
Rev. 1.2 12/03 Copyright © 2003 by Silicon Laboratories AN110

AN110

16-BIT PWM USING AN ON-CHIP TIMER

Relevant Devices
This application note applies to the following
devices:

C8051F000, C8051F001, C8051F002,
C8051F005, C8051F006, C8051F007,
C8051F010, C8051F011, C8051F012, C8051F015,
C8051F016, C8051F017, C8051F220,
C8051F221, C8051F226, C8051F230,
C8051F231, and C8051F236.
Note: the C8051F0xx devices have an on-chip
PCA which may be more suitable for PWM gener-
ation. See AN007 for more information.

Introduction
This document describes how to implement a 16-
bit pulse width modulator (PWM) digital-to-analog
converter (DAC). The PWM consists of two parts:

1. A timer to produce a PWM waveform of a
given period and specified duty cycle.

2. A low-pass filter to convert the PWM wave to
an analog voltage level output.

A PWM coupled with a low-pass filter can be used
as a simple, low cost digital to analog converter
(DAC). This output can be used to drive to a volt-
age controlled device, or used in a feedback control
system where an analog-to-digital convertor
(ADC) is used to sample a controlled parameter.
PWM’s are often used in motor control applica-
tions.

Implementation software and hardware is dis-
cussed in this application note. An example of a
PWM using an on-chip timer and a low-pass filter
on the C8051F226-TB target board is provided.

The example also configures the target board to
sample the PWM output using the on-chip ADC.
This DAC implementation may be used to evaluate
the C8051F220/1/6’s ADC.

Key Points
• The C8051F2xx family SoC’s feature three on-

board 16-bit timers that can be used for PWM
generation. This example uses Timer 0 to pro-
duce the PWM wave which is output to a gen-
eral-purpose port pin.

• The C8051F2xx family of SoC’s have an 8-bit
ADC that is used in the provided example to
sample the output of the PWM DAC.

• The C8051F226-TB target board features a
low-pass filter that can readily be used for the
PWM DAC and configured to be sampled by
the on-chip ADC without soldering or adding
extra wiring. Target board use is assumed in the
provided example.

Generating the PWM Input
Waveform
Pulse-Width Modulation (PWM) is a method of
encoding data by varying the width of a pulse or
changing the duty cycle of a periodic waveform.
Adjusting the duty cycle of this waveform, we con-
trol the voltage output from the low-pass filter. This
can be thought of as a type of digital-to-analog con-
vertor (DAC). In this example, we use Timer 0 to
time the toggling of a general purpose port pin to
create the PWM waveform.

Configuring Timer 0
In order to create a PWM wave with a user speci-
fied duty cycle, we use Timer 0 in 16-bit counter/
timer mode. To do so, we configure the Timer

AN110

2 Rev. 1.2

Mode register (TMOD), and the Clock Control reg-
ister (CKCON), to set Timer 0 to use the system
clock (undivided) as follows:

;Set TIMER0 in 16-bit counter ;mode

orl TMOD,#01h

;Set TIMER0 to use system clk/1

orl CKCON,#08h

Timer 0 is used to set the amount of time the PWM
wave will be high during one cycle. When the timer
overflows, the program vectors to an interrupt ser-
vice routine (ISR) to take a port pin high or low to
produce the PWM wave. We enable the Timer 0
interrupts by setting the ET0 bit to 1 as follows:

;Enable Timer 0 interrupts

setb ET0

Additionally, interrupts must be enabled globally:

;enable interrupts globally

setb EA

The last step in configuring Timer 0 is to start the
timer by setting the TR0 bit:

;start Timer0

setb TR0

A variable called pulse_width defines the duty
cycle of the PWM wave. This determines the
amount of time the waveform is high during one
period of the wave, and is loaded into Timer 0. The
duty cycle can be set with 16-bit resolution. How-
ever, due to the number of cycles it takes to execute
the Timer 0 interrupt service routine (to be dis-
cussed later), the smallest pulse width that can be
assigned is 19 clock cycles. Likewise, the interrupt

service routine takes 14 cycles to take the PWM
wave from high to low. Thus, the maximum value
that can be used is 65,522. The variable
pulse_width is defined as follows:

