An Ultra-High Performance Architecture for Embedded Defense Signal and Image Processing Applications

Stewart Reddaway and Pete Rogina WorldScape Defense Company Email: {sfr, pete} @wscapeinc.com

Ken Cameron, Simon McIntosh-Smith, and David Stuttard ClearSpeed Technology, Limited Email: {ken, simon, daves} @clearspeed.com

Michael Koch, Rick Pancoast, and Joe Racosky Phone: (856) 797-8700 Fax: (856) 797-0026 Email: {Michael.j.koch, rick.pancoast, joseph.r.racosky} @lmco.com

Abstract:

This briefing describes the development of a novel, ultra-high performance nextgeneration Single-Instruction/Multiple-Data (SIMD) processing architecture originally designed to realize immersive, photo-realistic 3-D simulations. This low-power, Multi-Threaded Array Processor (MTAP) architecture provides for hundreds and ultimately thousands of processing elements, each with optional floating point hardware, to perform data parallel processing on image and signal processing applications as well as for compression, encryption, search, and general sensor processing applications. The technology is supported by a flexible development environment, including assembly language and C-based language support, as well as a cycle accurate simulator, with plans to develop industry standard API Libraries based upon VSIPL and, ultimately, HPEC-SI. This new technology, being developed by WorldScape and ClearSpeed, has been shown to provide ten to one hundred times the overall performance of PowerPC or Pentium-based architectures, especially when performing image and signal processing functions, such as FFTs or filters. In general, the architecture has been shown to provide significant throughput, size, and power advantages for embedded processing applications.

ClearSpeed Technology Limited is developing the MTAP architecture that provides a scalable array of Processing Elements (PEs) on a single die. Currently 64 and 256 PE devices are planned, although the array can scale to 1,000s of PEs. The technology is complemented by a scalable packet switched bus architecture called ClearConnect that has been designed to support the high bandwidths required for many applications. The technology is proven in silicon and is capable of delivering per device peak performance of over 100 GFLOPS while dissipating less than 5 Watts. The processor is supported by a professional Software Development Kit (SDK) and includes an optimizing C compiler, graphical debugger and a full suite of supporting tools and libraries.

	Report Docume		I OM	Form Approved IB No. 0704-0188			
Public reporting burden for the col maintaining the data needed, and c including suggestions for reducing VA 22202-4302. Respondents sho does not display a currently valid (lection of information is estimated the completing and reviewing the collect this burden, to Washington Headqu uld be aware that notwithstanding an DMB control number.	o average 1 hour per response, inclu ion of information. Send comments arters Services, Directorate for Infor 19 other provision of law, no person	ding the time for reviewing ins regarding this burden estimate mation Operations and Reports shall be subject to a penalty for	tructions, searching exis or any other aspect of th s, 1215 Jefferson Davis J r failing to comply with	ting data sources, gathering and is collection of information, Highway, Suite 1204, Arlington a collection of information if it		
1. REPORT DATE 2. REPORT TYPE 20 AUG 2004 N/A					3. DATES COVERED		
4. TITLE AND SUBTITLE				5a. CONTRACT NUMBER			
An Ultra-High Per	formance Architect	ure for Embedded I	Defense Signal	5b. GRANT NUMBER			
and image Process	ing Applications			5c. PROGRAM E	LEMENT NUMBER		
6. AUTHOR(S)				5d. PROJECT NU	JMBER		
				5e. TASK NUMB	ER		
				5f. WORK UNIT	NUMBER		
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER 8. PERFORMING ORGANIZATION REPORT NUMBER				GORGANIZATION ER			
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM					ONITOR'S ACRONYM(S)		
		11. SPONSOR/MONITOR'S REPORT NUMBER(S)					
12. DISTRIBUTION/AVAII Approved for publ	LABILITY STATEMENT ic release, distributi	on unlimited					
^{13. SUPPLEMENTARY NOTES} See also ADM001694, HPEC-6-Vol 1 ESC-TR-2003-081; High Performance Embedded Computing (HPEC) Workshop (7th)., The original document contains color images.							
14. ABSTRACT							
15. SUBJECT TERMS							
16. SECURITY CLASSIFIC	CATION OF:		17. LIMITATION OF	18. NUMBER	19a. NAME OF		
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	UU	33	KESPONSIBLE PERSON		

