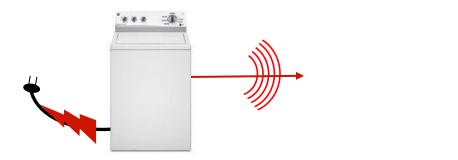


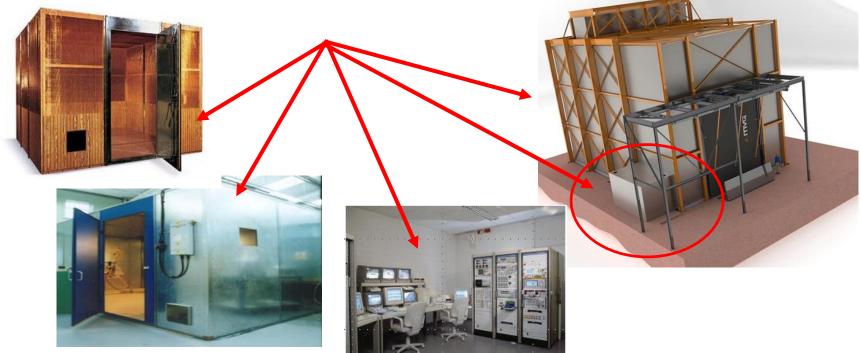
An Overview of EMC Chambers



Donald J Gray Director of Business Development

Review of EMC Testing

Electromagnetic Compatibility (EMC) Testing			
	Radiated	Conducted	
Test: How much energy is emitted by the EUT?	Emission	Emission	
Test: Can your device withstand external energy?	Immunity	Immunity	



Shield Rooms

- Conducted EMI
- Conducted EMS
- Includes Transients (e.g., ESD, Surge, Burst)
- Control Rooms & Amplifier Rooms

Radiated Testing

Electromagnetic C	ompatibility (E	EMC) Testing	
	Radiated	Conducted	
Test: How much energy is emitted by the EUT?	Emission	Emission	
Test: Can your device withstand external energy?	Immunity	Immunity	
		···· ···	

Why Do We Use A Chamber?

- Early Testing Done Outdoors
 - Open-Air Test Sites (OATS) EMC
 - Outdoor Far-field Ranges Antenna Measurements
- But Issues Exist Outdoors
- Noisy Environment
 - Ambient Signals
 - Reflections from Nearby Structures
- Creating Unauthorized Signals!
- Protection from Weather
- Security

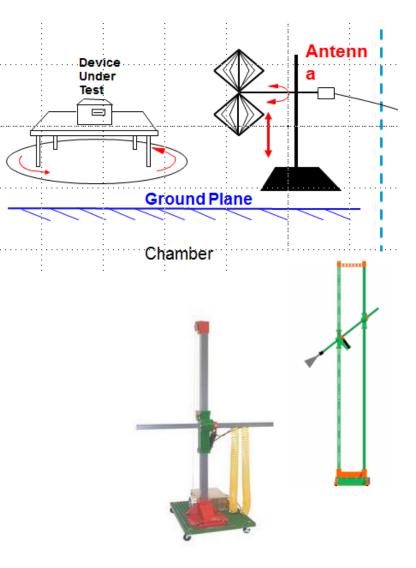
EMC Anechoic Chamber Types

- 3m CAC
- 3m Chamber
- 5m Chamber
- 10 m Chamber_
- MIL-STD-461
- CISPR 25
- ISO 11452-2
- ETSI
- CISPR 12

All Refer to Commercial Testing – CISPR 16, FCC, Etc

- Compliance vs Precompliance
- Partially lined
- Semi-anechoic (conductive floor)
- Fully-anechoic
- Turntables & Towers Most common chambers are the compact and full-compliance 3m chambers

OATS vs. Chamber

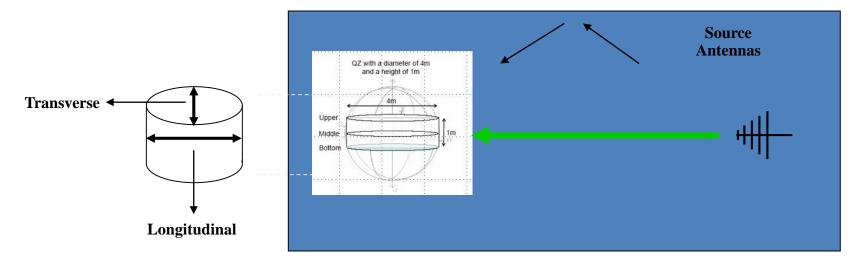


EMI Testing - Data Collection

- Full Cylinder of Data
 - Antenna Height: 1-4 m
 - 360°
- Antenna Tower
- Turntable

Semi-Anechoic Chamber

- Absorber on Five Sides
- Shielded
- Minimize Reflections
- Ground Plane
- Reflection Like OATS
- Correlation


Performance of a Chamber

- Decreases the Reflections Unwanted Signals
- Allows Measurement of Wanted Signal
- Creates a Quiet Zone for Optimum Testing
- This Creates Better "Performance"

What is a Quiet Zone?

