
HID OVER BLUETOOTH BR/EDR

APPLICATION NOTE FOR BT121

Wednesday, 25 November 2020

Document Revision: 1.20

Silicon Labs

VERSION HISTORY

Date Edited Comment

0.90 First draft

1.00 First release

1.10 Corrected the maximum number of simultaneous connections

1.20
Renamed "Smart Ready" to "Dual Mode" and "Classic" to "BR/EDR"
according to the official Bluetooth SIG nomenclature.

Silicon Labs

TABLE OF CONTENTS

 Introduction .. 5

1.1 About the application note ... 5

1.2 About the Bluetooth HID BR/EDR Profile ... 6

 HID features in the Bluetooth Dual Mode stack .. 7

2.1 General main features of the BT121 stack ... 7

2.2 HID features .. 8

 Prerequisites for developing and testing .. 8

 Configuring and using the HID Profile ... 9

4.1 Configuration of firmware project files ... 9

4.2 Bluetooth and HID service initialization after boot .. 12

4.3 Starting outgoing connections and capturing incoming connections .. 13

4.4 Sending data via HID reports .. 13

4.5 Disconnections .. 14

4.6 Testing with the BGTool .. 15

 Walkthrough of the HID script-based example application 23

5.1 Project configuration file .. 23

5.2 Hardware configuration file ... 25

5.3 Bluetooth services configuration ... 26

5.4 BGScript™ code.. 28

 Bluetooth Qualification ... 35

 Contact information ... 36

 Silicon Labs 5

 Introduction

1.1 About the application note

This application note discusses how to configure and use a BT121 Dual Mode module in order to add the Human
Interface Devices (HID) functionality to a device using the Bluetooth BR/EDR technology (often referred to as
Bluetooth BR/EDR) and using the related HID Profile adopted by the Bluetooth Special Interest Group (SIG) as
seen at https://www.bluetooth.com/specifications/adopted-specifications (under the “Traditional Profiles”
section). Devices are typically keyboards or mouses, which are the focus of this application note, but can also
be joysticks, digitizers and all others as defined by the USB Implementers Forum, Inc. at
http://www.usb.org/developers/hidpage

The reference hardware platform used in the application note is the DKBT Bluetooth Dual Mode Development
Kit (in short DKBT) and the BT121 Bluetooth Dual Mode module.

The example application discussed in this document is developed with the Bluegiga BGScriptTM scripting
language, which enables the application to run fully autonomously on the BT121 Bluetooth Dual Mode module
without the need for an extra host MCU.

This application note contains references to the commands and events of the BGAPI serial host protocol and of
the BGScript scripting language for in-module applications. The description of these commands and events is
found in the document called “Bluetooth Dual Mode Software API Reference” and also in the HTML-based
BGAPI reference called dumo.html which is available under the directory /hostbgapi/ of the Dual Mode SDK
being used to generate the custom firmwares for the BT121.

Although this application note uses a BGScript script example to describe the application logic it is

also possible to implement the same application on an external MCU (such as low-power MCU)

using the BGAPI serial protocol and BGLIB host library.

This application note assumes you have read and understood the Bluetooth Dual Mode
Software Getting Started Guide.

https://www.bluetooth.com/specifications/adopted-specifications
http://www.usb.org/developers/hidpage

 Silicon Labs 6

1.2 About the Bluetooth HID BR/EDR Profile

The HID Bluetooth Profile defines the protocols, procedures and features to be used in the communication
between devices such as keyboards, mouses, joysticks etc. and hosts such as PCs, smartphones, tablets etc.

In the HID Bluetooth Profile two roles are defined:

• HID-Device – The device providing the service of human data input and output to and from the host.

• HID-Host – The device using or requesting the services of a Device.

The HID Bluetooth Profile uses USB definition of a HID device in order to leverage the existing class drivers for
USB HID devices. The HID Bluetooth Profile describes how to use the USB HID protocol to discover a HID class
device’s feature set and how a Bluetooth enabled device can support HID services on top of the Bluetooth’s
L2CAP layer. The HID Bluetooth Profile is designed to enable initialization and control self-describing devices
as well as provide a low latency link with low power requirements.

The HID Bluetooth Profile is built upon the Generic Access Profile (GAP). In order to provide the simplest
possible implementation, the HID protocol runs natively over L2CAP and does not reuse Bluetooth protocols
other than the Service Discovery Protocol.

Figure 1: Typical HID use case

 HID-Host

 HID-Device (keyboard emulation)

 HID-Device (mouse emulation)

 HID

 Silicon Labs 7

 HID features in the Bluetooth Dual Mode stack

2.1 General main features of the BT121 stack

The table below summarizes the main features of the Dual Mode stack for the BT121 modules:

Feature Value

Simultaneous BR/EDR connections 6

Simultaneous LE connections 7

Combined BR/EDR and LE connections 1 x BR/EDR + 6 x LE

MAX data rate

1000 kbps SPP (transparent mode using BGScripting)

700 kbps SPP (BGAPI mode)

200 kbps iAP2 (both transparent and BGAPI mode)

MAX UART baud rate 4 000 000 bps

Data transmission delay over BR 5-10 ms

Supported encryptions
E0 for Bluetooth BR/EDR (128-bit)

AES-128 for Bluetooth LE

MAX simultaneous pairings 32

MAX Friendly name length Configurable up to 30 characters

L2CAP packet size 255 bytes

Supported Bluetooth BR/EDR profiles GAP, DI, SPP, HID-Device and GATT-over-BR/EDR

Supported Bluetooth LE profiles
Any with Profile Toolkit, SPP-over-BLE proprietary solution also
available

Apple iAP support iAP2 (Devices with Lightning connector)

Supported power saving modes Sniff mode, slave latency and two MCU sleep modes

Secure Simple Pairing mechanisms
Just works mode

Man-in-the-middle (MITM) protected modes

Table 1: Bluetooth Dual Mode stack features

 Silicon Labs 8

2.2 HID features

The Dual Mode stack running in the BT121 allows HID-Devices to be easily implemented. Notice that the stack
does not offer support for implementing HID-Hosts.

