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Motivation

Background

I Wave propagation in subsurface media typically exhibits
frequency-dependent absorption and dispersion due to the
presence of attenuation mechanism.

I Such an intrinsic attenuation property can be empirically
characterized either by experimentally established frequency
power law or by physically based mechanical models over
a wide range of frequencies.

I Recently, increasing papers present a variety of fractional
models that have the ability to describe seismic attenuation
with memory property or non-locality.
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Motivation

I However, there is absent of profound insight in geophysi-
cal community into the connections among these different
models from both mathematical and physical viewpoints.

I I firstly revisit the mainstream development of mathemat-
ical models of viscoelastic phenomenon in the context of
experiments and mechanics, and then we explore how frac-
tional mechanical models lead to a reconciliation of these
two apparently different approaches.

I This overview aims at providing geophysicists with more
confidence when using fractional models for seismic atten-
uation modeling, inversion and compensation.
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History of fractional calculus

Magnus Mittag-Leffler
1846-1927

John Wallis
1616-1703

In a letter to L`Hôpital in 1695 Leibniz raised the following 
question: "Can the meaning of derivatives with integer order 
be generalized to derivatives with non-integer orders?" 
L`Hôpital was somewhat curious about that question and 
replied by another question to Leibniz: "What if the order will 
be 1/2?"
 Leibniz in a letter dated September 30, 1695 - the exact 
birthday of the fractional calculus! — replied: "It will lead to a 
paradox, from which one day useful consequences will be 
drawn."

Euler observed that the result of the evaluation 
of dny/dxn of the power function xp has a 

meaning for non-integer p.

Joseph Fourier
1768-1830
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Fourier suggested the idea 
of using his integral 

representation of f(x)
 to define the derivative for 

non-integer order. 

Niels Abel
1802-1829

A relevant part of 
the history of 

fractional calculus 
began with the 

papers of Abel and 
Liouville.

Oliver Heaviside
1850-1925

Hermann Weyl
1885-1955

Grünwald and 
Letnikov developed 

an approach to  
fractional 

differentiation based 
on the limit of a sum

Laplace proposed the idea of 
differentiation of non-integer order  for 
functions representable by an integral 

∫T(t)t─xdt

Pierre-Simon Laplace
1749-1827

Salvatore Pincherle
1853-1936

Jacques Hadamard
1865-1963

Hjalmar Holmgren
1822-1885

Aleksey Letnikov
1837-1888

Anton Grünwald
1838-1920

In a paper written when 
just a student Riemann, 
that was published only 
ten years after is death, 
he arrived to an 
expression for fractional 
integration that became 
one of the main formulae 
together with Liouville 
construction.

Bernhard Riemann
1826-1866

Isaac Newton
1643-1727

Leibniz first introduced the 
idea of a symbolic method 

and used the symbol
dny/dxn = Dny 

for the nth derivative, 
where n is a non-negative 

integer.

Gottfried  Leibniz
1646 -1716

Historically, 
Isaac Newton  
and Gottfried 

Leibniz 
independently 

discovered 
calculus in the 

17th century.

Guillaume de l'Hôpital
1661- 1704

Mkhtar Djrbashjan
1918-1994

Andrew Gemant
1895 - 1983  

Arthur Erdélyi
1908-1977

Ian Sneddon
1919-2000

Eric Love
1912-2001

Liouville  formally 
extended the
formula for the 
derivative of 
integral orderDneax 
to derivatives of 
arbitrary order α
Dαeax = aαeax

Joseph Liouville
1809-1882

Marcel Riesz
1886-1969 William Feller

1906-1970

Godfrey Hardy
1877-1947 John Littlewood

1885-1977

Hermann Kober
1888-1973

1700                                 1750                                 1800                                 1850                                 1900                                 1950

Paul Lévy
1886-1971

Antoni Zygmund
1900-1992

Leonhard Euler
1707-1783

Pavel Nekrasov
1853-1924

Anatoly Kilbas
1948-2010

Joseph-Louis Lagrange
1736-1813

Karl Weierstrass
1815-1897

Yury Rabotnov
1914-1985

Harold Davis
1892-1974

Figure 1. Many great scientists contributed to fractional calculus.
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B. Ross (Editor), Fractional Calculus and Its 
Applications: Proceedings of the Int. Conf. held at 
the University of New Haven, June 1974 (Lecture 
Notes in Mathematics), 1975.

1975                                 1980                                 1985                                 1990                                 2000                                 2010

Fractional Calculus & 
Applied Analysis, IMI - 

Bulg.Acad.Sci., 
Managing Editor: 

Virginia Kiryakova.

Alain Oustaloup, La 
Commande CRONE: 
Commande Robuste 

d’Ordre Non Entier, 
Hermes, 1991.

Keith B. Oldham, 
Jerome Spanier, The 
Fractional Calculus: 
Theory and Application 
of Differentiation and 
Integration to Arbitrary 
Order, Dover Books on 
Mathematics, 1974.

Nonlinear Dynamics, Special Issues:
- Fractional Order Systems, vol. 29, n. 

1-4,  July 2002.
- Fractional Derivatives and Their 
Applications, vol. 38, n. 1-4, Dec. 

2004.

Rudolf Hilfer (Editor), 
Applications of Fractional 

Calculus in Physics, World 
Scientific Publishing 

Company, 2000.

