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Have you ever heard of these models?
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Why attenuation models matter?
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Background

» Wave propagation in subsurface media typically exhibits
frequency-dependent absorption and dispersion due to the
presence of attenuation mechanism.

» Such an intrinsic attenuation property can be empirically
characterized either by experimentally established frequency
power law or by physically based mechanical models over
a wide range of frequencies.

» Recently, increasing papers present a variety of fractional
models that have the ability to describe seismic attenuation
with memory property or non-locality.
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Motivation

» However, there is absent of profound insight in geophysi-
cal community into the connections among these different
models from both mathematical and physical viewpoints.

» | firstly revisit the mainstream development of mathemat-
ical models of viscoelastic phenomenon in the context of
experiments and mechanics, and then we explore how frac-
tional mechanical models lead to a reconciliation of these
two apparently different approaches.

» This overview aims at providing geophysicists with more
confidence when using fractional models for seismic atten
uation modeling, inversion and compensation.
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History of fractional calculus

History of
Fractional Calculus
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Figure 1. Many great scientists contributed to fractional calculus.
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History of fractional calculus
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Figure 2. Many great scientists contributed to fractional calculus.
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History of fractional calculus
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Figure 3. Publication numbers over the past two decades when searching " fractional”

on Web of Science.
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History of fractional calculus
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Figure 4. Distribution of subjects over the past two decades when searching

" fractional” on Web of Science.
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History of fractional calculus

Brief story line

» Fractional calaulus started with a letter between Leibniz
and L'Hospital (Sep 30, 1695) on the significance of deriva-
tives of order 1/2.

» The first great theory of fractional derivation is due to Liou-
ville (1832) and Riemann (1847), which is called Riemann-
Liouville integral.

» Griinwald and Letnikov (1867) introduced a definition of
fractional derivative based on finite differences.
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‘—History of fractional calculus

Brief story line

» Riesz (1936) generalized the Riemann-Liouville integral look-
ing for a solution for some problem in potential theory in
connection with partial differential equations for parabolic
and hyperbolic cases.

» Caputo (1967) proposed a modified fractional differential
operator “ D% in his work on the theory of viscoelasticity.
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‘—History of fractional calculus
Fractional definitions

Riemann-Liouville fractional integral

In our notation, the Cauchy formula reads for ¢ > 0:

ol f(t) == ﬁ/o (t—7)" ' f(r)dr, neN, (1)

where N is the set of positive integers. One can define Riemann-
Liouville fractional integral of order a > 0:

ol f(t) = ﬁ/o (t —7)* L f(r)dr, a€ R (2)
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Fractional definitions

Riemann-Liouville fractional derivative

Then one can define the Riemann-Liouville fractional derivative
of order o > 0:

FEDXf(t) = D" o oI f(t), m—1<a<m, (3)

then we have

wppy . Lodmt o f(r)dr
o Dif() = I'(m — «a) dt™ /0 (t — 7)att-m’ m—l<a<m.
(4)
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‘—History of fractional calculus
Fractional definitions

Caputo fractional derivative

And the so-called Caputo fractional derivative of order a > 0
defined as:

SDYf(t) == oI 0 oD f(1), m—1<a<m, (5)

then we have

C Nna L 1 ! f(m)<T)dT
CDpf(t) = ) / :

I'(m—« t — 7)etl-m’
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Fractional definitions
Grunwald-Letnikov fractional derivative

In the classical calculus it is well known that derivatives can be
expressed as limits of difference quotients,

J

1 (n
() = L 1) _
PO = Jim, e S ()se-san. @
=
this formula can be generalized to fractional case:
1 < «
GL no I 1\J ’ o
L0 = fim, xS () () -iso. @
=

where D¢ is called the Griinwald-Letnikov fractional deriva
tive operator.
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Fractional definitions

Riesz potential and fractional Laplacian

Riesz introduced n-D integral potential operator with weak sin-
gularity

b
Yn(a) Jr

where the normalized constant ~,(«) is given by

(1) (x) = fW)le —y[*"dy, (9)

T2T()
)

Tn(a) = (n 0<a<n, a—n#2k, keNy (10)
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Fractional definitions
Riesz potential and fractional Laplacian

The definition of fractional Laplacian operator implied by Riesz
can be given as follow

(=2)f) (@) = (=)™ (I f)(x). (11)

Several researchers look for an operator satisfying the following
property:

F((=D)*2f)(k) = [k[*F(f)(k), (12)

with 0 < o« < 2 and

n a/2
k| = [Z k;f-] : (13
j=1
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History of fractional calculus
Fractional calculus in linear viscoelasticity

Fractional calculus in linear viscoelasticity

Linear viscoelasticity is certainly the field of the most extensive
applications of fractional calculus, in view of its ability to model
hereditary phenomena with long memory.

