
CHAPTER ONE

An Overview of Architecture-Level
Power- and Energy-Efficient
Design Techniques
Ivan Ratković*,†, Nikola Bežanić{, Osman S. Ünsal*, Adrian Cristal*,†,},
Veljko Milutinović{
*Barcelona Supercomputing Center, Barcelona, Spain
†Polytechnic University of Catalonia, Barcelona, Spain
{School of Electrical Engineering, University of Belgrade, Belgrade, Serbia
}CSIC-IIIA, Barcelona, Spain

Contents

1. Introduction 3
2. Metrics of Interest 4

2.1 Circuit-Level Metrics 4
2.2 Architectural-Level Metrics 7

3. Classification of Selected Architecture-Level Techniques 8
3.1 Criteria 8
3.2 List of Selected Examples 9
3.3 Postclassification Conclusion 13

4. Presentation of Selected Architecture-Level Techniques 14
4.1 Core 14
4.2 Core-Pipeline 25
4.3 Core-Front-End 31
4.4 Core-Back-End 38
4.5 Conclusion About the Existing Solutions 47

5. Future Trend 49
6. Conclusion 50
References 51
About the Authors 55

Abstract

Power dissipation and energy consumption became the primary design constraint
for almost all computer systems in the last 15 years. Both computer architects and
circuit designers intent to reduce power and energy (without a performance

Advances in Computers, Volume 98 # 2015 Elsevier Inc.
ISSN 0065-2458 All rights reserved.
http://dx.doi.org/10.1016/bs.adcom.2015.04.001

1

http://dx.doi.org/10.1016/bs.adcom.2015.04.001

degradation) at all design levels, as it is currently the main obstacle to continue with
further scaling according to Moore's law. The aim of this survey is to provide a com-
prehensive overview of power- and energy-efficient “state-of-the-art” techniques. We
classify techniques by component where they apply to, which is the most natural
way from a designer point of view. We further divide the techniques by the com-
ponent of power/energy they optimize (static or dynamic), covering in that way
complete low-power design flow at the architectural level. At the end, we conclude
that only a holistic approach that assumes optimizations at all design levels can lead
to significant savings.

ABBREVIATIONS
A Switching Activity Factor

ABB Adaptive Body Biasing

BHB Block History Buffer

C Capacitance

CMP Chip-Multiprocessor

CPI Cycles per Instruction

CU Control Unit

d Delay

DCG Deterministic Clock Gating

DVFS Dynamic Voltage and Frequency Scaling

DVS Dynamic Voltage Scaling

E Energy

EDP Energy-Delay Product

EiDjP Energyi-Delayj Product

EPI Energy-per-Instruction

FP Floating Point

FU Functional Unit

GALS Globally Asynchronous Locally Synchronous

IQ Instruction Queue

IPC Instructions Per Cycle

LSQ Load/Store Queue

LUT Look-up Table

MCD Multiple-Clock-Domain

MFLOPS Millions of Floating point Operations Per Second

MILP Mixed-Integer Linear Programming

MIPS Millions of Instructions Per Second

NEMS Nanoelectromechanical Systems

P Power

PCPG Per-Core Power Gating

RBB Reverse Body Biasing

RDO Runtime DVFS Optimizer

RF Register File

ROB Reorder Buffer

SIMD Single Instruction, Multiple Data

UC Micro-Operation Cache

2 Ivan Ratković et al.

1. INTRODUCTION

After the technology switch from bipolar to CMOS, in the 1980s and

early 1990s, digital processor designers had high performance as the primary

design goal. At that time, power and area remained to be secondary goals.

Power started to become a growing design concern when, in the mid- to

late-1990s, it became obvious that further technology feature size scaling

according to Moore’s law [1] would lead to a higher power density, which

could became extremely difficult or almost impossible to cool.

While, during the 1990s, the main way to reduce microprocessor power

dissipation was to reduce dynamic power, by the end of the twentieth cen-

tury the leakage (static) power became a significant problem. In the mid-

2000s, rapidly growing static power in microprocessors approaches to its

dynamic power dissipation [2]. The leakage current of a MOSFET increases

exponentially with a reduction in the threshold voltage. Static power dissi-

pation, a problem that had gone away with the introduction of CMOS,

became a forefront issue again.

Different computer systems have different design goals. In high-

performance systems, we care more about power dissipation than energy

consumption; however, in mobile systems, the situation is reverse. In

battery-operated devices, the time between charges is the most important

factor; thus, lowering the microprocessor energy as much as possible, with-

out spoiling performance, is the main design goal. Unfortunately, the evo-

lution of the battery capacity is much slower than the electronics one.

Power density limits have already been spoiling planned speed-ups by

Moore’s law, and this computation acceleration degradation trend is still

growing. As technology feature size scaling goes further and further, power

density is getting higher and higher. Therefore, it is likely that, very soon,

majority of the chip’s area is going to be powered off; thus, we will have

“dark silicon.” Dark silicon (the term was coined by ARM) is defined as

the fraction of die area that goes unused due to power, parallelism, or other

constraints.

Due to the above described facts, power and energy consumption are

currently one of the most important issues faced by computer architecture

community and have to be reduced at all possible levels. Thus, there is a need

to collect all efficient power/energy optimization techniques in a unified,

coherent manner.

3An Overview of Architecture-Level Power- and Energy-Efficient Design Techniques

This comprehensive survey of architectural-level energy- and power-

efficient optimization techniques for microprocessor’s cores aims to help

low-power designer (especially computer architects) to find appropriate

techniques in order to optimize their design. In contrast with the other

low-power survey papers [3–5], the classification here is done in a way that

processor designers could utilize in a straightforward manner—by compo-

nent (Section 3). The presentation of the techniques (Section 4) was done by

putting the emphasis on newer techniques rather than older ones. The met-

rics of interest for this survey are presented in Section 2 which help reading

for audience with less circuit-level background. Future trends are important

in the long-term projects as CMOS scaling will reach its end in a few years.

Current state of microprocessor scaling and a short insight of novel technol-

ogies are presented in Section 5. At the end, in Section 6 we conclude this

chapter and a short review of the current low-power problems.

2. METRICS OF INTEREST

Here we present the metrics of interest as a foundation for later sec-

tions. We present both circuit- and architectural-level metrics.

2.1 Circuit-Level Metrics
We can define two types of metrics which are used in digital design—basic

and derived metrics. The first one is well-known, while the latter is used in

order to provide a better insight into the design trade-offs.

2.1.1 Basic Metrics
Delay (d) Propagation delay, or gate delay, is the essential performance met-

ric, and it is defined as the length of time starting from when the input to a

logic gate becomes stable and valid, to the time that the output of that logic

gate is stable and valid. There are several exact definitions of delay but it usu-

ally refers to the time required for the output to reach from 10% to 90% of its

final output level when the input changes. For modules with multiple inputs

and outputs, we typically define the propagation delay as the worst-case

delay over all possible scenarios.

Capacitance (C) is the ability of a body to hold an electrical charge, and its

unit according to IS is the Farad (F). Capacitance can also be defined as a

measure of the amount of electrical energy stored (or separated) for a given

electric potential. For our purpose more appropriate is the last definition.

4 Ivan Ratković et al.

Switching Activity Factor (A) of a circuit node is the probability the given

node will change its state from 1 to 0 or vice versa at a given clock tick.

Activity factor is a function of the circuit topology and the activity of the

input signals. Knowledge of activity factor is necessary in order to analyti-

cally compute—estimate dynamic power dissipation of a circuit and it is

sometimes indirectly expressed in the formulas asCswitched, which is the prod-

uct of activity factor and load capacitance of a node CL. In some literature,

symbol α is used instead of A.

Energy (E) is generally defined as the ability of a physical system to per-

form a work on other physical systems and its SI unit is the Joule (J). The total

energy consumption of a digital circuit can be expressed as the sum of two

components: dynamic energy (Edyn) and static energy (Estat).

Dynamic energy has three components which are results of the next

three sources: charging/discharging capacitances, short-circuit currents,

and glitches. For digital circuits analysis, the most relevant energy is one

which is needed to charge a capacitor (transition 0!1), as the other com-

ponents are parasitic; thus, we cannot affect them significantly with

architectural-level low-power techniques. For that reason, in the rest of this

chapter, the term dynamic energy is referred to the energy spent on charg-

ing/discharging capacitances. According to the general energy definition,

dynamic energy in digital circuits can be interpreted as: When a transition

in a digital circuit occurs (a node changes its state from 0 to 1 or from 1 to 0),

some amount of electrical work is done; thus, some amount of electrical

energy is spent. In order to obtain analytical expression of dynamic energy,

a network node can be modeled as a capacitor CL which is charged by volt-

age source VDD through a circuit with resistance R. In this case, the total

energy consumed to charge the capacitor CL is:

E¼CLV
2
DD (1)

where the half of the energy is dissipated on R and half is saved in CL,

EC ¼ER ¼CV 2
DD

2
: (2)

The total static energy consumption of a digital network is the result of

leakage and static currents. Leakage current Ileak consists of drain leakage,

junction leakage, and gate leakage current, while static current IDC is DC

bias current which is needed by some circuits for their correct work. Static

energy at a time moment t(t > 0) is given as follows:

5An Overview of Architecture-Level Power- and Energy-Efficient Design Techniques

EðtÞ¼
Z t

0

VDDðIleak + IDCÞdτ¼VDDðIDC + IleakÞt: (3)

As CMOS technology advances into sub-100 nm, leakage energy is becom-

ing as important as dynamic energy (or even more important).

Power (P) is the rate at which work is performed or energy is converted,

and its SI unit is the Watt (W). Average power (which is, for our purpose,

more important than instantaneous power) is given with the formula:

P¼ ΔE
Δt , in which ΔE is amount of energy consumed in time period Δt.

Power dissipation sources in digital circuits can be divided into two major

classes: dynamic and static. The difference between the two is that the for-

mer is proportional to the activity in the network and the switching fre-

quency, whereas the latter is independent of both.

Dynamic power dissipation, like dynamic energy consumption, has sev-

eral sources in digital circuits. The most important one is charging/dis-

charging capacitances in a digital network and it is given as:

Pdyn¼ACLV
2
DDf , (4)

in which f is the switching frequency, while A, CL, and VDD were defined

before. The other sources are results of short-circuit currents and glitches,

and they are not going to be discussed due to the above-mentioned reasons.

Static power in CMOS digital circuits is a result of leakage and static cur-

rents (the same sources which cause static energy). Static power formula is

given as follows:

Pstat ¼VDDðIDC + IleakÞ: (5)

Another related metric is surface power density, which is defined as

power per unit area and its unit is W
m2. This metric is the crucial one for ther-

mal studies and cooling system selection and design, as it is related with the

temperature of the given surface by Stefan–Boltzmann law [6].

2.1.2 Derived Metrics
In today’s design environment where both delay and energy play an almost

equal role, the basic design metrics may not be sufficient. Hence, some other

metrics of potential interest have been defined.

Energy-Delay Product (EDP) Low power often used to be viewed as

synonymous with lower performance that, however, in many cases, appli-

cation runtime is of significant relevance to energy- or power-constrained

systems. With the dual goals of low energy and fast runtimes in mind,

6 Ivan Ratković et al.

EDP was proposed as a useful metric [7]. EDP offers equal “weight” to

energy and performance degradation. If either energy or delay increases,

the EDP will increase. Thus, lower EDP values are desirable.

Energyi-Delay j Product (EiD jP) EDP shows how close the design is to a

perfect balance between performance and energy efficiency. Sometimes,

achieving that balancemay not necessarily be of interest. Therefore, typically

one metric is assigned greater weight, for example, energy is minimized for a

given maximum delay or delay is minimized for a given maximum energy.

In order to achieve that, we need to adjust exponents i and j in EiD jP. In

high-performance arena, where performance improvements may matter

more than energy savings, we need a metric which has i < j, while in

low-power design we need one with i > j.

2.2 Architectural-Level Metrics
MIPS
Watt

Millions of Instructions Per Second (MIPS) per Watt is the most com-

mon (and perhaps obvious) metric to characterize the power-performance

efficiency of a microprocessor. This metric attempts to quantify efficiency by

projecting the performance achieved or gained (measured in MIPS) for

every watt of power consumed. Clearly, the higher the number, the

“better” the machine is.
MIPSi

Watt
While the previous approach seems a reasonable choice for some

purposes, there are strong arguments against it in many cases, especially

when it comes to characterizing high-end processors. Specifically, a design

team may well choose a higher frequency design point (which meets max-

imum power budget constraints) even if it operates at a much lower MIPS
W

efficiency compared to one that operates at better efficiency but at a lower

performance level. As such, MIPS2

Watt
or even MIPS3

Watt
may be appropriate metric of

choice. On the other hand, at the lowest end (low-power case), designers

may want to put an even greater weight on the power aspect than the sim-

plest MIPS/Watt metric. That is, they may just be interested in minimizing

the power for a given workload run, irrespective of the execution time per-

formance, provided the latter does not exceed some specified upper limit.

Energy-per-Instruction (EPI) One more way of expressing the relation

between performance (expressed in number of instructions) and power/

energy.
MFLOPSi

Watt
While aforementioned metrics are used for all computer systems

in general, when we consider scientific and supercomputing, MFLOPSi

Watt
is the

7An Overview of Architecture-Level Power- and Energy-Efficient Design Techniques

most common metric for power-performance efficiency, where Millions of

Floating point Operations Per Second (MFLOPS) is a metric for floating

point performance.

3. CLASSIFICATION OF SELECTED ARCHITECTURE-LEVEL
TECHNIQUES

This section presents a classification of existing examples of

architectural-level power and energy-efficient techniques. In the first sec-

tion, the classification criteria are given. The classification criteria were cho-

sen to reflect the essence of the basic viewpoint of this research. Afterward,

the classification tree was obtained by application of the chosen criteria. The

leaves of the classification are the classes of examples (techniques). The list of

the most relevant examples for each class is given in the second section.

3.1 Criteria
The classification criteria of interest for this research as well as the thereof are

given in Table 1. All selected classification criteria are explained in the cap-

tion of Table 1 and elaborated as follows:

C1 Criterion C1 is the top criterion and divides the techniques by level at

which they can be applied, core- or core blocks level. Here, the term

“Core” implies processor’s core without L1 cache.

C2 This criterion divides core blocks into front- and back-end of the pipe-

line. By front-end, we assume control units and RF, while back-end

assumes functional units. Where an optimization technique optimizes

both front- and back-end, we group them together and call them only

pipeline.

Table 1 Classification Criteria (C1, C2, C3): Hierarchical Level, Core Block Type, and Type
of Power/Energy Being Optimized

C1: Hierarchical level - Core

- Functional blocks

C2: Core block type - Front-end

- Back-end

C3: Type of power/energy being optimized - Dynamic

- Static

C1 is a binary criterion (core, functional blocks); C2 is also binary criterion (functional units, control
units, and RF); and C3 is, like the previous two criteria, is binary (dynamic, static).

8 Ivan Ratković et al.

C3 Application of the last criterion gave us the component of the metric

(power or energy) that we optimize.

The full classification tree, derived from the above introduced classification

criteria, is presented in Fig. 1. Each leaf of the classification tree is given a

name. Names on the figure are short form of the full names as it is presented

in Table 2.

3.2 List of Selected Examples
For each class (leaf of the classification), the list of the most relevant existing

techniques (examples) is given in Table 3. For each selected technique, the

past work is listed in Table 3. The techniques are selected using two criteria.