 A Volume of Space (typically a cylinder) in Which the least amount of disturbance from "unwanted" signals is incurred

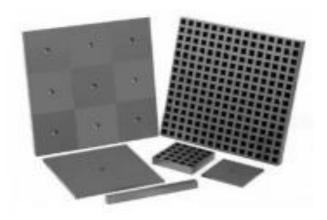
Inter-relationship between:

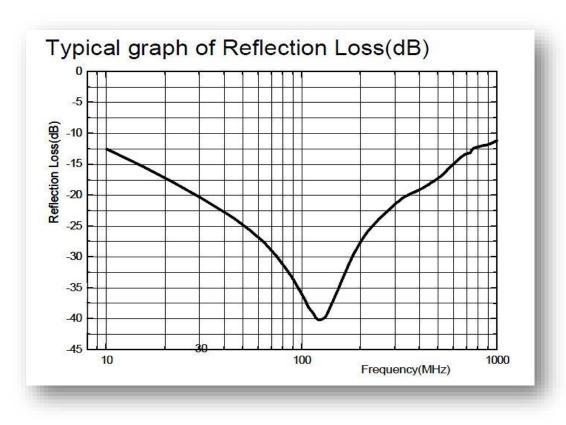
- Size of QZ
- Size of Chamber
- Size of Absorber

Carbon-Loaded, Polyurethane Material

Pyramidal/Wedge-Shaped Absorber

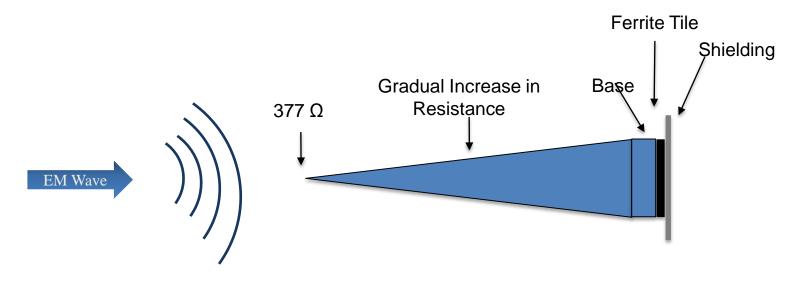
Carbon Loaded




- Tapered Shape Creates Tapered Resistances
- Creates Transition of Many Tiny Reflections as EM Wave Passes through Absorber
- These Tend to Cancel Each Other Out
- Common Rule of Thumb (EMC): Length Should be Half-Wavelength of Lowest Frequency

Ferrite Tiles

$\frac{Ferrite Tiles}{100 x 100 mm}$ $\sim 5.2 - 6.7 mm thick$

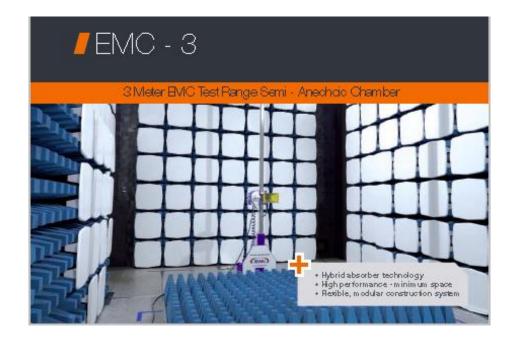


How Does Absorber Work?

