 m, 

the correction is ~50% when c is 1 m
-1

. Doxaran et al. (2016) provides additional analysis of this 

problem and improved correction methods. 

 

3.1.4 Pure seawater measurements 

Backscattering by pure seawater is often considered to be constant and well-known in remote 

sensing algorithms (IOCCG, 2006) and common practice for several decades has been to use a 

constant pure seawater backscattering spectra originating from Morel (1974). As described in 

Section 2.1.4.1, Zhang et al. (2009) provides the most recent theoretical description of pure 

seawater scattering as a function of the physical properties of water with variables of T, S, and 

pressure. The physical constants in the calculations are all known with excellent precision 

(<0.1%), with the exception of the depolarization ratio. The currently recommended value for 

this parameter is 0.039 from measurements by Farinato and Rowell (1976). Pure water scattering 

in the blue decreases by more than 10% when using a value of 0.039 relative to the value of 0.09 

used by Morel (1974). The Zhang and Hu (2009) computations of pure water scattering with a 

value of 0.039 produce volume scattering functions that match experimental measurements by 

Morel (1968) within 2% (Jonasz & Fournier, 2007). Nonetheless, this important parameter 
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deserves additional experimental evaluation to further reduce uncertainties in pure water 

scattering values.  

 

To date, Mason et al. (2016) provides the most recent laboratory measurements of pure water 

absorption in the UV and VIS domain. These values are much lower than previously measured in 

the UV (Pope & Fry, 1997; Smith & Baker, 1981). Lee et al. (2015) derived higher values for 

seawater in the UV, which possibly result from contributing UV absorption by dissolved 

inorganic constituents in seawater. Lee et al. (2015) derived their values via analytical inversion 

of a remote sensing reflectance inversion model, in lieu of direct experimental measurement. 

Given the lack of closure amongst the varied methods, additional research is necessary to 

understand the effects of dissolved inorganic substances in the UV and associated uncertainties. 

  

3.1.5 In situ sampling 

Assessment of how well in situ observations compare with remotely sensed observations must 

include uncertainties associated with sampling a dynamic environment with multiple scales of 

variability. Temporally, it is rare for in situ observations to be made simultaneously with remote 

measurements. Following, any temporal offset must at least consider the time scales of 

environmental change to address how conditions imaged at time ta compare with the water mass 

that was observed at time tb when ta ≠ tb. In dynamic coastal environments, uncertainties can 

grow rapidly as Δt=tb-ta increases and will scale with both advective velocities and spatial 

variability. Likewise, uncertainties are also associated with observations made at dissimilar 

spatial scales, both horizontally and vertically. Horizontally, discrete water samples and in situ 

optical measurements may represent conditions at a point location representing O(1 m
2
) 

(depending how long the water was sampled and advective velocities), whereas sensor-observed 

Rrs(λ), even if measured simultaneously, is a vertically integrated value averaged laterally across 

the ground sampling distance (GSD) of the system (1 km
2
, for example, in the cases of SeaWIFS 

and PACE). Vertically, discrete samples of IOPs, Ca, or parameters related to phytoplankton 

community composition collected at only one or few depths in the upper optical depth prohibit 

reconstruction and true representation of the full optically-weighted signal observed by the 

satellite (Gordon & Clark, 1980; Smith, 1981; Zaneveld, 1995). Optical depths vary spectrally 
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such that satellite retrieved spectral absorption comes from different optical depths – and, thus, 

phytoplankton and particle populations – suggesting that satellite algorithm development and 

data product validation activities benefit from (and are better informed by) continuous depth 

resolved measurements (Werdell & Bailey, 2005; Werdell et al., 2014). 

 

Temporal scales of variability in the open ocean are dominated by biological dynamics (e.g., 

phytoplankton production and loss processes), as well as physical dynamics (e.g. mixed-layer 

dynamics, horizontal stretching, folding, and mixing). During the day, when passive remote 

sensing is possible, near-surface Ca, a(λ), and bb(λ) can change by as much as a factor of two 

(Siegel et al., 1989; Dickey et al., 1991). Within shallow coastal waters where Rrs(λ) is often 

dominated by non-living, organic and inorganic particles, temporal scales of variability in these 

biological and optical properties are typically minutes to hours as the result of advection by 

changing tidal currents, suspension of bottom sediments by waves and currents, and land-ocean 

exchanges of optically-important materials. In the vertical direction, stratification in the 

concentration and composition of near-surface optical constituents with depth is common within 

shallow coastal waters in association with current and wave suspension of bottom sediments, 

thin, sub-surface biological layers, and buoyant plumes. If the gradients are large enough and 

close enough to the surface, they affect Rrs(λ) as observed by ocean color sensors (Andre, 2002; 

Petrenko et al., 1998; Yang et al., 2013).  

 

While it is impossible to remove all sampling uncertainty, uncertainties can be minimized with 

sampling approaches devised with understanding of the sources and magnitudes of 

environmental variability. Understanding the statistics of the underlying parameter (e.g. its 

probability distribution) in space and time can provide guidance as to how uncertainties are 

reduced when aggregating independent matchups (e.g. can the simple 1/N
1/2

 decrease in the 

standard error of the mean apply, with N being the number of independent match-ups). 

Knowledge of such variability suggests that minimizing sampling uncertainty requires collection 

of in situ observations as close to the time of the remote observations as possible and at spatial 

scales that resolve sub-pixel variability and depth scales to resolve the exponentially-weighted 

IOPs over spectrally varying optical depths. Acknowledging that temporal and spatial variability 

are correlated through advection, spatial uncertainty associated with sub-pixel variability can be 
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reduced by increasing the number of sub-pixel observations in space or time (Moses et al., 2016; 

Werdell et al., 2013b). 

 

3.1.6 Closure between measured IOPs and Rrs() 

Understanding the quality of measured IOPs and AOPs is often accomplished through RT-in situ 

closure experiments. These closure experiments are conducted by using in situ IOPs as input into 

a RT model that simulates AOPs. RT-modeled AOPs are then compared to in situ AOPs to see 

how well they agree. The degree of agreement in closure exercises is typically quantified using 

metrics such as the coefficient of determination, root mean square difference, absolute difference 

and root mean square relative difference at a few wavelengths (Tonizzo et al., 2017). All 

components of the closure exercise have uncertainties – the IOPs and AOPs suffer from 

measurement error (as described above), while the RT model has assumptions, typically 

regarding IOPs not directly measured (e.g., VSF), horizontal homogeneity, inelastic scattering 

contributions, sky/sun models, the air-sea interface, and polarization effects (as described in 

Section 2.1). Despite these caveats, when performing careful measurements and understanding 

the impacts of various assumptions, it remains possible to obtain closure (often within 20-30%) 

and use such an exercise to evaluate biases introduced by different measurement methods 

(Lefering et al., 2016; Mobley et al., 2002; Tonizzo et al., 2017; Tzortziou et al., 2006; Werdell 

et al., 2014). 

 

3.2 Uncertainties in derived IOPs 

Characterization of errors and uncertainties associated with ocean color products allows end-

users to determine if the derived product is fit-for-purpose. Uncertainty estimates are key to 

interpretation of higher level modeling efforts that incorporate ocean color products (e.g., 

primary production and data assimilation in ecosystem or biogeochemical models) (Gould et al., 

2014; Sheng et al., 2014). This requires complete documentation of uncertainties associated with 

an IOP product and their method of determination on a pixel-by-pixel basis. Satellite-to-in situ 

analyses provide one suitable way to characterize the uncertainty of derived IOP products 

(Bailey & Werdell, 2006). These matchup analyses, however, provide only a general estimate of 

IOP algorithm uncertainty, remain limited to coverage by the existing at-sea optics sampling 
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platforms (ships of opportunity, buoys, floats, and gliders), and do not adequately resolve 

variability in either time or space (Valente et al., 2016; Werdell & Bailey, 2005). 