The first criterion by which we chose the most important works is the num-

ber of citation. In order to obtain this number, Google Scholar [8] was used.

Important practical reasons for this are that Google Scholar is freely available

to anyone with an Internet connection, has better citation indexing and

C-D

Core
blocks

Dynamic Static Front-end Back-end

C-S

Core

CB-FE-D CB-FE-S CB-BE-D CB-BE-S

Dynamic Static Dynamic Static

Figure 1 Classification tree. Each leaf represents a class derived by criteria application.

Table 2 Class Short Names Explanations and Class Domains
Short Name Full Name Covered Hardware

C-D Core-Dynamic Whole core

C-S Core-Static

CB-FE-D Core Blocks-FE-Dynamic Front-end

CB-FE-S Core Blocks-FE-Static

CB-BE-D Core Blocks-BE-Dynamic Back-end

CB-BE-S Core Blocks-BE-Static

9An Overview of Architecture-Level Power- and Energy-Efficient Design Techniques

Table 3 List of Presented Solutions
Core-Dynamic

Dynamic Voltage and Frequency Scaling (DVFS)

“Scheduling for reduced CPU energy,” M. Weiser, B. Welch, A. J. Demers, and

S. Shenker [11]

“Automatic performance setting for dynamic voltage scaling,” K. Flautner,

S. Reinhardt, and T. Mudge [12]

“The design, implementation, and evaluation of a compiler algorithm for CPU

energy reduction,” C. Hsu and U. Kremer [13]

“Energy-conscious compilation based on voltage scaling,” H. Saputra, M.

Kandemir, N. Vijaykrishnan, M. Irwin, J. Hu, C.-H. Hsu, and U. Kremer [14]

“Compile-time dynamic voltage scaling settings: opportunities and limits,” F. Xie,

M. Martonosi, and S. Malik [15]

“Intraprogram dynamic voltage scaling: bounding opportunities with analytic

modeling,” F. Xie, M. Martonosi, and S. Malik [16]

“A dynamic compilation framework for controlling microprocessor energy and

performance,” Q. Wu, V. J. Reddi, Y. Wu, J. Lee, D. Connors, D. Brooks,

M. Martonosi, and D. W. Clark [17]

“Identifying program power phase behavior using power vectors,” C. Isci and

M. Martonosi [18]

“Live, runtime phase monitoring and prediction on real systems with application to

dynamic power management,” C. Isci, G. Contreras, and M. Martonosi [19]

“Power and performance evaluation of globally asynchronous locally synchronous

processors,” A. Iyer and D. Marculescu [20]

“Toward a multiple clock/voltage island design style for power-aware processors,”

E. Talpes and D. Marculescu [21]

“Dynamic frequency and voltage control for a multiple clock domain

microarchitecture,” G. Semeraro, D. H. Albonesi, S. G. Dropsho, G. Magklis,

S. Dwarkadas, and M. L. Scott [22]

“Formal online methods for voltage/frequency control in multiple clock domain

microprocessors,” Q. Wu, P. Juang, M. Martonosi, and D. W. Clark [23]

“Energy-efficient processor design using multiple clock domains with dynamic

voltage and frequency scaling,” G. Semeraro, G. Magklis, R. Balasubramonian,

D. H. Albonesi, S. Dwarkadas, and M. L. Scott [24]

10 Ivan Ratković et al.

Table 3 List of Presented Solutions—cont'd
Core-Dynamic

Optimizing Issue Width

“Power and energy reduction via pipeline balancing,” R. I. Bahar and S. Manne

[25]

Dynamic Work Steering

“Slack: maximizing performance under technological constraints,” B. Fields,

R. Bodik, and M. D. Hill [26]

Core-Static(+Dynamic)

Combined Adaptive Body Biasing (ABB) and DVFS

“Impact of scaling on the effectiveness of dynamic power reduction schemes,”

D. Duarte, N. Vijaykrishnan, M. J. Irwin, H.-S. Kim, and G. McFarland [27]

“Combined dynamic voltage scaling and adaptive body biasing for lower power

microprocessors under dynamic workloads,” S. M. Martin, K. Flautner, T. Mudge,

and D. Blaauw [28]

“Joint dynamic voltage scaling and adaptive body biasing for heterogeneous

distributed real-time embedded systems,” L. Yan, J. Luo, and N. K. Jha [29]

Core Blocks-Pipeline-Dynamic

Clock Gating

“Deterministic clock gating for microprocessor power reduction,” H. Li,

S. Bhunia, Y. Chen, T. N. Vijaykumar, and K. Roy [30]

“Pipeline gating: speculation control for energy reduction,” S. Manne, A. Klauser,

and D. Grunwald [31]

“Power-aware control speculation through selective throttling,” J. L. Aragon,

J. Gonzalez, and A. Gonzalez [32]

Significance Compression

“Very low power pipelines using significance compression,” R. Canal,

A. Gonzalez, and J. E. Smith [33]

Work Reuse

“Dynamic instruction reuse,” A. Sodani and G. S. Sohi [34]

“Exploiting basic block value locality with block reuse,” J. Huang and D. J. Lilja

[35]

“Trace-level reuse,” A. Gonzalez, J. Tubella, and C. Molina [36]

“Dynamic tolerance region computing for multimedia,” C. Alvarez, J. Corbal, and

M. Valero [37]

Continued

11An Overview of Architecture-Level Power- and Energy-Efficient Design Techniques

Table 3 List of Presented Solutions—cont'd
Core Blocks-FE-Dynamic

Exploiting Narrow-Width Operands

“Register packing: exploiting narrow-width operands for reducing register file

pressure. Proc. 37th Annual IEEE/ACM Int. Symp. Microarchitecture (MICRO-

37),” O. Ergin, D. Balkan, K. Ghose, and D. Ponomarev

Instruction Queue (IQ) resizing

“A circuit level implementation of an adaptive issue queue for power-aware

microprocessors,” A. Buyuktosunoglu, D. Albonesi, S. Schuster, D. Brooks,

P. Bose, and P. Cook [38]

“Reducing power requirements of instruction scheduling through dynamic

allocation of multiple datapath resources,” D. Ponomarev, G. Kucuk, and K. Ghose

[39]

“Energy-effective issue logic,” D. Folegnani and A. Gonzalez [40]

Loop Cache

“Energy and performance improvements in microprocessor design using a loop

cache,” N. Bellas, I. Hajj, C. Polychronopoulos, and G. Stamoulis [41]

“Instruction fetch energy reduction using loop caches for embedded applications

with small tight loops,” L. H. Lee, B. Moyer, and J. Arends [42]

“Using dynamic cache management techniques to reduce energy in a high-

performance processor,” N. Bellas, I. Hajj, and C. Polychronopoulos [43]

“HotSpot cache: joint temporal and spatial locality exploitation for I-cache energy

reduction,” C. Yang and C.H. Lee [44]

Trace Cache

“Micro-operation cache: a power aware frontend for variable instruction length

ISA,” B. Solomon, A. Mendelson, D. Orenstien, Y. Almog, and R. Ronen [45]

Core Blocks-FE-Static

Idle Register Dynamic Voltage Scaling (DVS)

“Saving register-file static power by monitoring short-lived temporary-values in

ROB,” W.-Y. Shieh and H.-D. Chen [46]

Register File Access Optimization

“Dynamic register-renaming scheme for reducing power-density and

temperature,” J. Kim, S. T. Jhang, and C. S. Jhon [47]

12 Ivan Ratković et al.

multidisciplinary coverage than other similar search engines [9], and is gen-

erally praised for its speed [10]. The second criterion is the date in a sense that

newer works have an advantage over the old ones. For the most recent

papers, an additional criterion will be the authors’ judgment.

3.3 Postclassification Conclusion
In conclusion, we would like to stress the following:

• The classification of power- and energy-efficient techniques is system-

atically done by the component.

• As noted earlier, a technique that tackles both control and functional

units is referred as technique that optimizes pipeline. For example, work

Table 3 List of Presented Solutions—cont'd
Core Blocks-BE-Dynamic

Exploiting Narrow-Width Operands

“Minimizing floating-point power dissipation via bit-width reduction,” Y. Tong,

R. Rutenbar, and D. Nagle [48]

“Dynamically exploiting narrow width operands to improve processor power and

performance,” D. Brooks and M. Martonosi [49]

“Value-based clock gating and operation packing: dynamic strategies for improving

processor power and performance,” D. Brooks and M. Martonosi [50]

Work Reuse

“Accelerating multi-media processing by implementing memoing in multiplication

and division units,” D. Citron, D. Feitelson, and L. Rudolph [51]

“Fuzzy memoization for floating-point multimedia applications,” C. Alvarez, J.

Corbal, and M. Valero [52]

Core Blocks-BE-Static

Power Gating

“Microarchitectural techniques for power gating of execution units,” Z. Hu, A.

Buyuktosunoglu, V. Srinivasan, V. Zyuban, H. Jacobson, and P. Bose [53]

Dual Vt

“Managing static leakage energy in microprocessor functional units,” S. Dropsho,

V. Kursun, D. H. Albonesi, S. Dwarkadas, and E. G. Friedman [54]

For each solution, the name and the authors are given.

13An Overview of Architecture-Level Power- and Energy-Efficient Design Techniques

reuse technique is present in two classes, inCore-BE-Dynamic and inCore-

Pipeline-Dynamic. The first one reduces the BE power, while the second

one reduces the power of both BE and FE.

• Although DVFS (and DVS as special case of DVFS where f ¼ const.) is

often considered as dynamic energy/power optimization technique, it is

static power/energy optimization technique as well. According to (3)

and (5), static energy/power is linearly/quadratically proportional to

voltage supply (Estat∝VDD,Pstat∝V 2
DD); thus, when we scale voltage

supply, we also conserve static components of energy and power.

4. PRESENTATION OF SELECTED ARCHITECTURE-LEVEL
TECHNIQUES

In this section, the techniques which list is given in the previous sec-

tion are presented. For each technique, a set of solutions is given. Recently

done solutions are elaborated in detail than older ones.

4.1 Core
Core-level low-power techniques initially were mainly proposed for

dynamic power and energy reduction. However, in the last few years,

low-power research is mainly focused on the reduction of the static compo-

nent of power and energy.

4.1.1 Dynamic
Here, we mostly play with voltage and frequencies in order to reduce

dynamic power and energy components.

DVFS
DVFS proposals mainly differ in area of their scope (e.g., core, functional

units) and in their control management (e.g., OS level). Usefulness of DVFS

in modern low-power system is discussed in Section 4.5.

OS Level One of the first applications of the core-level DVFS was pro-

posed by Weiser et al. [11]. They noticed that during idle time system actu-

ally wastes energy. Considering the case where the processor has to finish all

its work in a given time slot, we often have idle time in which processor does

nothing useful but waste energy and dissipate power. By stretching work as

much as possible and lowering voltage supply to the minimum acceptable

14 Ivan Ratković et al.

level, according to Formulas (1) and (4), we lower energy quadratically and

power cubically.

With this motivation, Weiser et al. propose three interval-based sched-

uling algorithms, called OPT, FUTURE, and PAST, aiming to eliminate

the idle time. Their work specifically targets idle time as it is experienced

in the operating system, i.e., the time taken by the idle loop or I/O waiting

time. Of course, in case of very long idle periods (e.g., periods measured in

seconds), the best policy is to shut down all components (since the display

and disk surpass the processor in power consumption).

The scheduling algorithms are supposed to be implemented on a system

that contains short burst and idle activity. Instead of actually implementing

these algorithms in a real system, Weiser et al. collect traces and use them to

model the effects on the total power consumption of the processor. The

traces are taken from workstations running a variety of different workloads

that contain timestamps of context switches, entering and exiting the system

idle loop, process creation and destruction, and waiting or waking up on

events. To prevent whole system shut-down (processor, display, and disk),

any period of 30 s or longer with a load below 10% is excluded from con-

sideration. Traces are divided into fixed-length intervals, and the proportion

of time that the CPU is active within each interval is computed individually.

At the end of each interval, the speed of the processor for the upcoming

interval is decided. If the processor does not finish its work within the time

slot, work spills over to the next time slot.

Among the three aforementioned scheduling algorithms, the first two are

impractical since they can look into the future of the trace data, while the

third is a plausible candidate for the implementation. First scheduling algo-

rithm is a simplified Oracle algorithm that perfectly eliminates idle time in

every time slot by stretching the run times in a trace. It can look arbitrarily far

into the future. FUTURE is a simple modification of OPT that can only

look into the subsequent interval. For long intervals, FUTURE approaches

OPT in terms of energy savings, while for smaller intervals it falls behind.

The only run-time implementable algorithm, the PAST algorithm, looks

into the past in order to predict the future. The speed setting policy increases

the speed if the current interval is busier than idle and lowers speed if idle

time exceeds some percentage of the time slot.

There is a trade-off between the number of missed deadlines and energy

savings which depends on interval size. If the interval is smaller, there are

fewer missed deadlines because speed can be adjusted at a finer time resolu-

tion. However, energy savings are smaller due to frequent switching

15An Overview of Architecture-Level Power- and Energy-Efficient Design Techniques

between high and low speeds. In contrast, with long intervals, better energy

savings can be achieved at the expense of more missed deadlines, more

work spilled-over, and a decreased response time for the workload. Regard-

ing actual results, Weiser et al. conclude that, for their setup, the optimal

interval size ranges between 20 and 30 ms yielding power savings between

5% and 75%.

Flautner et al. [12] look into a more general problem on how to reduce

frequency and voltage without missing deadlines. They consider various

classes of machines with emphasis on general-purpose processors with dead-

line strongly dependent on the user perception—soft real-time systems.

The approach derives deadlines by examining communication patterns

from within the OS kernel. Application interaction with the OS kernel

reveals the, so-called, execution episodes corresponding to different com-

munication patterns. This allows the classification of tasks into interactive,

periodic producer, and periodic consumer. Depending on the classification

of each task, deadlines are established for their execution episodes. In par-

ticular, the execution episodes of interactive tasks are assigned deadlines

corresponding to the user-perception threshold, which is in the range of

50–100 ms. Periodic producer and consumer tasks are assigned deadlines

corresponding to their periodicity. All this happens within the kernel with-

out requiring modification of the applications. By having a set of deadlines

for the interactive and the periodic tasks, frequency and voltage settings are

then derived so that the execution episodes finish within their assigned dead-

lines. The approach can result in energy savings of 75% without altering the

user experience.

After OS-based DVFS, one step deeper is the program and program

phase-level DVFSs. Those groups of techniques involve compiler-based

analysis (both off- and online) and phase-based techniques.

Compiler Analysis-Based DVFS There are off-line and online

approaches.

Off-line Approach. The basic idea of application compiler off-line analysis

to achieve DVFS in a system is based on identifying regions of code where

voltage and frequency adjustments could be helpful. Of course, those

regions have to be enough large to amortize the overheads of DVFS

adjustment.

Hsu and Kremer [13] propose a heuristic technique that lowers the volt-

age for memory-bound sections. This compiler algorithm is based on heu-

ristics and profiling information to solve a minimization problem. The idea is

16 Ivan Ratković et al.

to slow downmicroprocessor during memory-bound parts of the code. The

techniques are implemented within the SUIF2 source-to-source compiler

infrastructure (gcc compilers were used to generate object code).