Hybrid Absorber

- Combines the Magnetic & Resistive Losses
- Must Create Effective Impedance Match
- If Not, Greater Reflections Created

Compact 3 m Chambers (CAC)


- EMC-MC Mini Compact Chamber
 - 6m x 3m x 2.4m
 - QZ = 0.5 m to 1.0 m (??)
 - Performance Below 300 MHz Not Good (± 6.0 dB below; ± 4.0 dB above)
 - Cannot Fit Antenna Tower!
- EMC-3C Compact Chamber
 - 7m x 3m x 3m
 - QZ = up to 1.5 m
 - Performance Below 300 MHz is Not Good (± 6.0 dB below; ± 4.0 dB above)
 - Use a Reduced Height Ant Tower (2.4 m)
- Still Maintain 3m Test Distance (EMI & EMS)

Full Compliance 3 m Chamber

- Dimensions: 8.9 m x 5.6 m x 5.8 m
- QZ = Up to 2.0
- Excellent Performance Entire Frequency Range

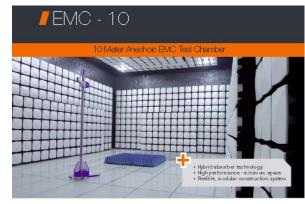
Dimensions for 3m SAC

- Test Distance to Antenna
- Test Volume Size
- Antenna Footprint
- Absorber Size (each wall)
- Clearance to Absorber
- Total Length

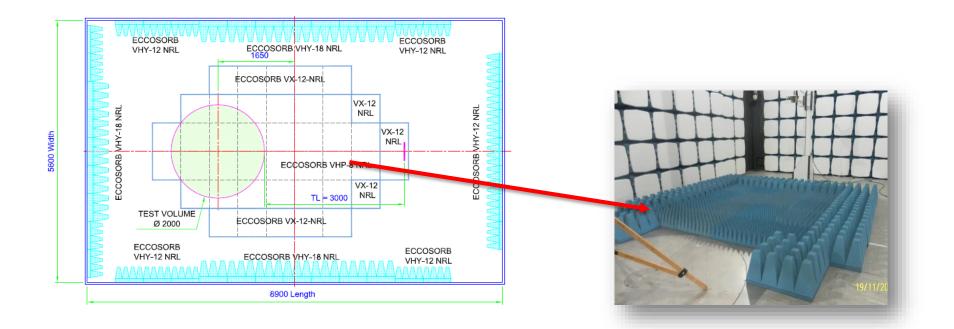
- 3m
- 1.5m
- 1.5m
- 1m (0.5m x 2)
- 2m (1m x 2)
- 9m

• This is 3x the required test distance!

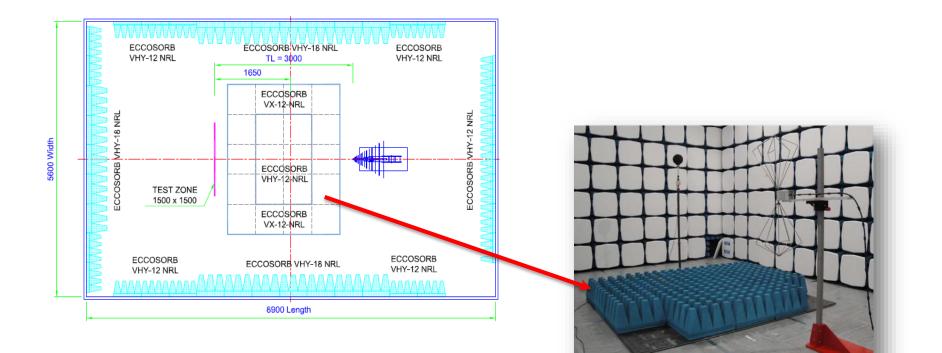
5 m Chamber


- Actually... Oversized 3 m chambers!!!
- Dimensions: 11.5 m x 7.5 m x 5.8 m
- QZ = 2 to 4 m (can handle larger EUTs!!)
 - NSA Compliance tested to 3 m ONLY!!!
 - SVSWR Compliance tested to 3 m ONLY!!!!
- Excellent Performance Entire Frequency Range
- Longer & Much Wider (can fit "dual masts")
- Larger Personnel Door (3.0 m x 3.0 m vs 0.9 m x 2.1 m)
 - Chamber validated at a 3m distance
 - Can do EMI testing at 5 m -> More easily correlated to the 10 m distance

10 m Chamber


- Dimensions: 21 m x 12 m x 8.5 m
- QZ > 4 m (can handle larger EUTs!!)
 NSA Compliance tested to 10 m
 - SVSWR Compliance tested to 3 m ONLY!!!!
- Excellent Performance Entire Frequency Range
- Twice as Long as 5 m and wider/higher
- Larger Personnel Door (3.0 m x 3.0 m vs 0.9 m x 2.1 m)
- Very Large EUTs; Full Automotive Testing
- Generally Considered the "Gold Standard"

