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Abstract. The surreal numbers are constructed in stages, with each surreal number being
defined by two other surreal numbers constructed earlier. For two sets of numbers GL and
GR, the number {x | y} is a surreal number if every x ∈ GL, every y ∈ GR, and x < y. In this
paper, we explore the structure of surreal numbers and related objects such as generalized
(or omnific) integers and ordinals. Additionally, we give an exposition on the structure of
the class of surreal numbers, the applications of surreal numbers to combinatorial game
theory, as well as on some objects inspired by surreal numbers such as pseudo numbers. We
also provide a brief introduction to the Field On2 and its properties.

1. A Brief History and Introduction

Surreal numbers are fascinating for several reasons. They are built on an extremely simple
and small foundation, and yet they provide virtually all of the capabilities of ordinary real
numbers. With surreal numbers we are able to (or rather, required to) actually prove things
we normally take for granted, such as x = x or x = y implies x + z = y + z. Furthermore,
surreal numbers extend the real numbers with a tangible concept of infinity and infinitesi-
mals (numbers that are smaller than any positive real number, and yet are greater than zero).

Surreal numbers were popularized by Donald Knuth’s (fiction) book Surreal Numbers:
How Two Ex-Students Turned on to Pure Mathematics and Found Total Happiness, and the
full theory was developed by John Conway after using the numbers to analyze endgames
in Go. In [2] Conway himself said that “I walked around for about six weeks after discov-
ering the surreal numbers in a sort of permanent daydream, in danger of being run over.”
This sense of reverie overtakes others who study them. Martin Kruskal, a mathematician of
wide-ranging achievements, spent some of his later years studying the surreal numbers, and
he wrote “The usual numbers are very familiar, but at root they have a very complicated
structure. Surreals are in every logical, mathematical, and aesthetic sense better.”

The surreal numbers form a field, which is to say that they can be added, subtracted,
multiplied and divided, so long as you do not try to divide by 0. They include the familiar
real numbers as a tiny subfield, and like the reals they are a linearly ordered field. So far so
unremarkable, but they also include the transfinite ordinals; and since they are a field, they
include, along with the first infinite ordinal ω, such wonders as ω − 1, not to mention ω/2
and 2/ω, and they also include

√
ω and ωn for any real number, and for any surreal number.

What can surreal numbers be used for? Not very much at present, except for some use
in combinatorial game theory. But it is still a new field, and the future may show uses that
we haven’t thought of. Nevertheless, surreal numbers are worth studying for two reasons.
First, as a study in pure math they are a fascinating—even beautiful—subject. Before we
start looking at the definition, you must forget every thing you know about numbers (more
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precisely inequalities concerning with real numbers or integers). Every surreal number is
created on a certain day and corresponds to two sets of numbers. For a surreal number, x,
we write x = {GL | GR} and call GL and GR the left and right set of x.

Definition 1.1. Let x = {GL | GR}and y = {HL | HR}. Then we say that x > y if for
every xR ∈ GR, xR > y, and for every yL ∈ HL, x > yL. We say that x > y if x > y and
y 6> x, and x = y if x > y and y > x.

Now we can define Surreal numbers in a more precise way as follows:

Definition 1.2. Suppose that GL and GR are two sets of surreal numbers (or simply num-
bers). If for every x ∈ GL and y ∈ GR we have x < y, then we say that {GL | GR} is a
surreal number.

2. The Structure of NO

The class NO of surreal numbers and the surreal numbers themselves contain many in-
teresting properties, some of which we explore in this section. We first describe the method
of constructing the class NO, after which we examine some of the characteristics of general
surreal numbers.

Definition 2.1. A Dedekind cut or Dedekind section is a set partition of the rational num-
bers into two nonempty subsets S1 and S2 such that all members of S1 are less than those
of S2 and such that S1 has no greatest member.

Definition 2.2. If L and R be subsets of x such that L < R; then (L,R) will be called
a Conway cut in x. Note that if (L,R) is a Conway cut in x, then L or R may be empty.
Further, note that the union of L and R may be a proper subset of x.

It is known that the real numbers R can be constructed in this way. Conway’s method of
building up number systems may be regarded as Dedekind cuts taken to extremes. His basic
principle states that if L,R are two sets of numbers and no member of L is greater than any
member of R, then {L | R} is a number. All numbers are constructed in this way.