Physics Reports, The random 
walk's guide to anomalous 

diffusion: a fractional dynamics 
approach,  vol. 339, Issue 1, 

Dec. 2000.

Chemical Physics, Elsevier, 
Strange Kinetics,  vol. 284, n. 1, 

pp. 1-541, Nov. 2002.

Alain Le Méhauté, Raoul R. Nigmatullin, 
Laurent Nivanen, Flèches du temps et 
géométrie fractale, Hermes, 2 éd, 1998.

Alberto Carpinteri, Francesco 
Mainardi (Editors), Fractals 
and Fractional Calculus in 

Continuum Mechanics (CISM 
International Centre for 
Mechanical Sciences), 

Springer, 1997.

In recent years considerable interest in fractional calculus has been stimulated by the applications it finds in 
different areas of applied sciences like physics and engineering, possibly including fractal phenomena. Now there 
are more books of proceedings and special issues of journals published that refer to the applications of fractional 

calculus in several scientific areas including special functions, control theory, chemical physics, stochastic 
processes, anomalous diffusion, rheology. Several special issues appeared in the last decade which contain 

selected and improved papers presented at conferences and advanced schools, concerning various applications 
of fractional calculus. Already since several years, there exist two international journals devoted almost 

exclusively to the subject of fractional calculus: Journal of Fractional Calculus (Editor-in-Chief: K. Nishimoto, 
Japan) started in 1992, and Fractional Calculus and Applied Analysis (Managing Editor: V. Kiryakova, Bulgaria) 

started in 1998. Recently the new journal Fractional Dynamic Systems has been announced to start in 2010.
The authors believe that the volume of research in the area of fractional calculus will continue to grow in the 

forthcoming years and that it will constitute an important tool in the scientific progress of mankind.

Physica Scripta, 
Fractional 

Differentiation and 
its Applications, 

T136, 2009.

JESA, Special Issue on 
Fractional order systems: 
Applications in modelling, 

identification and control, vol. 
42, n° 6-7-8, Aug-Out/2008

ENOC:FDTA  2005, 2008, 2011.

ASME-IDETC: CFD, 2007, 2009.

ASME-IDETC: FDTA 2003, 2005, 2007, 2009.

Michele Caputo, Elasticitá 
e Dissipazione, Zanichelli, 
Bologna, 1969.

Journal of Fractional 
Calculus, Descartes 
Press Co, Editor-in-

Chief: Katsuyuki 
Nishimoto

Int. Conference on 
Fractional calculus 
and its 
applications, 
Tokyo, 1989.

R. N. Kalia (Editor), 
Recent Advances in 
Fractional Calculus 

(Global Research 
Notes in Mathematics 
Ser.), Global Pub Co, 

1993.

Jocelyn Sabatier, Om P.  
Agrawal, J. Tenreiro 
Machado (Editors), 

Advances in Fractional 
Calculus: Theoretical 
Developments and 

Applications in Physics 
and Engineering, 
Springer, 2007.

NSC 2008, 2010.

A. C. McBride, G.F. Roach 
(Editors), Fractional Calculus, 
Research Notes in Mathematics 
No. 138, Pitman, 1985.

Only since the Seventies has fractional calculus 
been the object of specialized conferences and 
treatises. For the first conference the merit is due to 
B. Ross who, shortly after his Ph.D. dissertation on 
fractional calculus, organized the First Conference 
on Fractional Calculus and its Applications at the 
University of New Haven in June 1974, and edited 
the proceedings. For the first monograph the merit 
is ascribed to K. B. Oldham and I. Spanier who, 
after a joint collaboration begun in 1968, published 
a book devoted to fractional calculus in 1974.

Ian N. Sneddon, The 
use of operators of 

fractional integration in 
applied mathematics 
(Applied mechanics 

series), Polish Scientific 
Publishers, 1979.

The fractional calculus started from some speculations of G.W. 
Leibniz (1695, 1697) and L. Euler (1730), and it has been 
developed progressively up to now. A list of mathematicians, who 
have provided important contributions up to the middle of the 
twentieth century, includes P.S. Laplace (1812), S. F. Lacroix 
(1819), J. B. J. Fourier (1822), N. H. Abel (1823–1826), J. Liouville 
(1832–1873), B. Riemann (1847), H. Holmgren (1865–1867), A. K. 
Grunwald (1867–1872), A. V. Letnikov (1868–1872), H. Laurent 
(1884), P.  A. Nekrassov (1888), A. Krug (1890), J. Hadamard 
(1892), O. Heaviside (1892–1912), S. Pincherle (1902), G. H. Hardy 
and J. E. Littlewood (1917-1928), H. Weyl (1917), P. Lévy (1923), A. 
Marchaud (1927), H. T. Davis (1924-1936), E. L. Post (1930), A. 
Zygmund (1935-1945), E. R. Love (1938-1996), A. Erdelyi (1939-
1965), H. Kober (1940), D. V. Widder (1941), M. Riesz (1949), W. 
Feller (1952).

Riccardo Caponetto, Giovanni 
Dongola, Luigi Fortuna, Ivo Petráš, 

Fractional Order Systems: 
Modeling and Control Applications, 

World Scientific Publishing 
Company, 2010.

Francesco Mainardi, Fractional 
Calculus and Waves in Linear 

Viscoelasticity: An Introduction 
to Mathematical Models, 

Imperial College Press, 2010.