;define variable for user to

;set duty cycle of PWM wave

;input to the low-pass filter

pulse_widthEQU 35000d

Note the example code sets pulse_width equal to
35,000. As an example, 35,000 will create a duty
cycle of 53.4%. Duty cycle is calculated as follows:

The duty cycle also describes the average time that
the waveform is high. This time will be converted
into a voltage in the low-pass filter. The average
output voltage for a given pulse_width value is cal-
culated as follows:

Hardware Configuration
Port pin P2.7 will be used for the PWM waveform
output to the PWM filter. We configure P2.7 as
‘push-pull’ by setting the Port 2 Configuration
Register (PRT2CF):

;Set p2.7 as push-pull

orl PRT2CF, #80h

dutycycle%
pulsewidth

65 536
------------------------------- 100=

Equation 1. Calculating Duty Cycle

Voutput VDD
pulsewidth

65 536
-------------------------------=

Equation 2. Calculating Average Output
Voltage

AN110

Rev. 1.2 3

Additionally, if using Silicon Lab’s C8051F226-TB
target board, a shorting jumper must be placed on
the “PWMIN” jumper in order to connect port pin
P2.7 to the low-pass filter.

Waiting For Interrupts
The Timer 0 ISR (Timer 0 overflow interrupt ser-
vice routine) is used to generate the PWM wave by
toggling the port pin P2.7. After programming the
various peripherals, one may use a simple jump to
the current address instruction in a loop to wait for
interrupts, which is most common. However, the
ISR is being used to generate a PWM waveform,
and there will be a small amount undesirable of
timing jitter caused by the small variation in delay
due to interrupt latency. This variation occurs
because the C8051 completes the current instruc-
tion before branching to the interrupt service vec-
tor. Thus, the time to branch to the ISR will vary
depending on where in the 2-cycle jump instruction
the MCU is when the interrupt condition occurs. To
avoid this, we make use of the C8051 MCU IDLE
Mode. The MCU will automatically “wake up”
from IDLE Mode when an enabled interrupt
occurs. This removes variations in interrupt latency
because the core is always in the same state when
an interrupt occurs. Note that all peripherals (such
as timers) continue to operate when in IDLE Mode.

Setting the Idle Mode Select bit in the Power Con-
trol Register (PCON) places the C8051 in IDLE
Mode. A jump statement is used to send the pro-
gram counter back to the instruction to set the
IDLE mode upon a return from an interrupt:

;Wait for interrupts in IDLE

;mode

IDLE:

orlPCON,#01h

sjmpIDLE

Upon a return from an ISR (reti instruction), the
MCU will jump back to the sjmp instruction. Here,
the program will loop back to set the IDLE Mode
bit and wait for the next interrupt condition to
occur.

Generating the PWM Wave in
Software with Timer 0 ISR
The PWM wave is produced by toggling a port pin
in an interrupt service routine (ISR). This ISR is a
state machine with two states. In one state, the out-
put pin is high (the high part of the PWM wave-
form). In this state, Timer 0 is loaded with the
value pulse_width and the MCU exits the ISR.
Next, the port pin is taken ‘low’ by clearing the bit
P2.7. In the low state, the value -pulse_width is
loaded. This sets the low time of the PWM wave-
form. At the next overflow, bit P2.7 is tested and
then set to go to the high part of the waveform for
the next period. In this way, the duty cycle can be
varied but the period of the PWM wave will be the
same.

The Timer 0 ISR is written as follows:

TIMER0_ISR:

;Test to see if low/high in ;wave-
form

jbc P2.7,LO

setb P2.7

; Set the low time of the

; PWM waveform

; Stop Timer 0 prior to load

clr TR0

mov TH0,#HIGH(-

pulse_width)

AN110

4 Rev. 1.2

mov TL0,#LOW(-pulse_width)

; Restart Timer 0

setb TR0

;Go to the reti statement

jmp RETURN

;Set low time of PWM Wave

LO:

; Stop Timer 0

clr TR0

mov TH0,#HIGH(pulse_width)

mov TL0,#LOW(pulse_width)

; Restart Timer 0

setb TR0

;Return to MAIN and wait for

;interrupt

RETURN:reti

The Low-Pass Filter
The PWM wave generated with specified duty
cycle is input into a low-pass filter. This filter will
remove most of the high frequency components of
the PWM wave. In terms of the time domain, the
RC circuit will be charged to a voltage level pro-
portional to the percentage of the period that the
PWM wave input is positive (duty cycle). In short,
the low-pass filter converts the set high time of the
PWM wave to a voltage at the output of the system.
Because the system inputs a digital number and
outputs a desired voltage, the PWM and low-pass
filter may be considered a form of digital-to-analog
convertor (DAC).