» In the first half of 20th century, the early contributors were:
Gemant in USA, Scott-Blair in England, Gerasimov and
Rabotnov in the former Soviet Union.

» In the late sixties, Caputo and Mainardi explicitly suggested
that derivatives of fractional order could be successfully
used to model the dissipation in seismology and in metal-

lurgy.
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History of fractional calculus

Fractional calculus in linear viscoelasticity

Fractional calculus in linear viscoelasticity

» The beginning of the modern applications of fractional
calculus in linear viscoelasticity is generally attributed to
the 1979 PhD thesis by Bagley under supervision of Prof.
Torvik, followed by a number of relevant papers.

» The 1970 PhD thesis of Rossikhin under the supervision of
Prof. Meshkov, and the 1971 PhD thesis of Mainardi under
the supervision of Prof. Caputo also contributed greatly to
the theory of fractional calculus in linear viscoelasticity.
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Mainstream development of attenuation models
Frequency power law
Classical mechanical models
Fractional mechanical models




SWP Report

—Mainstream development of attenuation models

Frequency power law

Frequency power law
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Figure 5. Basic flow of frequency power-law characterization.
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Mainstream development of attenuation models
Frequency power law

Frequency power law

Frequency-dependent attenuation in viscoelastic media typically
follows a frequency power law in which the exponent is between
0 and 2 over the frequency range of interest, which can be char-
acterized by an empirical formulation wherein the wavenumber
is a complex function of frequency, i.e.,

bw) = 2 = Y aw), (14)

ve(w)  vp(w)

whose real part and imaginary part separately signifies the phase
velocity v,(w) and attenuation coefficient a(w).
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Mainstream development of attenuation models
Frequency power law

Frequency power law

If the function of interest can be expressed as a power law or
power series, a closed-form solution is available. We assume
that the model for the attenuation coefficient is:

a(w) = a(0) + aplw|?, (15)

where ag and y are real constants, with 0 < y < 2 typically.
Experimental measurements indicate that power-law exponents
vary with material types and frequency regimes. For example,
the Pierre shale and unconsolidated sediments have nearly linear
dependence on frequency (McDonal et al., 1958; Buckingham,
1997).
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‘—Mainstream development of attenuation models
B

requency power law

Frequency power law
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Figure 6. Attenuation of Pierre Shale (McDonal et. al., 1958)1.

1FJ McDonal et al. “Attenuation of shear and compressional waves in Pierre shale”. In: Geophysics 23.3 (1958)
pp. 421-439.
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‘—Mainstream development of attenuation models
B

requency power law

Frequency power law

For power law attenuation of the form given by Eq. 15 with
0 <y < 3and y # 1, the frequency dependence of the sound
speed is governed by?3

1 r Y y—1 y—1

@) onw) aotan( 5 ) (w wg ), (16)
A general dispersion relation between the spatial wavenumber
k(w) and the temporal frequency w that satisfies both Egs. 15
and 16 can be written as*

k(w) = Y +iag |w]” + agw ]w]y_l tan (%) . (1)

vp(wo)

2Kendall R Waters et al. “On the applicability of Kramers—Kronig relations for ultrasonic attenuation obeying a
frequency power law”. In: The Journal of the Acoustical Society of America 108.2 (2000), pp. 556-563.

3Bradley E Treeby. “Acoustic attenuation compensation in photoacoustic tomography using time-variant filt
ing”. In: Journal of biomedical optics 18.3 (2013), p. 036008.

4James F Kelly, Robert J McGough, and Mark M Meerschaert. “Analytical time-domain Green's functions for )
power-law media”. In: The Journal of the Acoustical Society of America 124.5(2008)"pp. 2861-2872.
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‘—Mainstream development of attenuation models

Frequency power law

Kolsky-Futterman model

Here we consider the differential dispersion relations for the case
that the exponent y is near an unit (y = n = 1), we have

1 1 2 |
— ~ ——apln
@) ylwo) ~ w

w

Wo

(18)

Kolsky and Futterman assumed that frequency-dependent at-
tenuation coefficient o(w) is strictly linear with frequency over
the range of measurement:

wi

2%(%)@(%) . (19)

a(w) = ap|lw| =
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‘—Mainstream development of attenuation models
Frequency power law