One of Conway’s brilliant ideas is that of the birth order of surreal numbers. Starting from
0 = {|} we get all dyadic numbers and, transfinitely, one can get all real numbers. However
we can go even further and construct a Field NO, whose members are surreal numbers.

Definition 2.3. Let α, β, γ, · · · denote arbitrary ordinals. For each A ∈ {α, β, γ, · · · } let

(1) OA be the set of all numbers born before day A.
(2) MA be the set of all numbers born on or before day A.
(3) NA be the set of all numbers born on A.

Each x ∈ NA defines a Dedekind section L,R of OA, setting

L = {y ∈ OA|y < x} and R = {y ∈ OA|y > x}
gives, by the simplicity theorem, x = {L | R}; thus MA = OA ∪ NA. Let x ∈ NA, then for
each A < A, x defines a section in OA, which defines a unique point xA ∈ NA.

Definition 2.4. Define xB to be the Bth approximation to x. Moreover xB = x ∀ B ≥ A.

Theorem 2.5. Every number x is in a unique set NA.
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Proof. Assume that this holds for all xL, XR. If B is an ordinal greater than the birthdays
of all xL, xR, then x ∈MB, and thus x ∈ NA for some A ≤ B. �

Definition 2.6 (Sign-Expansion). For each B < A (the birthday of x) let sB (+ or −) be
the sign of the number x− xB. And sB = 0 ∀ B ≥ A.

Thus we assign to each x, below some ordinal, 0 beyond, a sequence of signs + or − where
we consider, − < 0 < +. And (s) < (t) iff for some A we have

sB = tB ∀ B < A and sA < tA.

Theorem 2.7. Let x and y have sign-expansions (s) and (t). Then we have x < y, x = y,
x > y according as (s) < (t), (s) = (t), (s) > (t).

Proof. If (s) < (t), suppose sB = tB ∀ B < A, but sA < tA. Then xA = yA by induction
for all B < A, but xA < yA. The sections defined by x and y in OA now show that x < y.
If (s) = (t), we find that x and y define the same section of OA, where A is their common
birthday, and so x = y. �

Theorem 2.8. For an arbitrary sequence (s) of signs + or − below some ordinal A, 0
beyond, there exists a number x whose sign-expansion is (s).

As a consequence we see that there exists a bijection between numbers and their sign-
expansions which is monotonous.

A quick application of sign-expansions is a method for computing the value of a real num-
ber, found by Berlekamp. Assume the grounded edge is Left’s. If all edges in the string are
Left’s, the value is clearly an integer equal to the number of edges. Otherwise identify the
first left-right alternation. Left’s edges before the alternation contribute 1 each. Replace
the two alternating edges by a decimal point and replace each subsequent left (respectively,
right) edge by a 1 (respectively, 0) and append a 1. You can now read off the fractional value
in binary. This can be used to get real multiples of ω as +ω −ω −ω is the sign-expansion for
1
4
ω. However can also be used to determine the value of a Hackenbush stalk.

For an example consider the Hackenbush stalk in Figure 1. This is a string of

R R R R︸ ︷︷ ︸
−4

R L︸ ︷︷ ︸
•

L︸︷︷︸
0

R︸︷︷︸
1

R︸︷︷︸
1

L︸︷︷︸
0

R︸︷︷︸
1

L︸︷︷︸
0

which gives

−
(

4 +
1

4
+

1

8
+

1

32
+

1

128

)
= −4

53

128
.

However, there exists another method to find the value of a Hackenbush Stalk, and more
generally a real number, proposed by Thea van Roode in [6]. First assign value 1 to edges
until the first color change. Thereafter, divide by 2 at each new edge. The sign of each edge
depends on its color. The reader is encouraged to prove that both of these methods work
and to calculate the value of the Hackenbush stalk in Figure 1 using Thea van Roode’s
method.
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Figure 1. Using Berlekamp’s rule for a Hackenbush Stalk

2.1. The ω-map.

Definition 2.9. Call positive numbers x and y commensurate if for some positive integer n
we have x < ny, y < nx.

Definition 2.10. Let x be a surreal number. Then we define

ωx =
{

0, rωx
L
∣∣∣ rωxR}

where r ranges over all positive real numbers.

Theorem 2.11. Each positive number is commensurate with some of ωy.