A. M. Mathai, Ram K. 
Saxena, Hans J. 
Haubold, The H-

Function: Theory and 
Applications, Springer, 

2009.

George M. 
Zaslavsky, 

Hamiltonian 
Chaos and 
Fractional 
Dynamics, 

Oxford Univ. 
Press, 2008.

Igor Podlubny, Fractional 
Differential Equations, Volume 
198: An Introduction to 
Fractional Derivatives,  
Academic Press, 1999.

Bruce West, Mauro 
Bologna, Paolo Grigolini, 

Physics of Fractal 
Operators, Springer, 2003.

Signal Processing, Special Issues:
-  Fractional Signal Processing and Applications, vol. 83, Issue 11, Nov. 2003.

- Fractional Calculus Applications in Signals and Systems, vol. 86, Issue 10, Oct. 2006.

Communications 
in Nonlinear 
Science and 
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Simulation

Computers and 
Mathematics with 
Applications, Special 
issues: 
- Advances in 
Fractional Differential 
Equations, vol. 59, 
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IFAC FDA, 2004, 2006, 2008, 2010.
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Virginia S. Kiryakova, 
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Calculus and Applications, 
Pitman Research Notes in 

Mathematics, vol. 301, 
Chapman & Hall, 1993,

Kenneth S. Miller, 
Bertram Ross, An 
Introduction to the 

Fractional Calculus 
and Fractional 

Differential 
Equations, John 
Wiley and Sons, 

1993.

Dumitru Baleanu, J. Tenreiro Machado, 
Ziya B. Guvenc (Editors), New Trends in 
Nanotechnology and Fractional Calculus 

Applications, Springer, 2001.

A. M. Mathai, Hans J. 
Haubold, Special 
Functions for Applied 
Scientists, Springer, 
2008.

A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, 
Theory and Applications of Fractional 

Differential Equations, Volume 204 (North-
Holland Mathematics Studies), Elsevier, 2006.

George A. Anastassiou, 
Fractional Differentiation 

Inequalities, Springer, 
2009.

Stefan G. Samko, Anatoly A. Kilbas, Oleg I. Marichev, Fractional 
Integrals and Derivatives: Theory and Applications, Nauki i 

Tekhnika, Minsk, 1987 and Gordon and Breach, 1993.

Concepción A. Monje, 
YangQuan Chen, Blas M. 

Vinagre, Dingyu Xue, 
Vicente Feliu, Fractional-

order Systems and 
Controls: Fundamentals 

and Applications 2010.

TMSF: 1994, 1996, 1999, 2003.

Denis Matignon, Gérard Montseny 
(Editors), Fractional Differential 
Systems: Models, Methods and 
Applications, European Society for 
Applied and Industrial Mathematics 
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Figure 2. Many great scientists contributed to fractional calculus.
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Figure 3. Publication numbers over the past two decades when searching ”fractional”

on Web of Science.
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Figure 4. Distribution of subjects over the past two decades when searching

”fractional” on Web of Science.
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Brief story line

I Fractional calaulus started with a letter between Leibniz
and L’Hospital (Sep 30, 1695) on the significance of deriva-
tives of order 1/2.

I The first great theory of fractional derivation is due to Liou-
ville (1832) and Riemann (1847), which is called Riemann-
Liouville integral.

I Grünwald and Letnikov (1867) introduced a definition of
fractional derivative based on finite differences.
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Brief story line

I Riesz (1936) generalized the Riemann-Liouville integral look-
ing for a solution for some problem in potential theory in
connection with partial differential equations for parabolic
and hyperbolic cases.

I Caputo (1967) proposed a modified fractional differential
operator CDα

t in his work on the theory of viscoelasticity.
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Fractional definitions

Riemann-Liouville fractional integral

In our notation, the Cauchy formula reads for t > 0:

0I
n
t f(t) :=

1

(n− 1)!

∫ t

0

(t− τ)n−1f(τ)dτ, n ∈ N, (1)

where N is the set of positive integers. One can define Riemann-
Liouville fractional integral of order α > 0:

0I
α
t f(t) :=

1

Γ(α)

∫ t

0

(t− τ)α−1f(τ)dτ, α ∈ R+. (2)
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Fractional definitions

Riemann-Liouville fractional derivative

Then one can define the Riemann-Liouville fractional derivative
of order α > 0:

RL
0 Dα

t f(t) := Dm
t ◦ 0I

m−α
t f(t), m− 1 < α < m, (3)

then we have

RL
0 Dα

t f(t) :=
1

Γ(m− α)

dm

dtm

∫ t

0

f(τ)dτ

(t− τ)α+1−m , m−1 < α < m.

(4)
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Fractional definitions

Caputo fractional derivative

And the so-called Caputo fractional derivative of order α > 0
defined as:

C
0 D

α
t f(t) := 0I

m−α
t ◦ 0D

m
t f(t), m− 1 < α < m, (5)

then we have

C
0 D

α
t f(t) :=

1

Γ(m− α)

∫ t

0

f (m)(τ)dτ

(t− τ)α+1−m , m−1 < α < m.