 

Errors and uncertainties in derived IOP products mainly result from three sources: (i) 

uncertainties in input Rrs() data due to sensor noise and atmospheric correction error; (ii) the 

forward model used, its general formulation and parameterization, and the assumptions and 

approximations it carries; and, (iii) the inverse solution method used (IOCCG, 2006; Werdell et 

al., 2013a). In theory, these factors should be collectively considered when deriving error 

estimates, but it is generally difficult to do so in practice. Several approaches exist for generating 

uncertainty estimates for various ocean color products, including IOPs (Mélin & Franz, 2014; 

Salama et al., 2012). Algebraic error propagation analysis provides one way to assess model 

sensitivity and quantify uncertainties in IOPs (Lee et al., 2010; Neukermans et al., 2014; 

Neukermans et al., 2009). Lee et al. (2010), for example, estimated how uncertainty in an early 

stage of the QAA algebraic algorithm propagates to IOP components derived in subsequent steps 

of the algorithm, thereby assessing how uncertainties in specific model parameters (e.g., Sbp and 

Sdg) influence the accuracy of derived absorption components. Conceptually, the propagation of 

radiometric uncertainty could be accomplished analytically for ocean color AC as well, however, 

this requires the difficult characterization of uncertainties in ancillary input data and for all of the 

major steps of data processing (Mobley et al., 2016).  

 

Spectral matching inversion models often provide uncertainties estimated from gradient-based 

methods. Non-linear least squares inversions use matrix algebra to combine information about 

how small changes in the best-fit retrieved IOP parameters affect the forward modeled Rrs() and 

ultimately derive the standard error of the retrieved products from the covariance matrix (Bates 

& Watts, 1988; Press et al., 1992). This gradient-based approach is used in several ocean color 

SAAs that derive IOPs (Maritorena et al., 2010; Maritorena & Siegel, 2005; Salama et al., 2009; 

Van Der Woerd & Pasterkamp, 2008; Werdell et al., 2013a). In addition, Salama et al. (2011) 

developed a gradient-based approach for estimating uncertainties associated with varying the 

inverse model parameterization without the need for performing an inversion. Some non-linear 

curve fitting techniques can also account for the uncertainties in the observed reflectance (if 

known; see Maritorena et al. (2010)). It is important to recognize that uncertainty estimates from 
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non-linear least square generally rely on the difference between observed and modeled 

reflectance and are thus influenced by the forward reflectance model approximations and 

parameterization. Gradient-based methods do not handle uncertainties due to sensor noise and/or 

AC error (Salama et al., 2011). It has also been shown that gradient-based uncertainty estimates 

tend to be proportional to the magnitude of the retrieved variables (Maritorena & Siegel, 2005; 

Salama et al., 2009). 

 

Ensemble-type methods (e.g., Monte Carlo) provide another technique for estimating IOP 

uncertainties. In this approach, each AOP input and/or the inverse model parameterization is 

perturbed m times, with a set of m candidate IOP solutions returned. The IOP solution and its 

uncertainty are derived from the distribution of candidates. Using this approach, Wang et al. 

(2005) computed the absolute uncertainty of IOPs apportioned to noise in the input Rrs(λ) data. 

Median IOPs and their associated uncertainties were then computed from a subset of the 

ensemble capable of reproducing the input Rrs(λ) throughout the spectrum within a defined 

range. Similarly, Schiller and Doerffer (1999) and Salama (2012) used ensemble-based 

approaches to quantify IOP uncertainties in ANNs and stochastic inverse IOP models, 

respectively. While a powerful tool for estimating uncertainties in derived IOPs, ensemble 

methods are computationally expensive, often requiring thousands of perturbations per pixel, and 

often do not account for correlative errors between variables. Ensemble-based approaches also 

make assumptions about noise characteristics of sensor-observed Rrs() (e.g., ranges, statistical 

distributions, and spectral correlations) that may not always be appropriate for all conditions at 

all times. 

 

Other approaches have been developed for estimating uncertainties in Rrs(λ) and/or Ca that could 

be extended to IOP retrieval models (Frouin & Pelletier, 2015; Mélin et al., 2010; Mélin et al., 

2016; Moore et al., 2009; Moore et al., 2015). The approach of Moore et al. (2009) can be used 

to assign an uncertainty value to each pixel of a product (e.g., Ca) derived from Rrs(λ). For each 

Rrs(λ) spectra, a fuzzy classification scheme assigns a fractional membership corresponding to 

each of the predefined optical classes that allows for non-discrete uncertainty estimates when the 

matchup statistics are applied. This method is model-independent and can be applied to virtually 

any ocean color product; however, it is limited by the quantity and representativeness of matchup 
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data available. Frouin and Pelletier (2015) used a Bayesian approach to predict Rrs() from Lt(), 

which can conceptually be extended to IOPs. A Bayesian inverse modeling approach allows the 

definition of a confidence domain of the predicted quantity and as such, in the particular case of 

ocean color remote sensing, can provide a measure of its uncertainty at each pixel. Uncertainties 

associated with Ca or Rrs(λ) have also been assessed by comparing the coincident daily data 

records from pairs of sensors (Mélin et al., 2010; Mélin et al., 2016). This co-location approach 

characterizes uncertainties associated with random effects and can be used either with a 

particular sensor serving as the reference or by treating each sensor equally. The approach 

enables IOP uncertainties to be spatially resolved for pairs of sensors, but has not yet been 

applied to evaluate its ability to assess temporal variations of uncertainties, particularly over 

short time scales for which only few satellite-to-in situ pairs are available. 

4 Performance Metrics 

Recognizing the current influx of algorithms into the community, the forthcoming need to 

develop enhanced approaches that exploit new instruments’ characteristics, and the varied 

portabilities of globally parameterized algorithms to specific regions, development and 

implementation of rigorous metrics to assess algorithm performance is essential. Broadly 

speaking, the choice of algorithm often depends on: (i) precision and dynamic range 

requirements that dictate the repeatability and distributions of desired retrievals; (ii) biases, 

imposed most often by the applicability of algorithm parameterizations and training data sets 

(and their sizes and broad representativeness) to specific regions of interest; (iii) robustness, 

defined by spatial and temporal stability, frequency of invalid retrievals and uncertainty 

requirements; and, (iv) the computational efficiency of an algorithm and computational resources 

available. Deep discussions related to algorithm selection for particular applications or specific 

statistical metrics for use in algorithm comparisons exceed the scope of this review (we refer the 

reader to Brewin et al. (2015b)); however, several features of contemporary inverse IOP models 

that are typically overlooked or minimized in algorithm evaluation activities merit presentation 

in the context of this review. They include algorithm internal consistency metrics, internally-

applied geophysical restraints, and data transformations.   
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Internal consistency verifications exist to assess the quality of derived IOPs once an algorithm 

returns a solution. Comparisons of model-derived remote-sensing reflectances, Rrs
mod

(λ) – those 

remote-sensing reflectances calculated using the forward model with the derived IOPs as inputs 

– with the sensor-observed remote-sensing reflectances, Rrs
obs

(λ), provide a similarity metric that 

is commonly embedded within an algorithm. When the computed distance measure falls below 

some predefined tolerance, the Rrs
mod

(λ) and Rrs
obs

(λ) are deemed suitably similar and the 

algorithm reports the computed IOPs. This process is akin to in situ closure experiments, 

discussed in Section 3.1.6. Boss and Roesler (2006) and Werdell et al. (2013a) assessed 

algorithm closure in this manner by computing their absolute percent relative difference: 

 

            
    

          
       

   
      

.        (18)   

These authors considered internal consistency achieved when the ΔRrs fell below a predefined 

value over a predefined wavelength range. Boss and Roesler (2006) used 10% for any band 

within the wavelength range 400-555 nm and Werdell et al. (2013a) used 33% for the average 

ΔRrs for all wavelengths within 400-670 nm (the current NASA implementation of Werdell et al. 