Kolsky-Futterman model

In equation 19, ¢,(wp) and Q(wp) are the values of the phase
velocity and approximate () at the reference frequency wy. Sub-
stituting equation 19 into equation 18, we have

w

2. e

Wo

1 1 1
zww:%W@O‘wmmﬁl

This is the widely used Kolsky-Futterman model, which can be
considered as a special case (y = 1) of frequency power-law
model.
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Classical mechanical models

Classical mechanical models

Stress-strain relation based From complex modulus to
on Boltzmann phase velocity and
superposition principle to attenuation coefficient (loss

Memory variables method
or corresponding principle

to obtain corresponding

derive complex modulus of tangent, quality factor) over L
wave equation

basic mechanical models. frequency band of interest.

Figure 7. Basic flow of mechanical characterization.
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Classical mechanical models
Stress-strain relation

Linear viscoelasticity is founded on the knowledge of two funda-
mental functions: relaxation function G(t) and creep function
J(t). According to Boltzmann superposition principle, the gen-
eral stress-strain relation can be expressed as

o(t) = / G(t—r)ds(T):G(t)*dig), (21)

—00

! do(t

et) = / J(t —7)do(r) = J(t) * izi ) (@)
The limiting values of the material functions for t — 0" and t —
+o00 are related to the glass (G, J,) and equilibrium (G, J

behaviours of the viscoelastic body, respectively.
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Classical mechanical models
Stress-strain relation

In frequency domain, we can define complex modulus and com-

plex compliance as

G*(w) = Z((;“’)) = iwG(w), (23)
T (w) = j(&)) = iwJ(w), (24)

where G/(w) and J(w) are Fouier transforms of relaxation func-
tion G(t) and creep function J(t). We also have

G (w)J*(w) = 1. (25




SWP Report
Classical mechanical models
Loss tangent tand and quality factor ()

Introducing the phase shift §(w) between the sinusoidal exci-
tation and sinusoidal response in equations 23 and 24, we can
write

/

G*(w) = G'(w) +iG" (w) = |G*(W)[e™),  (26)

TH(w) = J () =i (W) = | T ()], (27)
where G’ (w) and J'(w) are called the storage modulus and stor-
age compliance, while G” (w) and J" (w) are called the loss mod-
ulus and loss compliance.

O Y (w) = tand(w) = g é;"; - if;“’)) (28)

where tand(w) is referred to as the loss tangent and Q(w)
quality factor.
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‘—Mainstream development of attenuation models

Classical mechanical models

Phase velocity v, and attenuation factor o

Considering waves (k complex, w real), gives the complex ve-
locity

ve(w) = R() = > (29)

We define the phase velocity

and the attenuation factor o(w)

)
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‘—Mainstream development of attenuation models

Classical mechanical models

Basic mechanical models

i

Figure 8. The representations of basic mechanical models including Hooke spring,

a b C

Newton dashpot, Kelvin-Voigt model, Maxwell model and Zener models.
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Classical mechanical models

Zener model can be formed by adding a spring either in se-
ries to a Kelvin-voigt model or in parallel to a Maxwell model,
respectively.

ot) 47,2 —q, (e(t) + Tﬁ> , (32)

dt dt
where 7, and 7. are relaxation time and retardation time, re-
spectively. Typically, we have 0 < 7, < 7. and Gy = G.(7:/7,).
The corresponding complex modulus is

1+ 1wt
14 iwr, )

() = G, ( (33
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‘—Mainstream development of attenuation models
Classical mechanical models

The relaxation function G(t) and creep function of Zener model
can be obtained by

Gt = 7 [G*<°")] e {1 - (1 _ E) e—é} H),

w To (31)
J(t)=F! {m] = Gi [1 - (1 - %) e—fs} H(t).
(35)

The quality factor Q(w) can be determined by

G (w) 1+ Wi,
G"(w)  w(r—1,)"

Q(w) = (tand(w)) ™" =
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‘—Mainstream development of attenuation models
Classical mechanical models

Zener model
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Figure 9. Creep (a) and relaxation (b) functions of the Zener model.
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Classical mechanical models

Zener model
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Figure 10. Phase velocity (a) and dissipation factor Q™1 (w) (b) of the Zener model.
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Mainstream development of attenuation models
Classical mechanical models

Generalized Zener Model

» The weakness of the classical constitutive relationships is
that the macroscopic mechanical behavior of most linear
polymers does not exhibit the strong frequency dependence
predicted by ordinary derivatives®. Consequently, many
derivatives (many parameters) are needed in the model al-
ternatively to subtract strong frequency dependence, pro-
ducing an aggregate weaker frequency dependence.