Standard Form	298	(Rev.	8-98)
Prescribed b	y AN	SI Std 2	Z39-18

World*Scape* Defense Company has been developing key algorithms and library functions such as FFTs and FIR filters which efficiently utilize the architecture and floating point per PE hardware to gain exceptional performance at very low power dissipation levels. Specific application work, supported by the Office of Naval Research, has been undertaken for radar processing with raw throughput numbers for functions such as FFTs, complex multiplies, filters, etc. significantly higher than other industry standard processing and DSP platforms. This briefing also describes new levels of benchmark performance for FFT per second per watt that provide the basis of plans for embedded SAR processing systems on small UAV's. High level C and VSIPL library support are planned and currently under development.

Lockheed Martin Naval and Electronic Surveillance Systems has been trained in the use of the SDK, and has ported some key, high-performance application benchmarks, such as radar pulse compression, for performance comparison with general purpose processing architectures. Results have shown the potential for considerable performance enhancement for airborne, shipboard, ground-based and undersea tactical signal and image processing systems.

In this briefing, we describe an embedded processing architecture that promises a performance advantage over conventional general-purpose processors of one or two orders of magnitude. Finally, the results of a DoD benchmark algorithm run on the cycle-accurate simulator in summer, 2003, will be presented and compared with general-purpose processor performance.

An Ultra-High Performance Architecture for Embedded Defense Signal and Image Processing Applications

Authors

Ken Cameron (ken@clearspeed.com)

Mike Koch (michael.j.koch@lmco.com)

Simon McIntosh-Smith(<u>simon@clearspeed.com</u>)

Rick Pancoast (rick.pancoast@lmco.com)

Joe Racosky (joseph.r.racosky@lmco.com)

Stewart Reddaway (sfr@wscapeinc.com)

Pete Rogina (pete@wscapeinc.com)

David Stuttard (daves@clearspeed.com)

September 24, 2003

Hank?

White cape

MA

Overview

Work Objective

- Provide benchmark for Array Processing Technology
 - Enable embedded processing decisions to be accelerated for upcoming platforms (radar and others)
 - Provide cycle accurate simulation and hardware validation for key algorithms
 - Extrapolate 64 PE pilot chip performance to WorldScape 256 PE product under development
 - Support customers strategic technology investment decisions
- Share results with industry
 - New standard for performance AND performance per watt

Architecture – MTAP Memory (code & data) **MTAP** Caches **Control Unit** Instruction Fetch / Decode Multi-threaded Instruction Issue / Branching PE Array ALU ALU ALU Reg file Reg file Reg file Memory Memory Memory 1/0 1/0 1/0

- Fully programmable in C •
- Hardware multi-threading ightarrow
- **Extensible instruction set** \bullet

Fast processor • initialization/restart

Overview ClearSpeed's Multi Threaded Array Processor Architecture **Benchmarking Applications** Summary Q&A WindBcape

Memory (code & data) MTAP Caches **Control Unit** Instruction Fetch / Decode Multi-threaded Instruction Issue / Branching PE Array ALU ALU ALU Reg file Reg file Reg file Memory Memory Memory 1/0 1/0 1/0

Architecture – MTAP (cont.)

- Scalable internal parallelism
 - Array of Processor **Elements (PEs)**
 - Compute and bandwidth scale together
 - From 10s to 1,000s of PEs
 - Built-in PE fault tolerance, resiliency
- High performance, low power
 - ~10 GFLOPS/Watt
- Multiple high speed I/O channels

Overview + Processor Element Structure

- ALU + accelerators: integer MAC, FPU
- High-bandwidth, multiport register file
- Closely-coupled SRAM for data
- High-bandwidth per PE DMA: PIO, SIO
 - 64 to 256-bit wide paths
- High-bandwidth inter-PE communication

Overview + Processor Element Structure (cont.)