(2013a) uses 400-600 nm). These algorithms return a non-solution when the value of ΔRrs 

exceeds their threshold values. Note that several alternatively suitable distance measures exist, 

including the Euclidean distance, Chi square distance, root mean square error, and relative root 

mean squared error (Brando et al., 2012; Brewin et al., 2015b; Hedley et al., 2009). In general, 

errors result from residual biases, not normally distributed random error, so non-parametric 

metrics should also be explored. They are also, in general, less sensitive to outliers compared to 

parametric distance measures and do not assume a probability distribution of Rrs. Note also that 

internal consistency verification does not directly apply to, nor is possible for, all algorithms, 

such as Lee et al. (2002) and others in the spectral deconvolution class defined in Section 2.2.1.  

 

Standard satellite data processing provides another series of internal verifications through quality 

flags, such as the l2_flags product reported by the NASA SeaWiFS Data Analysis System 

(SeaDAS; https://seadas.gsfc.nasa.gov). During routine processing, a pixel is considered of poor 

quality if one or more key flags are activated by algorithm failure or the presence of, for 

example, clouds, ice, land, saturated radiances, or straylight (Robinson et al., 2003).  
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Even with suitable internal algorithm closure, IOPs with unrealistic or non-physical values may 

be returned as a solution given that the inversion is mathematically ill-posed. Inspection of 

derived IOP ranges counters this to ensure they fall within a suitably realistic range that is 

consistent with known natural variability. Werdell et al. (2013a), for example, applied a series of 

inequality constraints after the non-water IOP solutions have been derived, specifically: 

  

                             

                           

                           

 (19) 

In this case, when one or more of the derived IOPs fall outside the defined range, the algorithm 

returns a non-solution. We note that the inequality constraints in Eq. (19) allow for slightly 

negative solutions. This should be allowed given uncertainties in the in situ measurements (if it is 

not allowed, the match-up statistics will be biased high). As an alternative to using inequality 

constraints to check the validity of derived IOPs, it is possible to constrain the solution method 

such that the solution space search is limited to a predefined range (Garcia et al., 2014; McKinna 

et al., 2015). Constrained solution methods, however, can potentially interfere with the 

mathematical mechanism for searching multi-parameter solution space and can result in IOP 

solutions that sit on the edge of the solution space (Garcia et al., 2014; Huang et al., 2013).  

 

Characterization of bias and uncertainties for ocean constituents occasionally benefit from data 

transformations. Satellite Ca, for example, are nearly log-normally distributed in space 

(Campbell, 1995), as confirmed when viewing frequency distributions of untransformed and log-

transformed SeaWiFS chlorophyll data for May 1998 (Fig. 2). As normally distributed data are 

required for parametric statistical tests to retain their meaning, interpretations of statistical results 

can be misleading if non-normally distributed data are used for characterization. In application of 

log-transformed SeaWiFS chlorophyll comparisons, Gregg and Casey (2004) derived an RMS 

log error of 31.0%. In this case, 76% of the comparisons fell below this error level, which is 

reasonably close to the definition of the RMS. When using untransformed data, the RMS 

contained 95% of the data, which deviates significantly from the expected 67%, strongly 

suggesting erroneous application of the RMS due to a non-normal data set (Fig. 2). The extent to 

which other optical constituents or IOPs possess spatial or temporal deviations that differ 

significantly from normal (Gaussian) distributions remains understudied and non-parametric 
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descriptors of uncertainty and bias should be explored. Frequency diagrams demonstrate the 

nature of the distributions and may guide the choice of statistical applications and transforms. 

Means and medians should also be computed – medians are less sensitive to data distribution, 

such that it is likely that the data are not normally distributed when the median differs 

substantially from the mean. Comparison between frequency distributions of derived products 

and those measured in situ (e.g., in databases) are critical to assess the applicability of the 

specific dataset to derive inversion algorithms on global scales, as a non-representative dataset is 

likely to bias the global algorithm (Werdell et al., 2009; Werdell et al., 2013a). Care should be 

applied to subsample the dataset to be spatially (and if possible temporally) representative of the 

variability of the full domain of interest. 

5 Looking forward 

In the following sections, we briefly overview new and upcoming missions, knowledge gaps in 

IOP bio-optical models and measurements, and the future of inverse methods, uncertainty 

considerations, and methods for algorithm assessment. A number of recent and soon-to-launch 

ocean color missions will carry novel sensor payloads with unprecedented observing capabilities 

(Table 5). It is useful to briefly contextualize these missions to consider existing knowledge gaps 

in IOP retrieval methodologies and recommend paths forward. Furthermore, building upon 

Section 2.2 where heritage algorithmic approaches were reviewed, it is important to identify 

knowledge and measurement gaps that require attention to further improve upon inverse IOP 

modeling efforts in the PACE era. In particular, we discuss gaps in absorption and backscattering 

coefficients, additional data needed to improve algorithms, non-conventional approaches, and 

future machine learning approaches. 

  

5.1 Future sensing technologies 

Future technologies suitable for IOP remote sensing can roughly be split into three categories: (i) 

high spatial O(10 m) pixel sensor instruments in low Earth orbits (LEO), (ii) sensors in 

geostationary Earth orbits (GEO) with moderate resolution O(1 km) pixels, and (iii) moderate 

spatial O(1 km) pixel resolution LEO sensors. These three categories clearly demonstrate the 

tradeoffs required for remote sensing – there is only so much radiant energy emanating from the 
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ocean and each sensor optimizes on spatial resolution at the expense of spectral and/or temporal 

resolution and vice versa. A summary of recently launched and soon-to-be launched sensors 

applicable to retrieving IOPs is given in Table 5.  

 

High spatial resolution sensors have recently provided remarkable insights into sub-mesoscale 

processes in coastal regions (Franz et al., 2015; Vanhellemont & Ruddick, 2014). However, as 

current instruments with high spatial resolution (OLI and MSI) were primarily designed for 

terrestrial observations, they have limited and relatively wide bands sets (typically four VIS 

bands) and signal-to-noise characteristic not ideal for remote sensing dark ocean targets. 

Nonetheless, much work is underway to improve the radiometric quality of high spatial 

resolution data and AC correction, to support heritage IOP methodologies (Franz et al., 2015; 

Pahlevan et al., 2014; Pahlevan et al., 2017; Vanhellemont & Ruddick, 2015; Vanhellemont & 

Ruddick, 2016). A present limitation of high spatial resolution sensors is their swath width, 

which is typically O(100 km), their repeat time O(10 days), and the fact they are typically not 

tasked to image the open ocean away from coastlines. Collectively, this means that existing high 

resolution sensors in LEO are not conducive to providing near-daily basin-scale measurements of 

oceanic IOPs. 

 

The capabilities of GEO satellites have recently been demonstrated using meteorological 

satellites (Murakami, 2016; Neukermans et al., 2009; Neukermans et al., 2012) and with the 

Geostationary Ocean Color Imager (GOCI) (Choi et al., 2012). GEO sensors offer the ability to 

observe diurnal marine processes by capturing multiple images of a region throughout the day. 

With better temporal resolution compared to LEO, GEO sensors can resolve dynamic marine 

processes such as suspended sediment plumes (Choi et al., 2013) and diurnal variability in 

phytoplankton blooms (Lou & Hu, 2014). In addition, multiple GEO images can provide more 

spatially complete daily snapshots of a region when averaged together. However, like high 

resolution LEO sensors, GEO sensors do not provide near-daily global coverage and are multi-

spectral with band sets similar to heritage ocean color missions such as SeaWiFS. We note, 

however, potential synergies between high radiometric quality LEO sensor data and high 

temporal frequency GEO sensor data have recently been considered, specifically approaches for 
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combining the two data types for the purpose of producing improved temporally-rich ocean color 

data suitable for observing coastal waters (Peschoud et al., 2017; Vanhellemont et al., 2014). 