» Moreover, there is physical evidence that attenuation is
almost linear with frequency, therefore Q is constant, in
many frequency bands®.

5Ronald L Bagley. “Power law and fractional calculus model of viscoelasticity”. In: AIAA journal 27.10 (198
pp. 1412-1417.

5McDonal et al., “Attenuation of shear and compressional waves in Pierre shale”.
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Classical mechanical models

Generalized Zener Model
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Figure 11. Mechanical model for a generalized Zener material.




SWP Report
‘—Mainstream development of attenuation models
Classical mechanical models

Generalized Zener Model

Carcione (2007) consider the parallel system shown in Figure 9,
with L Zener elements connected in parallel”. The stress-strain
relation for each single element is

dO' dg
az<t)+ngd—tl =Gy (E(t)—i-TdE) , 1=1,2,---,L.
(37)
According to equation 33, each complex modulus is given by
X B 1+ twty
Gi(w) = Gy (1 n ingl) ) (38)

7José M Carcione. Wave fields in real media: Wave propagation in anisotropic, anelastic, porous and electro-
magnetic media. Vol. 38. Elsevier, 2007.
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Classical mechanical models

Generalized Zener Model

The total stress acting on the system in the frequency domain
is
L L
1+ wwrg \ .
= G G . (39
> i) = 3G (T ) o) @9

=1

We can choose G, = G/ L, the relaxation function is expressed
as

G(t) =
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Classical mechanical models

Generalized Zener Model
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Figure 12. Phase velocity (a) and dissipation factor (b) of the generalized Zener

model.
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‘—Mainstream development of attenuation models
Classical mechanical models

The operator equation

According to the classical theory of viscoelasticity, the general
stree-strain relation must be a linear differential equation with
constant (postive) coefficients of the following from

Pk L dk
1+ ar— | o(t) = |m+ b,—| (). 41
> g | o0 DU EORINCE
Of course, the constants m, a, and b, are expected to be sub-
jected to proper restrictions in order to meet the physical re-
quirements of realizability.
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Classical mechanical models
Relaxation spectrum and retardation spectrum

By using the conbination rule, general material functions turn
out to be of the type

G(t) =G+ > Gre /™ + G_5(1), (42)

Jt)=Jyg+ > Jo (1—e ™) + Jot. (43)

In more general cases, the material functions with continuous
distributions turn out to be of the following form

Git)=G.+a / h Ro(m)e V"dr + G_5(t),  (44)

J(t)=J,+ b/ R(r) (L —e ") dr + J.t.
0
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Fractional mechanical models
Fractional mechanical models

One can use differential equations of fractional order to describe

viscoelastic behavior intermediate between purely elastic and

purely viscous®®.

p % q dPr
1+ | o) = m+ZbT% e(t).  (46)
k=1

Fractional mechanical models has ability to accurately portray
measured properties over decades of frequencies of motion with
very few parameters.

8Christian Friedrich. “Relaxation functions of rheological constitutive equations with fractional derivatives: ther-
modynamical constraints”. In: Rheological modelling: thermodynamical and statistical approaches. Springer, 1991
pp. 321-330.

9Nicholas W Tschoegl. The phenomenological theory of linear viscoelastic behavior: an introduction. Springer
Science & Business Media, 2012.
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Fractional mechanical models
Power-law creep and the Scott-Blair model

Let us consider the viscoelastic solid with the following creep

function, |
J(t) = —— ¥, 47

such creep behaviour is found to be of great interest in a number
of creep experiments. Then the stree-strain relation can be
obtained (we consider causal histoies)

0= gy | (=7 = 2ol ()

n ! —v . _ C v
o) = g [ =) ar = -G D). (49
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‘—Mainstream development of attenuation models
Fractional mechanical models

Power-law creep and the Scott-Blair model

Scott-Blair was the first scientist who proposed such a con-
stitutive equation to characterize a viscoelastic material whose
mechanical properties are intermediate between those of a pure
elastic (Hooke model) and a pure viscous fluid (Newton model).
The complex modulus of this model is

G*(w) =7 (iw)", (50)
and its loss tangent is

tand(w) = tan(vm/2). (51)
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Fractional mechanical models
Kjartansson's constant-() model

