An Overview of High Performance Computing
Jack Dongarra
University of Tennessee and
Oak Ridge National Laboratory
HPC ASia 2005 Nov 30-Dec 3, 2005 Beijing, China
The 8th International Conference/Exhibition on
High Performance Computing in Asia-Pacific Region

Overview

- Look at fastest computers
$>$ From the Top500
- Some of the changes that face us
>Hardware
>Software
> Algorithms

TUP500

H. Meuer, H. Simon, E. Strohmaier, \& JD

- Listing of the 500 most powerful Computers in the World
- Yardstick: Rmax from LINPACK MPP
$A x=b$, dense problem
- Updated twice a year

SC‘xy in the States in November Meeting in Germany in June
oo All data available from www.top500.org

Performance Development

Architecture/Systems Continuum

Tightly

Commodity Processors

- Intel Pentium Nocona
> 3.6 GHz, peak $=7.2 \mathrm{Gflop} / \mathrm{s}$
$>$ Linpack $100=1.8 \mathrm{Gflop} / \mathrm{s}$
$>$ Linpack $1000=4.2$ Gflop/s
- Intel Itanium 2
> 1.6 GHz, peak $=6.4 \mathrm{Gflop} / \mathrm{s}$
> Linpack $100=1.7$ Gflop/s
$>$ Linpack $1000=5.7$ Gflop/s

- AMD Opteron
$>2.6 \mathrm{GHz}$, peak $=5.2 \mathrm{Gflop} / \mathrm{s}$
\rightarrow Linpack $100=1.6 \mathrm{Gflop} / \mathrm{s}$
$>$ Linpack $1000=3.9$ Gflop/s

Interconnects / Systems

$\stackrel{C}{a}$ Processor Types

e Processors Used in Each of the 500 Svstems

26th List: The TOP10

	Manufacturer	Computer	Rmax [TF/s]	Installation Site	Country	Year	\#Proc
1	IBM	BlueGene/L eServer Blue Gene	280.6	DOE/NNSA/LLNL	USA	2005	131072
2	IBM	BGW eServer Blue Gene	91.29	IBM Thomas Watson	USA	2005	40960
3	IBM	ASC Purple Power5 p575	63.39	DOE/NNSA/LLNL	USA	2005	10240
4	SGI	Columbia Altix, Itanium/Infiniband	51.87	NASA Ames	USA	2004	10160
5	Dell	Thunderbird Pentium/Infiniband	38.27	Sandia	USA	2005	8000
6	Cray	Red Storm Cray XT3 AMD	36.19	Sandia	USA	2005	10880
7	NEC	Earth-Simulator SX-5	35.86	Earth Simulator Center	Japan	2002	5120
8	IBM	MareNostrum PPC 970/Myrinet	27.91	Barcelona Supercomputer Center	Spain	2005	4800
9	IBM	eServer Blue Gene	27.45	ASTRON University Groningen	Netherlands	2005	12288
10	Cray	Jaguar Cray XT3 AMD	20.53	Oak Ridge National Lab	USA	2005	5200

Countries / Performance

Concurrency Levels of the Top500

© Performance Projection

e A PetaFlop Computer by the End of the iclor Decade

- 10 Companies working on a building a Petaflop system by the end of the decade.
> Cray
> IBM
>Sun

> Dawning
$>$ Galactic
$>$ Lenovo
$>$ Hitachi
$>$ NEC

> Fujitsu
00 >Bull

© KFlop/s per Capita (Flops/Pop)
Based on the November 2005 Top500

Fuel Efficiency: GFlops/Watt

CPU Desktop Trends 2004-2010

- Relative processing power will continue to double every 18 months
- 256 logical processors per chip in late 2010

Fault Tolerance: Motivation

- Trends in HPC:
> High end systems with thousand of processors
- Increased probability of a node failure
> Most systems nowadays are robust
- MPI widely accepted in scientific computing
> Process faults not tolerated in MPI model
Mismatch between hardware and (non faulttolerant) programming paradigm of MPI.

Reliability of Leading-Edge HPC Systems

System	CPUs	Reliability
LANL ASCI Q	$\mathbf{8 , 1 9 2}$	MTBI: 6.5 hours. Leading outage sources: storage, CPU, memory.
LLNL ASCI White	$\mathbf{8 , 1 9 2}$	MTBF: 5.0 hours ('01) and 40 hours ('03). Leading outage sources: storage, CPU, 3rd_ party HW.
Pittsburgh Lemieux	$\mathbf{3 , 0 1 6}$	MTBI: 9.7 hours.

MTBI: mean time between interrupts = wall clock hours / \# downtime periods MTBF: mean time between failures (measured)

- 100K processor systems
\Rightarrow are here
$>$ we have fundamental challenges in dealing with machines of this size
$>\ldots$ and little in the way of programming support

e Future Challenge: Developing the Ecosystem for HPC

From the NRC Report on "The Future of Supercomputing":

- Hardware, software, algorithms, tools, networks, institutions, applications, and people who solve supercomputing applications can be thought of collectively as an ecosystem
- Research investment in HPC should be informed by the ecosystem point of view - progress must come on a broad front of interrelated technologies, rather than in the form of individual breakthroughs.