 

Moderate spatial resolution sensors have been, and continue to be, used for deriving near-daily 

global IOP data products. They are well-calibrated sensors with dynamic ranges and signal-to-

noise characteristics necessary for observing ocean properties (Hu et al., 2012). These polar 

orbiting LEO sensors completely image the Earth’s surface in O(1 day) and are the critical for 

climate-quality synoptic-scale observations of marine biogeochemical processes. Most inverse 

IOP methods detailed in Section 2.2 were developed for application to moderate spatial 

resolution LEO sensors with measured success. We note that the number of spectral bands 

observed by existing (MODIS, OLCI, VIIRS) and most future (SGLI, OCM-3) moderate spatial 

resolution LEO sensors are only slightly better than historical instruments (e.g. SeaWiFS, 

MERIS, OCM-1, OCM-2) with the exception of the primary PACE instrument, which will be a 

hyperspectral sensor. We discuss the capabilities of the PACE mission in the following section. 

 

5.1.1 The PACE Mission 

The PACE mission spacecraft will carry its primary instrument, the Ocean Color Imager (OCI), 

in a polar LEO providing global coverage every two days. The OCI spectroradiometer will have 

higher spectral resolution (~5 nm contiguous bands) than historical and contemporary satellite 

sensors (see Table 5), ranging from the UV (~350 nm) to NIR (~900 nm), and will potentially be 

flown with a multi-angle polarimeter as a second instrument in its payload. Accordingly, it is 

prudent to pursue inverse IOP methods that take maximal advantage of these new features. 

 

The PACE spectroradiometer has the potential to discriminate optical constituent matter in ways 

previously impracticable with multispectral data. High-resolution spectral capabilities can better 

inform SAA approaches such as those presented above (Vandermeulen et al., 2017; Wolanin et 

al., 2016) and also allow common spectroscopy approaches, such as derivative analysis, to be 

utilized (Bracher et al., 2009). It is also expected that Rrs(UV) measurements will enable 

improved separation of acdom() and anap(), as Scdom exceeds Snap and hence typically acdom() > 

anap() in the UV. The PACE spectrometer also has the potential to improve estimates of 
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phytoplankton community composition through its continuous measurements of spectral features 

aligned with accessory pigment absorption (Bracher et al., 2017; Torrecilla et al., 2011; 

Vandermeulen et al., 2017). For example, existing ocean color sensors lack appropriately placed 

yellow/orange spectral bands (560–650 nm) needed to detect phycobilipigments, such as 

phycocyanin, indicative of cyanobacteria (McKinna, 2015).  

 

Finally, measurements of polarized Rrs() (or reflectance) show sensitivity to microphysical 

properties of hydrosols (marine particles), such as their composition (e.g., refractive index), size, 

and shape (Chowdhary et al., 2012; Kattawar, 2013; Lotsberg & Stamnes, 2010). Loisel et al. 

(2008), for example, demonstrated the use of polarized radiometry to distinguish organic and 

inorganic particles near the mouth of the Amazon River. Accordingly, it is anticipated that 

polarimetric remote sensing will provide additional information for inverse IOP methods 

(Harmel, 2016; Ibrahim et al., 2016) that can, in principle, lead to improved methods for 

determining pigment concentrations, particles sizes, and phytoplankton taxonomy.  

 

5.2 IOP theoretical models and measurements 

5.2.1 Knowledge gaps in absorption 

Particulate absorption measurements from UV to NIR may still have significant biases that need 

to be addressed. In situ measurements, currently made largely using WET Labs ac meters, still 

suffer from large uncertainties due to the necessity to scatter correct the measurements as 

discussed in section 3.1.1. This issue appears most acute in coastal environments where 

particulate absorption cannot be assumed to be vanishingly small at NIR wavelengths, an 

assumption that may be reasonable in clear open ocean conditions. Improved scattering 

corrections have been proposed, but they require companion measurements collected using a 

VSF sensor to independently calculate the scattering error to derive uncertainties (McKee et al., 

2013; Tonizzo et al., 2017; Stockley et al. 2017). We note, however, that these corrections have 

not been widely adopted as they do not seem to merge with offshore solutions. Integrating cavity 

absorption sensors have recently been commercialized (e.g., the Turner Design Integrating 

Cavity Absorption Meter (ICAM) and the Trios Online hyperSpectral integrating Cavity 

Absorption meteR (OSCAR)), which theoretically collect all, or nearly all, scattered light, and 
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can potentially derive absorption with reduced uncertainties. These sensors, however, are only 

now being fully characterized, including considerations for inelastic scattering.  

 

For pure seawater absorption, there is a clear need for research to better understand the role of 

absorption by dissolved inorganics in the UV such as oxygen, NO3, Br
-
, and other salt ions 

comprising sea salts that have significant absorption in the UV (Armstrong & Boalch, 1961; 

Copin-Montegut et al., 1971; Johnson & Coletti, 2002; Lenoble, 1956; Ogura & Hanya, 1966; 

Shifrin, 1988). These effects have received scarce attention in recent literature. At 230 nm, these 

constituents all maintain more than an order of magnitude higher absorption than the values of 

pure water absorption, with steeply increasing absorption at shorter UV wavelengths. How 

substantially these constituents absorb at wavelengths longer than 300 nm remains unresolved, as 

the tail absorption effects have typically not been studied with high accuracy. Even relatively 

small contributions could be significant since pure water absorption is very low, particularly in 

the 320 to 420 nm range (< 0.01 m
-1

). Armstrong and Boalch (1961) found significant effects of 

sea salt absorption out to 400 nm, but rigorous purification steps were not taken, so it is unclear 

if their additions of artificial sea salts introduced organic contaminants. 

 

For inverse IOP methods, such as SAAs, there is no generalized bio-optical model that can 

parameterize the spectral shape a*ph() in the UV. Additional characterization of UV 

phytoplankton absorption, including contributions of absorbing compounds such as 

mycosporine-like amino acids (MAAs) is essential to resolve this gap. Given that phytoplankton 

community structure varies with environmental conditions, however, additional review of how 

measurements of T, S, nutrients, and light can better inform or constrain a*ph() within the 

context of remote sensing will also improve the skill of IOP inversions. We note, however, that 

while laboratory absorption techniques in the VIS have become significantly more robust 

(Stramski et al., 2015), accurate quantification of UV absorption with a filter-pad method 

remains a challenge, particularly because the absorption signal in this spectral region may exhibit 

significant drift on relatively short time scales comparable with the duration of spectral scan. 

Additionally, commercially-available in situ UV absorption meters do not currently exist. 
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5.2.2 Knowledge gaps in backscattering 

Successfully partitioning of bbp() into multiple components is currently limited by insufficient 

knowledge about natural variability in particle backscattering properties in the ocean. Whereas 

technological and methodological capabilities to derive total bbp() in situ exist, and there are 

inversion approaches to derive particulate scattering components from VSF measurements 

(Twardowski et al., 2012; Zhang et al., 2012; Zhang et al., 2014; Zhang et al., 2011), there is a 

lack of routine experimental methodologies for directly determining particle type-specific 

backscattering data for multiple particulate backscattering components (e.g., bph() and bnap()). 

A continued need for further advancements in understanding of particulate backscattering, such 

as the roles of different particle types, remains an important challenge (Stramski et al., 2004a). 

