An overview of liquid hydrogen carrier R&D supported by the DOE Fuel Cell Technologies Office

Energy Efficiency & Renewable Energy

ARPA-E Liquid Transportation Fuels Workshop Denver, CO August 27-28, 2015

Ned Stetson, PhD

U.S. Department of Energy Fuel Cell Technologies Office Hydrogen Storage Program Manager

Outline

U.S. DEPARTMENT OF Energy Efficiency & Renewable Energy

ENERG

- Definition of an ideal liquid hydrogen carrier
- How liquid hydrogen carriers could fit in the infrastructure \bullet
- Overview of key properties needed for an effective carrier
- Overview of DOE supported R&D on liquid carriers •
 - Air Products and Chemicals Inc.
 - Hawaii Hydrogen Carriers
 - University of Oregon/Boston College
- H₂ Infrastructure potential areas liquid carriers could offer advantages

- Solid or gaseous carriers
- "One-way" carriers –
 e.g., ammonia, hydrocarbon reformation
- Slurries solid carrier suspended in a slurring agent e.g., ammonia borane or alane (AIH₃) in AR 20 silicon oil

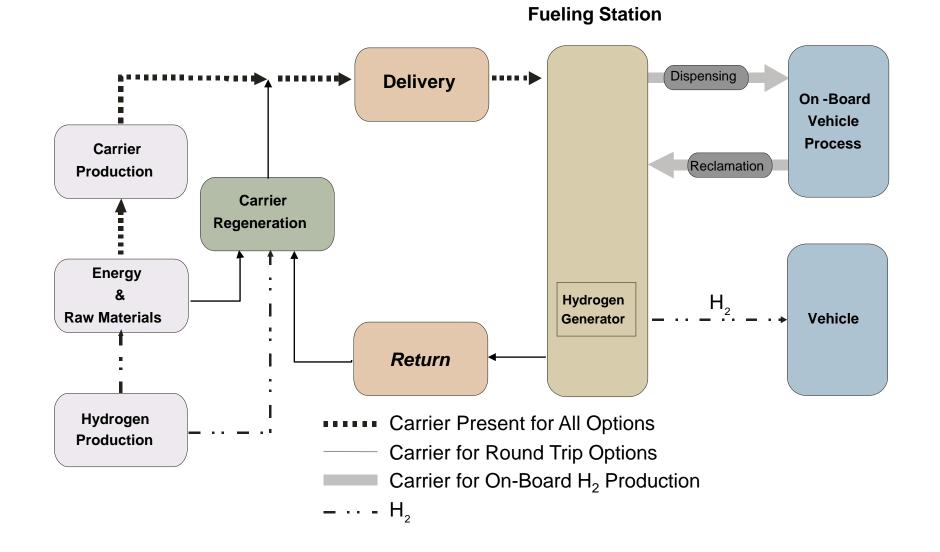

• Stable with little to no release of hydrogen under the range of ambient conditions

$$_Q + H_2 \xleftarrow{\text{catalyst}} LQ^*H_2 + heat$$

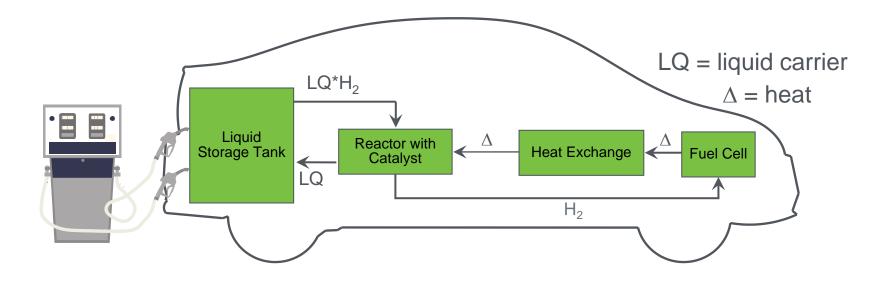
- Rapidly able to release hydrogen using available "waste" heat and temperature (e.g., PEM fuel cell)
- Remains in liquid phase throughout all stages of hydrogenation/dehydrogenation and temperature range
- Low volatility and able to be separated from the released hydrogen easily
- Little degradation on cycling (i.e., minimal side reactions and loss of volatile components) long cycle life

Operation scheme for "2-way" liquid hydrogen carriers

U.S. DEPARTMENT OF



- heat (~14 kcal/mol H₂)

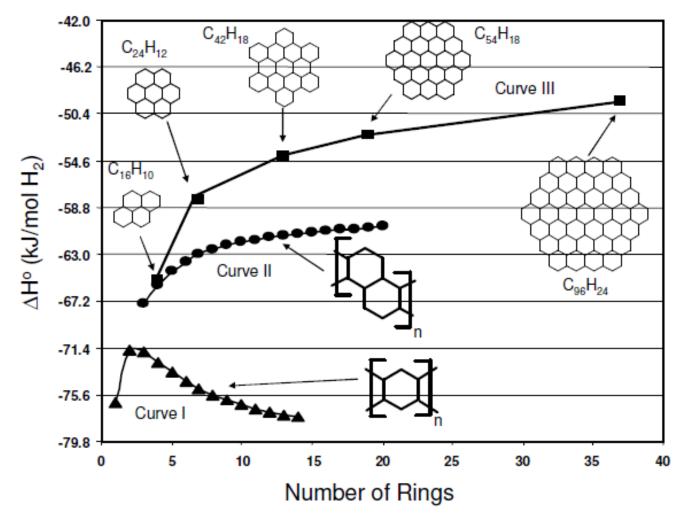

Estimate: ~72 liters of hydrogenated liquid carrier could reversibly store 5 kg of hydrogen at 7 wt.% and 1g/cc density

~ 50% of the volume required for 700 bar compressed H_2 at ambient temperatures!