The goal is to, for a given program P, find a program region R and fre-

quency f (lower than the maximum frequency fmax) such that ifR is executed

at the reduced frequency f and with reduced voltage supply, the total exe-

cution time (including the voltage/frequency scaling overhead) is not

increased more than a small factor over the original execution time. The fac-

tor should be small enough in order to achieve the total energy savings.

For the measurement, in Ref. [13] they use laptops with Linux andGNU

compilers and digital ampere-meter. The program is annotated with mode-

set instructions, which select DVFS settings on AMD mobile Athlon 4 and

Transmeta Crusoe processors. They report energy savings of up to 28% with

performance degradation of less than 5% for the SPECfp95 benchmarks.

While heuristic techniques offer some benefits, subsequent work seeks to

refine these techniques toward optimal or bounded-near-optimal solutions.

For example, research done by Saputra et al. provides an exactMixed-Integer

Linear Programming (MILP) technique that can determine the appropriate

(V, f) setting for each loop nest [14]. An MILP approach is required because

discrete (V, f) settings lead to a nonconvex optimization space. Their tech-

nique reports improvements in energy savings compared to prior work.

However, it does not account for the energy penalties incurred by mode

switching. Furthermore, the long runtimes of straightforward MILP

approaches make their integration into a compiler somewhat undesirable.

Work by Xie et al. expand on these ideas in several ways [15, 16]. First,

they expand the MILP approach by including energy penalties for mode

switches, providing a much finer grain of program control, and enabling

the use of multiple input data categories to determine optimal settings. In

addition, they determine efficient methods for solving the MILP optimiza-

tion problem with boundable distance from the true optimal solution. Time

and energy savings offered by theMILP approach vary heavily depending on

the application performance goal and the (V, f) settings available. In some

case, 2 � improvements are available.

Online Approach. The problem with off-line compiler analysis is the

absence of knowledge of data inputs which can affect the program behavior.

Online dynamic compiler analysis aims to determine efficiently where to

place DVFS adjustments.

Wu et al. [17] study methods using dynamic compilation techniques to

analyze program behavior and also to dynamically insert DVFS adjustments

17An Overview of Architecture-Level Power- and Energy-Efficient Design Techniques

at the locations determined to be most fruitful. They implement a proto-

type of this Runtime DVFS Optimizer (RDO) and integrate it into an

industrial-strength dynamic optimization system. Their methodology is

depicted in Fig. 2.

Often executable code is considered as hot and is analyzed in order to

determine whether it is memory or CPU bound. In the first case, the code

is considered for DVFS. If it cannot be determined if some code is memory

or CPU bound, and the region of code is large enough, it is divided up into

smaller regions and the algorithm repeats for each of the smaller regions. The

flowchart of RDO is shown in Fig. 3.

Power measurements are taken on an actual system using RDO on a

variety of benchmarks. On average, their results achieve an EDP improve-

ment (over non-DVFS approaches) of 22.4% for SPEC95 FP, 21.5% for

SPEC2K FP, 6.0% for SPEC2K INT, and 22.7% for Olden benchmarks.

The results are three to five times better than a baseline approach based

on static DVFS decisions.

Power Phase Analysis-Based DVFS Above proposed online and off-

line compiler analysis-based DVFSs have significant monitoring overhead.

In most of the general purpose processors, we have user-readable hardware

performance counters which can be used to build up a history of program

behavior from seeing aggregate event counts.

Isci et al. show aggregate power data from different counters to identify

program phase behavior [18]. In their later work [19], they elaborate on their

technique by including a predictor table that can predict future power

behavior based on recently observed values.

They make a “history table” similar to hardware branch predictors. The

difference is that these tables are implemented in software by OS. Like a

Dispatcher Monitor Dynamic Optimizer

Runtime

DVFS Optimizer

(RDO)
Cold Code
Execution

Hot Code
Execution

Start

Operating System & Hardware

Figure 2 Dynamic compilation system. Source: Adapted from Ref. [17].

18 Ivan Ratković et al.

branch predictor, it stores a history table of recently measured application

metrics that are predictive of proper DVFS adjustments. Applying this tech-

nique, they achieve EDP improvement of 34% for variety of workloads.

DVFS for Multiple Clock Domain Processors Multiple-Clock-Domain

(MCD) processors are inherently suitable for DVFS application. In theGlob-

ally Asynchronous Locally Synchronous (GALS) approach, a processor core is

divided into synchronous islands, each of which is then interconnected asyn-

chronously but with added circuitry to avoid metastability. The islands are

typically intended to correspond to different functional units, such as the

instruction fetch unit, the ALUs, the load-store unit, and so forth.

A typical division is shown in Fig. 4.

In early work on this topic [20, 21], they consider opportunities of DVFS

application to GALS. They found that GALS designs are initially less effi-

cient than synchronous architecture but that there are internal slacks that

could be exploited. For example, in some MCD designs, the floating point

unit could be clocked much more slowly than the instruction fetch unit

Profiling: Instrument Code Region
[all functions + loops in main()]

Start

Executing code region...
Becomes hot?

JIT and instrument all loops
inside the function

Make DVFS decision
[check memory boundness]

A long-running function
with loops?

Memory
bound?

CPU
bound?

Remove profiling
instrumentation

Remove profiling
instrumentation and insert

DVFS instruction

Application execution

Yes

No

Yes
Yes

No

Yes

No

No

Figure 3 RDO flowchart. Source: Adapted from Ref. [17].

19An Overview of Architecture-Level Power- and Energy-Efficient Design Techniques

because its throughput and latency demands are lower. Iyer and Marculescu

[20] show that for a GALS processor with five clock domains, the drop in

performance ranges between 5% and 15%, while power consumption is

reduced by 10% on the average. Thus, fine-grained voltage scaling allows

GALS to match or exceed the power efficiency of fully synchronous

approaches.

Similar work was done by Semeraro et al. [22, 24] where they divide the

processor into five domains: Front end, Integer, Floating point, Load/Store,

and External (Main Memory) which interfaces via queues. In their first

work, they use an off-line approach [24], while in the next one they apply

an online approach which is more efficient [22].

In the off-line approach, they first assign adequate frequency for each

instruction. Since executing each instruction at a different frequency is

not practical, in the second step the results of the first phase are processed,

and this aims to find a single minimum frequency per interval for each

domain.

From the off-line approach analysis, Semeraro et al. conclude that

decentralized control of the different domains is possible, and the utilization

of the input queues is a good indicator for the appropriate frequency of oper-

ation. Based on those observations, they devise an online DVFS control

algorithm for multiple domains called Attack/Decay. This is a decentralized,

interval-based algorithm. Decisions are made independently for each

I-cache Bpred

Decode

Rename

FU FU FU FUD-cache

1

2

3 5 4

GALS processor

A B

I-cache Bpred

Decode

Rename

INT queue MEM queue FP queue INT queue MEM queue FP queue

FU FU FU FUD-cache

Synchronous (base) processor

Figure 4 GALS (A) versus synchronous (B) processor. Source: Adapted from Ref. [20].

20 Ivan Ratković et al.

domain at regular sampling intervals. The algorithm tries to react to changes

in the utilization of the issue (input) queue of each domain. During sudden

changes, the algorithm sets the frequency aggressively to try tomatch the uti-

lization change. This is the Attack mode. If the utilization is increased by a

significant amount since the last interval, the frequency is also increased by

a significant factor. Conversely, when utilization suddenly drops, frequency

is also decreased. In the absence of any significant change in the issue queue,

frequency is slowly decreased by a small factor. This is the Decay mode.

Their algorithm achieve a 19% reduction on average (from a non-DVFS

baseline) in energy per instruction across a wide range of MediaBench,

Olden, and Spec2000 benchmarks and a 16.7% improvement in EDP.

The approach incurred a modest 3.2% increase in Cycles per Instruction

(CPI). Interestingly, their online control-theoretic approach is able to

achieve a full 85.5% of the EDP improvement offered by the prior off-line

scheduling approach.Wu et al. [23] extend the online approach using formal

control theory and a dynamic stochastic model based on input-queue occu-

pancy for the MCDs.

Dynamic Work Steering
Apart from having various processor domains clocked with different fre-

quencies, another approach to exploit internal core slack is to have multiple

instances of component that does the same function, but at a different speed,

thus with different power dissipation. It is interesting especially today with

new nanometer feature sizes when we care about power dissipation more

than area.

Fields et al. [26] propose a work steering technique which dispatches

instructions to functional units with appropriate speed in order to exploit

instruction-level slack (Fig. 5). They find that there are instructions that

Steer

Window

Fetch &
Rename

Reg. file FUs

Data cache

Bypass Bus

Fast pipeline

Window Reg. file FUs

Slow pipeline

Figure 5 Work steering for a fast and a slow pipeline. Source: Adapted from Ref. [26].

21An Overview of Architecture-Level Power- and Energy-Efficient Design Techniques

could be delayed without significant impact on the performance. In order to

locate instructions, they use off- and online approaches. In the first one, they

make dependency graphs to find instructions that produce slack, and they

achieve promising results. Even better results they achieve with the online

approach where they dynamically predict slack in hardware. Online control

policies discussed previously for DVFS inMCD processors cannot treat each

instruction individually. There is simply no possibility of dynamically chang-

ing the frequency of execution individually for each instruction; instead, the

frequency of each domain is adjusted according to the aggregate behavior of

all the instructions processed in this domain over the course of a sampling

interval. According to Ref. [26], for 68% of the static instructions, 90%

of their dynamic instances have enough slack to double their latency. This

slack locality allows slack prediction to be based on sparsely sampling

dynamic instructions and determining their slack. Their results show that

a control policy based on slack prediction is second best, in terms of perfor-

mance, only to the ideal case of having two fast pipelines instead of a fast and

a slow pipeline.

Optimizing Issue Width
One more approach to make balanced low-power core which will consume

just necessary energy for its work is to adapt its “working capacity” to its

actual workload. Out-of-order processors are known as power hungry solu-

tions and they are suitable for application of aforementioned kinds of tech-

niques. Bahar and Manne [25] propose a dynamic change of the width of an

8-issue processor to 6-issue or 4-issue when the application cannot take

advantage of the additional width. They model their target processor after

an 8-issue Alpha 21264 [55], comprising two 4-issue clusters (Fig. 6). To

switch the processor to 6-issue, one-half of one of the clusters is disabled.

To switch to the 4-issue, one whole cluster is disabled.

To disable half or a whole cluster, the appropriate functional units are

clock gated. In addition to disabling functional units, part of the instruction

queue hardware is also disabled, thus realizing additional power benefits.

Decisions are made at the end of a sampling window assuming that the

behavior of the program in the last window is a good indicator for the next.

This technique can save up to 20% (10%) power from the execution units,

35% (17%) from the instruction queue, and 12% (6%) in total, in the 4-issue

(6-issue) low-power mode. However, the power savings for the whole pro-

cessor are not as dramatic, and Bahar and Manne finally conclude that a sin-

gle technique alone cannot solve the power consumption problem.

22 Ivan Ratković et al.

4.1.2 Static and Dynamic
In order to significantly reduce static power/energy, existing DVFS tech-

niques are augmented with adaptive body bias (ABB) techniques.

Combined ABB and DVFS
Reverse Body Biasing (RBB) technique increases the threshold voltage and

thus brings an exponential reduction in leakage power. However, the

increase in threshold voltage reduces gate overdrive (VDD � Vt), reducing

circuit’s performance (VDD is voltage of the power supply and Vt threshold

voltage). Either scaling VDD or increasing Vt slows down switching. Con-

sidering dynamic or leakage power independently, the performance can be

traded for power by scaling either VDD or Vt. As in both cases, performance

degradation is linear to the scaling of the VDD or Vt, whereas power savings

are either quadratic or exponential, the resulting improvement in EDP is

substantial.

In case that we want to optimize total power (Estat + Edyn), the best

approach depends on static/dynamic power ratio. In older technologies, like

70 nm, where dynamic power component is still the dominant one, VDD

scaling gives better results. On the contrary, while considering more recent

technologies, like 35 nm, RBB provides better savings. DVS/RBB balance

is shown in Fig. 7. The balance of dynamic and leakage power shifts across

Performance
Monitors &
Controls

Right
Register
File

Data cache

Disabled for 4-issue

Left
Register
File

Left Cluster
Functional Units

4 Integer Units
2 FP Units
2 Memory Ports

C
om

m
it

U
ni

t

Right Cluster
Functional Units

4 Integer Units
2 FP Units
2 Memory Ports

Right Arbiter 0
Right Arbiter 1

Right Arbiter 2
Right Arbiter 3

S
ec

tio
n

0
(I

ns
t.

0–
31

)

S
ec

tio
n

1
(I

ns
t.

32
–6

3)

S
ec

tio
n

2
(I

ns
t.

64
–9

5)

S
ec

tio
n

3
(I

ns
t.

96
–1

27
)

Left Arbiter 0

Left Arbiter 1

Left Arbiter 2

Left Arbiter 3

Instruction
Cache

Fetch
Unit

Register
Rename
Unit

Branch
Prediction
Unit

Disabled for 6-issue and 4-issue

Figure 6 Adjusting the width of an 8-issue machine to 6- or 4-issue. Source: Adapted
from Ref. [56].

23An Overview of Architecture-Level Power- and Energy-Efficient Design Techniques

technologies and among different implementations in the same technolo-

gies. Additionally, the leakage also changes dynamically as a function of tem-

perature. This aspect, however, has not been researched adequately.

For a given frequency and switching delay, the best possible power sav-

ings come from carefully adjusting both VDD and Vt, depending on the bal-

ance of dynamic versus leakage power at that point. While the VDD � Vt

difference determines switching speed, maximum gains in power consump-

tion come from a combined adjustment of the two. Three independent

studies came to the same conclusion.

The work of Duarte et al. [27] studied the impact of scaling on a number

of approaches for dynamic power reduction. Among their experiments, they

simultaneously scale the supply voltage (VDD) and the body-to-source bias

voltage (Vbs), i.e., they simultaneously perform DVS and ABB. Their study

is not constrained in any variable, meaning that they examine a wide spec-

trum of possible values for the two quantities. Their results show a clear

advantage over DVS alone.

Martin et al. [28] combine DVS and ABB to lower both dynamic and

static power of a microprocessor during execution. They derive closed-form

formulas the total power dissipation and the frequency, expressing them as a

function of VDD and Vbs. The system-level technique of automatic perfor-

mance setting was used. In this technique, deadlines are derived from mon-

itoring system calls and interprocess communication. The performance

setting algorithm sets the processor frequency for the executing workload

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

70 nm 50 nm 35 nm

Dynamic power Leakage power

Technology feature size

P
ow

er
 c

on
su

m
pt

io
n

Figure 7 Relative contribution of dynamic and leakage power in an embedded proces-
sor. Source: Adapted from Ref. [29].

24 Ivan Ratković et al.

so it does not disturb its real-time behavior. Solving the system of the two

mentioned equations for a given performance setting,Martin et al. are able to

estimate the most profitable combination of VDD and Vbs to maximize

power dissipation savings. The approach can deliver savings over DVS alone

of 23% in a 180 nm process and 39% in a (predicted) 70 nm process.