(6)
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Fractional definitions

Grünwald-Letnikov fractional derivative

In the classical calculus it is well known that derivatives can be
expressed as limits of difference quotients,

f (n)(t) = lim
∆t→0

1

∆tn

J∑
j=0

(−1)j
(
n

j

)
f(t− j∆t), (7)

this formula can be generalized to fractional case:

GL
0 Dα

t f(t) = lim
∆t→0

1

∆tα

J∑
j=0

(−1)j
(
α

j

)
f(t− j∆t), (8)

where GL
0 Dα

t is called the Grünwald-Letnikov fractional deriva-
tive operator.
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Fractional definitions

Riesz potential and fractional Laplacian

Riesz introduced n-D integral potential operator with weak sin-
gularity

(Iαf)(x) =
1

γn(α)

∫
Rn
f(y)|x− y|α−ndy, (9)

where the normalized constant γn(α) is given by

γn(α) =
πn2αΓ(α

2
)

Γ(n−α
2

)
, 0 < α < n, α− n 6= 2k, k ∈ N0. (10)
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Fractional definitions

Riesz potential and fractional Laplacian

The definition of fractional Laplacian operator implied by Riesz
can be given as follow

((−∆)αf)(x) = ((−∆)m(I2m−2αf)(x). (11)

Several researchers look for an operator satisfying the following
property:

F((−∆)α/2f)(k) = |k|αF(f)(k), (12)

with 0 < α ≤ 2 and

|k|α =

[
n∑
j=1

k2
j

]α/2
. (13)
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Fractional calculus in linear viscoelasticity

Fractional calculus in linear viscoelasticity

Linear viscoelasticity is certainly the field of the most extensive
applications of fractional calculus, in view of its ability to model
hereditary phenomena with long memory.

I In the first half of 20th century, the early contributors were:
Gemant in USA, Scott-Blair in England, Gerasimov and
Rabotnov in the former Soviet Union.

I In the late sixties, Caputo and Mainardi explicitly suggested
that derivatives of fractional order could be successfully
used to model the dissipation in seismology and in metal-
lurgy.
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Fractional calculus in linear viscoelasticity

Fractional calculus in linear viscoelasticity

I The beginning of the modern applications of fractional
calculus in linear viscoelasticity is generally attributed to
the 1979 PhD thesis by Bagley under supervision of Prof.
Torvik, followed by a number of relevant papers.

I The 1970 PhD thesis of Rossikhin under the supervision of
Prof. Meshkov, and the 1971 PhD thesis of Mainardi under
the supervision of Prof. Caputo also contributed greatly to
the theory of fractional calculus in linear viscoelasticity.
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Mainstream development of attenuation models

Frequency power law

Frequency power law

Field observation and 
laboratory measurement 
to determine attenuation 
over the frequency band 

of the interest.

Frequency power-law to 
fit the relation between 
attenuation coefficient 

and frequency

From Kramers-Kronig
relations to dispersion 

relation

From dispersion relation 
to corresponding wave 

equation

Figure 5. Basic flow of frequency power-law characterization.
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Mainstream development of attenuation models

Frequency power law

Frequency power law

Frequency-dependent attenuation in viscoelastic media typically
follows a frequency power law in which the exponent is between
0 and 2 over the frequency range of interest, which can be char-
acterized by an empirical formulation wherein the wavenumber
is a complex function of frequency, i.e.,

k(ω) =
ω

vc(ω)
=

ω

vp(ω)
− iα(ω), (14)

whose real part and imaginary part separately signifies the phase
velocity vp(ω) and attenuation coefficient α(ω).
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Mainstream development of attenuation models

Frequency power law

Frequency power law

If the function of interest can be expressed as a power law or
power series, a closed-form solution is available. We assume
that the model for the attenuation coefficient is:

α(ω) = α(0) + α0|ω|y, (15)

where α0 and y are real constants, with 0 < y ≤ 2 typically.
Experimental measurements indicate that power-law exponents
vary with material types and frequency regimes. For example,
the Pierre shale and unconsolidated sediments have nearly linear
dependence on frequency (McDonal et al., 1958; Buckingham,
1997).
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Mainstream development of attenuation models

Frequency power law

Frequency power law

Figure 6. Attenuation of Pierre Shale (McDonal et. al., 1958)1.

1FJ McDonal et al. “Attenuation of shear and compressional waves in Pierre shale”. In: Geophysics 23.3 (1958),
pp. 421–439.
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Mainstream development of attenuation models

Frequency power law

Frequency power law

For power law attenuation of the form given by Eq. 15 with
0 < y < 3 and y 6= 1, the frequency dependence of the sound
speed is governed by23

1

vp(ω)
− 1

vp(ω0)
= α0tan

(πy
2

) (
ωy−1 − ωy−1

0

)
, (16)

A general dispersion relation between the spatial wavenumber
k(ω) and the temporal frequency ω that satisfies both Eqs. 15
and 16 can be written as4

k(ω) =
ω

vp(ω0)
+ iα0 |ω|y + α0ω |ω|y−1 tan

(πy
2

)
. (17)

2Kendall R Waters et al. “On the applicability of Kramers–Krönig relations for ultrasonic attenuation obeying a
frequency power law”. In: The Journal of the Acoustical Society of America 108.2 (2000), pp. 556–563.

3Bradley E Treeby. “Acoustic attenuation compensation in photoacoustic tomography using time-variant filter-
ing”. In: Journal of biomedical optics 18.3 (2013), p. 036008.

