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1. Introduction

Cardiac arrest (CA) is an abrupt cessation of myocardial function
that affects more than half a million people in the United States
annually. Patients resuscitated from cardiac arrest can experience a

wide range of outcome trajectories, from complete recovery to
death or severe neurologic disability [1]. A challenge in post-CA care
is to accurately predict outcome, especially in the early phase when
patients are treated in the intensive care unit (ICU). Physical
examination findings and neurophysiological tests lack prognostic
accuracy, especially when assessed less than 72 h after CA [2]. The
recommended paradigm of multi-modality prognostication can be
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A B S T R A C T

Background: There is an unmet need for timely and reliable prediction of post-cardiac arrest (CA) clinical

trajectories. We hypothesized that physiological time series (PTS) data recorded on the first day of

intensive care would contribute significantly to discrimination of outcomes at discharge.

Patients and methods: Adult patients in the multicenter eICU database who were mechanically ventilated

after resuscitation from out-of-hospital CA were included. Outcomes of interest were survival,

neurological status based on Glasgow motor subscore (mGCS) and surrogate functional status based on

discharge location (DL), at hospital discharge. Three machine learning predictive models were trained,

one with features from the electronic health records (EHR), the second using features derived from PTS

collected in the first 24 h after ICU admission (PTS24), and the third combining PTS24 and EHR. Model

performances were compared, and the best performing model was externally validated in the MIMIC-III

dataset.

Results: Data from 2216 admissions were included in the analysis. Discrimination of prediction models

combining EHR and PTS24 features was higher than models using either EHR or PTS24 for prediction of

survival (AUROC 0.83, 0.82 and 0.79 respectively), neurological outcome (0.87, 0.86 and 0.79 respec-

tively), and DL (0.80, 0.78 and 0.76 respectively). External validation in MIMIC-III (n = 86) produced

similar model performance. Feature analysis suggested prognostic significance of previously unknown

EHR and PTS24 variables.

Conclusion: These results indicate that physiological data recorded in the early phase after CA

resuscitation contain signatures that are linked to post-CA outcome. Additionally, they attest to the

effectiveness of ML for post-CA predictive modeling.
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linical severity and recovery probabilities could open the way for
ore effective, personalized therapeutic intervention.

Here, we propose a novel approach for post-CA clinical outcome
rediction, based on the hypothesis that physiologic time series
PTS) signals, which are routinely recorded at the bedside, contain
iscriminative information and contribute to prognostic model
erformance. The hypothesis was tested using high-resolution
ata from the multicenter Philips eICU-CRD database [4], and
xternally validated on Medical Information Mart for Intensive
are (MIMIC) III database [5].

. Patients and methods

.1. Source of data

Data were extracted from the Philips eICU-Clinical Research
atabase (eICU), an open-source platform containing over 200,859
nique patient encounters in 208 hospitals across the US that use
ele-ICU software [4]. This data consists of patients admitted to
CUs in 2014 and 2015 and contains granular EHR and PTS data. PTS
ata in eICU was recorded as a windowed median every 5 min and

ncludes heart rate (HR), systolic and diastolic blood pressure (SBP,
BP), respiratory rate (RR), and O2 saturation by pulse oximeter

SpO2). For the purpose of this research, we focused exclusively on
TS data collected in the first 24 h (PTS24) after ICU admission for
he five mentioned signals.

Data on post-CA patients within the Medical Information Mart
or Intensive Care (MIMIC-III) database were used as the validation
ohort [5]. This database contained 61,522 unique patient
ncounters at Beth Israel Deaconess Medical Center between
001 and 2012.

.2. Inclusion criteria

Patients were selected based on the following criteria: >18
ears old, admitted to the ICU after CA, remained in the ICU for >

4 h, were mechanically ventilated, all three principal outcomes
ecorded, and had available PTS24 signals. We included only post-
A patients who were mechanically ventilated as they represent a
ubset with higher severity of illness in whom prognostication is
ost relevant. The same inclusion criteria were used to select

atients in eICU and MIMIC-III.