- 256 PEs at 200MHz:
 - 200 GBytes/s bandwidth to PE memory
 - 100 GFLOPS
 - Many GBytes/s DMA to external data
- Supports multiple data types:
 - 8, 16, 24, 32-bit, ...
 fixed point
 - 32-bit IEEE floating point

Š

Architecture

poly operations

Overview	Architecture DSP Features:
Architecture	 Multiple operations per cycle
Benchmarking	 Data-parallel array processing Internal PE parallelism
Applications	 Concurrent I/O and compute
Summary	 Simultaneous mono and poly operation Specialized per PE execution units
Q&A	 Specialized per PE execution units Integer MAC, Floating-Point Unit
ClearSpeed	 On-chip memories Instruction and data caches High bandwidth PE "poly" memories Large scratchpad "mono" memory Zero overhead looping Concurrent mono and poly operations

Overview Architecture **Benchmarking Applications** Summary Q&A

Software Development:

- The MTAP architecture is simple to program:
 - Architecture and compiler co-designed
 - Uniprocessor, single compute thread programming model
 - Array Processing: one processor, many execution units
- **RISC-style pipeline**
 - Simple, regular, 32-bit, 3 operand instruction set
- Extensible instruction set
- Large instruction and data caches
- Built-in debug: single-step, breakpoint, watch

6

Windcape

TOCKHE

Architecture

Overview	Software Development Kit (SDK):
Architecture	 C compiler, assembler, libraries, visual debugger etc.
Benchmarking	 Instruction set and cycle accurate simulators
Applications	 Available for Windows, Linux and Solaris
Summary	 Development boards & early silicon available from Q4 03
Q&A	
	Application development support:
"beed"	 Reference source code available for various applications
N A B T	 Consultancy direct with ClearSpeed's experts

 Consultancy and optimized code from ClearSpeed's partners

Overview

+ ClearSpeed debugger:

Architect	ure
-----------	-----

Windeape

	🚉 Giddie														X
	File Windows Help														
Panahmarking		CL 10 10 1	7 F 4 0	M HC I	ND C										
Dencimarking	Viewer Control Source	Source co	ode viewer(0 poly_mand	elbrot.cn)			미치	Poly register via			Dirattice	ables of excess	_		D×
	P Dipoty_reandelsrot.cn								Register name	Register value			1		
	Lists Data dama (Crown)	14					1	< P0 < P4		deallord	Address	Label Op cod	a Arg1	Arg2	Arg3
	RES Poly server	15 #defin	ne STEPE CHADE - HINE ne STEPE CHADE - HINE	/ / NUMPOLS) // I	Increment for en	each screen coor-	linate	A 193		deadbeef	00010520	14	24:p4 4:m2	4 m2 + Dx	24 mil
	Poly reenary viewer	17 #defin	ne MES 150 //	Hat number of its	erations			A 912		deadbeef deadbeef	00010520	at .	0.784	+0.29	0.04
Applications	Senaphore Viewer	19 //						A R20		00000000	00010520	raise inc	s 0x3554	0.00	
		20 // De: 21 //	fine a function to test	the termination	condition for	a given (x,y) c	ordinate.	R24		<02000Fe	00010504	manaire	1 Did0001	0.14	
		22 /* Evi	aluate the termination	condition in pars	mallel */			A 832		00000000	00012520		90 xm2	D:m2	
		24 poly	seturn x*x + y*y > 4.01	it :	77 1			A 100		S#900000	00010500	obba	2 782	2.02	0
		2.5 F						< P40 < P44		M900000	00010544	minim	s D:64		