In our example, we use a single-pole RC filter
installed on the C8051F226-TB target board by
placing a shorting jumper on the two pin jumper
labeled “PWMIN”. The filter used is shown in
Figure 1..

The filter in Figure 1 is a simple single pole filter.
Its transfer function is:

The RC filter must have a relatively low cutoff fre-
quency in order to remove enough high frequency
components of the wave to give a relatively con-
stant DC voltage level. However, if the RC con-
stant is too large, it will take too long for the RC
voltage to rise to a constant level (i.e., long settling
time.) This trade off can be easily tested in a com-
puter model or a lab to choose good resistor/capac-
itor values.

This filter has only a single pole and so does not fil-
ter out all of the high frequency components of the
rectangular PWM waveform. The capacitor is
undergoing alternating cycles of charge and dis-
charge, so the output will not be a constant DC
voltage. (See Figure 2 below.) The output voltage
will have some “ripple” (Vripple in Figure 2) asso-
ciated with the filter’s time constant RC. In the
frequency domain, the voltage ripple can be
thought of as the relationship between the filter’s

C
R

PWM Wave input
PWM Output

Figure 1. Low-Pass Filter

Vout s 
Vin s 

c

s c+
---------------= c

1
RC
---------= 

 

Equation 3. RC Filter Transfer Function

AN110

Rev. 1.2 5

cutoff frequency (RC) and the frequency of
the PWM wave.

When designing the low-pass filter, it may be
important to predict, or characterize the deviation
from the desired constant, DC voltage output. We
refer to this as voltage ripple (Vripple). In order to
characterize the Vripple, we use the formulae that
describes the voltage of a capacitor in an RC cir-
cuit.

Figure 2 illustrates the input PWM wave and the
resulting low-pass filter output. The output wave is
exaggerated to show the alternating charge and dis-
charge of the capacitor in the RC circuit. The ripple
for a 50% duty cycle (worst case ripple) for this fil-
ter is calculated by using the following expression
given R,C, and the period of the PWM wave, T:

Equation 4 is derived using the formulae that
describe the voltage of a capacitor in an RC circuit
and by taking advantage of the symmetry of the
PWM waveform as a square wave (i.e., 50% duty
cycle). Note that the worst case ripple is deter-
mined by both the frequency (f=1/T), and the RC
time constant (). This makes sense, as the RC
combination determines the cutoff frequency of the

low-pass filter, and with respect to the PWM wave
frequency this will characterize how much of the
high frequency components will be filtered from
the rectangular PWM waveform.

The RC circuit on the target board uses a 220 k
resistor and a 0.47 F capacitor. These values were
chosen to show a relatively constant voltage level
with 8-bit ADC sampling and still have a reason-
able settling time.

If the ideal output is a constant DC voltage, then
the ripple in the output voltage can be considered
as the error. To calculate this error when designing
the filter (or to evaluate using a simple RC filter),
we must know the frequency of the PWM wave,
and the time constant (). Using the RC values on
the target board,RC=0.1034 seconds. If the 16-
bit timer is running with system clock speed of
16 MHz, the PWM period in this example is:

In this example, the predicted Vripple is calculated
to be 200 mV using Equation 4.

Sampling the PWM Output
With the On-Chip ADC
The C8051F226-TB target board includes a
C8051F226 SoC that features an 8-bit analog-to-

PWM Waveform

LPF Output

Vripple

V
ol

ta
ge

Time

Figure 2. PWM Waveform and Filter Output

Vripple VDD 1
2e

T
2
------–

1 e

T
2
------–

+

--------------------–

 
 
 
 
 

, RC= =

Equation 4. Voltage Ripple In Filter Circuit

T
2

16

sysclk
------------------ 65 536

16
610

------------------- 4ms= =

AN110

6 Rev. 1.2

digital convertor (ADC). In this example, we wish
to sample the output voltage with the ADC. Alter-
natively, the output can also be measured using a
voltmeter at the test point labeled “PWM” on the
target board. To use the ADC we must configure a
port for ADC input and program the ADC to sam-
ple at a desired rate to measure the PWM output.