Furthermore, in support of upcoming missions with expanded spectral ranges, investing in the 

development of hyperspectral backscattering instruments that span UV-NIR should be pursued. 

Current commercially-available sensors (WET Labs ECO-BB and HOBI Labs HydroScat) 

measure bbp() at a finite number of wavelengths (3–9 channels). Additional gaps are associated 

with how the spectral shape of the particulate backscattering coefficient is parameterized. For 

example, the appropriateness of its assignment as a power-law (Eq. 16) and under what 

circumstances the particulate backscattering ratio can be assumed to be spectrally constant (Eq. 

17) (Gordon et al., 2009).  

 

As reviewed in Sections 2.1.4.1 and 3.1.4, Zhang and Hu (2009) and Zhang et al. (2009) describe 

the physical relationships to derive the currently recommended values for bbw(). The largest 

remaining uncertainty is the depolarization ratio. As mentioned, we recommend a δ value 0.039 

at this time, however uncertainty in this parameter is at least 50% based on the range in values 

measured by Farinato and Rowell (1976), the only set of experimental measurements we are 

aware of in the last 50 years. Additional research is required to improve the accuracy of , and to 

ascertain any associated dependencies (e.g., spectral, T, S). 
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5.3 Inverse models 

5.3.1 Inverting AOPs to IOPs with additional optical information  

In addition to the widely applied QSSA of Gordon et al. (1988), other approximations with 

potential value for IOP inverse models exist that have not widely been adopted in standard ocean 

color data processing schemes (Appendix A). Zaneveld (1982; 1989; 1995), for example, derived 

an analytical expression for rrs() that explicitly includes treatment of the VSF (in lieu of relying 

on average parameterizations such as the Gi() in Eq. 4) (Appendix B). From a remote-sensing 

perspective, such an expression enables application of algorithms that explicitly contain the 

shape of the VSF. By doing so, it also merges two separate, disconnected steps in current QSSA 

algorithm work: (i) the BRDF correction of input Rrs() based on tables from Morel et al. (2002) 

(see Section 2.1.2), and (ii) the subsequent inverse model. Combining these steps in a single, 

rigorous relationship allows explicit assessment of errors in component variables. In the current 

two-step approach, errors associated with, for example, the VSF are dispersed in several poorly 

defined parameters that are empirically tuned. Furthermore, approximations that retain as much 

of the functional form of the RT equation as possible presumably remain inherently more stable. 

Zaneveld (1989) provided an inversion approach for his analytical expression that would benefit 

from renewed assessment by the community. 

 

Only a subset of contemporary inversion methods explicitly includes inelastic processes, such as 

Raman scattering or fluorescence (e.g. Lee et al., 1994; Loisel & Stramski, 2000; Sathyendranath 

et al., 2001), although generalized methods for their inclusion now exist (Lee et al., 2013; 

McKinna et al., 2016; Westberry et al., 2013). To date, no treatment of Raman scattering 

accounts for T and S effects, although implementing T and S corrections within an inversion 

algorithm has been demonstrated (Werdell et al., 2013b). Walrafen (1967), Walrafen et al. 

(1986) and Becucci et al. (1999) all provide information on the temperature dependence of 

Raman scattering. Becucci et al. (1999) provides information on the salinity dependence of 

Raman scattering (through the use of synthetic seawater). On average, the observed effects were 

on the order of 20% from 10 to 30
o
C and 10% from 0 to 26 ppt. In contrast, Bartlett et al. (1998) 

found no evidence for a salinity effect on Raman in seawater samples, which suggests that 

further review is necessary. Broadly speaking, neither Ca or CDOM fluorescence are considered 
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in IOP inversions (for an exception, see Lee et al. 1994). Given observed variability in Ca and 

CDOM fluorescence (Del Castillo et al., 2001; Falkowski & Kolber, 1995; Green & Blough, 

1994; Hoge et al., 1993), further study is needed to assess how to best parameterize these 

inelastic scattering processes within inverse IOP methods. 

 

5.3.2 Optically shallow waters 

Interest has steadily increased in utilizing ocean color data to monitor ecosystem health in 

optically shallow shelf waters (Devlin et al., 2015; Hedley et al., 2016). However, most inverse 

IOP methods used to process global datasets were designed for optically deep oceanic waters 

with some exceptions (Lee et al., 2001; Lee et al., 1999). These algorithms are easily confounded 

by light reflected off the seafloor in clear, shallow waters resulting in biased IOP retrievals 

(Barnes et al., 2013; McKinna et al., 2015). A number of SAAs have been developed for remote 

sensing shallow waters using either multi- or hyperspectral airborne spectroradiometric data 

(Dekker et al., 2011), however, historical approaches have focused more on bathymetry and 

seafloor mapping rather than deriving water-column properties (Brando et al., 2009; Werdell & 

Roesler, 2003). Dedicated optically shallow ocean color algorithms have started to become 

available for deriving IOPs (Barnes et al., 2017; Barnes et al., 2013; McKinna et al., 2015). It is 

challenging, however, to incorporate these approaches into global data processing, as optically 

shallow waters make up only a small fraction of overall pixels and no robust mechanism 

currently exists to adequately flag their location during routine processing. In the approach of 

McKinna et al. (2015), for example, ancillary bathymetry and benthic albedo datasets are needed 

to help to constrain the dimensionality of the solution space to three unknowns (Aph, Adg, Bp). The 

need for large region-specific ancillary benthic albedo and bathymetry datasets can be alleviated, 

however, through the recently-developed algorithm of (Barnes et al., 2017); an approach that 

would be well-suited to spectrally-rich ocean color data collected by missions such as PACE. 

 

As described in Section 3.1.4, coastal waters are often optically heterogeneous, making 

validation of algorithms difficult. This is compounded in optically shallow regions where within-

pixel seafloor and bathymetric variability and stray light from adjacent features (e.g. sand cays 

and breaking waves) further complicate algorithm validation efforts. Not only are appropriate 

sampling protocols and methodologies required, but also a publicly accessible archive of in situ 
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AOP/IOP data for algorithm development and validation. To that end, it is likely that the recently 

initiated NASA-funded COral Reef Airborne Laboratory (CORAL; https://coral.jpl.nasa.gov/) 

project will contribute greatly to the afore-mentioned knowledge gaps. 

 

5.3.3 Non-conventional approaches for estimating IOPs from ocean color 

Methods that relate Lt() to IOPs have recently emerged and will benefit from further review and 

development (path 14 in Fig. 1). These approaches circumvent the need for AC (path 12 in 

Fig. 1) that can sometimes be confounded by absorbing aerosols and optically complex water 

masses. Two broad classes of approaches exist, specifically empirical models and coupled 

atmosphere-ocean algorithms models. Common empirical methods for deriving IOPs from Rrs(λ) 

were described in Section 2.2.3. Coupled atmosphere-ocean approaches operate similarly to the 

methods described in Sections 2.2.1 and 2.2.2, but solve for both atmospheric and marine 

variables simultaneously (e.g. Chomko & Gordon, 1998; Chomko et al., 2003; Gordon et al., 

1997; Kuchinke et al., 2009a; Kuchinke et al., 2009b; Li et al., 2008; Spurr et al., 2007; Stamnes 

et al., 2003; Steinmetz et al., 2011). In general, this approach involves the combination of a 

model that accounts for aerosol properties and a model to express hydrosol (i.e. water 

components) via IOPs and/or other constituents, such as Ca. The number of unknown variables in 

coupled models exceeds typical SAAs due to the combination of aerosol and marine expressions 

and, as such, coupled models generally require more spectral observations (bands) than 

traditional SAAs. When applied to data from current ocean color instruments, coupled models 

use Lt() from both the VIS and NIR bands. The retrieval of the aerosol and hydrosol variables 

then reduces to a classic inverse problem where modeled Lt() is fitted to match sensor-observed 

Lt(). Both non-linear and linearization techniques have been developed to solve for the aerosol 

and marine parameters.  