Radiated Emissions Testing > 1 GHz

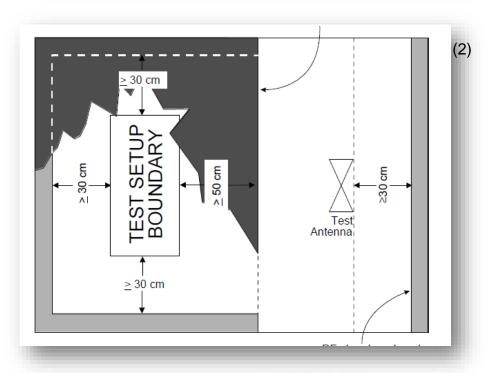

- SVSWR Method of Verification
- Absorber ≤ 30 cm (assuming EUT/TT flush with the Floor)

IEC 61000-4-3 Radiated Immunity Testing

- Compliant 3m Radiated Immunity
- Add Ferrite Tiles Plus Absorber
- Achieve Field Uniformity

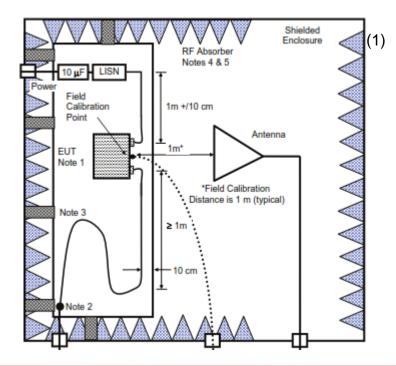
MIL-STD-461/RTCA DO 160

RTCA DO 160


TABLE 20-3 RF ABSORPTION AT NORMAL INCIDENCE

Frequency	Minimum Absorption
100 to 250 MHz	6 dB
Above 250 MHz	10 dB

MIL-STD-461


TABLE I. Absorption at normal incidence.			
Frequency	Minimum absorption		
80 MHz - 250 MHz	6 dB		
above 250 MHz	10 dB		

Reference MIL-STD-461F, 10 December 2007

(2)

Reference RTCA DO 160F, December 6, 2007
 Reference MIL-STD-461F, 10 December 2007

MIL-STD-461/RTCA DO 160

RTCA DO 160

TABLE 20-3 RF ABSORPTION AT NORMAL INCIDENCE

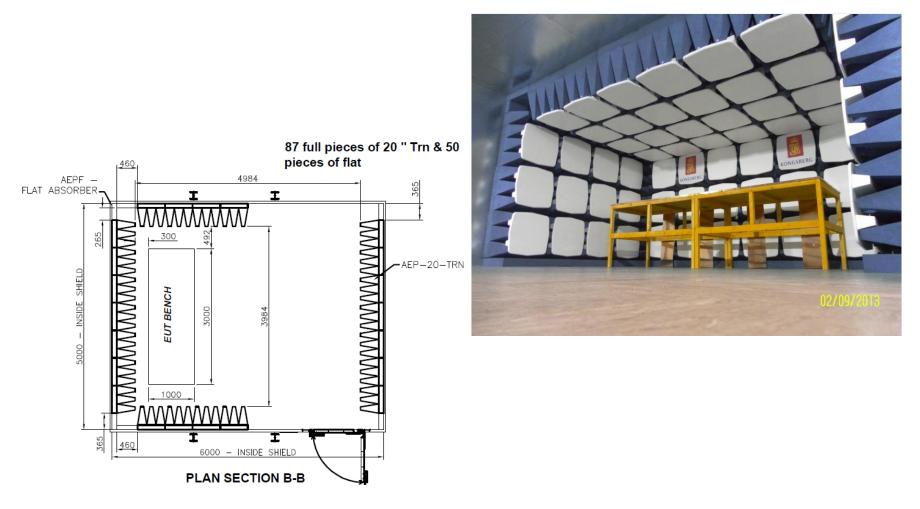
Frequency	Minimum Absorption
100 to 250 MHz	6 dB
Above 250 MHz	10 dB

Reference RTCA DO 160F, December 6, 2007

• Can Easily Uses Truncated 24" Absorber

- Or.. Can Use Shorter Hybrid Material
- Both Meet: DO 160 and MIL-STD specs
- Chamber Size Usually Small but depends on EUT size