.3. Outcomes

The three outcomes of interest were survival, neurological
tatus based on Glasgow Coma Score motor subscore (mGCS), and
urrogate functional status based on discharge location (DL), all at
ospital discharge. The neurological outcome indicator widely
sed in the CA population is the Cerebral Performance Category
CPC) score, [6] however, it was not recorded in eICU or MIMIC III.

e defined a surrogate neurological outcome based on the motor
ubscore of the Glasgow Coma Score (mGCS) recorded at discharge,
ichotomized as follows: mGCS of 6 (favorable outcome),
GCS � 5 (unfavorable outcome). We defined a surrogate

unctional status based on hospital discharge location (DL),
ichotomized as follows: discharge location of home or acute
ehabilitation (favorable outcome), other location (unfavorable
utcome). Availability of clinical outcome data varied in eICU and

composed of 338 variables extracted from demographics, nurse
examinations, laboratory results, medication, initial rhythm,
admission diagnosis, and SOFA score/components, all limited to
the first day of ICU admission. Precise documentation of targeted
temperature management (TTM) was not available in the dataset.
We developed a TTM identification algorithm based on temporal
trends in body temperatures over the first 24 h; using this method,
we classified 531 patients as having received TTM during the
observation period.

Highly comparative time-series analysis (HTCSA), an automat-
ed feature extraction tool, was used to derive approximately
4000 derived features per PTS24 signal type [7]. HCTSA PTS24

derived features included distribution, correlation, trends, fre-
quency, information theory features, and many others and has
been successfully used across multiple fields of study [7,8].

The PTS24 and EHR features were pruned using a nested random
forest feature importance ranking and variance inflation factor
collinearity analysis for each clinical outcome. This resulted in
three distinct feature spaces for each clinical outcome reducing the
features to 410, 508, and 436 for survival outcome, mGCS
neurologic outcome, and DL outcome respectively. A breakdown
of HCTSA feature categories included in our model can be found in
Table S2 and Table S3, and a more detailed explanation can be
found in the supplemental text.

2.5. Model development

All models were developed exclusively using features extracted
from the first 24 h following ICU admission. Four ML approaches
were used to train the prediction models: generalized linear model
(GLM), random forest (RF), gradient boost (XGBoost) and neural
network (NN) to assess the performance of utilizing different
feature subsets (EHR features, PTS24 features, and combined EHR
and PTS24 features) for each principal outcome. Fig. S1 summarizes
the model training and testing schema implemented. The
implemented nested cross-validation contained an outer and an
inner loop.

Class imbalance was handled by weighting the disproportion-
ate classes to impose a heavier cost when errors were made in the
minority class. The class imbalance of our eICU and MIMIC CA
cohort per clinical outcome can be found in Table S1.

2.6. Model performance metrics

The sensitivity, specificity, and discrimination estimated by the
area under the receiver operating characteristic curve (AUROC) of
each model was computed across 25 outer validation loops
(5 outer � 5 inner loop) and performances were compared
between ML algorithms per clinical outcome. Additionally,
precision, area under the precision recall curve (AUPRC), and F1
score were computed to better observe the effect of different
clinical outcome prevalence. These performance metrics were
evaluated after probability calibration to improve the distribution
of predicted probabilities to better match the distribution of
ground truth. Isotonic regression calibration was implemented to
calibrate the predicted probabilities. Youden’s index was used to
compare performances of models using different feature subsets
and ML classifiers. Youden’s index (J statistic) is commonly used to
express the performance of a binary classification model and is
defined as the point on the ROC curve, which maximizes the sum of
IMIC (Table S1).

.4. Variable extraction and selection

Based on prior studies, quantitative variables in the EHR
elevant to post-CA patients were selected. EHR features were
2

sensitivity and specificity minus feature ranking and Interpreta-
tion.

Feature ranking was performed to evaluate model interpret-
ability. The motivation was to extract the most important features
used in our final model and to provide insight into which HCTSA
PTS24 derived features and/or potentially previously unknown EHR
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features were most valuable for discriminative performance. We
implemented a nested random forest feature importance ranking,
which establishes hierarchical importance for each feature
estimated by the frequency and placement (tree depth) of each
feature in each decision tree [9,10]. This ranking was then
normalized as a ‘‘relative importance’’ (RI) with a range of 0–1,
with 1 being the most important feature.