Yan [29] studies the application of combined DVS and ABB in hetero-

geneous distributed real-time embedded systems. In analogy to the work of

Martin et al., the author determines the lowest frequency of operation that

can satisfy the real-time constraints of an embedded system using the worst-

case analysis. In contrast to the previous work, the deadlines are known and

are hard real time. Given the required operation frequencies, Yan shows that

both VDD and Vt have to scale to obtain the minimum power across the

range of frequencies for a 70 nm technology. They notice that for higher

frequencies, when dynamic component of power is significant, VDD scaling

is more useful. However, for lower frequencies, where static (leakage)

power starts to dominate, we should decrease Vbs voltage, i.e., to apply

RBB, to make power dissipation lower.

4.2 Core-Pipeline
In this section, the techniques which target complete pipeline (both func-

tional and control units) are presented.

4.2.1 Dynamic
There are three most popular approaches to reduce dynamic energy in pipe-

line. The first one is clock gating of large power hungry pipeline units and

their accompanying latches. The second one is a result from the effort to

exploit the bit redundancy in data, while the third one is based on reusing

some pieces of already executed code, i.e., generating already computed

outputs directly from some memory structure.

Clock Gating
Pipeline blocks are clock gated either if they are known to be idle or if they

are supposed to be doing useless work. The first approach (deterministic clock

gating) is more conservative and do not spoil performance, while the second

one is more “risky” and could degrade performance with, of course, signi-

ficant power savings.

Deterministic Clock Gating The idea of Deterministic Clock Gating

(DCG) application on the pipeline is to clock gate the structures that are

known to be idle, without spoiling the performance but decreasing EDP

25An Overview of Architecture-Level Power- and Energy-Efficient Design Techniques

at the same time. Li et al. [30] give a detailed description of DCG in a super-

scalar pipeline. They consider a high-performance implementation using

dynamic domino logic for speed. This means that besides latches, the pipe-

line stages themselves must be clock gated.

The idea is to find out if a latch or pipeline stage is not going to be used.

In Fig. 8 is depicted a pipeline which clock-gate-able parts are shown dark.

The Fetch and Decode stages and their latches are, for example, never clock

gated since instructions are needed almost every cycle, while there is

completely enough time to clock gate functional units.

DCG was evaluated with Wattch [30]. By applying DCG to all the

latches and stages described above, they report power savings of 21% and

19% (on average) for the SPEC2000 integer and floating point benchmarks,

respectively. They found DCG more promising than pipeline balancing,

another clock gating technique.

Although this work is applied to scalar architecture, it is also applicable to

other kinds of architectures. An example of an efficient DCG application on

functional units for energy-efficient vector architectures can be found in

Ref. [57].

Improving Energy Efficiency of Speculative Execution Although

they are necessary in order to keep functional units busy and to have high

Instructions Per Cycle (IPC), branch predictors and speculative activity

approach are fairly power hungry. Besides the actual power consumption

D-Cache Decoder"Extended" Latches

F
et

ch
 (

IF
)

L1

Pipeline Stage Clock-Gating

D
ec

od
e

(I
D

)

L2

R
en

am
e

(R
N

)

L3

Is
su

e
(I

Q
)

L4

R
eg

is
te

r
R

ea
d

(R
F

)

L5

E
xe

cu
te

 (
E

X
)

L6

M
em

or
y

(M
em

)

L7

W
rit

eB
ac

k
(W

B
)

L8

Latch Clock-Gating Control

Figure 8 Deterministic Clock Gating. Pipeline latches and pipeline stages that can be
clock gated are shown shaded. Source: Adapted from Ref. [56].

26 Ivan Ratković et al.

overhead of supporting branch prediction and speculative execution (e.g.,

prediction structures, support for check pointing, increased run-time state),

there is also the issue of incorrect execution.

Manne et al. [31] try to solve this energy inefficiency of speculative activ-

ity proposing approach which is named pipeline gating. The idea is to gate and

stall the whole pipeline when the processor threads down to very uncertain

(execution) paths. Since pipeline gating refrains from executing when con-

fidence in branch prediction is low, it can hardly hurt performance. There

are two cases when it does: when execution would eventually turn out to be

correct and is stalled, or when incorrect execution had a positive effect on

the overall performance (e.g., because of prefetching). On the other hand, it

can effectively avoid a considerable amount of incorrect execution and save

the corresponding power.

The confidence of branch prediction in Ref. [31] is determined in two

ways: counting the number of mispredicted branches that can be detected as

low confidence, and the number of low-confidence branch predictions that

are turn out to be wrong. They find out that if more than one low-confident

branch enters the pipeline, then the chances of going down the wrong path

increase significantly. They propose several confidence estimators which

details could be found in Ref. [31]. In their test, authors show that certain

estimators used for gshare and McFarling application with a gating threshold

of 2 (number of low-confident branches), a significant part of incorrect exe-

cution, can be eliminated without perceptible impact on performance. Of

course, the earlier the pipeline is gated, the more incorrect work is saved.

However, this assumes larger penalty of stalling correct execution.

Aragón et al. [32] did similar work but with slightly different approach.

Instead of having a single mechanism to stall execution as Manne et al.,

Aragón et al. examine a range of throttling mechanisms: fetch throttling,

decode throttling, and selection-logic throttling. As throttling is performed

deeper in the pipeline, its impact on execution is diminished. Thus, fetch

throttling at the start of the pipeline is the most aggressive in disrupting exe-

cution, starving the whole pipeline from instructions, while decode or

selection-logic throttling deeper in the pipeline is progressively less aggres-

sive. This is exploited in relation to branch confidence: the lower the con-

fidence of a branch prediction, the more aggressively the pipeline is

throttled. The overall technique is called “selective throttling.”

Pipeline gating, being an all-or-nothing mechanism, is much more sen-

sitive to the quality of the confidence estimator. This is due to the severe

impact on performance when the confidence estimation is wrong. Selective

27An Overview of Architecture-Level Power- and Energy-Efficient Design Techniques

throttling, on the other hand, is able to better balance confidence estimation

with performance impact and power savings, yielding a better EDP for

representative SPEC 2000 and SPEC 95 benchmarks.

Significance Compression
Slightly different approach than previous one is proposed by Canal et al. [33].

The idea is to compress nonsignificant bits (strings of zeros or ones) any-

where they appear in the full width of an operand. Each 32-bit word is aug-

mented with a 3-bit tag describing the significance of each of its four bytes.

A byte can be either significant or a sign extension of its preceding byte (i.e.,

just a string of zeros or ones). The authors report that the majority of values

(87%) in SPECint andMediabench benchmarks can be compressed with sig-

nificance compression. A good 75% of all values is narrow-width using

above-mentioned 16-bit definition (i.e., only the first and possibly second

bytes are significant).

Canal et al. propose three kinds of pipeline adapted to work with com-

pressed data. The first one is named byte-serial pipeline where only significant

bytes flow through the pipeline and are operated. The rest is carried and

stored via their tags. This opens up the possibility of a very low-power

byte-serial operation. If more than one significant byte needs to be processed

at a pipeline stage, then this stage simply repeats for the significant bytes.

However, although activity savings range from 30% to 40% for the various

pipeline stages, performance is substantially reduced; CPI increases 79% over

a full-width (32-bit) pipeline.

Another, faster, approach is to double pipeline width (byte-parallel pipe-

line), and this results with 24% performance losses while retaining 30–40%

activity savings. Increasing the pipeline width to four bytes (byte-parallel

pipeline) and enabling only the parts that correspond to the significant bytes

of a word retain most of the activity savings and further improves perfor-

mance, bringing it very close (6–2% slowdown depending on optimizations)

to a full pipeline operating on uncompressed operands.

Work Reuse
Pipeline-level work reuse can be implemented at instruction level or block

of instructions (basic block) level.

Instruction-Level Reuse The work reuse approach can be even more

efficient if we reuse the whole instructions, or set of instructions, instead of

operations only (Section 4.4.1). Early work on this topic is done by Sodani

28 Ivan Ratković et al.

and Sohi who propose dynamic instruction reuse [34]. The motivation for

their work is a discovery that execution in a mispredicted path converges

with execution in the correct path resulting in some of the instructions

beyond the point of convergence being executed twice, verbatim, in the

case of a misprediction. Furthermore, the iterative nature of programs in

conjunction with the way code is written modularly to operate on different

input results in significant repetition of the same inputs for the same instruc-

tions. The results of such instructions can be saved and simply reused when

needed rather than reexecuting the computation. Sodani and Sohi claim that

in some cases, over 50% of the instructions can be reused in this way. They

do not evaluate power saving of their proposals, but their work was actually a

step forward to more general and more energy-efficient approach—basic

block reuse.

Basic Block-Level Reuse The basic block reuse is done by Huang and

Lilja [35]. Their observations concern whole basic blocks for which they

find that their inputs and outputs can be quite regular and predictable. Their

study shows, for the SPEC95 benchmarks, a vast majority of basic blocks

(90%) have few input and output registers (up to four and five, respectively)

and only read and write few memory locations (up to four and two, respec-

tively). A Block History Buffer (BHB) stores inputs and outputs of basic blocks

and provides reuse at the basic block level. The increased number of inputs

that must match for the result to be determinable means that basic block

reuse is not as prevalent as instruction reuse. However, when reuse succeeds,

it does not only avoids the execution of the individual instructions in the

basic block but also breaks the dependence chains in it, returning results

in a single cycle. In addition to the energy saved by not executing instruc-

tions in functional units, considerable energy can be also saved because all

the bookkeeping activities in the processor (instruction pointer update,

instruction fetch, decode, rename, issue, etc.) during the execution of a basic

block are eliminated. Depending of the chosen buffer, sometimes, it is more

expensive to access and match entries in the buffer since each entry consists

of arrays of values and valid bits.

Trace-Level Reuse One more work reuse approach is proposed by

Gonzalez et al. [36]. Traces are groups of consecutive instructions reflecting

not their position in the static code layout but their order in dynamic exe-

cution. A trace may span more than one basic block by allowing executed

branches (taken or nontaken) in the middle of the trace. Similarly to basic

blocks, a trace too can start with the same inputs, read the same values from

29An Overview of Architecture-Level Power- and Energy-Efficient Design Techniques

memory, and produce the same results and side effects (e.g., memory writes).

Trace-level reuse has analogous problems and benefits with basic block

reuse. The problems are actually amplified as the traces can be longer.

Region Reuse Region reuse stands for exploiting the value locality

exhibited by sets of instructions inside a program. These sets of instructions

may have different granularity: basic blocks, traces, or even whole functions

can be selected as candidates for computation reuse. The classical region

reuse mechanism is showed in Fig. 9. The design consists of three different

boxes: an input logic box, a reuse table, and a reuse check logic box.

We can obtain more power/energy efficiency when we introduce some

acceptable error—tolerant region reuse. Tolerant region reuse improves clas-

sical region reuse with significant EDP reduction gains (from 13% to 24%)

and consistently reduces both time and energy consumption for the whole

span of media applications studied. These gains come at the cost of minor

degradation of the output of the applications (noise introduced always

bounded to an SNR of 30 dB) which make it ideal for the portable domain

where quality vs. form-factor/battery life is a worthy trade-off. The main

Computation

=1

=

=

Region
Input registers

64-log2n bits log2n bits
132-log2n bits

Tag
Valid bit

Reg Out

n
en

tr
ie

s

1 bit

3 bits

64 bits

Miss

Hit

Output registers

Figure 9 Classical region reuse mechanism. Source: Adapted from Ref. [37].

30 Ivan Ratković et al.

drawback of tolerant region reuse is the strong reliance on application pro-

filing, the need for careful tuning from the application developer, and the

inability of the technique to adapt to the variability of the media contents

being used as inputs. To address that inflexibility, Alvarez et al. [37] intro-

duce dynamic tolerant region reuse.

This technique overcomes the drawbacks of tolerant region reuse by all-

owing the hardware to study the precision quality of the region reuse output.

The proposed mechanism allows the programmer to grant a minimum

threshold on SNR (signal-to-noise ratio) while letting the technique adapt

to the characteristics of the specific application and workload in order to

minimize time and energy consumption. This leads to greater energy-delay

savings while keeps output error below noticeable levels, avoiding at the

same time the need of profiling.

They applied the idea to a set of three different processors, simulated by

Simplescalar and Wattch, from low to high end. The used applications are

JPEG, H263, and GSM. Alvarez et al. show their technique leads to consis-

tent performance improvements in all of our benchmark programs while

reducing energy consumption and EDP savings up to 30%.

4.3 Core-Front-End
Control unit is an unavoidable part of every processor and the key part of

out-of-order processors. As out-of-order processors tend to have pretty high

EDP factor, there is a lot of room for energy-efficiency improvement.

4.3.1 Dynamic
Beside clock gating, as the most popular dynamic power/energy optimiza-

tion mechanism, here caching takes a part as well.

Exploiting Narrow-Width Operands
Although low-power research that focus on narrow-width operands exploi-

tation mostly target functional units, this approach can also apply on RFs,

and it is done by Ergin et al. [58]. The intent is not so much to reduce power

consumption, but to alleviate register pressure by making better use of the

available physical registers. Similarly to packing two narrow values in the

inputs of functional units or packing compressed lines in caches, multiple

narrow values are packed in registers.

A number of these values can be packed in a register either

“conservatively” or “speculatively.” Conservatively means that a value is

packed only after it is classified as narrow. This happens after a value is

31An Overview of Architecture-Level Power- and Energy-Efficient Design Techniques

created by a functional unit. When a narrow value is packed in a different

register than the one it was destined for, the register mapping for the packed

value is updated in all the in-flight instructions. In contrast, “speculative

packing” takes place in the register renaming stage, without certain knowl-

edge of the width of the packed value. Packing and physical register assign-

ment are performed by predicting the output width of instructions. The

prediction history (per instruction) is kept in the instruction cache. The

technique works well for performance—increases IPC by 15%.

Instruction Queue Resizing
On-demand issue queue resizing, from the power efficiency point of view,

was first proposed by Buyuktosunoglu et al. [38]. They propose circuit-level

design of an issue queue that uses transmission gate insertion to provide

dynamic low cost configurability of size and speed. The idea is to dynam-

ically gather statistics of issue queue activity over intervals of instruction exe-

cution. Later on, they use mentioned statistics to change the size of an issue

queue organization on the fly to improve issue queue energy and

performance.

The design of the IQ is a mixed CAM/SRAM design where each entry

has both CAM and SRAM fields. The SRAM fields hold instruction infor-

mation (such as opcode, destination register, status) and the CAM fields con-

stitute the wakeup logic for the particular entry holding the input operand

tags. Results coming from functional units match the operand tags in the

CAM fields and select the SRAM part of entry for further action. When

an instruction matches both its operands, it becomes “ready” to issue and

waits to be picked by the scheduler.

The IQ is divided into large chunks with transmission gates placed at reg-

ular intervals on its CAM and SRAM bitlines. The tag match in the CAM

fields is enabled by dedicated taglines. Partitioning of the IQ in chunks is

controlled by enabling or disabling the transmission gates in the bitlines

and the corresponding taglines. The design is depicted in Fig. 10.

Buyuktosunoglu et al. achieve power savings for the IQ 35% (on average)

with an IPC degradation of just over 4%, for some of the integer SPEC2000

benchmarks, on a simulated 4-issue processor with a 32-entry issue queue.

Ponomarev et al. go one step further, making the problem more gener-

alized by examining total power of main three structures of instruction

scheduling mechanisms: IQ, Load/Store Queue (LSQ), and Reorder Buffer

(ROB) [39]. They notice that IPC-based feedback control proposed byRef.