A supercomputer ecosystem is a continuum of computing platforms, system software, algorithms, tools, networks, and the people who know
how to exploit them to solve computational science applications.

Real Crisis With HPC Is With The Software

- Our ability to configure a hardware system capable of 1 PetaFlop ($10^{15} \mathrm{ops} / \mathrm{s}$) is without question just a matter of time and \$\$.
- A supercomputer application and software are usually much more long-lived than a hardware
> Hardware life typically five years at most.... Apps 20-30 years
> Fortran and C are the main programming models (still!!)
- The REAL CHALLENGE is Software
$>$ Programming hasn't changed since the 70's
> HUGE manpower investment > MPI... is that all there is?
> Often requires HERO programming
> Investments in the entire software stack is required (OS, libs, etc.)
- Software is a major cost component of modern technologies.
> The tradition in HPC system procurement is to assume that the software is free... SOFTWARE COSTS (over and over)

Summary of Current Unmet Needs

- Performance / Portability
- Fault tolerance
- Memory bandwidth/Latency
- Adaptability: Some degree of autonomy to self optimize, test, or monitor.
$>$ Able to change mode of operation: static or dynamic
- Better programming models
> Global shared address space
> Visible locality
- Maybe coming soon (incremental, yet offering real benefits):
> Global Address Space (GAS) languages: UPC, Co-Array Fortran, Titanium, Chapel)
> "Minor" extensions to existing languages
> More convenient than MPI
$>$ Have performance transparency via explicit remote memory references

Collaborators / Support

- Top500 Team

>Erich Strohmaier, NERSC
>Hans Meuer, Mannheim
>Horst Simon, NERSC
http://www.top500.org/
 -

Google

Advertising Programs - About Google - Go to Google.com

Next Steps

- Software to determine the checkpointing interval and number of checkpoint processors from the machine characteristics.
> Perhaps use historical information.
> Monitoring
> Migration of task if potential problem
- Local checkpoint and restart algorithm.
$>$ Coordination of local checkpoints.
> Processors hold backups of neighbors.
- Have the checkpoint processes participate in the computation and do data rearrangement when a failure occurs.
> Use p processors for the computation and have k of them hold checkpoint.
- Generalize the ideas to provide a library of routines to do the diskless check pointing.
- Look at "real applications" and investigate "Lossy" algorithms.

 Operating Systems / Systems

${ }_{n}^{2}$ Clusters / Systems

\& Japanese:

Tightly-Coupled Heterogeneous System

- Would like to get to 10 PetaFlop/s by 2011
- Scalable, fits any computer center $>$ Size, cost, ratio of components
- Easy and low-cost to develop new component
- Scale merit of components

How Big Is Big?

- Every 10X brings new challenges
>64 processors was once considered large $>$ it hasn't been "large" for quite a while
>1024 processors is today's "medium" size
>8096 processors is today's "large"
$>$ we're struggling even here
2004-2014 System Size Trends
- 100K processor systems $>$ are in construction we have fundamental challenges in dealing with machines of this size $>$... and little in the way of programming support

e Real Crisis With HPC Is With The Software

- Programming is stuck
> Arguably hasn't changed since the 60's
- It's time for a change
$>$ Complexity is rising dramatically
> highly parallel and distributed systems
> From 10 to 100 to 1000 to 10000 to 100000 of processors!!
> multidisciplinary applications
- A supercomputer application and software are usually much more long-lived than a hardware
> Hardware life typically five years at most.
$>$ Fortran and C are the main programming models
- Software is a major cost component of modern technologies.
> The tradition in HPC system procurement is to assume that the software is free.
- We have too few ideas about how to solve this problem.

Today's Processors

- pipelining (superscalar, OOO, VLIW, branch prediction, predication)
- simultaneous multithreading (SMT, Hyper-Threading, multi-core)
- SIMD vector instructions (VIS, MMX/SSE, AltiVec)
- caches and the memory hierarchy
- Intel added 36 instructions per year to IA-32, or 3 instructions per month!

e KFlop/s per Capita (Flops/Pop)

rave Based on the November 2004 Top500 only

Today’s CPU Architecture

Moore's Law for Power Consumption
Heat is becoming an unmanageable problem

$\stackrel{\ominus}{\bullet}$
 Self Adapting Numerical Software

- The process of arriving at an efficient solution involves many decisions by an expert.
Algorithm decisions
Data decisions
Management of the computing environment

$>$ Processor specific tuning
Complex set of interaction between
Users' applications
Algorithm
Programming language
Compiler
Machine instruction
Hardware
00 to the hardware. Changing with each generation of hardware