4James F Kelly, Robert J McGough, and Mark M Meerschaert. “Analytical time-domain Green’s functions for
power-law media”. In: The Journal of the Acoustical Society of America 124.5 (2008), pp. 2861–2872.
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Mainstream development of attenuation models

Frequency power law

Kolsky-Futterman model

Here we consider the differential dispersion relations for the case
that the exponent y is near an unit (y ≈ n = 1), we have

1

vp(ω)
− 1

vp(ω0)
≈ − 2

π
α0ln

∣∣∣∣ ωω0

∣∣∣∣ . (18)

Kolsky and Futterman assumed that frequency-dependent at-
tenuation coefficient α(ω) is strictly linear with frequency over
the range of measurement:

α(ω) = α0|ω| =
|ω|

2vp(ω0)Q(ω0)
. (19)
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Mainstream development of attenuation models

Frequency power law

Kolsky-Futterman model

In equation 19, cp(ω0) and Q(ω0) are the values of the phase
velocity and approximate Q at the reference frequency ω0. Sub-
stituting equation 19 into equation 18, we have

1

vp(ω)
=

1

vp(ω0)

(
1− 1

πQ(ω0)
ln

∣∣∣∣ ωω0

∣∣∣∣) . (20)

This is the widely used Kolsky-Futterman model, which can be
considered as a special case (y = 1) of frequency power-law
model.
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Mainstream development of attenuation models

Classical mechanical models

Classical mechanical models

Stress-strain relation based 
on Boltzmann 

superposition principle to 
derive complex modulus of 
basic mechanical models.

From complex modulus to 
phase velocity and 

attenuation coefficient (loss 
tangent, quality factor) over 
frequency band of interest.

Generalized mechanical 
models by using 

combination of  basic 
elements 

Memory variables method 
or corresponding principle 

to obtain corresponding 
wave equation

Figure 7. Basic flow of mechanical characterization.
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Mainstream development of attenuation models

Classical mechanical models

Stress-strain relation

Linear viscoelasticity is founded on the knowledge of two funda-
mental functions: relaxation function G(t) and creep function
J(t). According to Boltzmann superposition principle, the gen-
eral stress-strain relation can be expressed as

σ(t) =

∫ t

−∞
G(t− τ)dε(τ) = G(t) ∗ dε(t)

dt
, (21)

ε(t) =

∫ t

−∞
J(t− τ)dσ(τ) = J(t) ∗ dσ(t)

dt
. (22)

The limiting values of the material functions for t→ 0+ and t→
+∞ are related to the glass (Gg, Jg) and equilibrium (Ge, Je)
behaviours of the viscoelastic body, respectively.
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Classical mechanical models

Stress-strain relation

In frequency domain, we can define complex modulus and com-
plex compliance as

G∗(ω) =
σ̂(ω)

ε̂(ω)
= iωĜ(ω), (23)

J∗(ω) =
ε̂(ω)

σ̂(ω)
= iωĴ(ω), (24)

where Ĝ(ω) and Ĵ(ω) are Fouier transforms of relaxation func-
tion G(t) and creep function J(t). We also have

G∗(ω)J∗(ω) = 1. (25)
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Classical mechanical models

Loss tangent tanδ and quality factor Q

Introducing the phase shift δ(ω) between the sinusoidal exci-
tation and sinusoidal response in equations 23 and 24, we can
write

G∗(ω) = G
′
(ω) + iG

′′
(ω) = |G∗(ω)|e+δ(ω), (26)

J∗(ω) = J
′
(ω)− iJ ′′(ω) = |J∗(ω)|e−δ(ω), (27)

where G
′
(ω) and J

′
(ω) are called the storage modulus and stor-

age compliance, while G
′′
(ω) and J

′′
(ω) are called the loss mod-

ulus and loss compliance.

Q−1(ω) = tanδ(ω) =
G
′′
(ω)

G′(ω)
=
J
′′
(ω)

J ′(ω)
, (28)

where tanδ(ω) is referred to as the loss tangent and Q(ω) is
quality factor.
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Classical mechanical models

Phase velocity vp and attenuation factor α

Considering waves (k complex, ω real), gives the complex ve-
locity

vc(ω) =
ω

k(ω)
=

√
G∗(ω)

ρ
, (29)

We define the phase velocity

vp(ω) =
ω

Re[k(ω)]
=

[
Re

(√
ρ

G∗(ω)

)]−1

, (30)

and the attenuation factor α(ω)

α(ω) = −ωIm

(√
ρ

G∗(ω)

)
. (31)
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Classical mechanical models

Basic mechanical models

Figure 8. The representations of basic mechanical models including Hooke spring,

Newton dashpot, Kelvin-Voigt model, Maxwell model and Zener models.
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Classical mechanical models

Zener model

Zener model can be formed by adding a spring either in se-
ries to a Kelvin-voigt model or in parallel to a Maxwell model,
respectively.

σ(t) + τσ
dσ

dt
= Ge

(
ε(t) + τε

dε

dt

)
, (32)

where τσ and τε are relaxation time and retardation time, re-
spectively. Typically, we have 0 < τσ < τε and Gg = Ge(τε/τσ).
The corresponding complex modulus is

G∗(ω) = Ge

(
1 + iωτε
1 + iωτσ

)
. (33)
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Classical mechanical models

Zener model

The relaxation function G(t) and creep function of Zener model
can be obtained by

G(t) = F−1

[
G∗(ω)

iω

]
= Ge

[
1−

(
1− τε

τσ

)
e−

t
τσ

]
H(t),

(34)

J(t) = F−1

[
1

iωG∗(ω)

]
=

1

Ge

[
1−

(
1− τσ

τε

)
e−

t
τε

]
H(t).