Air Products presentation at the 2007 Hydrogen and Fuel Cells Technologies Annual Merit Review and Peer Evaluation Meeting, #ST-23, 17 May 2007

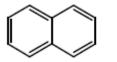
U.S. DEPARTMENT OF

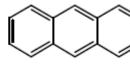
Currently not a focus area for the DOE-EERE Fuel Cell Technologies Office

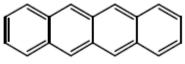


Liquid Hydrogen Carrier Development

Dehydrogenation enthalpy vs number of rings

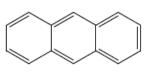

U.S. DEPARTMENT OF EI

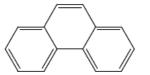

Energy Efficiency & Renewable Energy



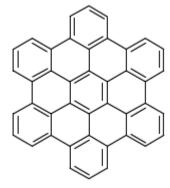
Calculated dehydrogenation enthalpy, H_D° (kJ/mole H_2), for three series of polyaromatic hydrocarbons as a function of the number of rings. The PM3 semi-empirical method was used for the calculations. (*Air Products, Final Report, DOE Award # DE-FC36-04GO14006*)

The aromatic stabilization energy of polyaromatic hydrocarbons is determined by the relative number of aromatic sextet structures in the molecules. (*Clar, E. in "Polycyclic Hydrocarbons", Academic Press, NY, 1964, Chapter 16*)

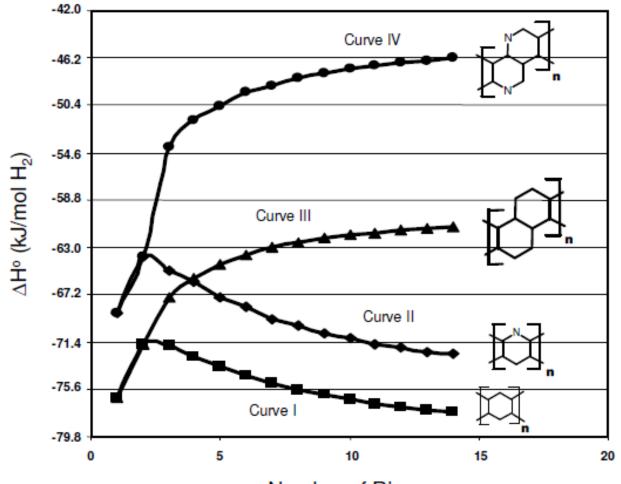



naphthalene

anthracene


tetracene

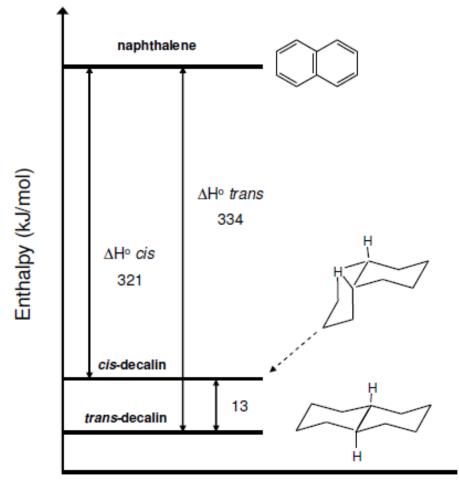
anthracene



phenanthrene

hexabenzocoronene

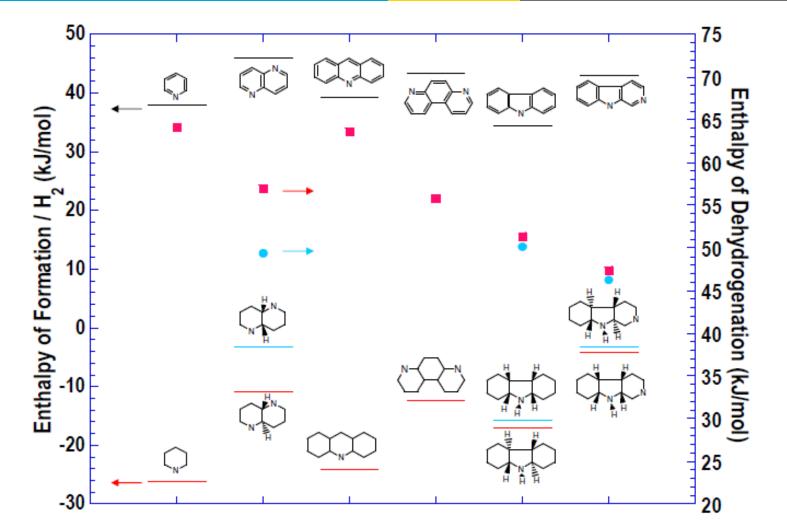
Effect of heteroatoms in the rings


Number of Rings

Calculated dehydrogenation enthalpy, H_D° (kJ/mole H_2) for N-heterocycles and the corresponding polyaromatic hydrocarbons (PM3 method) (*Air Products, Final Report, DOE Award # DE-FC36-04G014006*)