[38] does not really reflect the true needs of the program but actually depend

32 Ivan Ratković et al.

on many other factors: cache miss rates, branch misprediction rates, amount

of instruction-level parallelism, occupancy, etc. Hence, they considered

occupancy of a structure as the appropriate feedback control mechanism

for resizing.

The proposed feedback scheme measures occupancy of each of three

main structures and makes decisions at the end of the sample period. The

mechanism allows on-demand resizing IQ, LSQ, and ROB, by increas-

ing/decreasing their size according to the actual state. In simulations for a

4-issue processor, this method yields power savings for the three structures

in excess of 50% with a performance loss of less than 5%.

A different approach to the same goal (dynamically IQ adaption for

power savings) is proposed by Folegnani et al. [40]. Instead of disabling large

chunks at a time, they disable individual IQ entries. Another difference to

the previous two approaches is that IQ is not limited physically but logically.

Actually, they organized IQ as FIFO buffer with its head and tail pointers

(Fig. 11). Novelty is the introduction of a new pointer, called the limit pointer

which always moves at a fixed offset from the head pointer. This pointer

limits the logical size of the instruction queue by excluding the entries

between the head pointer and itself from being allocated.

They resize the IQ to fit program needs. Unused part is disabled in a sense

that empty entries need not participate in the tag match; thus, significant

power savings are possible. The feedback control is done using a heuristic

with empirically chosen parameters. The IQ is logically divided into

CAM

Transmission gate

CAM

Transmission gate

CAM

Transmission gate

CAM

Precharge &
SenseAmp

RAM

Transmission gate

RAM

Transmission gate

RAM

Transmission gate

RAM

S
el

ec
tio

n
Lo

gi
c

R
ea

dy
R

ea
dy

R
ea

dy
R

ea
dy

En 1

En 2

En 3

Precharge &
SenseAmp

Wakeup Logic Instruction Read

En 1

En 2

En 3

Bitline Dummy Bitline

En 1

En 2

En 3

EnEn_bar

In

Out

SA Out

SA Out_bar

Data Data_bar

D
um

m
y

B
itl

in
e

O
ut

pu
t

(S
et

)

Tagline

Figure 10 Adaptive CAM/SRAM structure. Source: Adapted from Ref. [38].

33An Overview of Architecture-Level Power- and Energy-Efficient Design Techniques

16 partitions. The idea for the heuristic is to measure the contribution to

performance from the youngest partition of the IQ which is the partition

allocated most recently at the tail pointer. The contribution of a partition

is measured in terms of issued instructions from this partition within a time

window. If that contribution is below some empirically chosen threshold,

then the effective size of the IQ is reduced by expanding the disabled area.

The effective IQ size is periodically increased (by contracting the disabled

area). This simple scheme increases the energy savings to about 91% with

a modest 1.7% IPC loss.

Loop Cache
The loop cache is designed to hold small loops commonly found in media

and DSP workloads [41, 43]. It is typically just a piece of SRAM that is soft-

ware or compiler controlled. A small loop is loaded in the loop buffer under

program control and execution resumes, fetching instructions from the loop

buffer rather than from the usual fetch path. The loop buffer being a tiny

piece of RAM is very efficient in supplying instructions, avoiding the

accesses to the much more power-consuming instruction L1. Because the

loop buffer caches a small block of consecutive instructions, no tags and

no tag comparisons are needed for addressing its contents. Instead, only rel-

ative addressing from the start of the loop is enough to generate an index in

order to correctly access all the loop instructions in the buffer. Lack of tags

and tag comparisons makes the loop buffer far more efficient than a

typical cache.

Fully automatic loop caches, which detect small loops at run-time and

install them in the loop cache dynamically, are also proposed in Refs.

Full
area

D
is

ab
le

d
ar

ea
Em

pt
y a

re
a

Head
pointer

Tail
pointer

Limit
pointer

Figure 11 Instruction queue with resizing capabilities. Source: Adapted from Ref. [40].

34 Ivan Ratković et al.

[42–44]. However, such dynamic proposals, although they enhance the

generality of the loop cache at the expense of additional hardware, are

not critical for the DSP and embedded world where loop buffers have been

successfully deployed. Nevertheless, the fully automatic loop buffer appears

in Intel’s Core 2 architecture [59].

Trace Cache
Due to CISC nature of the IA-32 (x86) instruction set processors, that trans-

late the IA-32 instructions into RISC-like instructions called uops, the work

required in such a control unit is tremendous, and this is reflected in the large

percentage (28%) of the total power devoted to the control unit. To address

this problem, Solomon et al. [45] describe a trace cache that can eliminate the

repeated work of fetching, decoding, and translating the same instructions

over and over again. Called the Micro-Operation Cache (UC), the concept

was implemented as the trace cache of the Pentium-4 [60]. The reason why

it works so well in this environment is that traces are created after the IA-32

instructions are decoded and translated in uops. Traces are uop sequences

and are directly issued as such.

TheMicro-Operation Cache concept is depicted in Fig. 12. The UC fill

part starts after the instruction decode. A fill buffer is filled with uops until

the first branch is encountered. In this respect, the UC is more a basic BHB

than a trace cache, but this is not an inherent limitation in the designs; it was

so chosen just to make it as efficient as possible. Another interesting charac-

teristic of the UC design is that, although a hit can be determined in the UC

during the first pipeline stage, the uops are not delivered to the issue stage

until after four more cycles (stages). This ensures that there is no bubble in

the pipeline switching back and forth from streaming uops out of the

UC
fetch

Cycle 1

M
U
X

Instruction
decode

Length
decode

IC
fetch

IC
lookup

Next
IP

2 3 4 5 6

UC
lookup

Latched index/way #
uop

buffer

Figure 12 Control unit of the pipeline with uop cache. Source: Adapted from Ref. [45].

35An Overview of Architecture-Level Power- and Energy-Efficient Design Techniques

Control Unit (CU) to fetching IA-32 instructions from the instruction

cache and decoding them.

The benefits for often repeating traces, of course, are significant. Solo-

mon et al. report that 75% of all instruction decoding (hence, uop translation)

is eliminated using a moderately sized micro-operation cache. This is trans-

lated to a 10% reduction of the processor’s total power for the Intel’s P6

architecture[61]. The Pentium-4 trace cache is a prime example of a

power-saving technique eliminating repetitive and cacheable computation

(decoding).

4.3.2 Static
The ROB and the RF are the two critical components to enhance a pro-

cessor’s ILP but, unfortunately, they have serious static power, especially

occurred in a large RF which in average consumes around 20% of the pro-

cessor’s power budget. The RF shows the highest power density as it has a

severe access frequency and occupies a relatively small area. As a result, due

to high areal power density, the RF is known to the hottest unit in the

microprocessor [62].

Idle Register File DVS
During program execution, RF dissipates two types of static power. First,

between the instruction issue stage and commit stage, the register does

not store useful values, but waits for instruction commitment, thus waste

static energy/power. The second type occurs when a register stores a tem-

porary value which is no longer to be used or may be referenced again but

after a long time. In this case, because most consumer instructions nearby the

producer have already read out that value from the ROB, it is possible that

the register keeps a useless value for a long time without any references. In

some cases, the short-lived values even let allocated registers never be

referenced once after the instruction issue stage. In Ref. [46], they find that

more than 70% values in a program are short lived.

To address mentioned RF inefficiency problem, Shieh and Chen [46]

proposed monitoring mechanism in the datapath and ROB to find out

which temporary values possibly make registers have more static power.

To prevent the first type of mentioned static power components, the mech-

anism identifies that a register will temporarily become idle after the instruc-

tion issue stage. Because the allocated register will not be referenced during

instruction execution until the commit stage, the monitoring mechanism

has the ability to monitor each register’s usage along pipeline stages.

36 Ivan Ratković et al.

To prevent the second-type static power, identify that a register possibly

stores a “seldom-used” temporary value. They added a simple indicator in

each ROB entry to monitor, for each temporary value, how many con-

sumer instructions have appeared before commitment. If a temporary value

has many consumers appearing before commitment, the probability that this

value becomes “seldom-used” after commitment will become very large.

Their monitoring mechanism cooperates with the DVS mechanism.

When it identifies that a register is idle, it triggers the DVS mechanism to

power down that register’s supply voltage to lower voltage levels. If the

monitoring mechanism finds that a register will be accessed soon (e.g., at

the stage just before instruction reference or commitment), it early alerts

the DVSmechanism to power on that register’s supply voltage to the normal

voltage level. They assumed that each register has three voltage levels: active

(1 V), drowsy (0.3 V), and destroy (0 V).

Simulation results show that through ROBmonitoring, a RF can save at

least 50% static power consumption with almost negligible performance loss.

Register File Access Optimization
A problem with RF accesses is that they are not spread through the whole

RF, but clustered on one of its side (Fig. 13).

Kim et al. [47] proposed an idea that evenly redistributes accesses to the

full range of the RF through the improvement of the traditional renaming

unit. By uniformly distributing writing accesses to the RF, the power den-

sity decreases and the possibility of hotspots forming also reduces.

0

2

4

6

8

10

12

14

16

18

20

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 75 78

Writes Reads

Entry number

A
cc

es
s

co
un

t
×

 1
06

42

Figure 13 Imbalanced register accesses in gzip. Source: Adapted from Ref. [47].

37An Overview of Architecture-Level Power- and Energy-Efficient Design Techniques

Consequently, the leakage power decreases as it is proportional to the expo-

nential function of temperature.

The proposed is actually a remapping technique revealing that architec-

tural registers (i.e., entry number 0–40) are relocated to the full range of

entry numbers (i.e., 0–79) with only the even number allocation, and also

that the assignments to physical registers (i.e., 40–80) are also repositioned

throughout whole RF area (i.e., 1–80) with the odd number. The algorithm

is realized through several steps. First, the traditional renaming unit allocates

an index number of a physical register entry to an architectural register.

Next, a new index number is generated by our simple algorithm; if the index

number is less than 40, then a new index number will be achieved frommul-

tiplying the first index number by 2; otherwise (i.e., 40–80), we subtract

40 from the first index, multiply it by 2, and add 1. These simple algorithms

can be implemented by a small logic, and the logic can be attached to the

traditional renaming unit; the attached logic consists of six small compo-

nents: an 8-bit adder, an 8-bit shift register, a comparator, an OR gate,

and two 2:1 multiplexors (Fig. 14). The authors report notable temperature

drop reaching up to 11% on average 6%, and leakage power savings reached

up to 24% on average 13%.

4.4 Core-Back-End
Functional units are a fundamental part of every processor. They provide a

lot of trade-off; thus, plenty of techniques for both dynamic and static

power/energy components have been proposed.

4.4.1 Dynamic
The essence of almost all dynamic power/energy optimization techniques

for this part of the processor is clock gating.

Traditional
Renaming

Unit 8-bit shift register
2:1 mux

8-bit adder

x < 40 ?

Comparator

"1"
OR gate

2:1 mux

Attached Style

The Proposed Logic

0 1 2 ... 38 39 40 41 42 ... 80

0 1 2 4 5 ... 803

Higher part (0–39) Lower part (40–80)

Figure 14 The proposed small logic attached to the traditional renaming unit and the
mapping scenario. Source: Adapted from Ref. [47].

38 Ivan Ratković et al.

Exploiting Narrow-Width Operands
The first approach optimizes the integer structures and the results are still

100% accurate, while the second one optimizes Floating Point (FP) units

and introduce some error.

Integers
Each processor has defined its data width, and it is one of its main charac-

teristics. Often, applications running on a processor do not really need full

data width. It has become especially evident in 64-bit processors. Brooks and

Martonosi [49] notice a disproportion through a set of measurements they

did for SPECint95 and MediaBench application running on 64-bit Alpha

machines and find useful statistics. They find a lot of operations where

the both operands have the number of significant bit of 16 and 33,

respectively.

There are two ways to exploit this characteristic. One reduces power

while the other improves performance. They both have the same goal—

to improve energy and EDP. In the both of the cases, the first step is the

same—detect narrow operands. Brooks and Martonosi [49] consider each

16-bit, or less wide, as narrow operand. They do detection dynamically

by tagging ALU and memory outputs with “narrow bit” if it is narrow.

First approach is to clock gate unused part of ALU when we have two

narrow operands (Fig. 15). This technique yields significant power savings

for the integer unit comprising of an adder, a booth multiplier, bit-wise

logic, and a shifter. Specifically, in an Alpha-class, 4-instruction-wide super-

scalar, the average power consumption of the integer units can be reduced

by 55% and 58% for the SPECint95 and the Mediabench benchmark suites,

respectively.

Another approach is to pack two narrow operands and to process it

simultaneously. This is done by detecting two narrow-operand instructions

which are ready to execute and shifting significant part of the one to high

order part (which is “empty”) of the other. The combined operations are

executed in the ALU in Single Instruction, Multiple Data (SIMD) mode,

similarly to SIMD multimedia extension instructions. The problem with

the packing approach is overhead logic (mainly MUXs) which spoils energy

savings.

However, the above-presented packing narrow-width values approach

does not achieve significant speedup. The improvement of this approach is

to introduce speculation in themethodology.We suppose that both operands

are narrow, pack them like in the normal case, and if we findwewerewrong,

39An Overview of Architecture-Level Power- and Energy-Efficient Design Techniques

squash and reexecute them separately. This optimization brings the speedup

of packing narrow-width operations to approximately 4% for SPECint95

and 8% for MediaBench for an Alpha-class, 4-instruction-wide, superscalar

CPU. Speedup increases with the width of the machine as more instructions

become available to choose from and pack together.

Floating Point
While the above exploitation of narrow operands relies on keeping accu-

racy, one step further to be more energy efficient is to introduce some

“acceptable” error. Acceptable is a very relative term, and it strongly

depends on the application’s nature. Tong et al. [48] analyze several floating

point programs that utilize low-resolution sensory data and notice that the

programs suffer almost no loss of accuracy even with a significant reduction

in bit-width. Figure 16A shows how program accuracy decreases when we

utilize lower number on mantissa bits, while Fig. 16B shows program accu-

racy across various exponent bit-widths.

Tong et al. exploit this characteristic of applications they profiled by

proposing the use of a variable bit-width floating point unit to reduce power

consumption. To create hardware capable of variable bit-width multiplica-

tions (up to 24 � 24 bit), they used a 24 � 8 bit digit-serial architecture

(Fig. 17). The 24 � 8 bit architecture allows performing 8, 16, and

Operand A
from registers

Zero
Detect

Integer
Functional

Unit

A
Latch
High

A
Latch
Low

64 64

CLK

A15-0

A63-16

CLK AND zero48'zero48
from registers

B
Latch
High

B
Latch
Low

CLK

B15-0

B63-16
64 64

Operand B
from registers

CLK AND zero48'

M
U
X

48

48

Result63-16

Result16-0

Result63-0
64

zero48

To registers 0 1

Figure 15 Clock gating ALUs for narrow-width operands. Source: Adapted from Ref. [49].

40 Ivan Ratković et al.

0%

20%

40%

60%

80%

100%

23

A

21 19 17 15 13 11 9 7 5 3 1

Sphinx

Alvinn

PCASYS

Bench22

A
cc

ur
ac

y

Mantissa bit-width

0%

20%

40%

60%

80%

B 100%

8 7 6 5 4

Sphinx

Alvinn

PCASYS

Bench22

A
cc

ur
ac

y

Exponent bit-width

Figure 16 Program accuracy across various (A) mantissa and (B) exponent bit-widths.
Source: Adapted from Ref. [48].