 

The main benefits of a coupled atmosphere-ocean approach lie in its potential to better identify 

and account for absorbing aerosols and non-negligible NIR radiances, both of which require 

special consideration in the classic decoupled AC scheme. Nonetheless, the ability of a coupled 

model to perform well under a wide variety of atmospheric and oceanic conditions remains 

dependent upon the general formulation of the aerosol and marine components, which 

https://coral.jpl.nasa.gov/
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unavoidably include inherent limitations and uncertainties. Furthermore, coupled ocean-

atmosphere approaches are historically computationally demanding and often require retrievals 

to be constrained to avoid unrealistic or unambiguous solutions. 

  

5.3.4 Improved computational capabilities and statistical methods 

Computational processing capabilities have historically driven the design and implementation of 

remote sensing algorithms. Most LUT, ANN, and coupled ocean-atmosphere approaches require 

additional computation capabilities relative to SAAs and, as such, have received less attention in 

operational ocean color processing environments with near-real-time data delivery requirements. 

We expect these limitations to be progressively alleviated as computing power continues to grow 

and new hardware accelerator technologies such as graphic processing units (GPUs) are utilized. 

Furthermore, with the spectrally rich data expected from PACE, we anticipate the ocean color 

community will benefit from pursuing integration into the realm of computer (data) science, 

following the path of the terrestrial remote sensing (Verrelst et al., 2015) and medical imaging 

(Jiang et al., 2010) communities.  

 

Statistical methods with large(r) computational requirements, such as random forests and support 

vector machines, have only recently been explored for IOP inverse modeling, several of which 

have been shown to be effective for deriving constituent matter concentrations (Camps-Valls et 

al., 2006; Chang, 2015; Kim et al., 2014). Clustering methods are used to partition marine waters 

into distinct optical types (Mélin & Vantrepotte, 2015; Moore et al., 2009; Neukermans et al., 

2016). Those that provide weighted water types per satellite pixel allow blending of multiple 

algorithms that have been tuned to specific water types (Moore et al., 2001; Moore et al., 2014; 

Woźniak et al., 2010). Statistical methods have also been shown to be highly effective in 

reducing solution spaces or finding a solution neighborhood, thereby speeding up the search for 

an optimal solution (De Noia et al., 2015; Hedley et al., 2009). In addition, as the capabilities of 

modern computers continue to expand alongside improvements in RT code and innovative 

machine learning tools, such as TensorFlow (Abadi et al., 2016), the burden of simulating large 

synthetized datasets to enable development of advanced empirical algorithms will also diminish. 
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5.4 Uncertainties 

While the term uncertainty is used in virtually all of the studies mentioned in Section 3.2, the 

actual values presented often represent different mathematical constructs that are not always 

comparable. This may be due to the lack of consensus on the type and characteristics of the 

uncertainties required by space agencies or by the user-community. For space agencies, 

uncertainty metrics are useful for quality assurance and product assessment, while for ocean 

modelers, uncertainties are useful during data assimilation and when performing model-

observation comparisons. Additional work is necessary to define uncertainties and recommend 

their computation. The IOCCG Working Group on Uncertainties in Ocean Color Remote 

Sensing (http://ioccg.org/group/uncertainties/) provides additional guidance on the subject. 

 

Furthermore, it remains critical for measurement technology to continue to improve (thereby 

reducing measurement uncertainties) to ensure our ability to perform closure and validate 

remotely sensed products. Looking towards PACE, for example, hyperspectral measurements 

that extend into the UV will be critical. Specific technology gaps exist in: (i) in situ spectral bb() 

and VSF measurements – commercial or prototypical hyperspectral backscattering sensors do 

not yet exist; (ii) in situ absorption measurements with significantly reduced uncertainties 

associated with scattering correction and extension to the UV – emerging commercial 

instrumentation do not require such a correction but, these instruments are only recently being 

validated; and, (iii) polarized IOPs that report the 12 and 22 elements of the Mueller Matrix (at 

least) to better model the polarized underwater light field –instrumentation that provides more 

accurate estimates of polarized IOPs will reduce uncertainties in AOP-IOP closure. In addition, 

methods for closing the scale gap between in situ and satellite measurements when matched up 

(see Section 3.1.5) must be explored. This might be accomplished through increased spatial 

resolution of satellites, particularly in coastal areas (Moses et al., 2016), as well as through the 

use of moving in situ platforms (e.g., gliders and flow-through systems) that travel significant 

distances in a relatively short time periods to provide information on and quantify satellite sub-

pixel variability (e.g., Werdell et al., 2013c). 

  

http://ioccg.org/group/uncertainties/
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5.5 Performance metrics 

Varied validation methods exist to evaluate derived IOPs using independent measurements 

designated to be truth. Generally speaking, the most common encompass comparisons of IOPs 

derived from synthesized Rrs(λ) with synthesized IOPs (IOCCG, 2006; Werdell et al., 2014) and 

IOPs derived from in situ or satellite-observed Rrs(λ) with coincident in situ IOPs (Brewin et al., 

2015b; IOCCG, 2006; Werdell et al., 2013a). Other emerging approaches include, but are not 

limited to, simulating Rrs(λ) from the derived IOPs using the forward model or an alternative RT 

model for comparison with independent in situ measurements of Rrs(λ) (Tonizzo et al., 2017) and 

time-series and population statistical analyses when sufficient volumes of in situ data exist 

(Kostadinov et al., 2007; Werdell et al., 2009). With the exception of the latter, most validation 

methods ultimately rely on interpretation of regression results and one-to-one scatter plots to 

quantitatively assess algorithm performance.  

 

Broadly speaking, the community has not achieved absolute consensus on the best statistical 

metrics for assessing algorithm performance and, as previously stated, we do not make 

recommendations here, other than to request further study. While r-squared values (r
2
), 

regression slopes and intercepts, biases, absolute and relative percent differences, RMS, and 

biased and unbiased root mean square errors have evolved as the most popular to determine how 

closely derived IOPs represent the truth measurements, many of these metrics overlap in their 

meaning and interpretation and other metrics exist (Brewin et al., 2015b; Willmott et al., 2017). 

Multi-dimensional tools have also shown promise and merit increased consideration, including 

Taylor and Target plots (Jolliff et al., 2009; Taylor, 2001), as do population statistics such as 

temporal and spatial frequency distributions, cumulative distribution functions, and long-term 

time series when sufficient truth data can be accumulated. Since different IOPs are related in 

nature in ways that may not be parametrized in a specific inversion schemes, these relationships 

can also be used to test the skill of an inversion (e.g., verifying that distributions of retrieved 

anap() / aph() achieve consistency with in situ observations).  

 

For satellite applications, we also encourage the consideration of temporal and spatial variability 

and stability (e.g., rates of failures and appearances of outliers and anomalies). Other topics for 

future consideration include evaluation of regional versus global performance, additional 
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comparisons of multiple satellite instruments with varied spectral bands that may impart inherent 

differences in IOP retrievals, and, in the coming hyperspectral era of NASA’s PACE mission, 

development of decision support metrics to drive execution of validation activities on all 

available wavelengths versus a subset of identified key wavelengths. 

 

6 Summary and recommendations 

We have presented the current state of the art in approaches to obtain IOPs from ocean color 

remote sensing, as well as outlined the areas where uncertainties and knowledge gaps remain. As 

an increasing number of space-based instruments measure ocean color simultaneously, 

uncertainties in Lt() and Rrs() are expected to become better constrained through sensor inter-

comparisons and growth of the invested community. As computing power continues to increase, 

computationally expensive methods such as ANN and LUTs are likely to be used routinely and 

comparisons between IOPs generated from all the methods outlined above will increase, 

resulting in more robust ensemble results, such as those derived from ensembles of weather 

prediction models. Significantly more in situ data needs to be collected using community 

adopted measurement protocols to assess the performance and utility of the different methods 

across space and time, and sub-pixel variability and uncertainties in the in situ measurements 

need to be better characterized. These measurements will become the basis for international 

databases for novel algorithm refinement and developments. Below we provide a set of 

recommendations that could help improve IOP inversion algorithm further.  