Proof. Let x =
{

0, xL
∣∣ xR} with xL, xR > 0. Each xL is commensurate with some ωy

L
(say)

and each xR with ωy
R

. If x is commensurate with one of its options, we are done. If not,
we can add all numbers rωy

L
as Left options and all rωy

R
as Right options, and we then see

that x = ωy, where y is the number
{
yL
∣∣ yR}. �

Theorem 2.12. We have that ω0 = 1 and ω−x = 1
ωx

. But importantly ωx · ωy = ωx+y.

Proof. We omit the proof here; take a look at [2] for a formal proof. �

Thus we see that ωx has properties of an xth power of ω.

2.2. The Normal Form of x. Now that we know how to raise ω to surreal number powers,
we can define the Conway normal form, a generalization of the Cantor normal form for
ordinal numbers.

Theorem 2.13 (Conway normal form). We can express each surreal number x uniquely in
the form

x =
∑
B<A

ωyB × rB

where the numbers rB are nonzero real numbers, and the yB’s are a decreasing sequence of
surreal numbers (i.e. if B < B′ < A, then yB > yB′).
Normal forms for distinct x are distinct, and every form satisfying these conditions occurs.

Proof. For a proof look at [2]. �
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2.3. Sign-Expansions and Normal Form.

Definition 2.14. Call irrelevant the sign Yδ in the sign-expansion of y if the number with
sign-expansion

[Y0, . . . , Yz, . . .]z<δ

is greater than or equal to some x > y with rx 6= 0.

Definition 2.15. The relevant sign-expansion of y is that obtained by omitting all the
irrelevant signs from its ordinary sign-expansion.

Let our number be of the form ωx · r + ωy · s+ ωz · · · t+ . . . Suppose that x, y, z, . . . have
relevant sign-expansions

[Xδ]δ<A, [Yδ]δ<B, [Zδ]δ<C, . . .

and that r, s, t, . . . have ordinary sign-expansions

[R0, R1, . . .], [S0, S1, . . .], [T0, T1, . . .], . . . .

Then the sign-expansion of our number is

[(X0R0)
ωe0+1

, . . . , (XδR0)
ωeδ+1

, . . . , RωeA
1 , RωeA

2 , . . . ,

(Y0S0)
ωf0+1

, . . . , (YδS0)
ωfδ+1

, . . . , Sω
fB

1 , Sω
fB

2 , . . . ,

(Z0T0)
ωg0+1

, . . . , (ZδT0)
ωgδ+1

, . . . , T ω
gC

1 , T ω
gC

2 , . . .],

where for each δ < A, eδ denotes the ordinal number of + signs among the numbers Xε(ε <
δ), and the numbers fδ, gδ, . . . are defined similarly for the numbers y, z, . . ..

2.4. On Numbers given by Refinements of (Timely) Conway Cuts. We return to
our study of Conway cuts and make refinements.1

Definition 2.16. A Conway cut representation (L,R) of x will be called timely if L and R
are subsets of 0A. The only timely representation of 0 is {|}.

Theorem 2.17. Each x ∈ NO has a timely representation.

Proof. For a proof look at [1]. �

Theorem 2.18. Let (L,R) and (L′, R′) be timely Conway cut representations in NO, such
that {L | R} = {L′ | R′} then (L,R) and (L′, R′) are equivalent.

Proof. For a proof look at [1]. �

Definition 2.19 (Refinements). 1 Let L′ and R′ be subsets of NO such that

(1) L′ < {x} < R′

(2) for all xL ∈ L there exists xL
′ ∈ L′ such that xL ≤ xL

′
.

(3) for all xR ∈ R there exists xR
′ ∈ R′ such that xR

′ ≤ xR.

Then (L′, R′) will be called a refinement of (L,R).

Theorem 2.20. Let (L′, R′) be a refinement of (L,R), then {L′ | R′} = {L | R}
1Get the pun now?
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Proof. Let

I = {y ∈ NO | L < {y} < R}, and I ′ = {y ∈ NO | L′ < {y} < R′}.
By definition we see that x ∈ I ′ and that I ′ is a sub-interval of the interval I. Since x is the
simplest element in I, it is certainly the simplest element of I ′. �

Theorem 2.21. Let y =
{
yL
∣∣ yR} ∈ NO, and let (yL

′
, yR

′
) be a refinement of (yL, yR).