(35)
The quality factor Q(ω) can be determined by

Q(ω) = (tanδ(ω))−1 =
G
′
(ω)

G′′(ω)
=

1 + ω2τετσ
ω(τε − τσ)

. (36)
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Classical mechanical models

Zener model

Figure 9. Creep (a) and relaxation (b) functions of the Zener model.
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Classical mechanical models

Zener model

Figure 10. Phase velocity (a) and dissipation factor Q−1(ω) (b) of the Zener model.
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Classical mechanical models

Generalized Zener Model

I The weakness of the classical constitutive relationships is
that the macroscopic mechanical behavior of most linear
polymers does not exhibit the strong frequency dependence
predicted by ordinary derivatives5. Consequently, many
derivatives (many parameters) are needed in the model al-
ternatively to subtract strong frequency dependence, pro-
ducing an aggregate weaker frequency dependence.

I Moreover, there is physical evidence that attenuation is
almost linear with frequency, therefore Q is constant, in
many frequency bands6.

5Ronald L Bagley. “Power law and fractional calculus model of viscoelasticity”. In: AIAA journal 27.10 (1989),
pp. 1412–1417.

6McDonal et al., “Attenuation of shear and compressional waves in Pierre shale”.
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Classical mechanical models

Generalized Zener Model

Figure 11. Mechanical model for a generalized Zener material.
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Classical mechanical models

Generalized Zener Model

Carcione (2007) consider the parallel system shown in Figure 9,
with L Zener elements connected in parallel7. The stress-strain
relation for each single element is

σl(t) + τσl
dσl
dt

= Gel

(
ε(t) + τεl

dε

dt

)
, l = 1, 2, · · · , L.

(37)
According to equation 33, each complex modulus is given by

G∗l (ω) = Gel

(
1 + iωτεl
1 + iωτσl

)
. (38)

7José M Carcione. Wave fields in real media: Wave propagation in anisotropic, anelastic, porous and electro-
magnetic media. Vol. 38. Elsevier, 2007.
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Classical mechanical models

Generalized Zener Model

The total stress acting on the system in the frequency domain
is

σ̂(ω) =
L∑
l=1

G∗l (ω)ε̂(ω) =
L∑
l=1

Gel

(
1 + iωτεl
1 + iωτσl

)
ε̂(ω). (39)

We can choose Gel = Ge/L, the relaxation function is expressed
as

G(t) = Ge

[
1− 1

L

L∑
l=1

(
1− τεl

τσl

)
e
− t
τσl

]
H(t). (40)
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Classical mechanical models

Generalized Zener Model

Figure 12. Phase velocity (a) and dissipation factor (b) of the generalized Zener

model.
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Classical mechanical models

The operator equation

According to the classical theory of viscoelasticity, the general
stree-strain relation must be a linear differential equation with
constant (postive) coefficients of the following from[

1 +

p∑
k=1

ak
dk

dtk

]
σ(t) =

[
m+

q∑
k=1

br
dk

dtk

]
ε(t). (41)

Of course, the constants m, ak and bk are expected to be sub-
jected to proper restrictions in order to meet the physical re-
quirements of realizability.
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Classical mechanical models

Relaxation spectrum and retardation spectrum

By using the conbination rule, general material functions turn
out to be of the type

G(t) = Ge +
∑
n

Gne
−t/τσ,n +G−δ(t), (42)

J(t) = Jg +
∑
n

Jn
(
1− e−t/τε,t

)
+ J+t. (43)

In more general cases, the material functions with continuous
distributions turn out to be of the following form

G(t) = Ge + a

∫ ∞
0

Rσ(τ)e−t/τdτ +G−δ(t), (44)

J(t) = Jg + b

∫ ∞
0

Rε(τ)
(
1− e−t/τ

)
dτ + J+t. (45)
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Fractional mechanical models

Fractional mechanical models

One can use differential equations of fractional order to describe
viscoelastic behavior intermediate between purely elastic and
purely viscous89.[

1 +

p∑
k=1

ak
dαk

dtαk

]
σ(t) =

[
m+

q∑
k=1

br
dβk

dtβk

]
ε(t). (46)

Fractional mechanical models has ability to accurately portray
measured properties over decades of frequencies of motion with
very few parameters.

8Christian Friedrich. “Relaxation functions of rheological constitutive equations with fractional derivatives: ther-
modynamical constraints”. In: Rheological modelling: thermodynamical and statistical approaches. Springer, 1991,
pp. 321–330.