Kjartansson (1979) assumed a material that has a creep function
of the form

and the corresponding relaxation function is

G(t) = % (%)_ 1), (53)

Then complex modulus is
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Fractional mechanical models
Kjartansson's constant-() model

From equation 54, one can obtain the phase velocity v, (w)

o
w
=y [ = 55
) =u (), (55)
and attenuation coefficient a(w)
Ty w
= tan ( —
a(w) = tan < 5 ) sgn(w)vp(w>, (56)

quality factor

Q = (tand(w)) " =
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Fractional mechanical models
Fractional zener model

The fractional Zener stress-strain constitutive relation can be
expressed by:
Ldvo(t)

O'(t) + TO.W = Ge |:€(t) + TEV dz;(yt)] y (58)

where relaxed modulus G, = G,77/77. Then, the complex
modulus is ) (i)
+ 77 (ww)”
G'(w) =G | ——— |, 59
) (1 +Tg(iw)”) (59)
and loss tangent is

(17 — 72 )w”sin(vm/2)
tand(w) = 2 g . 60
and(w) 1+ 7/1Yw? + (17 4 7Y )w¥cos(vm/2) ( .
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Fractional mechanical models

Fractional zener model

The relaxation function G(t) and creep function J(t) of frac-
tional Zener model can be obtained by

v

6 =c.[1- (1-Z) Blwmy)| a0, 6

o

s =g [1- (1-Z) Bt g0, @)

where E, denotes the Mittag-Leffler function of order v.




SWP Report

‘—Mathematical and physical connections among big three

Outline

Mathematical and physical connections among big three
Mathematical equivalence
Physical interpretation
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Mathematical equivalence
Rheological representation of Scott-Blair model

The creep function of Scott-Blair model is

where

— )
mnTiv

is the retardation spectrum of Scott-Blair model.
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‘—Mathematical and physical connections among big three
Mathematical equivalence

Rheological representation of Scott-Blair model

The retardation spectrum R.(7) can be represented by a con-
tinuous superposition of Kelvin-Voigt elements in series.

sm

In(t) = nr oy T _t/T’”) , (65)

N-1
m=0

where 7, = \N=m)/N /N are geometrically spaced with r =
(11/A)YN . According to Theorem 1 in Papoulia et al.(2010),

we have
lim Jy(t) = J(t). (66)
N—oo

10k aterina D Papoulia et al. “Rheological representation of fractional order viscoelastic material models”.
Rheologica Acta 49.4 (2010), pp. 381-400.
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Mathematical equivalence
Rheological representation of Scott-Blair model

In a similar way, the relaxation spectrum of Scott-Blair model

_ msin(7v)

Ro(1) = : (67)

rritv

which can be represented by a continuous superposition of Maxwell
units in parallel.

According to Theorem 2 in Papoulia et al.(2010), we have

lim Gy(t) = G(1).

N—oo
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Mathematical equivalence
Rheological representation of FMM
The fractional Maxwell model (FMM) consists of a fractional

dashpot with constants 7, v in series with a linear spring of
stiffness Gy, its creep function

tl/

t) = t _ 7
IO =10+ Fry (70)
by Theorem 1, this creep function is approximated by
sin(mv) i
J(t) = Jy(t) + Inr Z v (1—e ). (71)

n

m=0
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Mathematical equivalence
Rheological representation of FKM

The fractional Kelvin model (FMM) consists of a fractional
dashpot with constants 7, v in parallel with a spring of stiff-
ness (5., its relaxation function

G(t) = Gu(t) + ﬁ (72)

by Theorem 2, this creep function is approximated by
N-1

G(t) = G.(t) + Mlnr Z iye_t/””. (73)

T
m=0 ™
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‘—Mathematical and physical connections among big three
Mathematical equivalence

Rheological representation of FMM
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Figure 13. Frational Maxwell model using 3, 9, 27-unit approximation, respectively.

(Papoulia et. al., 2010)
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‘—Mathematical and physical connections among big three
Mathematical equivalence

Rheological representation of FKM
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Figure 14. Frational Kelvin-Voigt model using 3, 9, 27-unit approximation,

respectively. (Papoulia et. al., 2010)
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‘—Mathematical and physical connections among big three
M

athematical equivalence

Rheological representation of FZM
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Figure 15. Frational Zener model using 3, 9, 27-unit approximation, respectively.

(Papoulia et. al., 2010)
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Mathematical and physical connections among big three
P

hysical interpretation

Physical interpretation

» Frequency power law is a well established model that can
fit the experimental measurements over a wide frequency
band, which eventually results in the presence of fractional
derivative in time domain. Fractional mechanical models
also exhibit frequency pawer-law attenuation.