Impact of cis-trans isomerization

U.S. DEPARTMENT OF


Energy Efficiency & Renewable Energy

Cis-trans isomerism in naphthalene and the relative energetics (*Air Products, Final Report, DOE Award # DE-FC36-04G014006*)

Survey of standard enthalpies of formation and dehydrogenation

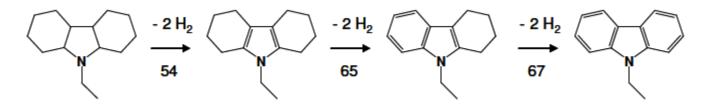
U.S. DEPARTMENT OF

Standard enthalpies of formation, Hf° and standard dehydrogenation enthalpies, HD°, (kcal/mole H2) of N-heterocyclic aromatic and cycloaliphatic molecule pairs. (*Air Products, Final Report, DOE Award # DE-FC36-04G014006*)

Alkylated carbazoles

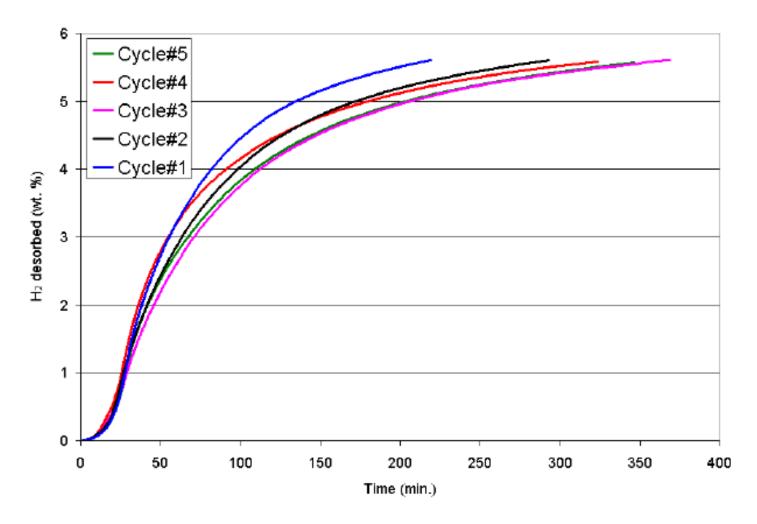
U.S. DEPARTMENT OF Energy Efficiency & Renewable Energy

Molecule	Formula	Melting Point	Theoretical Capacity (wt.%)	
Carbazole	C ₁₂ H ₉ N	250°C	6.7	
N-methylcarbazole	C ₁₂ H ₉ N-CH ₃	90°C	6.2	
N-ethylcarbazole	C ₁₂ H ₉ N-CH ₂ CH ₃	70°C	5.7	
$\begin{array}{c} \hline \\ R - OH \\ H \\ 170 \ ^{\circ}C, 1200 \ psia \ H_{2} \\ H \\ \end{array}$				


170 °C, 1200 psia H₂ 4-16 hours

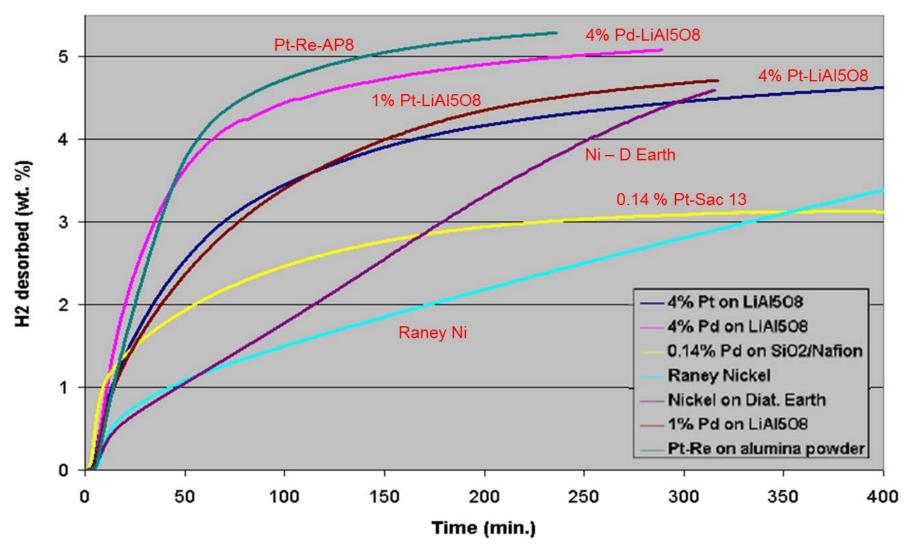
Yields of nickel-catalyzed hydrogenation and N-alkylation of carbazole. (Air Products, Final Report, DOE Award # DE-FC36-04GO14006)