Summary		27 //						7 62		******	00010540	add Lla	4/182	4 m2 0x30.40	0:m2
Carrinary		29 // The 29 //	e main part of the work	is done in the f	function calcres	es() which evalu	ter the result a	Heattheattheat	Data size	PEssmber	00012550	IN	(taue	Dx8001	
		30 poly	char calcres aono float	z, poly float y,	/, mono int resi	1.0		hex 💌	4	* 0	00010554	aub	0.782	D:m2	0.040
		92 p	oly int turnedon; // 1	lach FE does a dif	fierent number	of iterations					0001055C	num in	1 0:64	2.14	
		23 11	nt i; // b	ut they all go ro	cound the mane 1	Loop		0 10	20	30 40 5	00012560	aub	4:m2	4 m2	0.782
094		25 p	oly float scale, yeale;								90012554	14	29.02	D:m4 D:s2	+ 0:29
WAA		27 /	* Set the scale cumular	ive value to its	s initial value	*/					0001256 C	0.02	90.p2	2:p2	
		20 20	calc = x;	ine malme to its	initial value			Poly Arus Vie	rist -		90010570	# 14	4/m2	+ 0x80	20.p4
		40 7	calc = T;	and value of act				Enable State an	d Status Register	PalyRegister PalyMen	00010570	num in	1 Did		
		41 42 x	erult = D;					Value div	1.	atture	0001057C	omp	20 p2	D:m2	
		43 /	* Initialize flag to co	strol iterations	1 */			Orid Lusterer			00013594	craps	22 p2	D:m2	-
		45	urneuon - 1,											CI	earSpe
		46 /	* Loop up to res times of the final micture.	for each position the more iterati	a (this will det	etermine the qua	Lity	-Number of	columno						
E		40	solution will be) */					1 5 1	40 47 04	35 30 30 37 44	45 40 5	3 57 54 8			
		49 E	/* Only continue cal	culating if the s	result has not	been determined	yet */	abhundur at	- 10 11 21	20 20 00 01 41	40 40 0	0 01 01			
		51	if (turnedon) (if the terminatio	ion condition is	. 11		Talificer of	one				Chunk size		and the second second
		53	if terminate sr	alc, ycalci) (11	111		1 5 1	13 17 21	25 29 33 37 41	45 49 5	3 57 61 3	128	-	Dynamic display
		54	/* Final res result = :	ult is the number + 1;	r of iterations	s req. to termin	xza */						4	8	12 Text
		56	turnedon = C	12				00 14	26 2.8	25 20 29	e Valu	on Ob	11182811	272592855 31	SERVER NO-PORT
		50	else (11	. iv		a	a7 107	15 73 87 8		HL.	12582855	171592855 17	SSEEDE DO-PORT
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		59	/* Set the v	alues for the ner	ist iteration */	<i>'</i>					R	Frid value on/eff	11182810	272592855 37	
		61	ycalc = 2.05	* scale * yeale	1 + 17;			PS 04	DB C+	d4 da 60 J	- E.	Inid Exercody#	11182811	272592855 27	3382833 Pho-Public
		63	scald = cs;					88 D.a	-94 78	30 24 4# 6			11182811	171592055 31 171592055 31	11112111 Vo-Puto-
		64	F					00 62	7e c9	17 Bd 2e 6	4		11182811	272392835 27	1102111 01-0-04
		66 X	eturn result;					-							
		67 F							0.0	0 00 44 1					
		69 11						at c4	28 +0	54 99 45 6	d				
		71 // mar	t one row at a time and	printing the real	eruite.	erater calculacy	ig the handelbrot	12 04	14 12	d9 78 3e 0	_		20	30 40	50 60
64		72 11				,	التر.						1		1 .
_ ×		No	ssages (Namings Errors												
		Uzt	ing HIAP ID=0												-
		Sav	wed the resources												
95		Gear Usi	ing MTAP ID=0												
μģ		Uzt	ing MTAP ID=0												
		Uat	ing MTAP ID=0												
															*

