

An Overview of HydroGEN:

A DOE Energy Materials Network, Aimed at Accelerating the R&D of Advanced Water Splitting Materials (AWSM)

H.N. Dinh, E.L. Miller, K. Randolph, A. Weber, A. McDaniel, R. Boardman, T. Ogitsu, and H. Colon-Mercado

Date: 11/8/2017 Venue: Fuel Cell Seminar, Long Beach, CA Renewable Hydrogen Pathways Session

Website: https://www.h2awsm.org/

Energy Materials Network (EMN)

Energy Materials Network U.S. Department of Energy

Energy Materials Network

The Energy Materials Network (EMN) aims to dramatically decrease time-to-market for advanced materials that are critical to many clean energy technologies.

WORLD-CLASS INNOVATION

EMN is fueling U.S. industry with leading scientific and technical capabilities, data, and tools, and helping deliver innovative clean energy products to the world marketplace through its network of national lab-led consortia.

CLEAR POINTS OF ENGAGEMENT

In building an enduring, accessible network, EMN offers industry clear points of engagement and streamlined access to national lab resources by providing technical support, collaboration tools, and data platforms.

RAPID SCALE-UP

EMN is addressing market deployment barriers and getting new technologies to market faster by better integrating all phases of the materials development cycle, from discovery through deployment.

> COMMERCIAL SCALE-UP AND MANUFACTURING

DISCOVERY > DEVELOPMENT > OPTIMIZATION > SYSTEM INTEGRATION > CERTIFICATION

PROPELLING CLEAN ENERGY MATERIALS DEVELOPMENT FORWARD, 2X FASTER AND AT HALF THE COST

0

EMN's initial consortia are focusing on targeted materials tracks aligned with some of industry's most pressing clean energy materials challenges.

LIGHTWEIGHT MATERIALS **FOR VEHICLES**

DURABLE MATERIALS FOR SOLAR MODULES

CALORIC MATERIALS FOR HEAT PUMP TECHNOLOGIES **NEXT-GENERATION ELECTRO-**CATALYSTS FOR FUEL CELLS

Caloric MATERIALS CONSORTIUM	Caloric materials for efficient cooling and heat pumping technologies.
ChemCatBio Chemical Catalysis for Bioenergy	Catalytic materials for commercial bioenergy applications
DuraMAT Durable Module Materials Consortium	Durable module materials that reduce the levelized cost of energy of photovoltaic systems.
Light MAT	Lightweight materials for automotive manufacturing.
ElectroCat Electrocatalysis Consortium	Platinum group metal-free catalysts for automotive fuel cells
	Hydrogen storage materials by providing capabilities and foundational understanding.
HydroGEN Advanced Water Splitting Materials	Advanced water splitting technologies for clean, sustainable hydrogen production.

Goal: Widespread H₂ Production & Delivery

Hydrogen enables domestic energy & environmental security, with large-scale market potential & with job creation and economic growth opportunities

HydroGEN Consortium Launch

From drawing-board to consortium full deployment in 6 months!

About Capabilities FAQs News Contact

meeting the challenge

Accelerating research, development, and deployment of advanced water splitting technologies for clean, sustainable hydrogen production FEATURED CAPABILITY Photoelectrochemical Device In Situ and Operando Testing Using X-Rays

IN THE NEWS Energy Department Announces \$30 Million Investment for Innovation in...

Learn More

Visit the HydroGEN website at https://www.h2awsm.org

HydroGEN: Advanced Water-Splitting Materials (AWSM) Consortium

<u>Accelerating discovery & development</u> of innovative materials critical to advanced water splitting technologies for sustainable H₂ production, including:

Cross-Cutting Multiple Advanced Water Splitting Material (AWSM) Technologies

Polymer Electrolyte Membrane Electrolysis (LTE)

Solid Oxide Electrolysis (HTE)

HydroGEN: Advanced Water Splitting Materials

Cross-Cutting Technologies and Collaboration Can Enable Reduction in H₂ Production Cost

RD&D from different water splitting pathways is critical to reducing renewable H₂ production cost

Collaborations: HydroGEN Steering Committee

HydroGEN: Advanced Water Splitting Materials

HydroGEN: Advanced Water-Splitting Materials (AWSM) Consortium

Comprising more that 80 unique, world-class capabilities/expertise in:

Advanced Materials Synthesis Materials Theory/Computation Characterization & Analytics NREL LLNL SNL High-throughput spray Bulk & interfacial pyrolysis system for models of aqueous electrode fabrication Stagnation flow reactor electrolytes to evaluate kinetics of redox material at hiah-T Conformal ultrathin TiO₂ ALD LAMMPS classic molecular dynamics coating on bulk nanoporous gold modeling relevant to H₂O splitting

SNL

TAP reactor for extracting quantitative kinetic data

Cross technology collaboration opportunities

Website: https://www.h2awsm.org/

HydroGEN Website – Enhanced Capability Search

Search Q		Ab Initio Modeling of		Advanced Electron			Advanced Materials for		
Reset filtering		Electrochemical Interfaces		Microscopy			Water Electrolysis at Elevated Temperatures		
-			X			1		× 1	
APABILITY CLASS	NATIONAL LABORATORY		1			1		/	
 Analysis 	Idaho National								
Benchmarking	Laboratory (INL)	LLNL	PEC 1, LTE 2	SNL	HTE 1, LTE 1, P	EC 1,	INL	HTE 2	
Characterization	Lawrence Berkeley	•			ST	OH 1			
 Computational Tools and Modeling 	(LBNL)								
Data Management	Lawrence Livermore								
 Material Synthesis 	National Laboratory	Advanced M	later Splitting	Albanus	Open Source		ALD Report Su	rface	
Process and	(LLINL)	Materials Requirements		Multiphysics Research			Functionalization and		
Manufacturing Scale-Up	Energy Laboratory	Based on Fle	owsheet	Platform	n		Porosity Contr	ol	
 System Integration 	(NREL)	Developmen	nt and Techno-			1		1	
	Sandia National	Economic A				1		1	
VATER-SPLITTING	Laboratories (SNL)								
ECHNOLOGY	Savannah River National	SRNL	HT 1, HTE 1,	SNL	HTE 1, LTE 1, P	EC 1,	LLNL	PEC 3	
ligh-Temperature Electrolysis			STCH 2, LTE 3,	•	ST	OH 1	••		
HTE 1 HTE 2 HTE 3	Show		PEC 3						
ow-Temperature Electrolysis	12 TApply								
LTE 1 LTE 2 LTE 3					DET OF LA	-	0 1 0		
hotoelectrochemical		Characteriza	ation of Hydrided	Energeti	DFT Simulation o	α τ	Cascading Pre	essure Reactor	
PEC 1 PEC 2 PEC 3	Reset	Material Per	formance	Photoex	cited Dynamics				
olar Thermochemical			1			1		1	
STCH 1 STCH 2			1			/		1	
STCH 3									
lybrid Thermochemical		INL	HTE 2	LLNL	P	EC 2	SNL	STCH 1	
HT 1 HT 2 HT 3				•					
Alada Paadinaan Catagorian									

HydroGEN: Advanced Water Splitting Materials

https://www.h2awsm.org/index.html

HydroGEN Data Hub: Making digital data accessible

				Log in Regist	۲.			
HydroGEN Advanced Water Spitting Materials					Home	Projects	Data	About
	The submission point for data collected from	HydroGEN Data I	Hub Water Splitting Materials National Lat	tonatory Consortium				
	Register Request a HydroGEN account.	Q Discover Search the repository.	Sub Upload and Share da	Submit Data Upload and archive your data. Share data with others.				
	Energy Materials Network	INREL	Sandia National Laboratories	Idoho National Laboratory	r.		6	
		Lawrence Livermore National Laboratory	SRNL	BERKELEY LAB		0		A
HydroGEN Da (https://datah	ata Hub Home Pag ub.h2awsm.org/)	e		6		Ð	Q	

HydroGEN: Advanced Water Splitting Materials

Technology Transfer Activities

High Impact Publication

PUBLISHED: 31 JULY 2017 | VOLUME: 2 | ARTICLE NUMBER: 17127

Self-optimizing, highly surface-active layered metal dichalcogenide catalysts for hydrogen evolution