 

Data and measurements 

We recommend: 

 

 Development of new, commercially available instrumentation for measuring a(), c(), 

b(), bb() and the VSF() from UV to NIR at high spectral resolution (~5 nm); 

 Development of instrumentation and methods to measure the polarized scattering 

elements of the Mueller matrix and radiance fields in situ;  

 Additional research into UV absorption of dissolved inorganic constituents of seawater; 
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 Additional research into the depolarization ratio for pure water scattering; 

 Assembly of additional publicly-available in situ and simulated hyperspectral datasets for 

algorithm development and testing, with attention to the temporal, spatial, and 

biogeochemical representativeness of these datasets; and, 

 Continued collection, assembly, and public dissemination of key biogeochemical 

variables that can be directly inferred from IOPs including, but not limited to: particle 

size distributions, phytoplankton pigment concentrations, phytoplankton classes and 

metrics of community composition, and particulate and dissolved organic carbon.  

 

Algorithm and radiative transfer codes 

We recommend: 

 

 Sharing of algorithm code (e.g., open-source distribution) to encourage maximization of 

knowledge transfer and testing/vetting of novel approaches; 

 Development and distribution of vector RT codes for application in aquatic environments 

to study the effects of polarization on Rrs(λ);  

 Evaluation of the use of additional environmental information (e.g., T, S, and distance 

from shore) to help inform and constrain IOP inversion algorithms; and, 

 Assessment of the increase in information that multi-angle polarimetry introduces to 

inform and better constrain IOP inversions and prepare for future missions (e.g., PACE) 

where polarimeter and radiometer may observe the Earth simultaneously.  

 

System uncertainty 

We recommend: 

 

 Increased assessment and quantification of uncertainty budgets, including those 

associated with the satellite instrument, sub-pixel variability, atmospheric correction 

algorithms, bidirectional reflectance characterizations and simplified AOP-IOP 

relationships, in-water algorithms, and in situ and laboratory measurements, so that 

efforts can target reduction of the largest sources of uncertainty. 
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Appendix A 

In addition to the widely applied radiative transfer approximation of Gordon et al. (1988), other 

numerical approximations exist to relate Rrs() or rrs() to IOPs. This appendix serves to provide 

a brief summary of several common alternatives, all of which can be used in place of Eq. (4).  

 

Jerome et al. (1996) suggests that nadir-viewing rrs() can be expressed as: 

 

                     
     

    
        

     

    
  . 

 

Morel and Gentili (1993) expresses rrs() as: 

 

       
    

    

     

    
, 

 

where f() represents the combined influence of illumination conditions and geometry and sea 

surface properties and Q() defines the ratio of upwelling irradiance to upwelling radiance. 

Morel et al. (2002) provides a LUT for f() / Q() for various sensor-viewing and solar zenith 

angles, tabulated at seven wavelengths [412.5, 442.5, 490, 510, 560, 620, and 660 nm] and for 

six Ca [0.03, 0.1, 0.3, 1, 3, and 10 mg m
-3

]. 

 

Albert and Mobley (2003) generated the following expression for rrs() using Hydrolight: 

 

                             
        

       
 

       
             

 

       
 , 

 

where p1…7 = [0.0512, 4.6659, -7.8387, 5.4571, 0.1098, -0.0044, 0.4021], W is wind speed, s is 

solar zenith angle, and v is the sensor-viewing angle. 

 

Lee et al. (2004) explicitly account for the phase function effect of molecular and particulate 

scattering (Morel & Loisel, 1998) and express rrs() as: 

 



  

 59 

         
      

            
      

      

          
. 

 

Using Hydrolight, they defined gw as 0.113 and gp() as: 

 

                               
      

          
  . 

 

Park and Ruddick (2005) parameterized Rrs() as follows using Hydrolight: 

 

          
 
        , 

 

with Gi tabulated in a LUT for various s, v, relative azimuth angles, and ratios of bbp() / bb(). 
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Appendix B 

In addition to the widely applied radiative transfer approximation of Gordon et al. (1988) (Eq. 4), 

there are other approximations that may additionally have value in AOP-IOP inversions. In 

particular, Zaneveld (1982; 1989; 1995) derived analytically from the radiative transfer equation 

an expression of remote sensing reflectance rrs(θ,φ):  

 

 

          
 

  

       
  
  

                                 
. (B1) 

For brevity in this Appendix, spectral dependence is implied, but not denoted. In Eq. (B1), µd is 

the average cosine of downwelling irradiance, KLu is the diffuse attenuation coefficient of the 

upwelling nadir radiance Lu(θ, ), bf is the forward scattering coefficient, 

         
   

   
 

                                   
 

         
 (B2) 

and  

         
   

 
   

                                   
 

          
. (B3) 

In Eq. (B2), the shape factor fb represents the ratio of the light actually scattered into the 

direction (θ,) by scattering of downwelling radiance to the light that would be received if the 

VSF was constant and equal to bb/2π. In Eq. (B3), fL represents the ratio of the light actually 

scattered into the direction (θ,) by scattering of upwelling radiance to the light that would be 

received if the upwelling radiance were isotropic and equal to Lu(θ,) and if the VSF was 

constant and equal to bf/2π. Assuming the volume scattering function and the radiance 

distribution are continuous within their respective angular ranges, the shape factor fb can be 

rewritten as:  

         
        

   
 

                      
 

         
 

        

  
, (B4) 

where β(γm) represents the downwelling radiance distribution less the weighted mean volume 

scattering function and γm the corresponding scattering angle. Inserting Eq. (B4) into Eq. (B1), 

we have:  
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. (B5) 

Note that Eq. (B5) explicitly includes the VSF in defining the remote sensing reflectance. 

Zaneveld (1989) provided an inversion for Eq. (B5) that has not been rigorously assessed by the 

community to date. It is important to note that inelastic processes such as Raman scattering are 

not included in the above relationships.  

 

Eq. (B5) has several attractive aspects from a remote sensing algorithm perspective. First, it 

would seem desirable to develop algorithms that explicitly contain the shape of the VSF. As 

Morel and Gentili (1993) point out, the BRDF which describes the shape of the upwelling 

radiance distribution, “… is essentially controlled by the shape of the VSF …” Exclusively using 

integrated coefficients such as bb must introduce some approximate error. Second, using a 

relationship such as Eq. (B5) merges two separate, disconnected steps in current QSSA 

algorithm work – recall that in current NASA processing, for example, Rrs() are first “exactly” 

normalized following Morel et al. (2002) to account for varied solar geometry, then the IOP 

inversion is executed. Combining these steps in a single, rigorous relationship allows explicit 

assessment of errors in component variables. In the current two-step approach, errors associated 

with, for example, the VSF are dispersed in several poorly defined parameters that are 

empirically tuned. Finally, approximations that retain as much of the functional form of the RT 

equation as possible would seem to be inherently more stable. 
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Tables 

Table 1: Example methods for deriving normalized aph(λ). 