Using the Dual Mode SDK it is possible to create a firmware embedding the desired HID SDP record carrying
among others the desired HID descriptor. In other words, HID-based SDP records and descriptors are fully
configurable by the user and are stored in the Flash memory of the module at the time the module is
programmed. Programming of a module happens with a custom firmware obtained from the SDK using the
appropriate project files that are described later in this document. SDP records can be loaded and unloaded at
any time during runtime, according to the user application requirements, using dedicated BGAPI commands.

Multiple BGAPI commands (and corresponding responses/events) exist for the management of HID connections
and for issuing (and parsing) input and output HID reports. Most of the available BGAPI commands and events
related to the HID functionality will be mentioned in this document as well.

Virtual cable unplugging is also supported, allowing the local or the remote party do disassociate so that both
parties will disconnect first, and then remove each other’s pairing/bonding information from their databases.

 Prerequisites for developing and testing

Before you can test the example script-based application discussed later, or before starting to develop your own
solution, the following prerequisites should be met:

1a. You have downloaded and installed the latest Bluetooth Dual Mode SDK for Windows and you have gone
through the Getting Started guide. Notice that the support for the HID BR/EDR Profile has been introduced in
version 1.1.0

1b. After SDK installation you have localized the two HID examples, normally under the directory \example\ of
the SDK, and you have verified that the BGTool Windows demo program can be launched. Quick access to the
directory containing the firmware project files examples and to the BGTool is in the dedicated Windows Start
menu entry created by the SDK installer

2a. You have a DKBT Bluetooth Dual Mode Development Kit

2b. Alternatively you have a BT121 Bluetooth Dual Mode module already soldered in your PCB according to
the guidelines in the module’s data sheet

3a. You have a PC equipped with Bluetooth hardware and running an OS (or third party software) which provides
the HID-Host support

3b. Alternatively, or in addition, you have a modern smartphone or a tablet. Make sure that Bluetooth
functionality is indeed integrated in the device, while notice as well that iOS does not support HID-Device for
the mouse case, as of the date of release of this document.

4. You have already practiced the steps of editing some of the existing project files for creating your own custom
firmware, and you are familiar with the firmware image creation using the bgbuild.exe and with the firmware re-
flashing of the module, for example using the bgupdate.exe. Both .exe executables are found under the directory
\bin\ of the SDK. Remember as well that building firmware form given project files plus upgrading modules can
be performed also from within the BGTool program, under the “Upload tool” tab.

 Silicon Labs 9

 Configuring and using the HID Profile

In order to turn a device equipped with the BT121 into a Bluetooth HID-Device, first of all a new firmware must
be uploaded to the module, where such firmware is obtained from project files which are appropriately created
and/or edited from existing files, as discussed below.

Once the appropriate firmware is running in the module, some special initialization commands are given to it,
either by the host system when module is used in Network Co-processor (NCP) mode, or by a BGScript running
in the module itself.

When finally all is readily configured, the HID-Host will be the side to make the first connection, because together
with pairing and bonding the HID-Host will also need to read through the BT121’s loaded SDP record using the
Service Discovery protocol. This SDP procedure is needed for the HID-Host to learn what kind of HID device
the BT121 is in fact, and to also learn (by parsing the HID Descriptor included in the record) how to interpret the
data coming from the module (HID input reports) and how to format the data to send to module (HID output
reports). Once devices are bonded, and HID-Host knows about the HID-Device, then any future connection can
be started by any of the sides, and the same is valid for simply closing a current connection or for the virtual
cable unplug operation.

For a clearer understanding of this chapter it is recommended to refer to the existing example project files for
the NCP mode found under the directory \example\bt121_br_edr_hid\ of the SDK.

4.1 Configuration of firmware project files

A typical firmware for the BT121 in NCP mode is created from a minimum of four .xml files, plus as many .xml
files as you want SDP records to be available for loading/unloading during runtime. The four files are:

- the project.xml which collects all the information for the bgbuild.exe to create the desired firmware image file,
where the filesystem paths to the other project files are provided among others

- the hardware.xml which contains the hardware configuration, for example the UART settings and if the BGAPI
protocol is enabled over it or not (use the option bgapi="true" for the NCP mode)

- the gatt.xml which contains the definition of the GATT Database for Bluetooth Low Energy operations (not
under discussion in this application note)

- the did.xml which defines the mandatory record for the Bluetooth BR/EDR’s Device Information profile

Among the above mentioned files, the first one is relevant for making sure that the obtained firmware has HID
functionality available in it. In particular, the project.xml should contain the following additional entries when
compared for example with the project file for the factory default firmware of the bare modules (actually the one
under the directory \example\bt121\ of the SDK):

- instruct firmware compiler to include the base firmware containing the HID functionality with:

 <software>

 <library in="bt121_hid"/>

 </software>

- instruct firmware compiler to include the desired HID SDP record(s) into the firmware image with:

 <sdp>

 <entry file="did.xml" autoload="true"/>

 <entry file="hid_mouse.xml" id="4"/>

 <entry file="hid_keyboard.xml" id="5"/>

 <entry file="my_hid_device.xml" id="6"/>

 </sdp>

 Silicon Labs 10

where the file= parameter points to the .xml file containing the SDP record definitions and where the id=
indicates a number which will be used to identify the desired record when it will come the time to load
(or unload) it during runtime. Notice here that autoload= parameter cannot be used with HID-based .xml
files, meaning that HID SDP records must be loaded during runtime. Notice also that only one of the
HID SDP records can be loaded at any time, because the Bluetooth HID specification mandates that
one and only one HID service may exist on a device. If for example a combination mouse-keyboard
device is required, both the mouse and the keyboard definitions must be combined into a single SDP
record (and into a single HID Descriptor)

In addition to the above four project files, two more files are to be used for each HID service that we want our
BT121 to support. The first of the two is the .xml file mentioned in the project.xml and it has to be formatted
according to the two tables below.