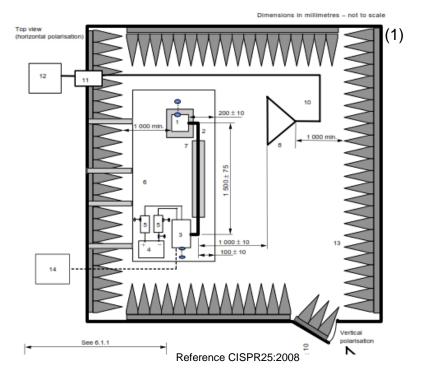
MIL-STD-461


TABLE I. Absorption at normal incidence.		
Frequency	Minimum absorption	
80 MHz - 250 MHz	6 dB	
above 250 MHz	10 dB	

Reference MIL-STD-461F, 10 December 2007

MIL-STD Requirements

Example Chamber Config for MIL-STD-461



CISPR 25 Requirements

4.3.1 Reflection characteristics

Performance of the absorption material shall be greater than or equal to 6 dB in the 70 MHz to 2 500 MHz frequency range. (1)

- Requirement is for absorber coverage on walls/ceiling
- Performance is based purely on absorber reflectivity
- Can be smaller chambers
- Difficult at lower frequencies
 or for Immunity testing

Chamber Performance

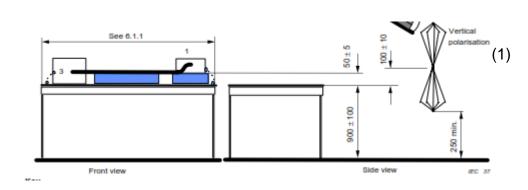
4.3.1 Reflection characteristics

Performance of the absorption material shall be greater than or equal to 6 dB in the 70 MHz to 2 500 MHz frequency range. (1)

- Don't need hybrid if absorber is about 1 m long
- Typical hybrid absorber with 30 cm absorber will work

			AEPH-12 TRN	AEPH-18 TRN	AEPH-30 TRN	
Height		cm	33.02	48.26	78.74	
	@ 30 MHz	dB	14	15	16	
8	@ 125 MHz	dB	25	25	25	
Absorption @ Normal Incidence	@ 250 MHz	dB	20	22	25	
Absorption armal Incide	@ 500 MHz	dB	24	24	24	
	@ 1 GHz	dB	16	17	21	
Se E	@ 3 GHz	dB	15	20	25	
Nc	@ 10 GHz	dB	25	30	40	
	@ 18 GHz	dB	> 35	> 40	> 45	
Power		kW/m ²	1.5	1.5	1.5	
Weight		kg	3.1	3.7	4.6	
Fire reta	rdancy		NRL 8093 Test,	1,2 and 3, ISO 11925-2, DIN 4102	Class B2	

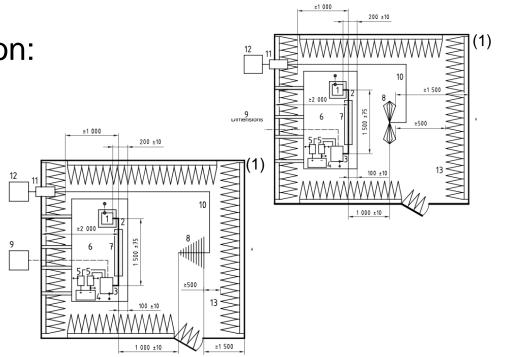
Specifications


CISPR 25 Requirements

4.3.2 Size

For radiated emissions tests, the shielded enclosure shall be of sufficient size to ensure that neither the vehicle/EUT nor the test antenna shall be closer than 1 m from the walls or ceiling, or to the nearest surface of the absorber material used thereon. (1)

For radiated emissions tests, the shielded enclosure shall be of sufficient size to ensure that neither the EUT nor the test antenna shall be closer than 1 m from the walls or ceiling, or to the nearest surface of the absorber material used thereon. No part of any antenna radiating element shall be closer than 250 mm to the floor. (1)



(1) Reference CISPR25:2008

ISO 11452-2

- Very Similar to CISPR25 Chamber
- Full Absorber on Walls/Ceiling
- Often Combined w/ CISPR25
- Bigger Antennas to Handle Higher Power Affects Chamber Size
- Dimensions Depend on:
 - Absorber Size
 - EUT & Test Bench Size
 - Antenna Dimensions

Chamber Performance

5 Test location

The tests shall be performed in an absorber-lined shielded enclosure.