  

Reference 
Uses measured 

data (Y/N) 

Input data 

required 
Description 

Prieur and Sathyendranath (1981) Y Ca Single a*ph(λ) vector 

Roesler et al. (1989) Y Ca Single a*ph(λ) shape 

Lee et al. (1996) N Ca Blends two Gaussian basis vectors 

Bricaud et al. (1995) Y Ca Blends two basis vectors 

Bricaud et al. (1998) Y Ca Blends two basis vectors 

Hoge and Lyon (1996) N Ca 
Single Gaussian basis vector 

(Hoepffner and Sathyendranath 1993) 

Sathyendranath et al. (2001) Y Ca 
Blends a*ph(λ) basis vectors for two 

phytoplankton populations 

Ciotti et al. (2002) Y 
Size parameter, 

Sf 
Blends a*ph(λ) basis vectors for 
micro- and picophytoplankton 
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Table 2: Example approaches for partitioning a(λ) into aph(λ) and adg(λ). 

 

Reference 
Method and assumptions for 

parameterizing aph(λ) and adg(λ) 
Additional input data 

Applied to ocean 

color data? (Y/N) 

Roesler et al. (1989) 

 adg(λ) has fixed exponential slope, Sdg 

 aph(λ) blue-to-red absorption peak defined 

using pigment data 

 Solves for adg(λ) and aph(λ) 

 Ca  

 Phaeophytin-a 

concentration 

N 

Lee et al. (2002) 

 adg(λ) has fixed exponential slope, Sdg 

 Empirical relationship uses rrs(λ) to 

parameterize band ratio of aph(λ) 

 Solves for adg(λ) and aph(λ)  

 None  Y 

Ciotti and Bricaud 

(2006) Method 1 

 

 adg(λ) assumed to be exponential  

 Empirical relationships uses Ca to 

parameterize band ratios of aph(λ) 

 Solves for Mdg, Sdg, adg(λ), and aph(λ) 

algebraically (Bricaud and Stramski 1990) 

 Ca Y 

Ciotti and Bricaud 
(2006) Method 2 

 

 adg(λ) assumed to be exponential 

 aph(λ) parameterized through mixing of 

pico- and microphytoplankton 

contributions (Ciotti et al. 2002) 

 Solves for Mdg, Sdg, Mph, and the size 

parameter of phytoplankton (Sf) via 

nonlinear optimization 

 Ca Y 

Zheng and Stramski 
(2013b) 

 adg(λ) assumed to be exponential 

 aph(λ) shape expressed through band ratios 
of 412:443 and 510:490  

 Searches multiple speculative (feasible) 

solutions of Mdg, Sdg, adg(λ), and aph(λ) 

(Bricaud and Stramski 1990) 

 Computes candidate and selects optimal 

solution for adg(λ) and aph(λ) using 

stacked inequality contstraints 

 Pre-determined 

bounds of 

inequality 

constraints  

 

Y 

Zhang et al. (2015) 

 adg(λ) assumed to be exponential 

 aph(λ) parameterized as the sum of mixing 

of pico-, nano-, and microphytoplankton 

contributions 

 Solves for Mdg, Sdg, adg(λ), and aph(λ) 
including contributions of pico-, nano-, 

and microphytoplankton using constrained 

least-squares optimization 

 Ca-specific a*ph(λ) 
for pico-, nano-, 

and micro-

phytoplankton 

N 
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Table 3: Example methods for deriving normalized Sbp. 

 

Method 
Uses measured 

data (Y/N) 

Input data 

required 
Description 

Morel and Maritorena (2001) Y Ca  Sbp defined in terms of  

Gordon et al. (1988) N Ca 

 Defines bp() from Ca 

 Assumes = F(Ca) 

Ciotti et al. (1999) Y Ca 
 Logarithmic function from 

-2 where Ca = 0.05 mg m-3 

to 0 where Ca = 20 mg m-3 

Lee et al. (2002) Y rrs()  Empirical relationship 

Roesler and Boss (2003) N (λ), cp(λ), ap(λ)  Solves for for bbp(λ) and Sc 

Antoine et al. (2011) Y Ca or bb(555)  Empirical relationship 

Brewin et al. (2012) Y Ca 
 Empirical relationship for 

bbp(λ) 

  



  

 65 

Table 4: Example of semi-analytical solution classes used in ocean-color algorithms. 

 

Class Methodology Example usage 

Non-linear spectral optimization 

Levenberg Marquardt 

Roesler and Perry (1995) 

Garver and Siegel (1997) 

Maritorena et al. (2002) 

Nelder-Mead Evers-King et al. (2014) 

Particle swarm Slade et al. (2004) 

Genetic algorithm Haigang et al. (2003) 

Simulated annealing Salinas et al. (2007) 

Direct linear inversion Linear matrix inversion 
Hoge and Lyon (1996) 

Wang et al. (2005) 

Spectral deconvolution Step-wise algebraic 

Lee et al. (2002) 

Smyth et al. (2006) 

Pinkerton et al. (2006) 

Bulk inversion 
Step-wise algebraic solving for 
each wavelength independently 

Loisel and Stramski (2000) 

Ensemble inversion 
Adaptive linear matrix 
inversion 

Brando et al. (2012) 

  



  

 66 

Table 5: A sample of recent or soon-to-launch Earth observing satellite missions capable of 

ocean color observations. 

 

Mission Agency Sensor Launch Bands
†
 

Nadir pixel 

size (m) 

Other 

Specifications 

High spatial resolution missions: O(100 km) swath 

Landsat-8 

Landsat-9 

USGS/
NASA 

OLI 

OLI-II 

2013 

2020 
 4 VIS  30  16 day revisit 

Sentinel 2A 

Sentinel 2B 
ESA MSI 

2015 

2017 
 4 VIS  10 

 10 day revisit 

 5 day revisit in 

constellation 

HySpiri NASA VSWIR TBD  UV-SWIR 

 Contiguous (10 nm) 
 60  19 day revisit 

EnMAP DLR EnMAP 2017  UV-SWIR 

 Contiguous (6.5 nm) 
 30  4 day revisit 

Geostationary missions  

Geo-Kompsat 2B KIOST GOCI-II 2019  1 UV 

 8 VIS 

 250 local 

 1000 global 

 Geostationary 

over NE Asia 

Medium spatial resolution missions: O(1000 km) wide swath 

Sentinel 3A 

Sentinel 3B 
ESA OLCI 

2016 

2018 
 8 VIS 

 300 coast 

 1000 ocean 

 4 day global 
coverage  

 2 day global 

coverage in 

constellation 

Oceansat-3 ISRO OCM-3 2018  8 VIS  360 
 2 day global 

coverage 

Suomi-NPP 

JPSS-1 

NOAA/

NASA 
VIIRS 

2011 

2017 
 5 VIS  360 

 1 day global 

coverage 

GCOM-C JAXA SGLI 2018  1 UV 

 6 VIS 

 250 coast 

 1000 ocean 

 3 angle 

polarimetry 

 2 day global 

coverage 

PACE NASA 
OCI / 

polarimter 
2022  350-900 nm 

 Contiguous (5 nm) 
 1000 

 Multi-angle 

polarimetry 

 2 day global 

coverage 
†For comparative purposes, SeaWiFS sensor launched in 1997 had six VIS bands 
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Table 6: Historical recommendations for the depolarization ratio, δ, of pure water. 

 

δ (unitless) Reference 

0.108 Kratohvil et al. (1965) 

0.091 Morel (1974b), Shifrin (1988a) 

0.051 Buiteveld et al. (1994a) 

0.039 Jonasz and Fournier (2007) 
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Figures 

 

Figure 1: Schematic of inversion methods pathways. Component IOPs can be derived from top-

of-atmosphere radiance, remote-sensing reflectance, or non-water IOPs. Each of these 

approaches requires a different numbers of explicit steps as described in the text. 

 

 
  



  

 69 

Figure 2:  (a.) SeaWiFS chlorophyll-a concentration for May 1998.  Subplots (b.) and (c.) show 

how global chlorophyll-a concentration for May 1998 is nearly log-normally distributed. 
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