Alkyl group	Yield of perhydro- N-alkylcarbazole	Yield of partially hydrogenated N-alkylcarbazole	Hydrogenated carbazole
Methyl	98%	2%	0%
Ethyl	97%	3%	0%
n-propyl	97.5%	2.5%	0%
iso-propyl	59%	7%	34%


Dehydrogenation conditions

- Typical dehydrogenation experimental conditions for perhydro-N-alkylcarbazole performed by Air Products:
 - the dehydrogenation catalyst was slurried (1-5 wt.%) in liquid perhydro-N-alkylcarbazole
 - 1 atm. initial hydrogen pressure
 - temperature ramped at a controlled rate up to 150-200 °C
 - slurry stirred at 500-800 rpm
 - rate of hydrogen release from the reactor measured with a flow meter

GC-MS analysis of intermediates indicate hydrogen released in steps of 2 hydrogen molecules. Scheme above includes calculated electronic energy change (DE; kJ/mol H2) for the stepwise dehydrogenation of perhydro-N-ethylcarbazole


Stability with cycling

Five sequential dehydrogenation steps of hydrogenation/dehydrogenation cycling experiments of N-ethylcarbazole. (*Air Products, Final Report, DOE Award # DE-FC36-04GO14006*)

Effect of catalyst on dehydrogenation performance

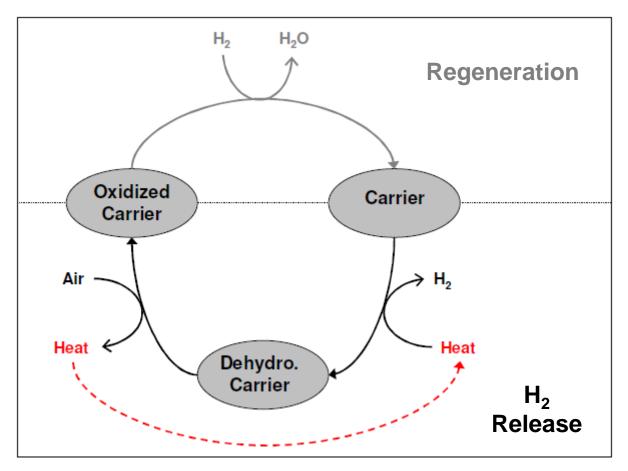
ENERGY Energy Efficiency & Renewable Energy

Overlay of perhydro-N-ethylcarbazole hydrogenationation data for a range of catalysts. (*Air Products, Final Report, DOE Award # DE-FC36-04GO14006*)

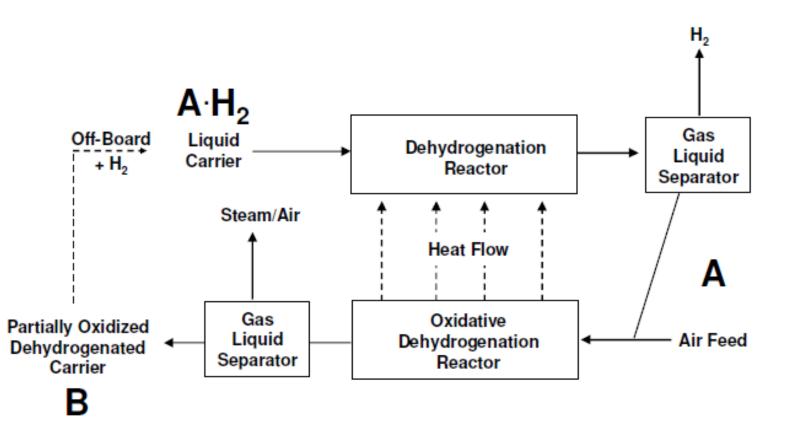
Dehydrogenation of perhydro-N-ethylcarbazole with palladium/platinum on alumina. The table shows the temperature and hydrogen flow rate at the time when the samples were analyzed.