.xml File Contents Description

<ServiceClassIDList>
 <ServiceClass uuid128="1124"/>
</ServiceClassIDList>

This defines the UUID of the Bluetooth profile. For the HID profile the UUID
must be 1124 and should not be changed.

<BrowseGroupList>
 <UUID16 value="1002"/>
</BrowseGroupList>

This section defines if this SDP entry is visible in the SDP browse group.
Typically you should not change this, but for some special applications you
might want to disable the browse group visibility.

<ProtocolDescriptorList>
 <Protocol>
 <UUID16 value="0100"/>
 <UINT16 value="0011"/>
 </Protocol>
 <Protocol>
 <UUID16 value="0011"/>
 </Protocol>
</ProtocolDescriptorList>

value="0100" means this profile is based on top of L2CAP
the first value="0011" refers to the PSM for HID Control
the second value="0011" refers to the Protocol Identifier's UUID

You should not change this section.

<ServiceName text="BT121 Mouse"
language_id="0100"/>

This entry defines the service name for the SDP record. If you want to
rename the service you can modify the value of the text= attribute

<LanguageBaseAttributeIDList>
 <UINT16 value="656e"/>
 <UINT16 value="006a"/>
 <UINT16 value="0100"/>
</LanguageBaseAttributeIDList>

value="656e" is for "en" - English
value="006a" is for UTF-8 encoding
value="0100" is to define PrimaryLanguageBaseId = 0

<BluetoothProfileDescriptorList>
 <Profile>
 <UUID16 value="0011"/>
 <UINT16 value="0101"/>
 </Profile>
</BluetoothProfileDescriptorList>

value="0011" refers to the Protocol Identifier's UUID for the HID profile
value="0101" is to define the version to 1.1

You should not change this section.

<AdditionalProtocolDescriptorLists>
 <AdditionalProtocolDescriptorList>
 <Protocol>
 <UUID16 value="0100"/>
 <UINT16 value="0013"/>
 </Protocol>
 <Protocol>
 <UUID16 value="0011"/>
 </Protocol>
 </AdditionalProtocolDescriptorList>
</AdditionalProtocolDescriptorLists>

value="0100" means this profile is based on top of L2CAP
value="0013" refers to the PSM for HID Interrupt
value="0011" refers to the Protocol Identifier's UUID for the HID profile

You should not change this section.

Table 2: Main SDP record entries for HID

 Silicon Labs 11

.xml File Contents Description

<HIDParserVersion value="0111"/>
HIDParserVersion
It has fixed value of 0x0111 in the current BT HID specification

<HIDDeviceSubclass value="80"/>

HIDDeviceSubclass
This must match bits #2 to #7 of the Class of Device, bits #0 and #1 are set to
zero
Common values are 0x40 for keyboard, 0x80 for pointing device
For a comprehensive list see Tables 9-10 (Minor Device Class field - Peripheral
Major Class) at https://www.bluetooth.com/specifications/assigned-
numbers/baseband

<HIDCountryCode value="0"/>
<HIDCountryCode value="21"/>

(0 for not localized, typical for
mouse; 21 for US-style keyboard)

HIDCountryCode
0x00 for non-localized devices
For localized devices such as keyboards, see the USB country code list at
http://www.usb.org/developers/hidpage/HID1_11.pdf, section 6.2.1

<HIDVirtualCable value="1"/>

HIDVirtualCable
Indicates whether the Device should be associated with only one Host at a time,
like a wired keyboard can be connected to only one computer
Enabling this means your device should never store the pairing information of
more than one Host at a time
If enabled, your device MUST also support either HIDReconnectInitiate or
HIDNormallyConnectable

<HIDReconnectInitiate value="1"/>
HIDReconnectInitiate
Indicates whether the Device can reconnect to the Host

<HIDDescriptorList>
 <HIDClassDescriptor>
 <UINT8 value="22"/>
 <HIDUSBDescriptor
file="hid_mouse.txt"/>
 </HIDClassDescriptor>
</HIDDescriptorList>

(value="22" is for type of Report
Descriptor; hid_mouse.txt contains
the actual descriptor as text string,
not DataElementSequence)

HIDDescriptorList
Defines the HID Descriptor itself
The easiest way to create and validate one is to use the USB HID Descriptor
Tool (http://www.usb.org/developers/hidpage#HID%20Descriptor%20Tool) and
export the descriptor in .txt format
The descriptors are pre-defined in the USB HID specification; they are not listed
in the HIDDescriptorList

<HIDLANGIDBaseList>
 <HIDLANGIDBase>
 <UINT16 value="0409"/>
 <UINT16 value="0100"/>
 </HIDLANGIDBase>

</HIDLANGIDBaseList>

(value value="0409 is for en-US;
value="0100" is the Bluetooth String
Offset)

HIDLANGIDBaseList

<HIDBatteryPower value="1"/>
HIDBatteryPower
Indicates whether the Device is battery powered