» Fractional mechanical models are the generalization of clas-
sical mechanical models by introducing power-law creep
functions. The rheological representations converge to the
corresponding fractional model in the limit as the number
of units tends to infinity.
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Physical interpretation

Figure 16. Example of a recursive fractal ladder model, These particular fractal models

yield fractional derivative with 8 = 1/4,3/4, respectively. (Kelly, James F, 2009)%!

1 james F Kelly and Robert J McGough. “Fractal ladder models and power law wave equations”. In: The
Journal of the Acoustical Society of America 126.4 (2009), pp. 2072-2081.
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Figure 17. The mechanical viscoelastic properties of polybutadine (with fractional

order of 1/2), verified by Rouse's molecular theory'? (Bagley and Torvik, 1983).

12Ronald L Bagley and PJ Torvik. “A theoretical basis for the application of fractional calculus to viscoelasticity”
In: Journal of Rheology 27.3 (1983), pp. 201-210.
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Physical interpretation

Bagley and Torvik (1983): It is not our intention that the empir-
ical model be considered to again verify these theories. Rather,
it is our intention to emphasize that the essential features of the
empirical model are of the same form as the results of molecular
theory. Thus, the empirical model should be viewed as some-
thing more than an arbitrary construction which happens to be
convenient for the description of experimental data.
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Outline

Discussion and conclusions
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Discussion

» Generally speaking, all of these attenuation models are ei-
ther based on experimental observation or mathematical
(mechanical) approximation, so what is the most funda-
mental model that can well explain the attenuation? or
what is the best criterion to determine which model should
be used?

experimentally fit;
* physically clear;
* mathematically concise;

computationally efficient;
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Discussion

» Fractional model is not merely an empirical generalization
of classical model, it may provide more fundamental expla-
nation for dynamic system, in this sense, classical Newton's
theory can be considered as a special case of the fractional
framework.

diffusion processes;
viscoelastic materials;
polymer physics;

statistical physics;
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» One limitation of fractional models is that the numerical
simulation for temporally non-local fractional derivatives
occupies large memory due to its requirement to access
the history of the wavefields.

» To remedy this drawback, some researchers reformulated
the temporal fractional derivatives into the decoupled frac-
tional Laplacians (DFLs) using the smallness approximation
and Euler's formula. Then the spatially non-local DFLs can
be efficiently computed by the Fourier collocation spectral
method.

» How it behaves when this condition is not met?
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Conclusions

» Fractional models as a generalization of classical models
have the ability to characterize weak frequency-dependent
seismic attenuation, which can be represented by classical
elements with the number of units tends to infinity.

» Fractional model is not merely an empirical generalization
of classical model, it may provide more fundamental ex-
planation for dynamic system. More attention should be
paied to this area from physics, engineering and mathe-
matics communities.
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Figure 18. Viscoacoutic modeling using fractional time derivative.13

In:  SEG Technical Program Expanded Abstracts 2015. Soci
Geophysicists, 2015, pp. 3666-3671.

=] F

13Yufeng Wang et al. “An unsplit convolutional perfectly matched layer for visco-acoustic wave equation wit
fractional time derivatives”.

ety of Exploration
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Next talk: applications

Compensated Filtered Stabilized

Figure 19. Adaptive stabilization for Q-RTM.1*

1“Yufeng Wang et al. “Adaptive stabilization for Q-compensated reverse time migration”. In: Geophysics 83.1
(2018), S15-532.
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Figure 20. Q compensation

for seismic imaging.'®

15Wang et al., “Adaptive stabilization for Q-compensated reverse time migration”.
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Next talk: applications
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Figure 21. CuQ-RTM: A CUDA-based code package for stable and efficient
Q-compensated RTM.16

16Yufeng Wang et al. “CuQ-RTM: A CUDA-based code package for stable and efficient Q-compensated RTM" .
In: Geophysics 84.1 (2018), pp. 1-69.



SWP Report

‘— Discussion and conclusions

Next talk: applications

Original data Compensated data
101 101

0 100 200 © 0 100 200 ©
Inline Inline

Figure 18. L;_o minimization for exact and stable seismic attenuation

compensation.1”

17Yufeng Wang et al. “L1-2 minimization for exact and stable seismic attenuation compensation”. In: Geophysical
Journal International 213.3 (2018), pp. 1629-1646.
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Thank you!
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