9Nicholas W Tschoegl. The phenomenological theory of linear viscoelastic behavior: an introduction. Springer
Science & Business Media, 2012.
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Fractional mechanical models

Power-law creep and the Scott-Blair model

Let us consider the viscoelastic solid with the following creep
function,

J(t) =
1

ηΓ(1 + ν)
tν , (47)

such creep behaviour is found to be of great interest in a number
of creep experiments. Then the stree-strain relation can be
obtained (we consider causal histoies)

ε(t) =
1

ηΓ(1 + ν)

∫ t

0

(t− τ)ν−1σ(τ)dτ =
1

η
· 0I

ν
t [σ(t)], (48)

σ(t) =
η

Γ(1− ν)

∫ t

0

(t− τ)−ν ε̇(τ)dτ = η · C0 Dν
t [ε(t)]. (49)
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Fractional mechanical models

Power-law creep and the Scott-Blair model

Scott-Blair was the first scientist who proposed such a con-
stitutive equation to characterize a viscoelastic material whose
mechanical properties are intermediate between those of a pure
elastic (Hooke model) and a pure viscous fluid (Newton model).
The complex modulus of this model is

G∗(ω) = η · (iω)ν , (50)

and its loss tangent is

tanδ(ω) = tan(νπ/2). (51)
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Fractional mechanical models

Kjartansson’s constant-Q model

Kjartansson (1979) assumed a material that has a creep function
of the form

J(t) =
1

M0Γ(1 + 2γ)

(
t

t0

)2γ

H(t), (52)

and the corresponding relaxation function is

G(t) =
M0

Γ(1− 2γ)

(
t

t0

)−2γ

H(t). (53)

Then complex modulus is

G∗(ω) = M0

(
iω

ω0

)2γ

. (54)
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Fractional mechanical models

Kjartansson’s constant-Q model

From equation 54, one can obtain the phase velocity vp(ω)

vp(ω) = v0

(
ω

ω0

)γ
, (55)

and attenuation coefficient α(ω)

α(ω) = tan
(πγ

2

)
sgn(ω)

ω

vp(ω)
, (56)

quality factor

Q = (tanδ(ω))−1 =
1

tan(πγ)
. (57)
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Fractional mechanical models

Fractional zener model

The fractional Zener stress-strain constitutive relation can be
expressed by:

σ(t) + τ νσ
dνσ(t)

∂tβ
= Ge

[
ε(t) + τ νε

dνε(t)

dtν

]
, (58)

where relaxed modulus Ge = Ggτ
ν
σ/τ

ν
ε . Then, the complex

modulus is

G∗(ω) = Ge

(
1 + τ νε (iω)ν

1 + τ νσ (iω)ν

)
, (59)

and loss tangent is

tanδ(ω) =
(τ νε − τ νσ )ωνsin(νπ/2)

1 + τ νε τ
ν
σω

2ν + (τ νε + τ νσ )ωνcos(νπ/2)
. (60)
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Fractional mechanical models

Fractional zener model

The relaxation function G(t) and creep function J(t) of frac-
tional Zener model can be obtained by

G(t) = Ge

[
1−

(
1− τ νε

τ νσ

)
Eν [−(t/τ νσ )ν ]

]
H(t), (61)

J(t) =
1

Ge

[
1−

(
1− τ νσ

τ νε

)
Eν [−(t/τ νε )ν ]

]
H(t), (62)

where Eν denotes the Mittag-Leffler function of order ν.
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Mathematical equivalence

Rheological representation of Scott-Blair model

The creep function of Scott-Blair model is

J(t) =
1

ηΓ(1 + ν)
tν

=
ν

ηΓ(1 + ν)Γ(1− ν)

∫ ∞
0

1

τ 1−ν

(
1− e−t/τ

)
dτ

=

∫ ∞
0

Rε(τ)
(
1− e−t/τ

)
dτ,

(63)

where

Rε(τ) =
sin(πν)

πητ 1−ν , (64)

is the retardation spectrum of Scott-Blair model.
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Mathematical equivalence

Rheological representation of Scott-Blair model

The retardation spectrum Rε(τ) can be represented by a con-
tinuous superposition of Kelvin-Voigt elements in series.

JN(t) =
sin(πν)

πη
lnr

N−1∑
m=0

τ νm
(
1− e−t/τm

)
, (65)

where τm = λ(N−m)/Nµm/N are geometrically spaced with r =
(µ/λ)1/N . According to Theorem 1 in Papoulia et al.(2010)10,
we have

lim
N→∞

JN(t) = J(t). (66)

10Katerina D Papoulia et al. “Rheological representation of fractional order viscoelastic material models”. In:
Rheologica Acta 49.4 (2010), pp. 381–400.
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Mathematical equivalence

Rheological representation of Scott-Blair model

In a similar way, the relaxation spectrum of Scott-Blair model

Rσ(τ) =
ηsin(πν)

πτ 1+ν
, (67)

which can be represented by a continuous superposition of Maxwell
units in parallel.

GN(t) =
ηsin(πν)

π
lnr

N−1∑
m=0

1

τ νm
e−t/τm . (68)

According to Theorem 2 in Papoulia et al.(2010), we have

lim
N→∞

GN(t) = G(t). (69)
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Mathematical equivalence

Rheological representation of FMM

The fractional Maxwell model (FMM) consists of a fractional
dashpot with constants η, ν in series with a linear spring of
stiffness Gg, its creep function

J(t) = Jg(t) +
tν

ηΓ(1 + ν)
, (70)

by Theorem 1, this creep function is approximated by

J(t) = Jg(t) +
sin(πν)

πη
lnr

N−1∑
m=0

τ νm
(
1− e−t/τm

)
. (71)
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Mathematical equivalence

Rheological representation of FKM

The fractional Kelvin model (FMM) consists of a fractional
dashpot with constants η, ν in parallel with a spring of stiff-
ness Ge, its relaxation function

G(t) = Ge(t) +
η

Γ(1− ν)tν
, (72)

by Theorem 2, this creep function is approximated by

G(t) = Ge(t) +
ηsin(πν)

π
lnr

N−1∑
m=0

1

τ νm
e−t/τm . (73)
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Mathematical equivalence

Rheological representation of FMM

Figure 13. Frational Maxwell model using 3, 9, 27-unit approximation, respectively.