<HIDRemoteWake value="1"/>

HIDRemoteWake
Indicates capability to wake up the Host from Suspend, if supported by the Host,
which in practice requires two things:
The Device can send an Exit Suspend command upon user input, if the Host
doesn't disconnect the Bluetooth link while in Suspend mode
Reconnect upon user input, if the Host disconnects the Bluetooth link when
entering Suspend mode

https://www.bluetooth.com/specifications/assigned-numbers/baseband
https://www.bluetooth.com/specifications/assigned-numbers/baseband
http://www.usb.org/developers/hidpage/HID1_11.pdf
http://www.usb.org/developers/hidpage#HID%20Descriptor%20Tool

 Silicon Labs 12

<HIDNormallyConnectable
value="0"/>

HIDNormallyConnectable
Indicates whether the device normally accepts incoming connections from the
host
Generally for battery-powered devices this should be false, because scanning
for paging consumes battery power

<HIDBootDevice value="1"/>

HIDBootDevice
Indicates whether the Device implements either the Boot Keyboard or Boot
Mouse, or both
Mandatory to support for keyboards and mice devices

Table 3: Additional mandatory SDP record entries for HID

As seen from the second of the two tables above, the service record .xml definition contains an entry to indicate
an additional text file. This is the mentioned second file of the two for each service record, which contains the
actual HID Descriptor formatted according to the USB HID specification. A couple of examples of such files are
found in the SDK (hid_keyboard.txt and hid_mouse.txt) The user can freely edit the HID Descriptor in the text
file for its own custom application, however it is recommended to conform to the standard, and make use for
example of the USB HID tools found at http://www.usb.org/developers/hidpage/ or http://hidedit.org/

4.2 Bluetooth and HID service initialization after boot

When the basic NCP firmware is running, the module is idle until its host MCU issues a set of initialization BGAPI
commands over UART. For the HID case these initialization commands are listed below (for an additional
description of the commands you might want to refer to the BGAPI reference):

- dumo_cmd_sm_configure(0,3) to configure the local Secure Simple Pairing (SSP) capabilities (in this case,
configuration is meant to use the “Just Works” pairing mechanism)

- dumo_cmd_sm_set_bondable_mode(1) to allow the local module to store the link keys generated during
pairing (the same will happen at the remote side and the devices will be considered bonded - this is mandatory
with Bluetooth BR/EDR)

- dumo_cmd_system_set_class_of_device(0x580) to configure the Class-of-Device (CoD) reported by the
module in Bluetooth BR/EDR’s Inquiry Responses. Based on the CoD the PC or the smartphone will get an
initial understanding of the kind of HID-Device is found when searching for Bluetooth devices in range, and for
example will display the correct icon next to it. Typical CoD is 0x580 for mouse or 0x540 for keyboard. A CoD
can be realized by looking at the Bluetooth Specification, in particular at
https://www.bluetooth.com/specifications/assigned-numbers/baseband

- dumo_cmd_bt_gap_set_mode(1,1,0) to make the module visible and connectable

- dumo_cmd_bt_hid_start_server(4,0) to load the SDP record with the given ID from the Flash memory so to
make it available for remote SDP queries, and to get the HID service started (in this example the record to load
has ID of 4 and corresponds to the information in the .xml file that was assigned ID of 4 in the project.xml). Let’s
not forget that only one HID SDP record can be loaded at any time, so if you need to switch between services,
like alternating mouse and keyboard, you will have to stop the currently loaded service with the command
bt_hid_stop_server(4) before loading the new one. The command to start the service also contains an
additional parameter (mentioned as destination endpoint in the API reference) which is reserved for future use
and should always be set to 0.

http://www.usb.org/developers/hidpage/
http://hidedit.org/
https://www.bluetooth.com/specifications/assigned-numbers/baseband

 Silicon Labs 13

4.3 Starting outgoing connections and capturing incoming connections

Once the module has been initialized, it will be ready to receive the HID connection from a HID-Host in case
there is none already bonded, or it will be ready to start and accept connections to/from bonded HID-Hosts at
any time.

In the former case the expected sequence of BGAPI events sent from module to its host MCU over the UART
interface is shown below:

- dumo_evt_bt_connection_opened(remote_address, master_no, bt_connection_id, bonding_none)

- dumo_evt_sm_bonded(bt_connection_id, bonding_id)

- dumo_evt_endpoint_status(hid_endpoint_id, hid_type, destination_endpoint_id, flags)

- dumo_evt_bt_hid_opened(hid_endpoint_id, remote_address)

Depending on the HID-Host and the HID Descriptor being presented, the HID-Host may send an Output Report,
indicated by the event dumo_evt_bt_hid_output_report, or may request the current status of the fields of the
Input Reports, indicated by the event dumo_evt_bt_hid_get_report. With the latter, the module must respond
with the command dumo_cmd_bt_hid_get_report_response in a timely manner.

When devices are already bonded, any subsequent incoming connection will be indicated by the following
events:

- dumo_evt_bt_connection_opened(remote_address, master_no, bt_connection_id, bonding_id)

- dumo_evt_endpoint_status(hid_endpoint_id, hid_type, destination_endpoint_id, flags)

- dumo_evt_bt_hid_opened(hid_endpoint_id, remote_address)

When devices are already bonded, the host MCU can also instruct the BT121 to place calls to the remote HID-
Host using the following command:

- dumo_cmd_bt_hid_open(remote_address, destination_endpoint_id)

The module in turn will send to its host the BGAPI response to the command with any error code (0x0 for
success) and with the anticipated ID for the soon-to-be-created HID endpoint. As soon as the connection is fully
established the usual events dumo_evt_bt_connection_opened + dumo_evt_endpoint_status +
dumo_evt_bt_hid_opened are to be expected.

In all the cases above, and similarly to the command dumo_cmd_bt_hid_start_server seen in the previous
chapter, the parameter called destination_endpoint_id is reserved for future use and is or should always be set
to 0.