Yuanyue Liu^{1†‡}, Jingjie Wu^{1‡}, Ken P. Hackenberg^{1‡}, Jing Zhang¹, Y. Morris Wang², Yingchao Yang¹, Kunttal Keyshar¹, Jing Gu³, Tadashi Ogitsu², Robert Vajtai¹, Jun Lou¹, Pulickel M. Ajayan¹, Brandon C. Wood^{2*} and Boris I. Yakobson^{1*}

Steering Committee Member (Tadashi) owns a FCEV and chooses a unique license plate

High Impact Publications & Patents

World-record Photoelectrolysis Efficiency with Inverted Metamorphic Multi-junction Semiconductors

Mass-spectrometer based Faradaic efficiency system Protected Layer to Enhance Durability

- Filed provisional patent on "PASSIVATING WINDOW AND CAPPING LAYER FOR PHOTOELECTROCHEMICAL CELLS." on August 16, 2016 at the United States Patent & Trademark Office (USPTO) and has received Application No. 62/375,718.
- Filed a non-provisional patent on "Devices and Methods for Photoelectrochemical water splitting" March 23rd, 2016 based on our IMM for high efficiency work. United States Patent Application 20160281247. Awaiting examination.

High Impact Publications and Patent Applications

NEW HydroGEN Seedling Project

19 Proposals Selected, Negotiated, and Awarded44 unique capabilities being utilized across 6 core labs

To learn more, check HydroGEN website or contact huyen.dinh@nrel.gov

HydroGEN EMN

Comprising more than 80 unique, world-class capabilities/expertise in materials theory/computation, synthesis, and characterization & analysis:

Materials Theory/Computation

Advanced Materials Synthesis

Characterization & Analysis

HydroGEN is enabling innovative, world-class research of water-splitting materials and catalysts.

Acknowledgements

Energy Materials Network U.S. Department of Energy

ENERGY Energy Efficiency & Renewable Energy Energy Efficiency &

> **DOE EERE Fuel Cell Technology Office Team**

> > **Eric Miller and** Katie Randolph, (Leads)

David Peterson James Vickers Maxim Lyubovsky **Kim Cierpik-Gold**

Acknowledgements

NREL Team

Huyen Dinh, Lead Principal Investigators:

Shaun Alia Mowafak Al-Jassim Guido Bender Jeff Blackburn Kai Zhu Todd Deutsch Daniel Friedman David Ginley Kevin Harrison Steven Harvey Stephan Lany Zhiwen Ma Kristin Munch Judy Netter John Perkins Bryan Pivovar Matthew Reese Genevieve Saur Glenn Teeter Michael Ulsh Judith Vidal Andriy Zakutayev

LBNL Team

Adam Weber, Lead Principal Investigators:

Nemanja Danilovic Ian Sharp Peter Agbo David Larson Lin-Wang Wang Walter Drisdell Mike Tucker Francesca Toma Miquel Salmeron Ethan Crumlin Jeffrey Greenblat Ahmet Kusoglu Frances Houle David Prendergast

SRNL Team

Hector Colón-Mercado, Lead Principal Investigators:

Maximilian Gorensek Brenda Garcia-Diaz

Acknowledgements

HydroGEN Advanced Water Splitting Materials

SNL Team

Anthony McDaniel, Lead Principal Investigators:

Mark Allendorf Eric Coker Bert Debusschere Farid El Gabaly Lindsay Erickson Ivan Ermanoski James Foulk Cy Fujimoto Fernando Garzon Ethan Hecht Reese Jones Bryan Kaehr David Littlewood John Mitchell Jeff Nelson Peter Schultz Randy Schunk Subhash Shinde Josh Sugar Alec Talin Alan Wright

LLNL Team

Tadashi Ogitsu, Lead Principal Investigators:

Sarah Baker Monika Biener Alfredo Correa Tedesco Thomas Yong-Jin Han Tae Wook Heo Jonathan Lee Miguel Morales-Silva Christine Orme Tuan Anh Pham Christopher Spadaccini Tony Van Buuren Joel Varley Trevor Willey Brandon Wood Marcus Worsley

INL Team

Richard Boardman, Lead Principal Investigators:

James O'Brien Dong Ding Rebecca Fushimi Dan Ginosar Ting He Gabriel llevbare Soe Lwin Carl Stoots