Pd on alumina

Pt on alumina

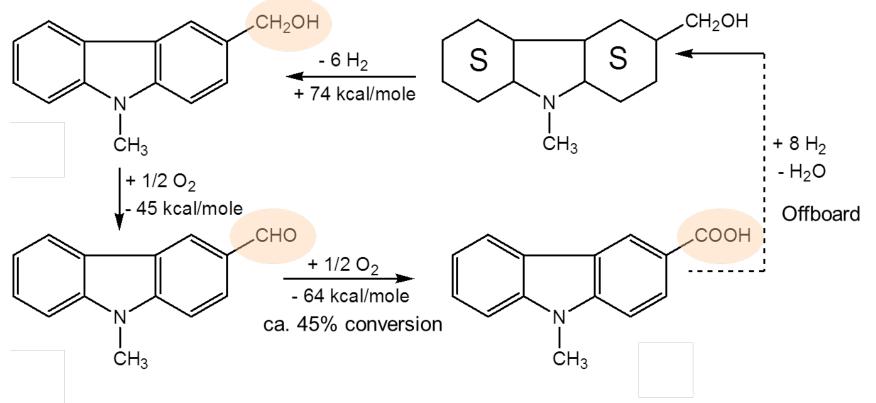

Temp (°C)	H ₂ Flow	Methane	Ethane	Tem
	(sccm)	Conc. (ppm)	Conc. (ppm)	(°C
144	5.0	177	2	144
147	6.4	164	10	147
149	7.3	137	19	153
152	8.1	99	31	155
154	9.0	80	34	157
197	45.0		1	197
197	39.0		13	197
197	35.0		23	197
197	30.0		23	197
197	26.0		25	197
197	5.0		44	197
197	4.6		47	197
197	4.4		48	197
197	4.1		47	197
197	3.9		48	197

Temp (°C)	H ₂ Flow	Methane	Ethane
	(sccm)	Conc. (ppm)	Conc. (ppm)
144	5	196	44
147	6.4	194	163
153	7.3	188	374
155	8.1	178	631
157	9	169	991
197	58		2723
197	45		2865
197	32.9		3327
197	22.8		4146
197	17.5		5093
197	5		7244
197	4.8		7350
197	5.5		7398
197	4.9		7355
197	4		7343


How to supply the heat of enthalpy without consuming stored hydrogen?

ENERGY Energy Efficiency & Renewable Energy

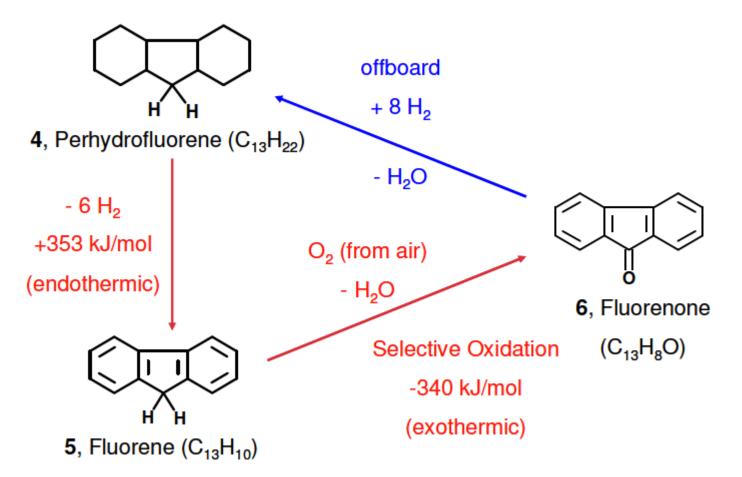
Potential solution – Development of an Autothermal concept


A general schematic of one autothermal carrier cycle

Autothermal dehydrogenation reactor system schematic.

Autothermal concept

ENERGY Energy Efficiency & Renewable Energy



- 5.4 wt.% H₂ (material basis) with no external input of heat
- Only partial conversion to the fully oxidized product is necessary for autothermal operation
- Highly selective catalytic chemistry is known for all of these steps

Air Products presentation at the 2007 Hydrogen and Fuel Cells Technologies Annual Merit Review and Peer Evaluation Meeting, #ST-23, 17 May 2007

Autothermal concept

ENERGY Energy Efficiency & Renewable Energy

The perhydrofluorene/fluorene/fluorenone, dehydrogenation, selective oxidation and re-hydrogenation cycle.

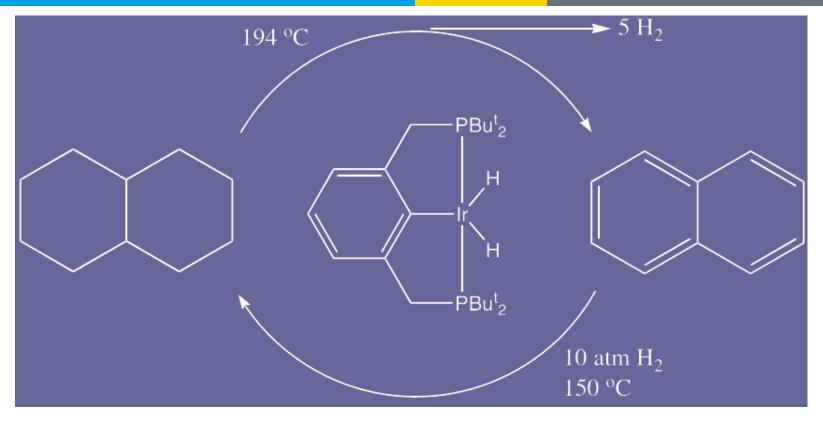
U.S. DEPARTMENT OF

For packed-bed reactor designs, two different reaction rate limitations were anticipated:

- 1) incomplete catalyst utilization caused by "drying out" of the catalyst surface, and
- a reduction of the intrinsic reaction rate due to the effect of diffusion through the porous catalyst to the active metal sites, as measured by the effectiveness factor.
- Alternative reactor designs investigated included:
 - 1) Metal catalyst monoliths prepared from corrugated 0.05 mm iron/chromium foils coated with a tightly-adhering gamma alumina washcoat
 - 2) Wicking microchannel reactor
 - Suspended slurry microchannel reactor considered the most promising

 H_2 liquid carrier economics are considered to be favorable, in the range of \$0.85 – \$4.50/kg H_2 delivery cost, provided that certain targets can be achieved. Specific recommendations include:

- reducing the liquid carrier cost to less than \$10/gallon,
- lowering the carrier melting point,
- meeting a catalyst productivity target of >1,000,000 kg
 LOHC processed per kg of catalytic metal,
- and reducing the carrier loss rate to <2% per year.