4.4 Sending data via HID reports

As soon as the module’s host is notified of the existing HID connection, by mean of the events listed above, the
data exchange in the form of HID reports can be started.

The most typical BGAPI command used is the dumo_cmd_bt_hid_send_input_report which is meant for the
module implementing the HID-Device to send the so-called HID input reports to the HID-Host. These HID input
reports carry for example the information about which keys are pressed in the case of the Bluetooth HID
keyboard or the pointer movements and button clicks by a Bluetooth HID mouse.

The dumo_cmd_bt_hid_send_input_report takes three parameters, the first being the ID of the current HID
endpoint (referred previously as hid_endpoint_id and not to be confused with the ID of the Bluetooth connection,
referred to as bt_connection_id), and the second being the Report ID which is defined in the HID Descriptor and
is recognized easily in the text project file like in the SDK examples hid_keyboard.txt and hid_mouse.txt

As for the third parameter of the above mentioned command, this is the actual HID input report and it is to be
formatted according to the guidelines below for the mouse and keyboard cases when their example HID
Descriptors from the SDK are used.

 Silicon Labs 14

HID Input Report for keyboard is made of eight bytes:

- first byte is the modifier key

- second byte must always be 0

- third to eighth bytes are the codes of keyboard keys.

Examples:

- an input report with value of 0000230000000000 would indicate that the key corresponding to number 6 of the
US keyboard is pressed

- an input report with value of 0200230000000000 would indicate that the key corresponding to number 6 of the
US keyboard is pressed while SHIFT button is also pressed (in the US keyboard this would result in the character
^ to be entered, while in the Finnish keyboard the entered character would be &)

- an input report with value of 000000000000 is needed to release all keys

- multiple key presses can be indicated at the same time, for example with a report like 0000232400000000
indicating that both US keyboard’s keys 6 and 7 are being pressed.

HID Input Report for mouse is made of three bytes:

- first byte is a bitmask for button presses, where for example main button (normally left button) is pressed by
sending the byte with the first bit set; for releasing the button another report should be sent with the byte having
the first bit unset

- Second byte is for pointer movement along the X axis

- third byte is for pointer movement along the Y axis.

Examples:

- an input report with value of 003212 would mean mouse pointer moving 0x32=50 pixels to the right and
0x12=18 pixels down

- an input report with value of 0100FB would mean mouse pointer moving 0xFB=-5 pixels up and keeping the
main button pressed

- an input report with value of 00000 after the above would be meant to release the main button

Note about the Bluetooth HID keyboard:

You can find country codes in the document named "Device Class Definition HID" at page 23, available at USB
Implementers Forum website (http://www.usb.org/developers/hidpage/). This HID record’s country code is a
localization information only (required by the Bluetooth specification) and does not have any influence on the
HID reports that are sent. In addition, the stack itself does not implement keyboard layout re-mapping across
different languages, so for your reports you will have to select the key codes (from the document named "HID
Usage Tables" at pages 53-59, also available at USB Implementers Forum website) so to match the keyboard
layouts which are documented e.g. at http://www-
01.ibm.com/software/globalization/topics/keyboards/registry_index.html

4.5 Disconnections

An ongoing HID connection can be closed by either side of the Bluetooth link. For the module to close the
connection the following command is issued:

- dumo_cmd_endpoint_close(hid_endpoint_id)

In addition to the response to the above command, simply the event
dumo_evt_bt_connection_closed(reason_code, bt_connection_id) will be sent by the model to its host
after a short delay.

http://www.usb.org/developers/hidpage/
http://www-01.ibm.com/software/globalization/topics/keyboards/registry_index.html
http://www-01.ibm.com/software/globalization/topics/keyboards/registry_index.html

 Silicon Labs 15

If it is the HID-Host to close the connection instead, not just one but multiple events will be sent, as follows:

- dumo_evt_endpoint_closing(reason_code, hid_endpoint_id)

- dumo_evt_endpoint_status(hid_endpoint_id, hid_type, destination_endpoint_id, flags)

- dumo_evt_bt_connection_closed(reason_code, bt_connection_id)

Because of the event endpoint_closing and especially because of the event endpoint_status with the flags
indicating that the HID endpoint is awaiting closure, you will have to explicitly close the endpoint for releasing
the resources tied to the endpoind. This must be done by issuing the following command:

- dumo_cmd_endpoint_close(hid_endpoint_id)

Closing the connection can happen also via the Virtual Cable Unplug procedure, in which case the request to
delete any bonding information between the two connected devices is sent concurrently. The stack in the BT121
is capable of recognizing the incoming (and also its own) request and automatically deletes the bonding
information accordingly. For the module to carry on the procedure the following command is used:

- dumo_cmd_bt_hid_virtual_cable_unplug(hid_endpoint_id)

In addition to the response to the above command, the same three events as in the case above are received,
and again the dumo_cmd_endpoint_close(hid_endpoint_id) will have to be issued. When it is the remote HID-
Host to start the procedure the event dumo_evt_bt_hid_state_changed(hid_endpoint_id, state) might
additionally be sent by the module to its host depending on the Bluetooth HID implementation at the remote
side.

4.6 Testing with the BGTool

BGTool provides an effective way to test the HID implementation in the stack of the BT121. The screenshots in
the following pages will show how a test can be carried on when the ready NCP example firmware image from
the project directory \example\bt121_ br_edr_hid\ of the SDK is programmed to the module.