Configuring the ADC
The C8051F2xx family of devices can use any gen-
eral purpose port pin as an input for analog signals.
The AMX0SL register configures the ADC’s mul-
tiplexer (AMUX) to select which port pin will be
the input to the ADC. The target board used in this
example provides a circuit for easily placing the
PWM output to port pin P3.0, which is configured
as the ADC input as follows:

;enable AMUX and configure for
;P3.0 as an input port pin

mov AMX0SL,#38h

The ADC0CF configuration register sets the SAR
conversion clock based on the system clock, and
sets the programmable gain amplifier (PGA) gain.
The maximum frequency the SAR clock should be
set to is 2 MHz. The system clock is operating at
16 MHz, thus, the SAR conversion clock is set to 1/
8 of the system clock frequency (i.e., SAR conver-
sion clock = sysclk/8). We also program the PGA
for a gain of one as follows:

;set conv clk at one sys clk and
;PGA at gain = 1

mov ADC0CF, #60h

ADC0CN is the ADC control register. This register
is set to configure the ADC to start conversions
upon a Timer 2 overflow and set the ADC to low
power tracking mode (tracking starts with Timer 2
overflow):

; SAR clock = SYSCLK/8

; PGA gain = 1

;Timer 2 overflow

mov ADC0CN, #01001100b

Finally, we enable the ADC. This bit is located in
the ADC0CN register which is bit addressable, and
so we use setb:

;enable ADC

setb ADCEN

In this example, we use the VDD voltage supply as
the ADC voltage reference. This is set in the
REF0CN register:

;set ADC to use VDD as Vref

mov REF0CN, #03h

Before we can use Timer 2 overflows to initiate
ADC conversions, we must configure and start
Timer 2. We place a value called ADCsampl in
Timer 2 to initialize its operation, and place the
same value into the Timer 2 Capture registers,
RCAP2H:RCAP2L, so that it will overflow at the
desired sampling frequency. Timer 2 has an auto-
reload feature making this convenient. A sampling
frequency that is independent of PWM wave fre-
quency is desirable because the output of the filter
will have a periodic variation in the DC level
because the filter is not ideal (charging and dis-
charging of our capacitor causing Vripple.) Sam-
pling at a different frequency will allow us to
observe the voltage ripple with the ADC. In this
example, we use a sampling frequency of 1.6 kHz.

Configuring Timer 2:

;initialize T2 for ADC sampling
;rate of 1.6 kHz with 16 MHz
;sysclk

mov TL2,#LOW(ADCsampl)

AN110

Rev. 1.2 7

mov TH2,#HIGH(ADCsampl)

;Load autoreload values for ;sam-
pling rate of ADC

mov RCAP2L,#HIGH(ADCsampl)

mov RCAP2H,#HIGH(ADCsampl)

;Set Timer 2 to use sysclk/1

orl CKCON, #20h

;start Timer 2

setb TR2

We must enable ADC end of conversion interrupts
so we can process ADC samples. To enable ADC
interrupts, we configure the Extended Interrupt
Enable 2 register (EIE2):

;enable ADC interrupts

orl EIE2,#00000010b

The ADC is now configured for sampling an input
from P3.0 using Timer 2 to set the sampling fre-
quency. All that is required now is to configure the
port pin for analog use described in the following
section, and connect it to the low-pass filter output.

Configuring the Port For the
ADC
The ADC has been configured to input analog from
P3.0. We now must configure the port for analog
input use.

The port pins default to digital input mode upon
reset. We place port pin P3.0 in analog input mode
by configuring the Port 3 Digital/Analog Port
Mode register, P3MODE:

;Set p3.0 in analog input mode

orl P3MODE, #01h

Note that we must physically connect the PWM
output to the ADC input. One could solder a wire
or design a PCB to provide this connection. The
target board in this example conveniently provides
headers that allow easy configuration using short-
ing jumpers to connect the provided PWM low-
pass filter to port pin P3.0. No soldering or external
wiring is necessary for this demonstration.