24 × 8
CSA Arrays

8 Low order 8 bits

Flip Flops

Parallel/Serial
Converters

8 bit
Adder

8 High order 8 bits

Control
824

24

Figure 17 Block diagram of a 24 � 8 digit-serial multiplier. Source: Adapted from
Ref. [48].

24-bit multiplication by passing the data once, twice, or three times through

the serial multiplier. A finite state machine is used to control the number of

iterations through the CSA array.

Proposed FP architecture was comparedwith widely usedWallace archi-

tecture. Figure 18 shows the potential power reduction for our three pro-

grams if we use the digit-serial multiplier as the mantissa multiplier. For 8-bit

multiplication, the digit-serial multiplier consumes less than 1/3 of power

than the Wallace Tree multiplier (in the case of Sphinx and ALVINN).

When 9–16 bits of the mantissa are required (in the case of PCASYS and

Bench22), the digit-serial multiplier still consumes 20% less power than

the Wallace Tree multiplier. The digit-serial multiplier does consume

40% more power when performing 24-bit multiplication due to the power

consumption of the overhead circuitry.

Work Reuse
The idea of the application of the work reuse technique on functional units is

to cache the results and to reuse them later instead of recompute them. This

can save considerable power if the difference in energy between accessing

the cache and recomputing the results is quite large. The first work in this

topic is done by Citron et al. [51]. This act of remembering the result of an

operation in relation to its inputs they named memoization. A memoization

cache, or Look-up Table (LUT), stores the input operands and the result of

floating point operations. Upon seeing the same operands, the result is

retrieved from the Memo-table and is multiplexed onto the output

(Fig. 19). The Memo-table access and the floating point operation start

0
5
10
15
20
25
30
35
40
45
50

0

500

1000

1500

2000

2500

8 bits 16 bits 24 bits

Energy/Op Latency/Op

Operand bit-width

E
ne

rg
y/

O
p

La
te

nc
y/

O
p

Figure 18 Power reduction using digit-serial multiplier. Source: Adapted from Ref. [48].

42 Ivan Ratković et al.

simultaneously. However, accessing the Memo-table is much faster (single-

cycle) than performing the actual multicycle operation. Since the result is

available much earlier, this translates into performance benefits but also

(by gating the floating point unit before it completes the operation) to power

benefits. The power benefits are commensurable to the energy differential

between accessing the cache and performing the operation to completion.

Although in Ref. [51] they do not perform any power analysis, they do

statistics for multimedia applications (effect benchmark suite, SPEC FP95,

and imaging/DSP applications) which, in conjunction with simple power

models for the floating point unit and the memo-tables, can be used to

derive power estimates. For their workloads, 59% of integer multiplications,

43% of FP multiplications, and 50% of FP divisions are memoizable and can

be “performed” in a single cycle with small (32-entry, 4-way set-

associative) LUTs.

The work from Alvarez et al. [52] is a kind of mixture of previous pres-

ented technique and the technique from Tong et al. [48]. In order to achieve

more power savings from memoization (i.e., higher reuse), they play with

human perception tolerance and propose technique called tolerant

memoization which targets low-power embedded processors for hand-held

devices with multimedia workloads. Performance and power dissipation can

Division
Unit

Memo
Table

MUX

Operation
Completed

Line

Hit/Miss
Line

Result

Operand 1
Operand 2

Figure 19 Operation-level memoization: The Memo-table in this particular example
captures inputs and results from a division unit. When inputs previously seen are
detected, the result is read from the Memo-table. Source: Adapted from Ref. [51].

43An Overview of Architecture-Level Power- and Energy-Efficient Design Techniques

be improved at the cost of small precision losses in computation. The key

idea is to associate entries with the similar inputs to the same output. They

targeted low-power processors for hand-held devices with multimedia

workloads.

Except the ability to have a hit when the inputs are not exactly the same,

the rest of the proposed hardware (Fig. 20) is more or less the same as in the

previously presented technique. The additional option is a possibility to

serial LUT memoization, which means that FPU waits until it is known

if there is a hit in the LUT or miss. In that way, the hardware is slower

but more power efficient. The results showed when only a low hit rate is

achieved (classical reuse and speech), parallel configuration works better

as it saves some energy but does not increase the operation latency. When

the hit rate grows, serial configuration arises as the best solution because it

only infrequently uses one more cycle, but often saves the entire energy of

the FPU; therefore, serial configuration is the best choice for tolerant reuse.

With tolerant memoization and realistic table sizes, the reuse hit rate is

raised and, as a result, considerable power and time savings are achieved

Memo
Table

Operand 1 Operand 2

Hash

XOR

FP ALU

MUX

Result

64-N

Disable

64

N bits dropped

N

Figure 20 Hardware configuration of sequential LUT for tolerant memoization. Source:
Adapted from Ref. [52].

44 Ivan Ratković et al.

(up to a 25% improvement in the EDP for some of the benchmarks) at the

cost of introducing some errors in the output data that are negligible in the

context of hand-held devices.

4.4.2 Static
While dynamic power/energy optimization techniques are mostly based on

clock gating, here this is the case with power gating.

Power Gating
Power gating of functional units is not used to be as attractive as power gat-

ing memory cells. Due to short idle intervals, it is a question if we save any-

thing as we spend dynamic energy to power them up or down. However, as

leakage becoming dominant component of total power consumption,

power gating is getting more attractive. Hu et al. [53] make an analysis of

power gating application on functional units. They propose analytical for-

mulas that, for a number of assumptions, yield break-even point, in cycles,

for power gating functional units. To simplify the formulas, a leakage factor

L is introduced, which specifies the ratio of the average leakage power to the

average switching power dissipated per cycle by a functional unit.

They proposed two policies for fine grain functional unit power gating: a

time-based policy (functional unit decay) and an event-guided policy (event

guided power-gating).

The first policy is based on idle time detection. As soon as an idle period

is detected, the functional unit is switched-off. There are three timing factors

that determine the behavior of this approach:

1. the break-even point in cycles after which there are net gains in energy,

2. the time it takes for the functional unit to wake up from the moment it is

needed, and

3. the decay interval, i.e., the time it takes to decide to put the functional

unit in sleep mode.

The first two are technology and functional-unit specific, while the third,

the decay interval, is an architectural knob that one can turn to tune the pol-

icy. Functional unit design can vary a lot, and this affects the first two of

factors. Floating point functional units tend to have a wide range of idle

periods (in SPEC-FP 2000). Although their short idle periods are more

numerous than their longer ones, most idle cycles are due to the longer

periods by virtue of their size. In this case, a long decay interval skips the

short idle periods and selects only the large ones. This minimizes the number

of times the functional units are unavailable because they are powered down

45An Overview of Architecture-Level Power- and Energy-Efficient Design Techniques

while still benefiting by having the functional unit powered down for a sig-

nificant part of the time. Overall, this technique can power down the float-

ing point units for 28% of the time with only minimal performance penalty

(less than 2%) for the SPEC FP 2000. For integers, the situation with short

idle periods is even worse as the integer unit is often used by address arith-

metic and longer idle periods usually occur after L2 misses.

In order to increase power savings in applications during which execu-

tions there are a lot of short idle periods, Hu et al. propose event-guided

power gating. They used various events as L2 misses, instruction cache mis-

ses, or branch mispredictions as clues to upcoming idleness of the functional

units. Upon detecting a misprediction, the functional units are put imme-

diately into sleep mode without waiting for the normal decay interval.

This simple rule extends the powered-down time of the functional units

without incurring any additional performance penalty. The use of clues

increases the percentage of cycles in sleepmode for a given performance loss,

or, conversely, for the same percentage of cycles in sleep mode the use of

clues eases the performance impact. Similarly to branch mispredictions,

other events can also provide useful hints for the idleness of the functional

units but have not been studied further.

Vt-Based Technique
As the design of functional units demands maximum speed, in most cases,

they are built using domino logic. The problem with domino logic, from

the low power point of view, is that every cycle domino logic is charged

and discharged (sometimes) by the evaluation of its inputs, thus preventing

only input from switching is not enough to stop energy to drain! With

respect to static power, leakage paths in dynamic domino logic depend

on the state of the internal dynamic nodes. This property is exploited for

the implementation of a sleep mode specific to domino logic.

The solution is to use MTCMOS approach by selectively using high Vt

devices in the noncritical paths [54]. In that case, the performance is not

compromised. In Fig. 21, the integration of high-VT devices (shaded tran-

sistors) in the domino-logic AND gate is showed. If either input is low, the

dynamic node remains charged, resulting in a large subthreshold leakage

current through the high-leakage transistors N1, N2, N3, and N4. How-

ever, when the dynamic node is discharged, the low leakage transistors

P1, P2, and N5 are strongly cut-off, and the leakage in the whole circuit

is dramatically reduced.

46 Ivan Ratković et al.

A step further to be more power efficient is to apply power gating on the

existing low leakage domino AND circuit. The challenges are almost the

same as in CMOS power gating—the short idle periods. An overly aggres-

sive policy to enter the sleep mode is probably not optimal. For this reason,

Dropsho et al. propose a gradual sleep policy that puts the functional unit in

sleep mode in stages by adding additional sleep transistor to the existing low

leakage asymmetric circuit (Fig. 22). The gradual sleep technique is shown

in Fig. 23. The functional unit is divided into slices which are put in sleep

mode consecutively as long as the functional unit remains idle. As soon as it is

needed again, all slices are brought back to active mode and are precharged.

They show that the simple GradualSleep design works well across a range

of technology and application parameters by amortizing the energy cost of

entering the sleep mode across several cycles.

4.5 Conclusion About the Existing Solutions
From the above presented, we can conclude that only comprehensive

approach to optimize the components of power/energy of microprocessors

can lead to the significant savings. Thus, it is very important to consider all

Clock

In 1

In 2

N 1

N 2

N 3

N 4

N 5

P 1 P 2

VdD

Out

Dynamic

Figure 21 Realization of low leakage domino AND circuit, using MTCMOS approach.
Source: Adapted from Ref. [54].

47An Overview of Architecture-Level Power- and Energy-Efficient Design Techniques

the possible optimization solutions during the design process. Blind DVFS

application, for example, could increase total energy consumption! For

instance, Miyoshi et al. [63] concluded that for Pentium-based system, it

is energy efficient to run only at the highest frequency, while on the

Clock

In 1

In 2

N 1

N 2

N 3

N 4

N 5

P 1 P 2

VdD

Out

Dynamic

NS
S

le
ep

Added to the first stage
of the logic pipeline

Figure 22 Realization of low leakage domino AND circuit, usingMTCMOS approach and
one sleep transistor. Source: Adapted from Ref. [54].

Slice 1Clock

Sleep

Slice 2

Slice 3

Slice 4

Sleep 2

Sleep 1

Sleep 3

Sleep 4

F
un

ct
io

na
l U

ni
t

Figure 23 Gradual sleep mode. Source: Adapted from Ref. [54].

48 Ivan Ratković et al.

PowerPC-based system, it is more energy efficient to run at the lowest

frequency point.

There are a lot of possible solutions to reduce power/energy at each

level; thus, there are situations when we wonder which technique to apply.

For example, if we consider core-level techniques, one of the first decisions

is the selection of power management: software (OS) or hardware (on-chip)

one. Thenwe should pick adequate management strategy. There are off-line

(compiler-based) and online strategies. The online strategies can be based on

events or predictions. Low-power design is a process which needs a lot of

time and effort, and there are a lot of questions that need to be answered.

It essentially important to consider savings/overhead balance before we

apply a particular technique; otherwise, we can make the system even less

efficient.

Generally, it is always important to consider Amdahl’s law. Before

starting optimization process, we should first examine the percentage that

a component being optimized takes in total power budget.

5. FUTURE TREND

It is becoming obvious that due to the “power wall” further scaling is

in crisis. While sole core scaling saturated, the relief was Chip-

Multiprocessor (CMP). Unfortunately, it is a matter of time when the same

will happen with CMP scaling. An essential question is how much more

performance can be extracted from the multicore path in the near future.

The study on this topic is performed by Esmaeilzadeh et al. [64]. The

multicore designs they study include single-threaded CPU-like and mas-

sively threaded GPU-like multicore chip organizations with symmetric,

asymmetric, dynamic, and composed topologies with PARSEC benchmark.

Unfortunately, the results are not optimistic! Even at 22 nm, 21% of a fixed-

size chip must be powered off, and at 8 nm, this number grows to more than

50%. This turned off part of the core we call “dark silicon.” Through 2024,

only 7.9� average speedup is possible across commonly used parallel work-

loads, leaving a nearly 24-fold gap from a target of doubled performance per

generation. Results for ITRS scaling are slightly better but not much. With

conservative scaling, a speedup gap of at least 22 � exists at the 8 nm tech-

nology node compared toMoore’s law. Assuming ITRS scaling, the gap is at

least 13 � at 8 nm.

They conclude that radical microarchitectural innovations are necessary

to alter the power/performance pareto frontier to deliver speedup

49An Overview of Architecture-Level Power- and Energy-Efficient Design Techniques

commensurate with Moore’s law. Actually, maybe the solutions are micro-

electronics innovations rather than microarchitectural ones. Due to many

predictions, CMOS will be replaced in next 10 years. Thus, we will again

have the situation where fundamental physics and truly adventurous electri-

cal engineering can again play a central role in the evolution of the informa-

tion technology.

There are several possible MOSFET replacements. Especially interesting

are Nanoelectromechanical Systems (NEMS)-based switchers that reliably

open and close trillions of times and emulate closer to the ideal switch. Those

devices physically move the actual gate up and down depending upon the

applied gate voltage. The main characteristic of NEMS devices is their huge

resistance when they are off and ultra small resistance when they are on.

6. CONCLUSION

We presented a comprehensive overview of power- and energy-

efficient techniques for microprocessor architecture. The goal is to summa-

rize the work done in low-power area. In past 20 years, low-power area

evaluated from marginal topic of computer architecture community to

unavoidable part of contemporary architecture research. Although today

we care about power more than ever, we should keep being holistic and

consider power together with other design goals as performance, reliability,

design verifiability, etc.

This overview is beneficial for everyone who is interested in low-power

design. Nevertheless, computer architects are the ones who should take the

most benefit from this research. The presented low-power solutions are

presented in a way that is the most appropriate for them. Software-oriented

architects can profit from this overview too.

While dynamic power optimization techniques like DVFS have become

enough mature and it is not very probable that we are going to harvest more

from them in the future, reducing leakage power is currently the main

“obsession” of microprocessor designers. Leakage reduction management

is for sure one of the key areas of future architecture-level power research.

Power gating is still the most popular technique to reduce leakage power,

especially with its latest incarnation of Per-Core Power Gating (PCPG).

Unfortunately, due to growing gate leakage current, the technique is getting

less efficient. The situation is currently under control due to the introduction

of high-k dielectrics and the whole chip body biasing, but with further tech-

nology scaling things are going to be more complicated.

50 Ivan Ratković et al.

In order to keep power gating efficient, we need more efficient

switchers. One of the possible solutions is NEMS-based switcher. With that

kind of switcher, we could expect to have ignorable gate leakage current.