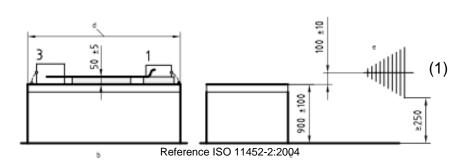
The purpose of such an enclosure is to create an isolated electromagnetic compatibility test facility which simulates open field testing. Basically, an absorber-lined shielded enclosure consists of a shielded room with absorbing material on its internal reflective surfaces, optionally excluding the floor. The design objective is to attenuate the reflected energy in the test area by at least 10 dB compared to the direct energy. (1)

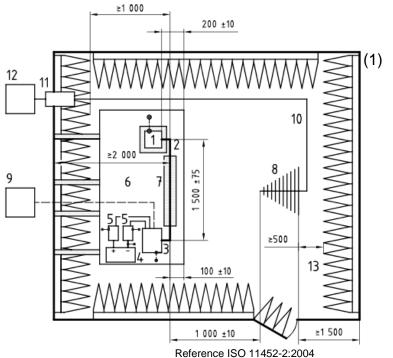
- Don't need hybrid if absorber is about 1 m long
- Typical 30 cm, hybrid material will work

			AEPH-12 TRN	AEPH-18 TRN	AEPH-30 TRN	
Height		cm	33.02	48.26	78.74	
	@ 30 MHz	dB	14	15	16	
8	@ 125 MHz	dB	25	25	25	
ption @ Incidence	@ 250 MHz	dB	20	22	25	
Absorption ormal Incide	@ 500 MHz	dB	24	24	24	
al le	@ 1 GHz	dB	16	17	21	
Normal	@ 3 GHz	dB	15	20	25	
N	@ 10 GHz	dB	25	30	40	
	@ 18 GHz	dB	> 35	> 40	> 45	
Power		kW/m ²	1.5	1.5	1.5	
Weight		kg	3.1	3.7	4.6	
Fire reta	rdancy		NRL 8093 Test,	1,2 and 3, ISO 11925-2, DIN 4102	Class B2	

Specifications

ISO 11452-2 – Antenna Selection

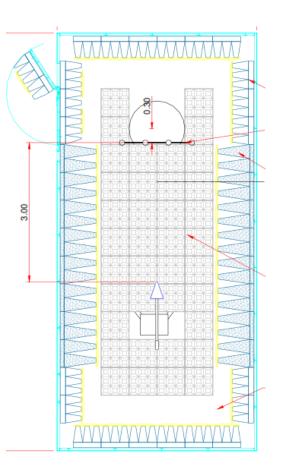

7.6 Location of field generating device (antenna)


The height of the phase centre of the antenna shall be (100 ± 10) mm above the ground plane.

No part of any antenna radiating element shall be closer than 250 mm to the floor. The radiating elements of the antenna shall not be closer than 500 mm to any absorber material, and shall not be closer than 1 500 mm to the walls or ceiling of the shielded enclosure.

The distance between the wiring harness and the antenna shall be $(1\ 000\ \pm\ 10)$ mm. This distance is measured from

- the phase centre (mid-point) of the biconical antenna, or
- the nearest part of the log-periodic antenna, or
- the nearest part of the horn antenna.


umen

Fully Anechoic Rooms (FARs)

- Alternative to SAC
- CISPR16 (FSNSA)
- ETSI Standards
- Performance Specs: Similar to CISPR25 (Specs Reflectivity of Absorber)

ETSI (FAR) Absorber Performance Requirements

- 10dB 30-100MHz
- 20dB 100-300MHz
- 30dB 300MHz-10GHz

Full Vehicle Testing

- Testing at 10 m Distances
- Chamber Sizes are Customized
- Need to Accommodate Full Vehicles
 - Dynomometers
 - Specialized Facilities
 - Specialized, Extremely Large Antennas
 - Much Higher Power

Turntable & Dynomometer Considerations

Portable Dyno, on top of TT

- Budget •
- Flexibility
- **Features** •

Extremely Large TT, No Dyno

Portable Dyno, no TT

Built-in Dyno, no TT

Courtesy of Maturo

Specialized Facility Considerations

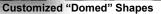
- Large Doors & TT's
- **Fire Suppresson**
- **HVAC**
- Hoists
- **Increased Costs**

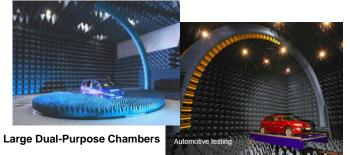
Ramps

High Capacity Turntables

Fire Suppression

HVAC Systems




Lift Mechanisms

Large Chambers & Customized Shapes

Tapered Chambers

Customized Absorber Topologies:

- · Varying shapes
- Varying Heights and directions
- "Baffled" Absorbers

Extremely Large Rectangular Chambers

Thanks for attending!

Mark your calendars for EMC LIVE 2016 April 26-28, 2016