 Silicon Labs 16

After powering on the module, then connecting the BGTool to the module’s COM port, and finally selecting the
“BR/EDR” tab, the program interface will look like in the screenshot below:

 Silicon Labs 17

You will then click the “Device details” button to verify that the appropriate firmware build is running in the
module, and to change the CoD (and the Bluetooth BR/EDR Friendly Name if desired):

The commands actually sent by the BGTool to module, and the responses from the module are seen in the log
window, as depicted below:

 Silicon Labs 18

Next you will configure security, and finally you will make the module visible and connectable while starting the
HID service, as seen in the next two screenshots:

 Silicon Labs 19

 Silicon Labs 20

At this point the module is ready to receive the connection from the HID-Host:

Once connected, the new tab dedicated to the HID connection will pop-up, providing all the information about
the connection just created, and allowing you to easily send HID Input Reports to the remote HID-Host, as
seen in screenshot on the next page:

 Silicon Labs 21

The HID Report above causes the mouse pointer at the PC or at the Android smartphone/tablet to move
0x22=34 pixels to the right and 0x33=51 pixels down.

You can also check the box “Press & release” for the BGTool to automatically send a report with all zeroes after
each report being sent, which is handy to automatically release the mouse button presses, or the keyboard keys
presses.

The HID tab in BGTool also offer the option to close the HID connection, in which case the resulting events
discussed earlier are also seen in the log window as below:

The button used to close the connection will turn into a button to re-open the connection, and when clicked the
command bt_hid_open will be launched as seen in the log below:

 Silicon Labs 22

If you wish instead to try the Virtual Cable Unplug feature, you will have to explicitly enter the appropriate
command in the bar at the bottom of the BGTool, as depicted in the last screenshot below:

Because of the event endpoint_closing and especially because of the event endpoint_status with the flags
indicating that the HID endpoint is awaiting closure, you will have to explicitly close the endpoint for releasing
the resources tied to the endpoind. This is done by issuing the endpoint_close command at the command bar,
similarly to the previous case with the bt_hid_virtual_cable_unplug, as seen below:

 Silicon Labs 23

 Walkthrough of the HID script-based example application

While the previous section had a strong focus on how to implement HID functionality with a module in hosted
mode (also known as NCP = Network Co-processor mode), the aim of this section is to walk the user through
the demo HID application which is enabled by the firmware found in the SDK under the directory
\example\br_edr_hid_mouse_demo\ where such firmware is obtained from the project files discussed in this
section and found under the same directory. This firmware allows the module to operate in standalone mode
thanks to the provided example BGScript.

5.1 Project configuration file

Building a Bluetooth Dual Mode project starts always by making a project file, which is a simple XML file defining
the resources used in the project. The example project file under discussion in this section has its content as
shown below in Figure 2:

Figure 2: Project file

An explanation of the project file content is shown in the Table 4 on next page.

 Silicon Labs 24

<project device="bt121">
This tag starts the project definition and the project file must end in </project> tag. The
device is used to define for which Bluetooth module the project is used for.

<software>

 <library in="bt121_hid"/>

</software>

The <software> tag is used to define what exact base firmware should the final firmware
image file be based upon. The <library> tag allows the selection of the special base
firmware containing the HID functionality.

<gatt in="gatt_db.xml"/>

The <gatt> tag is used to define the XML file containing the GATT service and
characteristic database used for BLE and GATT over BR profile.

NOTE: This example uses a minimal GATT database which is not in use given that the
application does not include any BLE operation. For more information on how to use
GATT database and its functions see Software Getting Started Guide.

<hardware in="hardware.xml" />
The <hardware> tag define which file contains the hardware configuration for interfaces

like UART, SPI or I
2

C.

<sdp>

 <entry file="DID.xml" autoload="true"/>

 <entry file="hid_mouse.xml" id="4"/>

</sdp>

The <sdp> tag is used to define the Bluetooth BR/EDR Service Discover Protocol (SDP)
records that we want to embed in the firmware image. The <entry> tags are used to point
to the actual XML files for each SDP entry, and are also meant to provide a unique ID for
each SDP entry which can later on be used in the BGScript code to load the desired SDP
entry. In this example the HID SDP record is given an ID of 4. The xml file structure for the
HID record is described in chapter 4.1

<scripting>

 <script in=" script.bgs" />

</scripting>

The BGScript file containing the code for the module’s standalone functionality is defined
inside the <scripting> tags, and further on inside the <script> tag.

<image out=" BT121_HID_Mouse.bin"

The <image> tag defines the desired name of the firmware image file generated by the
bgbuild.exe free compiler. The generated .bin file contains the Bluetooth Dual Mode
stack, the GATT database, the SDP entries, the hardware configuration and the BGScript
code. The compiler will also generate a corresponding file with extension .bootdfu and this
is meant to replace the bootloader should the BGAPI-based DFU upgrading method be
used to re- flash a module running an older firmware build (refer to separate instructions)

Table 4: explanation of the project configuration file entry by entry

The full syntax of the project configuration file and more examples can be found from the
Bluetooth Dual Mode Module Configuration Guide.

 Silicon Labs 25

5.2 Hardware configuration file

The next logical step is to define the hardware configuration of the Bluetooth module, and to define in particular
which hardware interfaces are enabled and what are their default settings and/or configurations. The hardware
configuration file content for the example under discussion is very simple and is shown below in figure 3:

Figure 3: Hardware configuration file

An explanation of the hardware file content is shown in Table 5 below:

<sleep enabled="false" /> This tag defines that the MCU sleep modes (low power modes) are disabled.

<uart baud="115200" flowcontrol="true"

bgapi="false" />

The <uart> tag is used to define if the UART interface is enabled or not as well the UART
interface settings.

In this example project the UART is used only for debug and/or status messages. BGAPI
serial protocol is disabled as this example uses a BGScript application to implement the
application logic.