Clock gating, although already an intensively utilized approach, is still an

indispensable tool to reduce switching activity. Moreover, there is still room

to further reduce switching activity of energy-inefficient out-of-order logic

of performance-oriented processors.

At the end, it is important to stress that only systematic and comprehen-

sive approach including all the relevant factors can lead us to a successful

low-power design. It is crucial that a microprocessor designer considers

the whole processor-system power dissipation and its workload rather than

a sole component. There are situations when core-only optimizations lead

to the system power dissipation increase [65]. It is also very important to

adapt the software to the target architecture. The code indeed affects power

dissipation in some cases [66]; thus, we should follow the motto: let hard-

ware and software work together.

It is more than obvious that CMOS scaling does not really help anymore;

it even makes the problemworse. The only solution on which we could rely

today in order to control energy consumption and power dissipation is to

apply different techniques to all designing levels. While we do not get

the new technology, we need to invent new and to improve existing tech-

niques in order keep power dissipation and energy consumption below the

purpose critical values.

REFERENCES
[1] G.E. Moore, Cramming more components onto integrated circuits, Electronics 38 (8)

(1965) 114–117.
[2] G. Venkatesh, J. Sampson, N. Goulding, S. Garcia, V. Bryksin, J. Lugo-Martinez,

S. Swanson, M.B. Taylor, Conservation cores: reducing the energy of mature compu-
tations, ACM SIGARCH Comput. Archit. News 38 (1) (2010) 205–218.

[3] W. Chedid, C. Yu, Survey on Power Management Techniques for Energy Efficient
Computer Systems, Department of Electrical and Computer Engineering Cleveland
State University, 2002.

[4] V. Venkatachalam, M. Franz, Power reduction techniques for microprocessor systems,
ACM Comput. Surv. 37 (2005) 195–237.

[5] V. Venkatachalam, M. Franz, A Survey on Low Power Architecture, 2007.
[6] URL, 2013. http://en.wikipedia.org/wiki/Stefan%E2%80%93Boltzmann_law/.
[7] R. Gonzalez, M. Horowitz, Energy dissipation in general purpose microprocessors,

IEEE J. Solid State Circuits 31 (9) (1996) 1277–1284.
[8] URL, 2013. http://scholar.google.com.
[9] A. Noruzi, Google Scholar: the new generation of citation indexes, Libri 55 (2005)

170–180.

51An Overview of Architecture-Level Power- and Energy-Efficient Design Techniques

http://refhub.elsevier.com/S0065-2458(15)00030-3/rf0010
http://refhub.elsevier.com/S0065-2458(15)00030-3/rf0010
http://refhub.elsevier.com/S0065-2458(15)00030-3/rf0015
http://refhub.elsevier.com/S0065-2458(15)00030-3/rf0015
http://refhub.elsevier.com/S0065-2458(15)00030-3/rf0015
http://refhub.elsevier.com/S0065-2458(15)00030-3/rf0020
http://refhub.elsevier.com/S0065-2458(15)00030-3/rf0020
http://refhub.elsevier.com/S0065-2458(15)00030-3/rf0020
http://refhub.elsevier.com/S0065-2458(15)00030-3/rf0025
http://refhub.elsevier.com/S0065-2458(15)00030-3/rf0025
http://refhub.elsevier.com/S0065-2458(15)00030-3/rf0030
http://en.wikipedia.org/wiki/Stefan%E2%80%93Boltzmann_law/
http://en.wikipedia.org/wiki/Stefan%E2%80%93Boltzmann_law/
http://refhub.elsevier.com/S0065-2458(15)00030-3/rf0040
http://refhub.elsevier.com/S0065-2458(15)00030-3/rf0040
http://scholar.google.com
http://scholar.google.com
http://refhub.elsevier.com/S0065-2458(15)00030-3/rf0050
http://refhub.elsevier.com/S0065-2458(15)00030-3/rf0050

[10] J. Bosman, I. van Mourik, M. Rasch, E. Sieverts, H. Verhoeff, Scopus reviewed and
compared: the coverage and functionality of the citation database Scopus, including
comparisons with Web of Science and Google Scholar, 2006.

[11] M. Weiser, B. Welch, A. Demers, S. Shenker, Scheduling for reduced CPU energy,
in: OSDI’94, 1994.

[12] K. Flautner, S. Reinhardt, T. Mudge, Automatic performance setting for dynamic volt-
age scaling, Wirel. Netw. 8 (2002) 507–520.

[13] C.-H. Hsu, U. Kremer, The design, implementation, and evaluation of a compiler algo-
rithm for CPU energy reduction, in: PLDI’03, 2003, pp. 38–48.

[14] H. Saputra, M. Kandemir, N. Vijaykrishnan, M.J. Irwin, J.S. Hu, C.-H. Hsu,
U. Kremer, Energy-conscious compilation based on voltage scaling, in: LCTES/
SCOPES’02, 2002, pp. 2–11.

[15] F. Xie, M. Martonosi, S. Malik, Compile-time dynamic voltage scaling settings: oppor-
tunities and limits, SIGPLAN Not. 38 (2003) 49–62.

[16] F. Xie, M. Martonosi, S. Malik, Intraprogram dynamic voltage scaling: bounding
opportunities with analytic modeling, ACM Trans. Archit. Code Optim. 1 (2004)
323–367.

[17] Q.Wu,M.Martonosi, D.W. Clark, V.J. Reddi, D. Connors, Y.Wu, J. Lee, D. Brooks,
A dynamic compilation framework for controlling microprocessor energy and perfor-
mance, in: MICRO 38, 2005, pp. 271–282.

[18] C. Isci, M. Martonosi, Runtime power monitoring in high-end processors: methodol-
ogy and empirical data, in: MICRO 36, 2003, pp. 93–104.

[19] C. Isci, G. Contreras, M. Martonosi, Live, runtime phase monitoring and prediction on
real systems with application to dynamic power management, in: MICRO 39, 2006,
pp. 359–370.

[20] A. Iyer, D. Marculescu, Power and performance evaluation of globally asynchronous
locally synchronous processors, SIGARCHComput. Archit. News 30 (2002) 158–168.

[21] E. Talpes, D. Marculescu, Toward a multiple clock/voltage island design style for
power-aware processors, IEEE Trans. Very Large Scale Integr. Syst. 13 (2005) 591–603.

[22] G. Semeraro, D.H. Albonesi, S.G. Dropsho, G. Magklis, S. Dwarkadas, M.L. Scott,
Dynamic frequency and voltage control for a multiple clock domain microarchitecture,
in: MICRO 35, 2002, pp. 356–367.

[23] Q. Wu, P. Juang, M. Martonosi, D.W. Clark, Formal online methods for voltage/fre-
quency control in multiple clock domain microprocessors, in: Proceedings of the 11th
International Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS-XI, 2004, pp. 248–259.

[24] G. Semeraro, G. Magklis, R. Balasubramonian, D.H. Albonesi, S. Dwarkadas,
M.L. Scott, Energy-efficient processor design using multiple clock domains with
dynamic voltage and frequency scaling, in: Proceedings of the 8th International Sym-
posium on High-Performance Computer Architecture, HPCA’02, 2002, pp. 29–42.

[25] R.I. Bahar, S. Manne, Power and energy reduction via pipeline balancing, in: ISCA’01,
2001, pp. 218–229.

[26] B. Fields, R. Bodı́k, M.D. Hill, Slack: maximizing performance under technological
constraints, in: ISCA’02, 2002, pp. 47–58.

[27] D. Duarte, N. Vijaykrishnan, M. Irwin, H.-S. Kim, G. McFarland, Impact of scaling on
the effectiveness of dynamic power reduction schemes, in: Computer Design, Interna-
tional Conference on, 2002, p. 382.

[28] S.M. Martin, K. Flautner, T. Mudge, D. Blaauw, Combined dynamic voltage scaling
and adaptive body biasing for lower power microprocessors under dynamic workloads,
in: ICCAD’02, 2002, pp. 721–725.

52 Ivan Ratković et al.

http://refhub.elsevier.com/S0065-2458(15)00030-3/rf0055
http://refhub.elsevier.com/S0065-2458(15)00030-3/rf0055
http://refhub.elsevier.com/S0065-2458(15)00030-3/rf0055
http://refhub.elsevier.com/S0065-2458(15)00030-3/rf0060
http://refhub.elsevier.com/S0065-2458(15)00030-3/rf0060
http://refhub.elsevier.com/S0065-2458(15)00030-3/rf0065
http://refhub.elsevier.com/S0065-2458(15)00030-3/rf0065
http://refhub.elsevier.com/S0065-2458(15)00030-3/rf0070
http://refhub.elsevier.com/S0065-2458(15)00030-3/rf0070
http://refhub.elsevier.com/S0065-2458(15)00030-3/rf0075
http://refhub.elsevier.com/S0065-2458(15)00030-3/rf0075
http://refhub.elsevier.com/S0065-2458(15)00030-3/rf0075
http://refhub.elsevier.com/S0065-2458(15)00030-3/rf0080
http://refhub.elsevier.com/S0065-2458(15)00030-3/rf0080
http://refhub.elsevier.com/S0065-2458(15)00030-3/rf0085
http://refhub.elsevier.com/S0065-2458(15)00030-3/rf0085
http://refhub.elsevier.com/S0065-2458(15)00030-3/rf0085
http://refhub.elsevier.com/S0065-2458(15)00030-3/rf0090
http://refhub.elsevier.com/S0065-2458(15)00030-3/rf0090
http://refhub.elsevier.com/S0065-2458(15)00030-3/rf0090
http://refhub.elsevier.com/S0065-2458(15)00030-3/rf0095
http://refhub.elsevier.com/S0065-2458(15)00030-3/rf0095
http://refhub.elsevier.com/S0065-2458(15)00030-3/rf0100
http://refhub.elsevier.com/S0065-2458(15)00030-3/rf0100
http://refhub.elsevier.com/S0065-2458(15)00030-3/rf0100
http://refhub.elsevier.com/S0065-2458(15)00030-3/rf0105
http://refhub.elsevier.com/S0065-2458(15)00030-3/rf0105
http://refhub.elsevier.com/S0065-2458(15)00030-3/rf0110
http://refhub.elsevier.com/S0065-2458(15)00030-3/rf0110
http://refhub.elsevier.com/S0065-2458(15)00030-3/rf0115
http://refhub.elsevier.com/S0065-2458(15)00030-3/rf0115
http://refhub.elsevier.com/S0065-2458(15)00030-3/rf0115
http://refhub.elsevier.com/S0065-2458(15)00030-3/rf0120
http://refhub.elsevier.com/S0065-2458(15)00030-3/rf0120
http://refhub.elsevier.com/S0065-2458(15)00030-3/rf0120
http://refhub.elsevier.com/S0065-2458(15)00030-3/rf0120
http://refhub.elsevier.com/S0065-2458(15)00030-3/rf0125
http://refhub.elsevier.com/S0065-2458(15)00030-3/rf0125
http://refhub.elsevier.com/S0065-2458(15)00030-3/rf0125
http://refhub.elsevier.com/S0065-2458(15)00030-3/rf0125
http://refhub.elsevier.com/S0065-2458(15)00030-3/rf0130
http://refhub.elsevier.com/S0065-2458(15)00030-3/rf0130
http://refhub.elsevier.com/S0065-2458(15)00030-3/rf0135
http://refhub.elsevier.com/S0065-2458(15)00030-3/rf0135
http://refhub.elsevier.com/S0065-2458(15)00030-3/rf0140
http://refhub.elsevier.com/S0065-2458(15)00030-3/rf0140
http://refhub.elsevier.com/S0065-2458(15)00030-3/rf0140
http://refhub.elsevier.com/S0065-2458(15)00030-3/rf0145
http://refhub.elsevier.com/S0065-2458(15)00030-3/rf0145
http://refhub.elsevier.com/S0065-2458(15)00030-3/rf0145

[29] L. Yan, Joint dynamic voltage scaling and adaptive body biasing for heterogeneous dis-
tributed real-time embedded systems, IEEE Trans. Comput. Aided Des. Integr. Circuits
Syst. 24 (7) (2005) 1030–1041.

[30] H. Li, S. Bhunia, Y. Chen, T.N. Vijaykumar, K. Roy, Deterministic clock gating for
microprocessor power reduction, in: HPCA’03, 2003, pp. 113–122.

[31] S. Manne, A. Klauser, D. Grunwald, Pipeline gating: speculation control for energy
reduction, SIGARCH Comput. Archit. News 26 (1998) 132–141.

[32] J.L. Aragón, J. González, A. González, Power-aware control speculation through selec-
tive throttling, in: HPCA’03, 2003, pp. 103–112.

[33] R. Canal, A. González, J.E. Smith, Very low power pipelines using significance com-
pression, in: MICRO 33, 2000, pp. 181–190.

[34] A. Sodani, G.S. Sohi, Dynamic instruction reuse, in: ISCA’97, 1997, pp. 194–205.
[35] J. Huang, D. Lilja, Exploiting basic block value locality with block reuse,

in: Proceedings of the 5th International Symposium on High Performance Computer
Architecture, HPCA’99, 1999.

[36] A. Gonzalez, J. Tubella, C. Molina, Trace-level reuse, in: ICPP’99, 1999, pp. 30–39.
[37] C. Alvarez, J. Corbal, M. Valero, Dynamic tolerance region computing for multimedia,

IEEE Trans. Comput. 61 (5) (2012) 650–665.
[38] A. Buyuktosunoglu, D. Albonesi, S. Schuster, D. Brooks, P. Bose, P. Cook, A circuit

level implementation of an adaptive issue queue for power-aware microprocessors,
in: GLSVLSI’01, 2001, pp. 73–78.

[39] D. Ponomarev, G. Kucuk, K. Ghose, Reducing power requirements of instruction
scheduling through dynamic allocation of multiple datapath resources, in: MICRO
34, 2001, pp. 90–101.

[40] D. Folegnani, A. González, Energy-effective issue logic, in: ISCA’01, 2001,
pp. 230–239.

[41] N. Bellas, I. Hajj, C. Polychronopoulos, G. Stamoulis, Energy and performance
improvements in microprocessor design using a loop cache, in: Computer Design,
International Conference on, 1999, p. 378.

[42] L.H. Lee, B. Moyer, J. Arends, Instruction fetch energy reduction using loop caches for
embedded applications with small tight loops, in: ISLPED’99, 1999, pp. 267–269.

[43] N. Bellas, I. Hajj, C. Polychronopoulos, Using dynamic cache management techniques
to reduce energy in a high-performance processor, in: ISLPED’99, 1999, pp. 64–69.

[44] C.-L. Yang, C.-H. Lee, HotSpot cache: joint temporal and spatial locality exploitation
for i-cache energy reduction, in: ISLPED’04, 2004, pp. 114–119.

[45] B. Solomon, A. Mendelson, R. Ronen, D. Orenstien, Y. Almog, Micro-operation
cache: a power aware frontend for variable instruction length ISA, IEEE Trans. Very
Large Scale Integr. Syst. 11 (2003) 801–811.

[46] W.-Y. Shieh, H.-D. Chen, Saving register-file static power by monitoring short-lived
temporary-values in ROB, in: Computer Systems Architecture Conference, 2008,
ACSAC 2008, 13th Asia-Pacific, 2008, pp. 1–8.

[47] J. Kim, S.T. Jhang, C.S. Jhon, Dynamic register-renaming scheme for reducing power-
density and temperature, in: SAC’10, 2010, pp. 231–237.