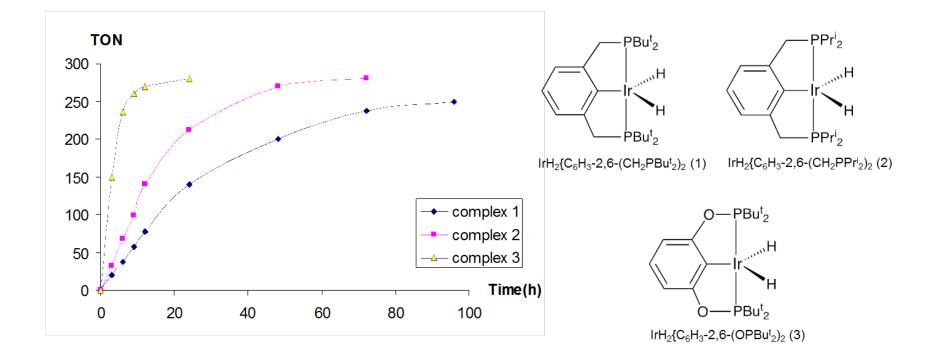


Homogeneous Catalyst Development

Use of Homogeneous catalysts

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

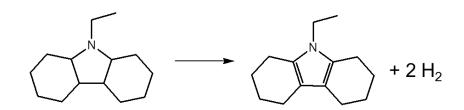


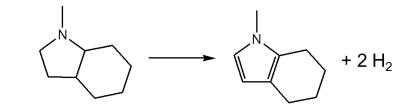
- First homogenous aliphatic dehydrogenation catalyst
- 3 orders of magnitude higher activity than heterogeneous catalyst temperatures as low 100 °C
- Two-way catalyst

Hawaii Hydrogen Carriers presentation at the 2012 Hydrogen and Fuel Cells Technologies Annual Merit Review and Peer Evaluation Meeting, #ST-098, 17 May 2012

U.S. DEPARTMENT OF

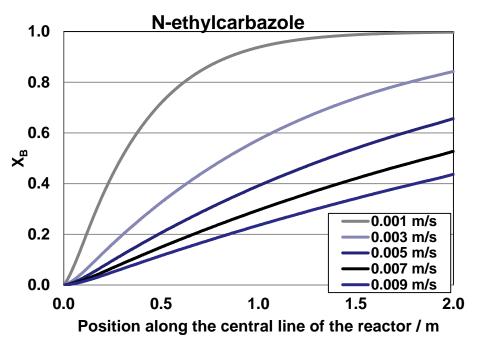
Energy Efficiency & Renewable Energy

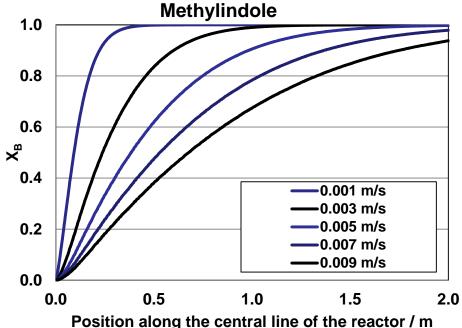



Dehydrogenation of N-ethylperhydrocarbazole using homogeneous Ir PCP pincer catalyst gives **higher rates of dehydrogenation at 2 orders of magnitude lower loadings than heterogeneous catalysts**

Hawaii Hydrogen Carriers presentation at the 2012 Hydrogen and Fuel Cells Technologies Annual Merit Review and Peer Evaluation Meeting, #ST-098, 17 May 2012

Alternative liquid carriers


Energy Efficiency & Renewable Energy

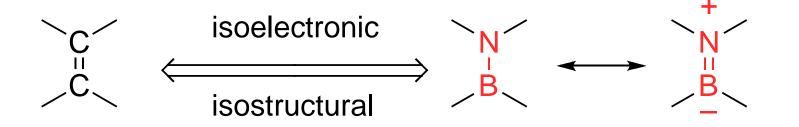

U.S. DEPARTMENT OF

ENERGY

- Fixed reactor geometry and conditions
- Require near 100% conversion
- 5x improvement in H₂ production

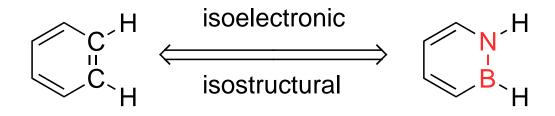
Hawaii Hydrogen Carriers presentation at the 2012 Hydrogen and Fuel Cells Technologies Annual Merit Review and Peer Evaluation Meeting, #ST-098, 17 May 2012