Wideape

Benchmarking

FFTs on 64 PE pilot chip and 256 PE processor

- Benchmark for FFT→Complex Multiply→IFFT – FFT benchmark example is 1024-point, complex – IEEE 32-bit floating point
- Each FFT mapped onto a few PEs

 Higher throughput than one FFT at a time
- In-situ assembler codes
 - Single 1024-point FFT or IFFT spread out over 8 PEs
 - 128 complex points per PE
 - Output bit-reversed mapping in poly RAM
 - IFFT input mapping matches bit-reversed FFT output

Overview	
Architecture	
Benchmarking	
Applications	
Summary	

Q&A

FFTs on 64 PE pilot chip and 256 PE processor

- 128 complex points per PE enables
 - High throughput
 - Enough poly RAM buffer space for multi-threading to overlap I/O and processing
- Complex multiply code
 - Multiplies corresponding points in two arrays
 - Enables convolutions and correlations to be done via FFTs
- Performance measured on Cycle Accurate Simulator (CASIM)
 - Individual FFT
 - IFFT
 - Complex Multiply
 - Iterative loops including I/O
 - FFT CM IFFT (using a fixed reference function)

Overview	
Architecture	
Benchmarking	
Applications	
Summary	
Q&A	
eed.	

Detail on the current FFT codes

- 4 complete radix-2 butterfly instructions in microcode
 - Decimation-in-time (DIT) twiddle multiply on one input
 - DIT variant multiply inserts an extra 90 degree rotation
 - Decimation-in-frequency (DIF) multiply on one output
 - DIF variant extra 90 degree rotation inserted
 - These instructions take 16 cycles

3

Benchmarking

Overview	Detail on the current FFT codes (cont.)
Architecture	 Twiddle factors pre-stored in poly RAM
Benchmarking	 Use of 90 degree variants halves twiddle factors storage
Applications	 IFFT uses same twiddle factors
Summary Q&A	 Fastest codes require 68 twiddle factors per PE I/O routines transfer data between poly and mono RAM
IN CLORASPORT	 Mono data is in entirely natural order Complete set of 1024 complex points per FFT per transfer Most Load/Store cycles are done in parallel with the butterfly arithmetic Moving data between PEs costs cycles

в

Benchmarking

Overview	+ Measured	l Perforr	nance				
Architecture	 Performance is measured in GFLOPS @200 MHz 						
enchmarking	 Single FFT or IFFT counted as 5n*(log(n)) FLOPs Complex Multiply is 6 FLOPs per multiply 						
Summary Q&A			GFLOPS	256 PE batch	GFLOPS 64 PE pilot	Pilot chip batch	
	Code	Cycles	256 PE	size	chip	size	
5	FFT	13.9k	23.5	32	5.9	8	
0	IFFT	14.5k	22.6	32	5.6	8	
	СМ	1.7k	23.1		4.5		
5/96 m A	FFT-CM-IFFT	30.1k	23.1	32	5.8	8	
	FFT-CM-IFFT w I/O	32k	21.7	32	5.4	8	
N N		HPEC Wo	rkshop September 24, 2003			16	

Measured Performance (cont.)

Overview

Architecture

Applications

Summary

Q&A

- I/O transfers are to on-chip SRAM (mono memory)
 For the pilot chip, this I/O is ~75% of processing time
 - Pilot chip bandwidth to off-chip memory is 50% lower
- 256 PE product will have ~3 GB/s off-chip mono transfers
 - Data transfer will be 100% overlapped with processing

Overview
Architecture
Benchmarking
Applications
Summary
Q&A
ClearSpeed Defense LOCKRED MARTIN

Performance analysis (raw and per watt)
 256 PEs @200MHz: peak of 102.4 GFLOPS
 64 PE pilot chip @200MHz: peak of 25.6 GFLOPS

- Current code achieving 23.5 GFLOPS (23% of peak)
- In many applications, Performance/Watt counts most
 - 256 PE product will be ~5 Watts based on GDSII measurements and other supporting data
- 256 PE extrapolated FFT performance (200 MHz)

 ~23.5 GFLOPS becomes ~4.7 GFLOPS/Watt
 ~0.9 M FFTs/sec/Watt (1024-point complex)

Overview

Application Timing Diagram

Cycle accurate simulations show that the FFT-CM-iFFT Compute and I/O phases completely overlap when double buffering is employed

Benchmarking

Applications

Summary

Q&A

Wenderape Defense

Benchmarking

Overview + Other size FFTs

- Spreading one FFT over more PEs increases data movement
 - Cost: lower peak GFLOPS
 - Benefit: Enables larger FFTs or lower latency per FFT

Example (1024-point complex FFT on 64-PE pilot chip):

Reducing batch size from 8 (8 PEs/FFT) to 1 (64 PEs/FFT), changes performance from ~5.7 to ~2.5 GFLOPS, but compute time reduces by ~2.6x

Overview	
Architecture	
Benchmarking	
Applications	
Summary	
084	

Werdscape Defense Other size FFTs (cont.)
 8k-point FFT performance extrapolation:

 ~2.9 GFLOPS on pilot chip (batch size = 1)
 ~11.6 GFLOPS on 256 PE (batch size = 4)

128-point FFT performance extrapolation:
 ~31 GFLOPS on 256 PE product (batch size = #PEs)

256 PE product under development can deal with FFTs up to 32k points without intermediate I/O However, >8k points may use intermediate I/O for speed This enables unlimited FFT sizes

White Board

Benchmarking

Overview	
Architecture	
Benchmarking	
Applications	
Summary	
Q&A	

- WorldScape developing optimized FFT (and other) libraries
 - Start with components callable from Cn
 - Within-PE multiple short FFTs
 - Inter-stage twiddle multiplies
 - Across-PE data reorganization