<port index="1" input="0x3700"
interrupts_rising="0x3700"/>

The <port> tag is used to define the I/O port default configuration and states. On the
BT121 module port index 0 refers to pins named PA and port index 1 to pins named PB.

In the example, pins 8, 9, 10, 12 and 13 of port B are configured as inputs and for rising
interrupts. PB8, PB9, PB10, PB12 and PB13 are connected to the 5 buttons of the main
board of the evaluation kit and are used to simulate the mouse movements and the main
button’s presses.

Table 5: Hardware configuration file explained

The full syntax of the hardware configuration file and more examples can be found in the
Bluetooth Dual Mode Module Configuration Guide.

 Silicon Labs 26

5.3 Bluetooth services configuration

The example project is meant for a firmware containing only one SDP records exposing one single usable
Bluetooth profile, that of the Bluetooth HID, and in particular a mouse device. This SDP record is defined in the
file called hid_mouse.xml the content of which is described in detail in chapter 4.1

The hid_mouse.xml has itself an entry to point to another file. The entry is <HIDUSBDescriptor
file="hid_mouse.txt"/> and the pointed file contains the actual HID descriptor, which was also discussed at
the end of chapter 4.1

Among the project files there exists one additional entry called did.xml which is as well included into the firmware
image thanks to the directive <entry file="did.xml" autoload="true"/> inside the project configuration file. This is
meant for the informational yet mandatory Device Information Profile. An example of how this would look is
shown in Figure 4 below:

Figure 4: Record definition for the Bluetooth Device Information Profile

 Silicon Labs 27

With the DI profile more configuration options exist. Notice that the order of the configurations as seen in the
example .xml file must not be changed. The Device Information Profile tags are explained in more detail below
in table 6:

<UINT16 value="0200"/>

<UINT16 value="0103"/>
This MUST not be changed.

<UINT16 value="0201"/>

<UINT16 value="0047"/>

0201 refers to vendor ID parameter and you must change the 0047 to your own vendor
ID received either from USB Implementers Forum or Bluetooth SIG.

<UINT16 value="0202"/>

<UINT16 value="1234"/>

0202 refers to product ID parameter and you can replace the value 1234 with your own
ID.

<UINT16 value="0203"/>

<UINT16 value="0000"/>

0203 refers to product version and you can replace the value 0000 with your own version
number.

<UINT16 value="0204"/>

<UINT16 value="1"/>
This MUST not be changed.

<UINT16 value="0205"/>

<UINT16 value="0001"/>

0205 refers to the source of the vendor ID and it must tell if your own vendor ID is from
Bluetooth SIG or USB Implementers Forum

0000: Source of vendor ID is USB Implementers Forum

0001: Source of vendor ID is Bluetooth SIG

Table 6: Record definition of the Bluetooth Device Information Profile explained

 Silicon Labs 28

5.4 BGScript™ code

This section explains the most relevant sections of the BGScript™ code used in the demo application and
explains how the application consequently works.

The system_boot event is generated when power is applied to the Bluetooth module and this is the starting
point for the code execution. Immediately after, the event system_initialized is also generated, denoting that the
Bluetooth chipset in the BT121 has become ready to receive commands.

The Figure 5 in the next page shows the initial part of the script which includes the variables definition and all
the commands that are launched at the time the first two single events are captured. Functionality based on the
commands that are called within these two events is also described after the figure, and follows closely the
comments in the code itself.

Notice that the script is simply a text file that can be edited for example with Notepad++ for which a syntax
highlighter can be downloaded from the Bluegiga web site.

 Silicon Labs 29

Figure 5: Start of the BGScript example

According to the commands launched by the script when the system_boot and the system_initialized events are
captured, the module will first send out of its UART interface a welcome message that includes the firmware
build; then the script will initialize a few variables while arranging for any data sent to module over UART to be
discarded; finally, the script completes the initialization of the module by configuring the following parts:

- Set the Bluetooth BR/EDR’s Friendly Name to “BT121-HID-Mouse”: this will be the name seen for example at
the smartphone/tablet or at the PC when searching for devices in range

 Silicon Labs 30

- Set the Class-of-Device to 0x580: this was discussed in detail in chapter 4.2 and will allow the smartphone or
the tablet or the PC to realize the kind of device was found and to present an appropriate icon next to it

- Set the Secure Simple Pairing (SSP) capabilities of the module to no-input no-output, and disable MITM
protection, so that the “Just-Works” pairing mechanism will be in use: with this configuration the module and the
smartphone or PC will pair without the user having to enter a passkey

- Set the module to store the pairing information for future use by making it bondable: when devices are bonded,
no SSP procedures have to happen again for the exchange of link keys. SSP-based pairing and bonding is
mandatory between Bluetooth BR/EDR devices since Core Specification 2.1

- Start the HID server, so that incoming HID connections can be recognized and accepted, and so that the HID
SDP record (that we defined to have ID of 4) is loaded from memory and made available for SDP queries by
remote devices

- Make the module visible and connectable.

Another important part of the script concerns the connection and disconnection handlers: these are meant to
trigger pre-defined actions in cases when a connection is established or a disconnection is detected. Figure 6
in the next page shows this part of the script, and a description of the functionality enabled by the launched
commands is given after the figure.

 Silicon Labs 31

Figure 6: connection and disconnection event handlers

The first event handler shown above is used to launch a few commands upon detecting an established HID
connection. Commands will:

- Send a status message out of the UART telling that an HID connection is established

- Store the endpoint ID to a global variable that can be used within other events

- Set the hid_connected variable so to define the exact function associated to the two GPIOs with double
functionality for the case when the connection exists.