MPHI gives higher throughput



Liquid Hydrogen Carrier **Development through B-N** substituted heterocycles

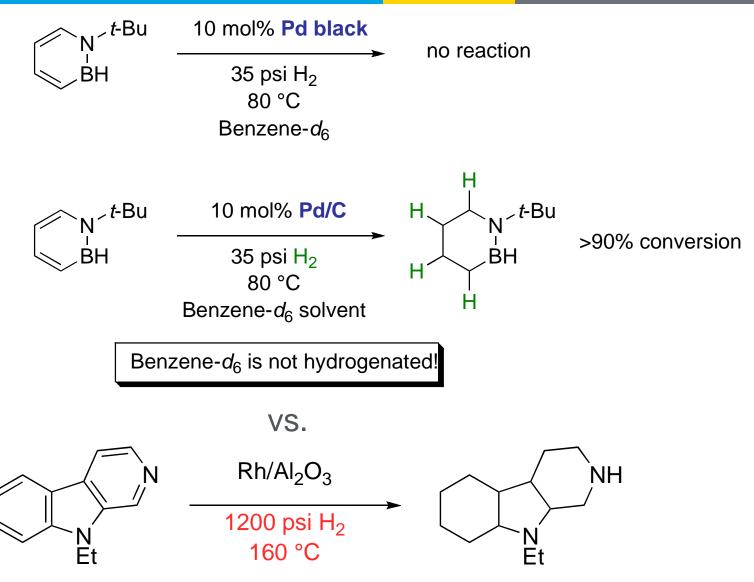
B-N substituted heterocycles


ENERGY Energy E

Energy Efficiency & Renewable Energy

benzene

1,2-dihydro-1,2-azaborine

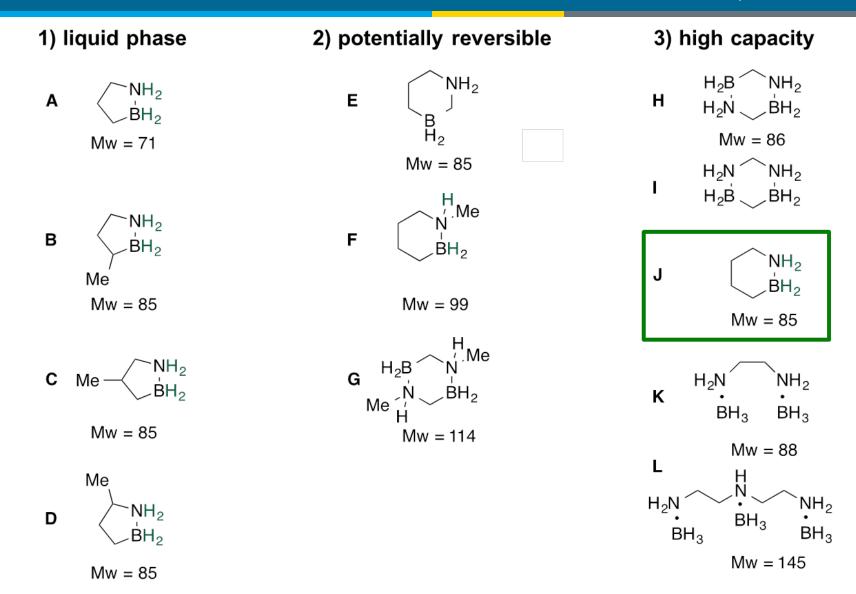

Research objectives:

- liquid-phase
- gravimetric density (> 6 wt. %)
- volumetric density (> 4.5 vol. %)
- favorable thermodynamics (H₂ absorption and desorption)
- efficient and easy regeneration (reversibility)
- Couple exothermic H_2 desorption from BN with endothermic H_2 desorption from CC

University of Oregon presentation at the 2009 Hydrogen and Fuel Cells Technologies Annual Merit Review and Peer Evaluation Meeting, #ST-016, 21 May 2009

Ease of hydrogenation for CBNs

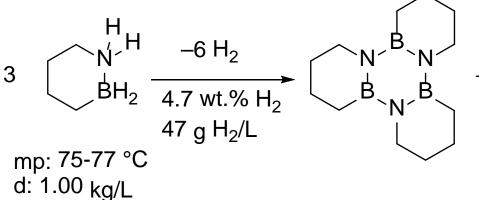
ENERGY Energy Efficiency & Renewable Energy

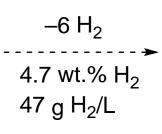


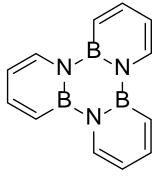
University of Oregon presentation at the 2009 Hydrogen and Fuel Cells Technologies Annual Merit Review and Peer Evaluation Meeting, #ST-016, 21 May 2009

Series of CBNs investigated

Energy Efficiency & Renewable Energy


U.S. DEPARTMENT OF




University of Oregon presentation at the 2015 Hydrogen and Fuel Cells Technologies Annual Merit Review and Peer Evaluation Meeting, #ST-104, 10 June 2015