Then

x+ y =
{
xL
′
+ y, x+ yL

′
∣∣∣ xR′ + y, x+ yR

′
}

and

xy =
{
xL
′
y + xyL

′ − xL′yL′ , xR′y + xyR
′ − xR′yR′

∣∣∣ xL′y + xyR
′ − xL′yR′ , xR′y + xyL

′ − xR′yL′
}
.

Proof. For a proof look at [1]. �

2.5. Irreducible numbers. One can ask an interesting question on whether any index in
the normal form of A have the same birthday as A, if not then the normal form yields an
expression for x in terms of (real and ordinal numbers and) simpler numbers. We call such
number x as irreducible. Now suppose the index yA in the A–term of x has the same birthday
as x. Then it is easy to see that ωyA · rA is the last term in the normal form of x and that
rA = ±1. Note that this is followed simply because the numbers∑

B<A

ωyB · rB ± ωyA

are constructed strictly before∑
B<A

ωyB · rB + (ωyA · rA + smaller)

So in the case of irreducible numbers we can write x = X ± ωyA , where X is born before
x. Note that ωy is quite small compared to x, and y has the same birthday as x. Thus
if y is reducible in the sense above, then by inserting the normal form for y, we obtain an
expression for x in terms of simpler numbers, and so as earlier we regard x as reducible. The
irreducible numbers generalize the concept of E–numbers, and it is not hard to see that the
birthday of any irreducible number is an E–number.

2.6. Continued Exponential for Irreducibles. The continued exponential expression for
the number x mentioned in 2.5 is

x = x′ ± ωy′±ω
z′

...

which we write as

x = x′ ± ωy′±ωz′±ω···.
Note that there exists multiple numbers with the same continued exponential thus we cannot
uniquely determine x. Let E be

a± ωb±ωc±ω···.
Let E0 be the first number to be born with this as its continued exponential. And then we
get E−1 and E1 to the left and right of E0, respectively. And E 1

2
lies between E0 and E1.

And similarly define Ex for every number x.



AN OVERVIEW OF SURREAL NUMBERS 7

Let

ε = ωω
...
.

Then ε0 denotes the first ordinal ε-number greater than ω and ε1 denotes the next ε-number.
Respectively we have

ε0 =
{
ω, ωω, ωω

ω

, . . .
∣∣} and ε1 =

{
ε+ 1, ωε+1, . . .

∣∣},
and so on.

Now look at the number

δ = {ordinals < ε | ε− 1, ωε−1, ωω
ε−1

, . . .}.
It is easy to see that δ = ωδ and thus we get the continued exponential expression of δ to be

ωω
...
. And as δ is the first number constructed left of ε with this expression, we get δ = ε−1.

Similarly

ε− 1
2

=
{
δ + 1, ωδ+1, ωω

δ+1

, . . .
∣∣∣ ε− 1, ωε−1, ωω

ε−1

, . . .
}
.

Theorem 2.22. The solutions to the equation x = ωx are the ε-numbers. Also the equation
x = ω−x has a unique solution. Thus x = ω−y and y = ω−x.

2.7. Functions on NO. For a subclass A ⊂ NO, functions of the form f : A→ NO map
each x ∈ A to some f(x) ∈ NO. One important prerequisite of studying surreal analysis
(see [5]) is to come up with the notion of continuity of functions over the surreal numbers;
to do this, we define a topology on NO.

Definition 2.23. A topology on NO, as defined in [4], is a collection of sub-classes C of NO
that satisfy the following three properties.

(1) ∅ and NO are in C.
(2)

⋃
i∈I Ai ∈ C for any sub-collection {Ai}i∈I ⊂ C indexed over a proper set I.

(3)
⋂
i∈I Ai ∈ C for any sub-collection {Ai}i∈I ⊂ C indexed over a finite set I.

Before we formally define continuity of surreal functions, we need to get an idea of what
it means for a subclass of NO to be open.

Definition 2.24. We say that a nonempty subinterval of NO is open if it has endpoints in
NO ∪ {On,Off} (where On is the class of ordinals and Off = −On) and does not contain
the endpoints of NO. The subclass A ⊂ NO is open if it can be written as A =

⋃
i∈I Ai

where I is a proper set and each Ai is an open subinterval of NO.

Thus with the definition of open subclasses, we have completed our definition of a topology
on NO. For a complete proof of this, see [4]. Finally, we can define what it means for surreal
functions to be continuous.