To configure external circuitry to input the PWM
output to port pin P3.0 (set for ADC input), place a
shorting jumper onto header J6, connecting
“PWM” pin to “P3.0AIN”. P3.0AIN is connected
to the P3.0 port pin on the device.

The ADC Interrupt Service
Routine
The ADC interrupt service routine’s only function
in our example is to clear the ADC interrupt flag,
the ADCINT bit. This flag must be cleared in soft-
ware, and we do so as follows:

ADC_ISR:

clr ADCINT

reti ;return from interrupt

The ADC ISR is a convenient place to read the
sampled data from the ADC data registers and pro-
cess the data. This example leaves the data in the
word register (ADC0H) and will be overwritten
with each new sample. This data may be observed
by using Silicon Lab’s Integrated Development
Environment (IDE) tool to view the special func-
tion register, ADC0H which holds the ADC con-
version results.

Interpreting the Results
The PWM outputs a voltage level corresponding to
the pulse_width variable which determines the

AN110

8 Rev. 1.2

PWM wave duty cycle. As aforementioned, the
voltage level output can be calculated using
Equation 2 on page 3.

VDD refers to the supply voltage of the device. The
number 65,536 is the highest number that can be
represented in 16 bits (as our PWM timer is a 16 bit
counter/timer). Voutput is the value one would
measure at the output of the PWM’s low-pass filter.
Note that due to the number of cycles is takes to
execute the Timer 0 ISR, the minimum number that
can be effectively used as the pulse_width is 19.
Thus, the lowest Voutput that can be generated is
0.028% of VDD. Any number used for pulse_width
less than 19 will yield the same result as entering
19. Similarly, it takes 14 cycles for the Timer 0 ISR
to process the falling edge of the PWM waveform.
Thus, the maximum effective pulse_width is
65,522 (65,536-14). Therefore, the resulting output
will be 99.98% of VDD. There are no other limita-
tions due to software inside of the 0.028%-99.98%
range other than the quantization imposed by 16-bit
timer resolution. If, for example, VDD=3.0V, then
the voltage resolution will be 46 V with code and
the range of the output voltage values is 0.87 mV to
2.9994 V.

In our example, we measure the PWM output with
the on-chip ADC. The result in the ADC register
(ADC0H) will be a number between 0 and 255 (8-
bit ADC). This example uses VDD as the reference
for the ADC conversion. The ADC output number
can be interpreted as follows:

Note that Vresult may not match the ideal Voutput
calculated as output from the PWM. This is due to
the aforementioned Vripple (see section, “The
Low-Pass Filter”).

Vresult VDD
ADC0H

256
---------------------=

AN110

Rev. 1.2 9

Software
;Copyright 2003 Cygnal, Inc.
;Implementing an 16-bit PWM on SA_TB4PCB-002 target board and sampling to test
; the 8-bit analog-to-digital convertor (ADC). The following program will
; configure on-chip peripherals and use a low-pass filter on the target board.
;
;FILE: PWM_200.asm
;DEVICE: C8051F2xx
;TOOL: Cygnal IDE, 8051 assembler (Metalink)
;AUTHOR: LS
;---
$MOD8F200
;---
;
;Reset Vector
;

org 00h
jmp MAIN

;
;---
;
;ISR Vectors

org 0Bh
jmp TIMER0_ISR

org 7Bh
jmp ADC_ISR

;---
;CONSTANTS
pulse_width EQU 35000d ; Value to load into TIMER0 which

; adjusts
; pulse width (duty cycle)
; in PWM and thus sets the
; DC bias level output from the
; low-pass
; filter. Set from 19-65522d.
; 32768 = VDD/2

ADCsampl EQU 55536d ; Load into TIMER2 for ADC sampling rate

;-Start of MAIN code--

org 0B3h

MAIN:
mov OSCICN,#07h ; Configure internal OSC for 15MHz
mov WDTCN,#0DEh
mov WDTCN,#0ADh
mov P3MODE,#0FEh ; Configure P3.0 for analog input
orl PRT2CF,#80h ; Configure P2.7 as push-pull input to ;

low-pass filter
orl CKCON,#28h ; Set TIMER0 and TIMER2 to use SYSCLK/1

AN110

10 Rev. 1.2

mov TMOD,#01h ; Set TIMER0 in 16-bit counter mode
mov RCAP2L,#LOW(ADCsampl) ; Load autoreload values for sampling