To further enhance variable interpretation, the top 50 features
from the nested random forest rankings were analyzed by their
beta coefficients from each trained generalized linear model (GLM)
per clinical outcome. This allowed for the analysis of the logistic
regression beta coefficients to understand the positive and
negative correlation to each of the clinical outcomes.

2.7. External validation

The resulting three eICU models were externally validated on
86 post-CA patients in MIMIC. This subset of patients was
conservatively selected to contain those with an unquestionable
certainty of an out of hospital cardiac arrest and resulted in a
limited external validation sample size. This occurred due to
missing diagnosis timing within the ICU, which left us only with
admission diagnosis to rely on to determine out-of-hospital CA.
From these 86 post-CA patients, different subsets had varying
availability of clinical outcomes and variable availability, therefore,
for each clinical outcome, there were fewer patients as shown in
Table S1.

3. Results

We analyzed 2216 unique post-CA ICU admissions in the eICU
database (Fig. 1) and 86 unique post-CA ICU admissions meeting
the same criteria in MIMIC. The demographic summary and
outcome distributions of eICU and MIMIC post-CA cohorts are
provided in Table 1 and Table S1.

3.1. Model performance

Performance of all clinical outcome prediction models, evalu-
ated for each feature subset (EHR-only, PTS24-only, and EHR and

PTS24 combined) is shown in Table 2, Fig. 2, and Fig. 3. This table
also includes the discriminative performance of baseline logistic
regression models for each outcome label created utilizing only
variables used to compute the widely implemented APACHE IV in-
hospital mortality. This is labeled as APACHE reference and serves
as the true baseline comparison for only our equivalent CA survival
outcome.

The AUROC of our in-hospital mortality (survival outcome)
model outperformed the APACHE in-hospital mortality reference
by 10% (p < 0.01), and provided significantly higher sensitivity,
specificity, and precision. Given the mortality of 40.3% in our
eICU cohort, compared to the APACHE reference, the positive
(PPV) and negative predictive value (NPV) of our survival
outcome model increased by 9.4% (0.66) and 8.0% (0.85)
respectively (Table S5). It is important to note that all
models were optimized for the AUROC at the Youden’s index
for ease of comparative evaluation, therefore, based on future
implementation requirements, the PPV and NPV can be further
optimized.

Across the three hospital discharge outcomes, the XGBoost
model provided the highest discrimination with prediction of
neurological outcome reaching an AUROC of 0.87 � 0.1 and AUPRC
of 0.86 � 0.1. The PPV and NPV for the neurological outcome model
shows significant implementation utility, highlighting that given the
52.8% prevalence of unfavorable neurological outcome, regardless of
the predicted discharge neurological status, our model prediction was
80% correct (PPV: 0.80; NPV:0.79) (Table S5).

According to the DL outcome, 70.5% of the eICU CA cohort was
found to have an unfavorable outcome. The EHR and PTS24 derived
features showed promising discriminative performance and
attained an AUROC of 0.80 � 0.1 for the XGBoost model. The PPV
of correctly identifying an unfavorable outcome was 0.88 with an NPV
of 0.51. This indicates that the model, at the Youden’s index, is
optimized to be increasingly certain of patients predicted to have an
unfavorable discharge location compared to patients predicted to be
sent home or to acute rehabilitation.

3.2. Feature subset model performance

The ROC curves of each feature subset (EHR-only, PTS24-only,
and EHR + PTS24) are shown with model performances in
Fig. 1. Study flow diagram for eICU patients. MIMIC III patients were identified using the same criteria.

3
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able 2. The AUROC of the PTS24-only model for all clinical
utcomes was 4%–5% higher than the APACHE references utilizing
alidated clinical variables. Additionally, feature analysis identi-
ed which HCTSA PTS features contribute most for each of the
ost-CA clinical outcome prognostications and provides a ranked

ist for use in other studies (Table S3).
For all clinical outcomes, the best performing model combined

HR and PTS24 features. Comparing the GLM, RF, and XGBoost
odels across different feature subsets, the AUROC increase of the

ombined EHR and PTS24 features was 1%–2% higher than the
UROC of EHR-only model across all clinical outcomes.