[48] Y.F. Tong, R.A. Rutenbar, D.F. Nagle, Minimizing floating-point power dissipation
via bit-width reduction, in: ISCA’98, 1998.

[49] D. Brooks, M. Martonosi, Dynamically exploiting narrow width operands to improve
processor power and performance, in: HPCA’99, 1999, pp. 13–22.

[50] D. Brooks, M. Martonosi, Value-based clock gating and operation packing: dynamic
strategies for improving processor power and performance, ACMTrans. Comput. Syst.
18 (2000) 89–126.

53An Overview of Architecture-Level Power- and Energy-Efficient Design Techniques

http://refhub.elsevier.com/S0065-2458(15)00030-3/rf0150
http://refhub.elsevier.com/S0065-2458(15)00030-3/rf0150
http://refhub.elsevier.com/S0065-2458(15)00030-3/rf0150
http://refhub.elsevier.com/S0065-2458(15)00030-3/rf0155
http://refhub.elsevier.com/S0065-2458(15)00030-3/rf0155
http://refhub.elsevier.com/S0065-2458(15)00030-3/rf0160
http://refhub.elsevier.com/S0065-2458(15)00030-3/rf0160
http://refhub.elsevier.com/S0065-2458(15)00030-3/rf0165
http://refhub.elsevier.com/S0065-2458(15)00030-3/rf0165
http://refhub.elsevier.com/S0065-2458(15)00030-3/rf0170
http://refhub.elsevier.com/S0065-2458(15)00030-3/rf0170
http://refhub.elsevier.com/S0065-2458(15)00030-3/rf0175
http://refhub.elsevier.com/S0065-2458(15)00030-3/rf0180
http://refhub.elsevier.com/S0065-2458(15)00030-3/rf0180
http://refhub.elsevier.com/S0065-2458(15)00030-3/rf0180
http://refhub.elsevier.com/S0065-2458(15)00030-3/rf0185
http://refhub.elsevier.com/S0065-2458(15)00030-3/rf0190
http://refhub.elsevier.com/S0065-2458(15)00030-3/rf0190
http://refhub.elsevier.com/S0065-2458(15)00030-3/rf0195
http://refhub.elsevier.com/S0065-2458(15)00030-3/rf0195
http://refhub.elsevier.com/S0065-2458(15)00030-3/rf0195
http://refhub.elsevier.com/S0065-2458(15)00030-3/rf0200
http://refhub.elsevier.com/S0065-2458(15)00030-3/rf0200
http://refhub.elsevier.com/S0065-2458(15)00030-3/rf0200
http://refhub.elsevier.com/S0065-2458(15)00030-3/rf0205
http://refhub.elsevier.com/S0065-2458(15)00030-3/rf0205
http://refhub.elsevier.com/S0065-2458(15)00030-3/rf0210
http://refhub.elsevier.com/S0065-2458(15)00030-3/rf0210
http://refhub.elsevier.com/S0065-2458(15)00030-3/rf0210
http://refhub.elsevier.com/S0065-2458(15)00030-3/rf0215
http://refhub.elsevier.com/S0065-2458(15)00030-3/rf0215
http://refhub.elsevier.com/S0065-2458(15)00030-3/rf0220
http://refhub.elsevier.com/S0065-2458(15)00030-3/rf0220
http://refhub.elsevier.com/S0065-2458(15)00030-3/rf0225
http://refhub.elsevier.com/S0065-2458(15)00030-3/rf0225
http://refhub.elsevier.com/S0065-2458(15)00030-3/rf0230
http://refhub.elsevier.com/S0065-2458(15)00030-3/rf0230
http://refhub.elsevier.com/S0065-2458(15)00030-3/rf0230
http://refhub.elsevier.com/S0065-2458(15)00030-3/rf0235
http://refhub.elsevier.com/S0065-2458(15)00030-3/rf0235
http://refhub.elsevier.com/S0065-2458(15)00030-3/rf0235
http://refhub.elsevier.com/S0065-2458(15)00030-3/rf0240
http://refhub.elsevier.com/S0065-2458(15)00030-3/rf0240
http://refhub.elsevier.com/S0065-2458(15)00030-3/rf0245
http://refhub.elsevier.com/S0065-2458(15)00030-3/rf0245
http://refhub.elsevier.com/S0065-2458(15)00030-3/rf0250
http://refhub.elsevier.com/S0065-2458(15)00030-3/rf0250
http://refhub.elsevier.com/S0065-2458(15)00030-3/rf0255
http://refhub.elsevier.com/S0065-2458(15)00030-3/rf0255
http://refhub.elsevier.com/S0065-2458(15)00030-3/rf0255

[51] D. Citron, D. Feitelson, L. Rudolph, Accelerating multi-media processing by
implementing memoing in multiplication and division units, SIGOPS Oper. Syst.
Rev. 32 (1998) 252–261.

[52] C. Alvarez, J. Corbal, M. Valero, Fuzzy memoization for floating-point multimedia
applications, IEEE Trans. Comput. 54 (2005) 922–927.

[53] Z. Hu, A. Buyuktosunoglu, V. Srinivasan, V. Zyuban, H. Jacobson, P. Bose, Micro-
architectural techniques for power gating of execution units, in: ISLPED’04, 2004,
pp. 32–37.

[54] S. Dropsho, A. Buyuktosunoglu, R. Balasubramonian, D.H. Albonesi, S. Dwarkadas,
G. Semeraro, G.Magklis, M.L. Scott, Integrating adaptive on-chip storage structures for
reduced dynamic power, in: International Conference on Parallel Architectures and
Compilation Techniques, 2002.

[55] M.K. Gowan, L.L. Biro, D.B. Jackson, Power considerations in the design of the Alpha
21264 microprocessor, in: DAC’98, 1998, pp. 726–731.

[56] S. Kaxiras, M. Martonosi, Computer Architecture Techniques for Power-Efficiency,
Morgan & Claypool Publishers, 2008.

[57] I. Ratkovic, O. Palomar, M. Stanic, O.S. Unsal, A. Cristal, M. Valero, On the selection
of adder unit in energy efficient vector processing, in: ISQED, 2013, pp. 143–150.

[58] O. Ergin, D. Balkan, K. Ghose, D. Ponomarev, Register packing: exploiting narrow-
width operands for reducing register file pressure, in: MICRO 37, 2004, pp. 304–315.

[59] URL, 2015. http://en.wikipedia.org/wiki/Intel_Core_2.
[60] URL, 2015. http://en.wikipedia.org/wiki/Pentium_4.
[61] URL, 2015. http://en.wikipedia.org/wiki/P6_%28microarchitecture%29.
[62] M.R. Stan, K. Skadron, M. Barcella, W. Huang, K. Sankaranarayanan, S. Velusamy,

Hotspot: a dynamic compact thermal model at the processor-architecture level, Micro-
electron. J. 34 (12) (2003) 1153–1165.

[63] A. Miyoshi, C. Lefurgy, E. Van Hensbergen, R. Rajamony, R. Rajkumar, Critical
power slope: understanding the runtime effects of frequency scaling, in: ICS’02,
2002, pp. 35–44.

[64] H. Esmaeilzadeh, E. Blem, R. Amant, K. Sankaralingam, D. Burger, Dark silicon and
the end of multicore scaling, in: ISCA’11, 2011.

[65] Z. Herczeg, D. Schmidt, A. Kiss, N.Wehn, T. Gyimóthy, Energy simulation of embed-
ded XScale systems with XEEMU, J. Embed. Comput. 3 (2009) 209–219.

[66] V. Tiwari, S. Malik, A.Wolfe, Power analysis of embedded software: a first step towards
software power minimization, in: ICCAD’94, 1994, pp. 384–390.

54 Ivan Ratković et al.

http://refhub.elsevier.com/S0065-2458(15)00030-3/rf0260
http://refhub.elsevier.com/S0065-2458(15)00030-3/rf0260
http://refhub.elsevier.com/S0065-2458(15)00030-3/rf0260
http://refhub.elsevier.com/S0065-2458(15)00030-3/rf0265
http://refhub.elsevier.com/S0065-2458(15)00030-3/rf0265
http://refhub.elsevier.com/S0065-2458(15)00030-3/rf0270
http://refhub.elsevier.com/S0065-2458(15)00030-3/rf0270
http://refhub.elsevier.com/S0065-2458(15)00030-3/rf0270
http://refhub.elsevier.com/S0065-2458(15)00030-3/rf0275
http://refhub.elsevier.com/S0065-2458(15)00030-3/rf0275
http://refhub.elsevier.com/S0065-2458(15)00030-3/rf0275
http://refhub.elsevier.com/S0065-2458(15)00030-3/rf0275
http://refhub.elsevier.com/S0065-2458(15)00030-3/rf0280
http://refhub.elsevier.com/S0065-2458(15)00030-3/rf0280
http://refhub.elsevier.com/S0065-2458(15)00030-3/rf0285
http://refhub.elsevier.com/S0065-2458(15)00030-3/rf0285
http://refhub.elsevier.com/S0065-2458(15)00030-3/rf0290
http://refhub.elsevier.com/S0065-2458(15)00030-3/rf0290
http://refhub.elsevier.com/S0065-2458(15)00030-3/rf0295
http://refhub.elsevier.com/S0065-2458(15)00030-3/rf0295
http://en.wikipedia.org/wiki/Intel_Core_2
http://en.wikipedia.org/wiki/Intel_Core_2
http://en.wikipedia.org/wiki/Pentium_4
http://en.wikipedia.org/wiki/Pentium_4
http://en.wikipedia.org/wiki/P6_%28microarchitecture%29
http://en.wikipedia.org/wiki/P6_%28microarchitecture%29
http://refhub.elsevier.com/S0065-2458(15)00030-3/rf0315
http://refhub.elsevier.com/S0065-2458(15)00030-3/rf0315
http://refhub.elsevier.com/S0065-2458(15)00030-3/rf0315
http://refhub.elsevier.com/S0065-2458(15)00030-3/rf0320
http://refhub.elsevier.com/S0065-2458(15)00030-3/rf0320
http://refhub.elsevier.com/S0065-2458(15)00030-3/rf0320
http://refhub.elsevier.com/S0065-2458(15)00030-3/rf0325
http://refhub.elsevier.com/S0065-2458(15)00030-3/rf0325
http://refhub.elsevier.com/S0065-2458(15)00030-3/rf0330
http://refhub.elsevier.com/S0065-2458(15)00030-3/rf0330
http://refhub.elsevier.com/S0065-2458(15)00030-3/rf0335
http://refhub.elsevier.com/S0065-2458(15)00030-3/rf0335

ABOUT THE AUTHORS

Ivan Ratković received the BS and MS

degrees in Electrical Engineering and Com-

puter Science from the University of Bel-

grade, School of Electrical Engineering in

2009 and 2011, respectively. He worked as

a visiting researcher at Berkeley Wireless

Research Center and he is currently a PhD

student at Polytechnic University of Catalo-

nia, Department of Computer Architecture

and a researcher at Barcelona Super-

computing Center. His research interests

include low power design, computer architecture, vector processors, digital

arithmetic, VLSI design flows, and embedded systems.

Nikola Bežanić received the BS and MS

degrees in Electronics from School of Elec-

trical Engineering, University of Belgrade,

Serbia, in 2009 and 2011, respectively. In

period 2009–2011, he was a member of

the Microsoft Research team at Barcelona

Supercomputing Center, Spain, where he

did research in low-power vector processing.

In 2012, he enrolled in the PhD program at

the Electronics Department, School of Elec-

trical Engineering, University of Belgrade, where he is currently working as

an associate researcher. His duties include development of low-power,

adaptable, multiprocessor and multi-sensor electronic systems.

55An Overview of Architecture-Level Power- and Energy-Efficient Design Techniques

Osman Sabri Ünsal is co-leader of the

Architectural Support for Programming

Models group at the Barcelona Super-

computing Center. In the past, Dr. Ünsal

was involved with Intel Microprocessor

Research Labs, BSC Microsoft Research

Center, and Intel/BSC Exascale Lab.

He holds BS, MS, and PhD degrees in

Electrical and Computer Engineering from

Istanbul Technical University, Brown Uni-

versity, and University of Massachusetts, Amherst, respectively.

His research interests are in computer architecture, low-power and

energy-efficient computing, fault tolerance, and transactional memory.

Adrián Cristal received the “licenciatura”

in Compuer Science from Universidad de

Buenos Aires (FCEN) in 1995 and the

PhD degree in Computer Science in 2006,

from the Universitat Politécnica de Catalu-

nya (UPC), Spain. From 1992 to 1995, he

has been lecturing in Neural Network and

Compiler Design. In UPC, from 2003 to

2006 he has been lecturing on computer

organization.

Currently, and since 2006, he is

researcher in Computer Architecture group at Barcelona Supercomputing

Center. He is currently co-manager of the “Computer Architecture for Par-

allel Paradigms.” His research interests cover the areas of microarchitecture,

multicore architectures, and programming models for multicore architec-

tures. He has published around 60 publications in these topics and partici-

pated in several research projects with other universities and industries, in

framework of the European Union programs or in direct collaboration with

technology leading companies.

56 Ivan Ratković et al.

Veljko Milutinović received his PhD in

Electrical Engineering from the University

of Belgrade in 1982. During the 80s, for

about a decade, he was on the faculty of Pur-

due University, West Lafayette, Indiana,

USA, where he coauthored the architecture

and design of the world’s first DARPA GaAs

microprocessor. Since the 90s, after returning

to Serbia, he is on the faculty of the School of

Electrical Engineering, University of Bel-

grade, where he is teaching courses related

to computer engineering, sensor networks,

data flow, and data mining. He has published

about 50 papers in SCI journals, about 20 books with major publishers in the

USA, and he has about 3000 Google Scholar Citations. Professor

Milutinović is a Fellow of the IEEE and a Member of Academia Europaea.

57An Overview of Architecture-Level Power- and Energy-Efficient Design Techniques

	An Overview of Architecture-Level Power- and Energy-Efficient Design Techniques
	Introduction
	Metrics of Interest
	Circuit-Level Metrics
	Basic Metrics
	Derived Metrics

	Architectural-Level Metrics

	Classification of Selected Architecture-Level Techniques
	Criteria
	List of Selected Examples
	Postclassification Conclusion

	Presentation of Selected Architecture-Level Techniques
	Core
	Dynamic
	DVFS
	OS Level
	Compiler Analysis-Based DVFS
	Power Phase Analysis-Based DVFS
	DVFS for Multiple Clock Domain Processors

	Dynamic Work Steering
	Optimizing Issue Width

	Static and Dynamic
	Combined ABB and DVFS

	Core-Pipeline
	Dynamic
	Clock Gating
	Deterministic Clock Gating
	Improving Energy Efficiency of Speculative Execution

	Significance Compression
	Work Reuse
	Instruction-Level Reuse
	Basic Block-Level Reuse
	Trace-Level Reuse
	Region Reuse

	Core-Front-End
	Dynamic
	Exploiting Narrow-Width Operands
	Instruction Queue Resizing
	Loop Cache
	Trace Cache

	Static
	Idle Register File DVS
	Register File Access Optimization

	Core-Back-End
	Dynamic
	Exploiting Narrow-Width Operands
	Integers
	Floating Point
	Work Reuse

	Static
	Power Gating
	Vt-Based Technique

	Conclusion About the Existing Solutions

	Future Trend
	Conclusion
	References