Definition 2.25. For A ⊂ NO, let f : A→ NO be a function. We say that f is continuous
on A if for any open class B ∈ NO, f−1(B) is open in A.

With this idea of continuity of surreal functions in hand, we have the necessary tools we
need to study surreal analysis, the surreal analogue to real analysis. We will not be doing
any surreal analysis here, but we encourage the reader to take a look at [5].
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3. The Class Oz of Omnific Integers

Now that we have explored some of the underlying structure of surreal numbers, we can
look at the surreal number analogue to integers: omnific integers. The literature regarding
these numbers is limited; the main results in this section can be attributed to Conway who
wrote about these numbers in [2].

Definition 3.1. The omnific (or generalized) integers, first defined by Simon P. Norton, are
numbers of the form

x = {x− 1 | x+ 1}.
The class consisting of these omnific integers is known as Oz.

Definition 3.2 (Conception Day). The conception day of a surreal number x, denoted κ(x),
is the smallest ordinal that is the birthday of a number equal to x.

The class Oz includes On, the class of ordinal numbers. In addition, the omnific integers
are closed under addition, subtraction, and multiplication; Oz is therefore a subRing of
NO, with NO being the field of fractions of Oz. This idea is encompassed in the following
theorem.

Theorem 3.3 (Conway). Every surreal number x can be represented as a quotient of two
omnific integers.

Proof. Conway showed in [2] that every surreal number x can be expressed in its normal
form as

x =
∑
B<A

ωyB × rB,

where A is an ordinal, each rB is a non-zero real, and the numbers yB form a descending
sequence of numbers. In the case of omnific integers, the form is modified to x =

∑
ωy · ry,

where ry = 0 for y < 0 and r0 ∈ Z. Thus, with ry = 0 for y ≤ −A (where A is some
ordinal), we have that both ωA and xωA are integers; this means that we can write any
surreal number x as the quotient of the integers ωA and xωA. �

3.1. Continued Fractions. For any positive number x, we know that [x] ≤ x < [x] + 1,
where [x] is the integer part of x. Let a = [x], such that if x 6= a, then we can write
x = a+ 1

y
. Furthermore, if we have y 6= [y], then we can write y as b+ 1

z
. Note that if none

of the remainders (y, z, . . .) are 0, then we obtain the infinite continued fraction

x = a+
1

b+
1

c+
1

d+ · · ·
If one of the remainders does end up being 0, then the continued fraction terminates, and
we call the number a fractional number. In this case, the numbers x + 1, 1

x
, and −x are all

fractional numbers as well.

Consider the equation x2 − Ny2 = ±1, where N ∈ Z and x, y ∈ Oz. Of this equation
(known as Pell’s equation), Conway claimed in [2] that x

y
must be one of the convergents
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to the continued fraction of
√
N . Consider the case of N = ω + 3. In this case, we find that√

ω + 3 =
√
ω + 1

u
, for some u; in addition,

u =
1

3

(√
ω + 3 +

√
ω
)

=
2

3

√
ω +

1

v
,

for some v such that

v =
√
ω + 3 +

√
ω = 2

√
ω +

1

u
.

We thus find that the continued fraction for
√
ω + 3 is

√
ω + 3 =

√
ω +

1

2
3

√
ω +

1

2
√
ω +

1
2
3

√
ω + · · ·

We see that of the convergents of this continued fraction, namely
√
ω

1
,

2
3
ω + 1
2
3

√
ω
,

4
3
ω
√
ω + 3

√
ω

4
3
ω + 1

,
8
9
ω2 + 8

9
ω + 1

8
9
ω
√
ω + 4

3

√
ω
, . . . ,

the second, fourth, sixth, and in general the alternating convergents provide solutions to
Pell’s equation. For example,(

2

3
ω + 1

)2

− (ω + 3)

(
2

3

√
ω

)2

= 1.

4. Pseudo–Numbers and Games

We will now investigate what happens if we drop the requirement that surreal numbers
must be well-formed (that is eve4ry number corresponds to two sets of previously created
numbers, such that no member of the left set is greater than or equal to any member of the
right set). Knuth [3] called numbers that are not well-formed as pseudo-numbers. For an
example {0 | 0} is a pseudo–number since 0 > 0. Investigation of pseudo-numbers leads to
some interesting results. Obviously, any theorem or property that we have proved using the
well-formedness of surreal numbers may not be true for pseudo-numbers.