VSIPL interface planned to maximize portability

• Seeking industry and University partners

+ Faster in the Future

- New microcoded instructions
 - Better handling of FP units' pipeline for multiple butterflies
 - Split into Startup, multiple Middle, and End instructions
 - Each Middle does an extra butterfly faster than now
 - Separate multiplies from add/subtracts
 - Enables higher FFT radices
 - Saves first stage multiplies
- Speedup
 - Within-PE: ~100%, to ~62 GFLOPS for 256 PEs (~60% of peak)
 - 1024-point FFT in 8 PEs: ~60%, to ~36 GFLOPS

Overview	
Architecture	
Benchmarking	
Applications	
Summary	
Q&A	

+ Technology Roadmap

- Faster clock speeds
- Faster/smaller memory libraries
- More PE's/chip
- Scalable I/O and chip-chip connections
- More memory/PE & mono memory
- Custom cell implementation

 <50% size & power (leverage from parallelism)
- Future fabrication processes

 Embedded DRAM, smaller line widths....

Applications

Overview	+ FF
Architecture	
Benchmarking	•
Applications	
Summary	•
Q&A	
ClearSpeed Manual LOCKHEED MARTIN	

FFT/Pulse Compression Application

- 1K complex 32-bit IEEE floating point FFT/IFFT
- Lockheed Martin "Baseline"
 - Mercury MCJ6 with 400-MHz PowerPC 7410
 Daughtercards with AltiVec enabled, using one compute node
 - Pulse Compression implementation using VSIPL:
 FFT, complex multiply by a stored reference FFT, IFFT

Applications

FFT/Pulse Compression Application (cont.)

- ClearSpeed CASIM (Cycle Accurate SIMulator)
 64 PEs simulated at 200 MHz
 - 1K FFT or IFFT on 8 PEs with 128 complex points per PE
 - Pulse Compression using custom instructions: FFT, complex multiply by a stored reference FFT, IFFT
 - 32-bit IEEE standard floating point computations

Applications

Overview	+ Perfor	mance C	Comparis	son		
Architecture						
Benchmarking Applications Summary	Function	Mercury G4 (LM Measured)	Mercury G4 (Published)	World <i>Scape</i> / ClearSpeed 64 PE Chip	Speedup vs. Mercury G4 (LM Measured)	Speedup vs. Mercury G4 (Published)
Q&A	FFT	39.0 µs	25.0 µs*	8.7 µs	4.5 X	2.9 X
10	Complex Multiply	10.8 µs	N/A	1.1 µs	7.7 X	
BOG RI	IFFT	34.7 µs	N/A	9.2 µs	3.8 X	
Clears	Pulse Compressio n	152.2 µs	N/A	20.0 µs	7.6 X	
L O C K I	Mercury pub	lished figure f	or time to com	24, 2003	h 400-MHz Po	werPC 7410

Slears

White cape

TOCKHEE

Overview

Applications

Architecture					
Benchmarking				FFT/sec	
Applications	Processor	Clock	Power	/Watt	PC/sec/ Watt
Summary	Mercury PowerPC 7410	400 MHz	8.3 Watts	3052	782.2
Q&A	World <i>Scapel</i> ClearSpeed 64 PE Chip	200 MHz	2.0 Watts**	56870	24980
Dood N	Speedup			18.6 X	31.9 X
NA RT	**Measured Using Mentor Mach PA Tool				

0

White Cape

TOCKHEE

Applications

Overview	+ Power Comparison (cor	nt.)
Architecture		
Benchmarking	WorldScane/ClearSneed	
Applications	64 PE Chip	Total Cycles**
Summary	FFT	14067
Q&A	Complex	
	Multiply	1723
	IFFT	14654
Spoe	Pulse	
IG BI	Compression	32026

** As simulated using CASIM at 200 MHz

6

Witdeape

TOCKHEED

Summary

Overview	Massively Parallel Array Processing
Architecture	Architecture (MTAP) presented
Benchmarking	 Programmable in C
Applications	 Robust IP and tools
Applications	 Applicability to wide range of applications
Summary	
Q&A	Inherently scalable
	 On chip, chip-to-chip
Speed"	+ Low Power
NA R	

New standard for performance AND performance per watt

High Performance Embedded Computing

Questions and Answers

ClearSpeed[™]

LOCKHEED MARTIN