In order to catch the basic disconnection event the second event listener is needed, which will launch other few
commands:

- Send a status message out of the UART telling that the HID connection closed

- Explicitly close the endpoint to free resources tied to the endpoint

 Silicon Labs 32

- Unset the hid_connected variable and resets to initial state the variable used to temporarily hold the current
HID endpoint when one is assigned.

The last event listener in figure 6 is meant to recognize if the remote side is sending the virtual cable unplug
instruction, in which case a message is sent out of the UART to notify about this, while the two variables are
rewritten just as above. Remember that the firmware will automatically remove the bonding entry related to the
remote HID-Host that sent the instruction.

The last and fundamental part of the script is where the actual mouse functionality is defined. Figure 7 in the
next page shows an extract of this part and an explanation will follow.

 Silicon Labs 33

Figure 7: interrupt handler for mouse pointer movements, main button press, reconnection and DFU reset

The event hardware_interrupt is generated whenever a button of the evaluation main board is pressed, given
the configuration of the pins PB8, PB9, PB10, PB12 and PB13 as interrupts in the hardware configuration file

 Silicon Labs 34

(as seen in chapter 5.2), and given that these module’s pins are mapped respectively to the buttons 1 to 5 in
the main board of the evaluation kit.

When this event is generated, “if” statements are used to recognize the actual button being pressed and if a
connection is in place or not. Whenever the conditions are met, a message is sent out of the UART to indicate
the button press and the action that the button press will cause.

In particular, when the HID connection exists a button press will trigger the movement of the mouse pointer in
the direction assigned to the button, namely 5 pixels upwards for button 4, as in figure 7 above, 5 pixels
downwards for button 2, 5 pixels to the right for button 3, and 5 pixels to the left for button 5. The mouse pointer
movements are launched with the call bt_hid_send_input_report in accordance to the description of this
command given in chapter 4.4

In addition to the 4 buttons, 2 to 4, used for the pointer movements, button 1 is also assigned a double function:
while a HID connection exists, pressing this button will translate into a main button mouse click where the click
happens via the two consecutive hid reports seen in the first “if” group in figure 7 (the second of the reports is
needed for the button release). If no connection is in place, the press of button 1 will reset the module into DFU
mode to allow re-flashing of the module using the BGAPI-based DFU over UART.

There is actually a second button which is assigned double functionality: this is button 4 which will command
the module to attempt to re-connect to the last connected HID-Host when there is no ongoing connection
already. Re-connection is called via the command bt_hid_open and since this command requires the MAC
address of the HID-Host to connect to, the event bt_hid_opened is also used by the script so to capture the
MAC address into a global variable upon connection establishment.

The last two figures in this chapter depict the UART messages from the module seen at the terminal, and how
the HID-enabled module is seen by an Android phone after bonding. (Unfortunately the Nexus 5X under test
removes the mouse pointer just before taking a screenshot, that is why a photo is used instead.)

Figure 8: Bluetooth HID connection and mouse pointer in Android

 Silicon Labs 35

Figure 9: Debug and status messages out of module’s UART

 Bluetooth Qualification

The HID implementation in the new firmware of the BT121 has been tested against the Bluetooth PTS software
by the SIG and verified to be interoperable and fully working according to the specification.

The updated qualification ID for the new firmware is found here: https://www.bluetooth.org/tpg/listings.cfm

https://www.bluetooth.org/tpg/listings.cfm

IoT Portfolio
www.silabs.com/IoT

SW/HW
www.silabs.com/simplicity

Quality
www.silabs.com/quality

Support & Community
www.silabs.com/community

Simplicity Studio
One-click access to MCU and wireless
tools, documentation, software, source
code libraries & more. Available for
Windows, Mac and Linux!

Silicon Laboratories Inc.
400 West Cesar Chavez
Austin, TX 78701
USA

http://www.silabs.com

Disclaimer
Silicon Labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or
intending to use the Silicon Labs products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and “Typical”
parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Labs reserves the right to make changes
without further notice to the product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included information.
Without prior notification, Silicon Labs may update product firmware during the manufacturing process for security or reliability reasons. Such changes will not alter the specifications or
the performance of the product. Silicon Labs shall have no liability for the consequences of use of the information supplied in this document. This document does not imply or expressly
grant any license to design or fabricate any integrated circuits. The products are not designed or authorized to be used within any FDA Class III devices, applications for which FDA
premarket approval is required, or Life Support Systems without the specific written consent of Silicon Labs. A “Life Support System” is any product or system intended to support or
sustain life and/or health, which, if it fails, can be reasonably expected to result in significant personal injury or death. Silicon Labs products are not designed or authorized for military
applications. Silicon Labs products shall under no circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or
missiles capable of delivering such weapons. Silicon Labs disclaims all express and implied warranties and shall not be responsible or liable for any injuries or damages related to use of
a Silicon Labs product in such unauthorized applications.

Trademark Information
Silicon Laboratories Inc.®, Silicon Laboratories®, Silicon Labs®, SiLabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga Logo®, ClockBuilder®, CMEMS®, DSPLL®, EFM®,
EFM32®, EFR, Ember®, Energy Micro, Energy Micro logo and combinations thereof, “the world’s most energy friendly microcontrollers”, Ember®, EZLink®, EZRadio®, EZRadioPRO®,
Gecko®, Gecko OS, Gecko OS Studio, ISOmodem®, Precision32®, ProSLIC®, Simplicity Studio®, SiPHY®, Telegesis, the Telegesis Logo®, USBXpress®, Zentri, the Zentri logo and
Zentri DMS, Z-Wave®, and others are trademarks or registered trademarks of Silicon Labs. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM
Holdings. Keil is a registered trademark of ARM Limited. Wi-Fi is a registered trademark of the Wi-Fi Alliance. All other products or brand names mentioned herein are trademarks of
their respective holders.