Potential high capacity materials

ENERGY Energy Efficiency & Renewable Energy

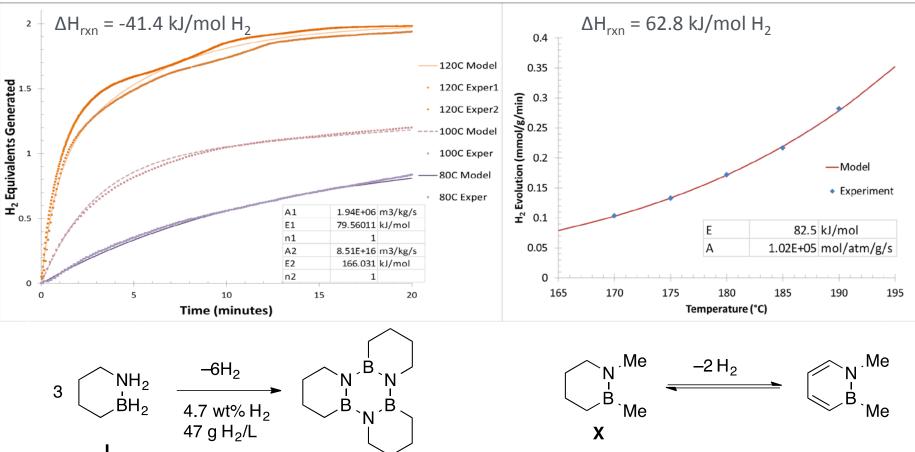
Overall (-6 H_2) $\Delta H(gas) = -83.1$ $\Delta H(liquid) = -59.6$ $\Delta G(gas) = -107.3$

Per mol H₂: Δ G(gas) = -17.8 Δ H(liquid) = -10.0 Δ G(THF) = -13.6 Overall (-6 H_2) Δ H(gas) = +102.3 Δ H(liquid) = +102.8 Δ DG(gas) = +49.4

Energies in kcal/mol @ 298K Gas Phase: G3MP2 Liquid Phase: G3MP2 (gas) + BP*0.025 (Trouton's rule) overall potential: 9.4 wt.%; 94 g H₂/L, potential liquid phase starting material at operating T

Per mol H₂: $\Delta G(gas) = -4.8$ $\Delta H(liquid) = +4.0$ $\Delta G(THF) = -3.6$

University of Oregon presentation at the 2015 Hydrogen and Fuel Cells Technologies Annual Merit Review and Peer Evaluation Meeting, #ST-104, 10 June 2015


Exo/Endothermic reactions for CBNs

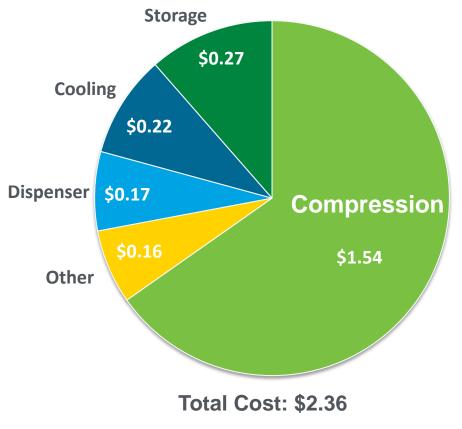
U.S. DEPARTMENT OF Energy E ENERGY Renewat

Energy Efficiency & Renewable Energy

Exothermic Reaction

Thermodynamic Coupling Performed with Properties of Actual CBN Materials

University of Oregon presentation at the 2015 Hydrogen and Fuel Cells Technologies Annual Merit Review and Peer Evaluation Meeting, #ST-104, 10 June 2015


H₂ Infrastructure considerations

ENERGY Energy Efficiency & Renewable Energy

Can liquid hydrogen carriers address key cost and performance issues of the hydrogen infrastructure?

- Transport/delivery
 - Capital cost of delivery equipment
 - Payload for delivery
- Forecourt
 - Storage
 - Compression

H₂ Compression, Storage and Dispensing (CSD) Cost Breakdown

- 2020 goal for H₂ cost at the pump is <\$4/gge (production and delivery cost included)
- Compression and storage are 75% of the cost of H₂ station dispensing costs.

*Based on the pipeline scenario

Compression is a key challenge for the cost of delivering and dispensing H₂

- Air Products' reports available through the DOE Office of Science and Technology Information (*www.osti.gov*)
 - Design and Development of New Carbon-based Sorbent
 Systems for an Effective Containment of Hydrogen DOE
 Award No. DE-FC36-04GO14006
 - Reversible Liquid Carriers for an Integrated Production, Storage and Delivery of Hydrogen - DOE Award Number DE-FC36-05GO15015
- FCTO Annual Progress Reports: <u>http://energy.gov/eere/fuelcells/annual-progress-reports</u>
- FCTO Annual Merit Review Proceedings: <u>http://energy.gov/eere/fuelcells/annual-merit-review-</u> <u>proceedings</u>

Thank you!