Now consider the pseudo-number {1 | 0}. We see that {1 | 0} 66 0, since 1 > 0 and
0 66 {1 | 0}, since 0 6 0. Thus we can say that 0 and {1 | 0} are not related at all. Here we
see that unlike numbers, pseudo-numbers are not completely ordered.

Although pseudo-numbers do not behave quite as nicely as numbers, we can still verify
certain properties (such as transitivity) for them. As the numbers go, pseudo–numbers are
obviously not very useful, so it makes sense to require that surreal numbers be well–formed.
However, pseudo–numbers play a useful role in game theory.

We will not here dig much into the application of surreal numbers and pseudo–numbers
to game theory; but a few things are worth noting.

We will consider games played by two players called Left and Right The games involve
no luck and no hidden information. Chess is an example of such a game.
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Let x be a position in a game. If Left is to move, he can turn the position x into a
number of other positions, x1, x2, x3. If Right is to move, she can turn the position x into
a number of other positions say, z1, z2, z3. We will write this thus:

x = {x1, x2, x3 | z1, z2, z3}
It’s not hard to see that here, x is written as a surreal number or a pseudo–number whose
left set consists of the positions that can be reached if Left is to move, and whose right set
consists of the positions that can be reached if Right is to move.

If the next player to move finds that he has lost, he has no moves to make. So, for example,
a number whose right set is empty denotes a position where Right has lost if she is the
player that should make the next move. We can now make a few observations:

(1) 0 = {|} is a position where the next player to move has lost, that is 0 ∈ N .
(2) 1 = {| 0} is a position which Left will win either because Right is about to move but

has no legal moves left, or because Left is about to move and creates the position
0 (which is an N position as seen before), in which Right has lost.

(3) −1 = {0 |} is a position in which Right will win, that is −1 ∈ R.
(4) {0 | 0} is a position where the next player to move will win, because the move will

lead to a position where the next player to move has lost. Thus {0 | 0} ∈ N .

Conway in [1] calls {0 | 0} star and denotes it by the symbol ∗. The pseudo-number {∗ | ∗}
is a position where the next player to move will lose, because the move will lead to position
{0 | 0}, in which the next player to move will win. Thus we deduce that both {∗ | ∗} and
{|} identify a position in which the next player to move will lose. The amazing thing now is
that if we compare {∗ | ∗} and {|} using our well known definitions, we get {∗ | ∗} = {|}.

5. The Field On2

What we get is in sense the characteristic 2 analogue of the large field NO (which we saw
in section 2), which we might call NO2 naturally. But it turns out that this new field is
also the simplest way of turning the class On of all the ordinals into a Field. And so for the
moment we will adopt the name On2 (which has in any case a nicer sound).

The next thing to ask would be, how can we find a simplest addition and multiplication
which would make On a Field? We leave this as an exercise to the reader (hint: think about
the nim–addition and nim–product). For notational convenience, let α, β be ordinals and
α′, β′ represent arbitrary ordinals smaller than α, β. We shall write mex (S) for the least
ordinal not in set S, and refer to the members of S as excludents. If α = mex (S), then we
shall often use α∗ for the variable ranging over the set S. More precisely α∗ may take all
the values less than α and possibly some values greater than α, but not α itself.

5.1. Properties of Addition and Multiplication. Let’s look at addition properties first.

Proposition 5.1. We have α + β = α + γ if an only if β = γ, moreover

α + β = mex {α ∗+β, α + β∗}

Proof. On a contrary say, without loss of generality β > γ, then α + γ is an excludent for
α + β. The second part follows, for certainly all numbers α′ + β, α + β′ are excludents, and
the other excludents are distinct from α + β. This completes the proof. �

Proposition 5.2. For all ordinals α, β, γ we have
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(1) α + 0 = α
(2) α + β = β + α
(3) (α + β) + γ = α + (β + γ)
(4) α + α = 0
(5) α = −α

Proof. These claims have 1–line proofs as follows

(1) α + 0 = mex {α′ + 0, α + 0′} = mex {α′} = α.
(2) α + β = mex {α′ + β, α + β′} = mex {β + α′, β′ + α} = β + α.
(3) The proof is as follows

(α + β) + γ = mex {(α + β) ∗+γ, (α + β) + γ′}
= mex {(α′ + β) + γ, (α + β′) + γ, (α + β) + γ′}
= mex {α′ + (β + γ) , α + (β′ + γ) + γ, α + (β + γ′)}
= · · · = α + (β + γ) .