; rate of ADC
mov RCAP2H,#HIGH(ADCsampl) ; using TIMER2 overflow for ADC

; conversion start
mov TL2,#LOW(ADCsampl) ; initialize T2 for ADC sampling

; rate=1.6KHz
mov TH2,#HIGH(ADCsampl)
mov AMX0SL,#38h ; Set AMUX for P3.0 input/Enable AMUX
mov ADC0CF,#60h ; SAR clock = SYSCLK/8, and GAIN = 1
mov ADC0CN,#00001100b ; Set the ADC to start a conversion on

; Timer2 overflow
orl REF0CN,#03h ; Set to the internal reference
orl EIE2,#00000010b ; Enable ADC end of conv. interrupts
setb ET0 ; Enable timer0 interrupts
setb EA ; Global interrupt enable
setb TR0 ; Start TIMER0
setb TR2 ; Start TIMER2
setb ADCEN ; Enable the ADC

IDLE:
orl PCON,#01h ; BWCLD
sjmp IDLE

;------TIMER0 ISR--
TIMER0_ISR:

jbc P2.7,LO ; Test to see if low/high in waveform
setb P2.7 ; Transition low to high
clr TR0 ; Stop Timer 0 during reload
mov TL0,#LOW(-pulse_width) ; Set length of pulse for DC bias level
mov TH0,#HIGH(-pulse_width) ;
setb TR0 ; Restart Timer 0
jmp RETURN

LO: clr TR0 ; Stop Timer 0 for reload
mov TL0,#LOW(pulse_width) ; Set low time of duty cycle
mov TH0,#HIGH(pulse_width)
setb TR0 ; Restart Timer 0

RETURN:reti

;------ADC ISR---
ADC_ISR:

clr ADCINT ; flag must be cleared in software
reti

;---

;End of program
;All your base are belong to us.
END

http://www.silabs.com

Silicon Laboratories Inc.
400 West Cesar Chavez
Austin, TX 78701
USA

Simplicity Studio

One-click access to MCU and
wireless tools, documentation,
software, source code libraries &
more. Available for Windows,
Mac and Linux!

IoT Portfolio
www.silabs.com/IoT

SW/HW
www.silabs.com/simplicity

Quality
www.silabs.com/quality

Support and Community
community.silabs.com

Disclaimer
Silicon Labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or
intending to use the Silicon Labs products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical"
parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Labs reserves the right to make changes
without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included
information. Silicon Labs shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses granted
hereunder to design or fabricate any integrated circuits. The products are not designed or authorized to be used within any Life Support System without the specific written consent of
Silicon Labs. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant personal
injury or death. Silicon Labs products are not designed or authorized for military applications. Silicon Labs products shall under no circumstances be used in weapons of mass
destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.

Trademark Information
Silicon Laboratories Inc.® , Silicon Laboratories®, Silicon Labs®, SiLabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga Logo®, Clockbuilder®, CMEMS®, DSPLL®, EFM®, EFM32®,
EFR, Ember®, Energy Micro, Energy Micro logo and combinations thereof, "the world’s most energy friendly microcontrollers", Ember®, EZLink®, EZRadio®, EZRadioPRO®,
Gecko®, ISOmodem®, Precision32®, ProSLIC®, Simplicity Studio®, SiPHY®, Telegesis, the Telegesis Logo®, USBXpress® and others are trademarks or registered trademarks of Silicon
Labs. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand
names mentioned herein are trademarks of their respective holders.

	Relevant Devices
	Introduction
	Key Points
	Generating the PWM Input Waveform
	Configuring Timer 0
	Hardware Configuration
	Waiting For Interrupts
	Generating the PWM Wave in Software with Timer 0 ISR

	The Low-Pass Filter
	Sampling the PWM Output With the On-Chip ADC
	Configuring the ADC
	Configuring the Port For the ADC
	The ADC Interrupt Service Routine

	Interpreting the Results
	Software