(Papoulia et. al., 2010)
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Mathematical equivalence

Rheological representation of FKM

Figure 14. Frational Kelvin-Voigt model using 3, 9, 27-unit approximation,

respectively. (Papoulia et. al., 2010)
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Mathematical equivalence

Rheological representation of FZM

Figure 15. Frational Zener model using 3, 9, 27-unit approximation, respectively.

(Papoulia et. al., 2010)



SWP Report

Mathematical and physical connections among big three

Physical interpretation

Physical interpretation

I Frequency power law is a well established model that can
fit the experimental measurements over a wide frequency
band, which eventually results in the presence of fractional
derivative in time domain. Fractional mechanical models
also exhibit frequency pawer-law attenuation.

I Fractional mechanical models are the generalization of clas-
sical mechanical models by introducing power-law creep
functions. The rheological representations converge to the
corresponding fractional model in the limit as the number
of units tends to infinity.



SWP Report

Mathematical and physical connections among big three

Physical interpretation

Physical interpretation

Figure 16. Example of a recursive fractal ladder model, These particular fractal models

yield fractional derivative with β = 1/4, 3/4, respectively. (Kelly, James F, 2009)11

11James F Kelly and Robert J McGough. “Fractal ladder models and power law wave equations”. In: The
Journal of the Acoustical Society of America 126.4 (2009), pp. 2072–2081.
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Physical interpretation

Physical interpretation

Figure 17. The mechanical viscoelastic properties of polybutadine (with fractional

order of 1/2), verified by Rouse’s molecular theory12 (Bagley and Torvik, 1983).

12Ronald L Bagley and PJ Torvik. “A theoretical basis for the application of fractional calculus to viscoelasticity”.
In: Journal of Rheology 27.3 (1983), pp. 201–210.
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Physical interpretation

Physical interpretation

Bagley and Torvik (1983): It is not our intention that the empir-
ical model be considered to again verify these theories. Rather,
it is our intention to emphasize that the essential features of the
empirical model are of the same form as the results of molecular
theory. Thus, the empirical model should be viewed as some-
thing more than an arbitrary construction which happens to be
convenient for the description of experimental data.
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Discussion

I Generally speaking, all of these attenuation models are ei-
ther based on experimental observation or mathematical
(mechanical) approximation, so what is the most funda-
mental model that can well explain the attenuation? or
what is the best criterion to determine which model should
be used?

* experimentally fit;

* physically clear;

* mathematically concise;

* computationally efficient;

* · · · .
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Discussion

I Fractional model is not merely an empirical generalization
of classical model, it may provide more fundamental expla-
nation for dynamic system, in this sense, classical Newton’s
theory can be considered as a special case of the fractional
framework.

* diffusion processes;

* viscoelastic materials;

* polymer physics;

* statistical physics;

* · · · .
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Discussion

I One limitation of fractional models is that the numerical
simulation for temporally non-local fractional derivatives
occupies large memory due to its requirement to access
the history of the wavefields.

I To remedy this drawback, some researchers reformulated
the temporal fractional derivatives into the decoupled frac-
tional Laplacians (DFLs) using the smallness approximation
and Euler’s formula. Then the spatially non-local DFLs can
be efficiently computed by the Fourier collocation spectral
method.

I How it behaves when this condition is not met?
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Conclusions

I Fractional models as a generalization of classical models
have the ability to characterize weak frequency-dependent
seismic attenuation, which can be represented by classical
elements with the number of units tends to infinity.

I Fractional model is not merely an empirical generalization
of classical model, it may provide more fundamental ex-
planation for dynamic system. More attention should be
paied to this area from physics, engineering and mathe-
matics communities.
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Next talk: applications

Figure 18. Viscoacoutic modeling using fractional time derivative.13

13Yufeng Wang et al. “An unsplit convolutional perfectly matched layer for visco-acoustic wave equation with
fractional time derivatives”. In: SEG Technical Program Expanded Abstracts 2015. Society of Exploration
Geophysicists, 2015, pp. 3666–3671.
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Next talk: applications

Figure 19. Adaptive stabilization for Q-RTM.14

14Yufeng Wang et al. “Adaptive stabilization for Q-compensated reverse time migration”. In: Geophysics 83.1
(2018), S15–S32.
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Next talk: applications

Figure 20. Q compensation for seismic imaging.15

15Wang et al., “Adaptive stabilization for Q-compensated reverse time migration”.



SWP Report

Discussion and conclusions

Next talk: applications
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Figure 21. CuQ-RTM: A CUDA-based code package for stable and efficient

Q-compensated RTM.16

16Yufeng Wang et al. “CuQ-RTM: A CUDA-based code package for stable and efficient Q-compensated RTM”.
In: Geophysics 84.1 (2018), pp. 1–69.
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Next talk: applications

Figure 18. L1−2 minimization for exact and stable seismic attenuation

compensation.17

17Yufeng Wang et al. “L1-2 minimization for exact and stable seismic attenuation compensation”. In: Geophysical
Journal International 213.3 (2018), pp. 1629–1646.
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Thank you!
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