(4) α + α = mex {α′ + α, α + α′} = mex {0∗} = 0.
(5) −α = mex {−α′} = mex {α′} = α.

as desired. This completes the proof of proposition. �

Hence On2 forms a commutative Group with 0 for zero and −α = α. Now since we have
seen properties of ordinals under addition, lets see how they behave under multiplication.

Proposition 5.3. For all ordinals α, β, γ we have

(1) α0 = 0.
(2) α1 = α.
(3) αβ = βα.
(4) (α + β) γ = αγ + βγ.
(5) (αβ) γ = α (βγ).

Proof. These also have 1–line proofs as follows:

(1) α0 = mex {} = 0.
(2) α1 = mex {α′1 + α0− α′0} = mex {α′} = α.
(3) αβ = mex {α′β, α′a, α′β′} = mex {αβ′, α′β, α′β′} = βα
(4) (α + β) γ = mex {(α + β) ∗ γ + (α + β) γ′ − (α + β) ∗ γ′}

= mex {(α′ + β) γ + (α + β) γ′ − (α′ + β) γ′, (α + β′) γ + (α + β) γ′ − (α + β′) γ′}
= mex {βγ + (α′γ + αγ′ − α′γ′) , αγ + (β′γ + βγ′ − β′γ′)}
= mex {(αγ) ∗+βγ, βγ (βγ) ∗+} = αγ + βγ

(5)

(αβ) γ = mex {(αβ) ∗ γ + (αβ) γ′ − (αβ) ∗ γ′}
= mex {(α′β + αβ′ − α′β′) γ + (αβ) γ′ − (α′β + αβ′ − α′β′) γ′}
= mex {(α′βγ + αβ′γ − α′β′γ′ + α′β′γ − α′βγ′ + αβ′γ′ − α′β′γ′)}
= · · · = α (βγ) .
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where the last two equalities have followed simply because

αβ = mex {α ∗ β + αβ ∗ −α ∗ β∗}
�

Thus we see that On2 is a commutative Ring with 1 as one. In fact On2 is a Field, for we
can use the analogue of our genetic construction inverses (see [2]) in NO to construct the
inverse in On2. The results we will now prove show that each new number extends the set of
previous ones in the simplest possible way, regarding as addition simpler than multiplication
and division, and these as simpler than algebraic extensions which are in turn simpler than
the transcendental ones. In stating our results we will follow Von Neumann’s convention
of identifying each ordinal number with the set of all previous ones. So when we say, for
instance, that 6 is a field, we mean that the set {0, 1, 2, 3, 4, 5} is a field.

We shall use [square brackets] for the ordinal operations, for instance we have [4 + 4] = 8,
[4 · 4] = 16, [44] = 256. We will use ∆ as a name for some ordinal whose arithmetic relation
to earlier ordinals is been considered, and δ for ordinals less than ∆.

Proposition 5.4. If ∆ is not a group (under addition), then ∆ = α + β, where (α, β) is
any lexicographically earliest pair of numbers in ∆ whose sum is not in ∆.

The proof turns out to be pretty trivial since α+β > ∆. But the excludents α′+β, α+β′

for α + β are all in ∆ and hence α + β > ∆, as desired. �

Proposition 5.5. If ∆ is a group, we have [∆α] + β = [∆α + β], for all α, β ∈ ∆.

Proof. In this case, the excludents are [∆α′ + δ] + β and [∆α] + β′. But since we already
know that ∆ forms a group, we can solve the equation δ + β = δ for any given δ ∈ ∆, and
so by induction we deduce that the excludents are

[∆α′] + δ + β = [∆α′] + δ, and [∆α + β′]

which are precisely numbers less than [∆α + β], as desired. This completes the proof. �

Proposition 5.6. If ∆ is a group but not a ring, then we have ∆ = αβ where (α, β) is any
lexographically earliest pair of numbers in ∆ whose product is not in ∆.

The proof is left as an easy exercise to the reader. Conway in [2] proves that If ∆ is a field
but not algebraically closed, then ∆ is a root of the lexicographically earliest polynomial
having no root in ∆. Therefore we can deduce that each ordinal ∆ extends the set of all
positive ordinals in the simplest possible way.
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