.3. Other performance metrics

The area under the precision-recall curve (AUPRC) of the best
odel for each outcome was 0.74 � 0.1 for mortality, 0.86 � 0.1

or mGCS, and 0.89 � 0.1 for DL outcomes. The F1 score, a harmonic
ean of precision (PPV) and recall (sensitivity), provides a class

mbalance adjusted accuracy and shows that for both neurological
utcomes with higher unfavorable outcome prevalence, the F1 score
as been adjusted to be higher than the accuracy. The opposite is
rue for the survival outcome where the unfavorable outcome
expired) accounts for only 40.3% of the CA cohort. Lastly, we
nalyzed the Brier score of the isotonic regression calibrated
redicted probabilities. While most models had good agreement
etween actual and predicted probabilities prior to isotonic

3.4. Model interpretability

Features were ranked utilizing the minimum depth of a nested
random forest and the beta coefficients of a GLM. Fig. 4 shows the
ranking results for both methods applied to survival outcome
features. For clarity, in the random forest relative importance plot
we used abbreviated feature designations (Fig. 4A); a dictionary
can be found in Table S3. The top 50 features from the RF ranking
were further analyzed using the GLM beta coefficients to better
understand the relationship between feature value and its
correlation and contribution to the binary outcomes (Fig. 4B).
The ranking results for the neurological outcome labels are in Figs.
S3 and S4. It was notable that TTM was not among the ranked
predictive features.

For all clinical outcomes, the GCS total and subscores taken
from the first day of ICU admission ranked as the most important
features. The positive and negative beta coefficients for the clinical
variables were verified as plausibly contributing to the favorable
and unfavorable outcomes for all three outcomes. For survival
outcome, of the top 50 features, 24 were HCTSA PTS24 derived
features mainly originating from heart rate, SpO2, and respiratory
rate signals. Similarly, the top 50 features for the neurological
outcome models were mostly HCTSA PTS derived features (33 for
mGCS and 30 for DL). This strengthens our hypothesis that
although there may be similar predictive performance between
EHR and PTS models, the HCTSA PTS features make an

able 1
atient demographic summary.

eICU-CRD MIMIC III P-value

n 2216 86

Age (SD) 62.50 (15.86) 66.19 (14.65) 0.034

Body mass index (SD) 30.00 (8.30) 29.64 (4.06) 0.69

Ideal body weight (SD) 63.89 (10.94) 67.05 (6.37) 0.008

Gender male (%) 1280 (57.8) 53 (61.6) 0.548

Motor GCS on admission (IQR) 3 (4) 3 (2) 0.109

Total GCS on admission (IQR) 6 (6) 5 (6) 0.765

African American (%) 368 (16.6) 10 (11.6) 0.283

Caucasian (%) 1562 (70.5) 55 (64.0) 0.238

Other ethnicity (%) 286 (12.9) 21 (24.4) 0.004

Patients on ventilator (%) 1960 (88.4) 77 (89.5) 0.89

Patients with asystole (%) 180 (8.1) Not available

Patients with pulseless (%) 345 (15.6) Not available

Patients with ventricular fibrillation (%) 196 (8.8) Not available

Patients with ventricular tachycardia (%) 69 (3.1) Not available

Patients with unknown rhythm (%) 1426 (64.4) Not available

SOFA suspected sepsis (%) 680 (30.7) 11 (12.8) 0.001

SOFA septic shock (%) 328 (14.8) 7 (8.1) 0.118

SOFA score (SD) 6.63 (2.73) 5.29 (3.03) < 0.001

qSOFA score (SD) 1.24 (0.66) 0.80 (0.72) < 0.001

Neurological outcome (%) < 0.001

Favorable 1170 (52.8) 22 (25.6)

Unfavorable 1046 (47.2) 39 (45.3)

Not available 0 (0.0) 25 (29.1)

Survival (%) 0.548

Alive 1322 (59.7) 48 (55.8)

Expired 894 (40.3) 38 (44.2)

Discharge location outcome (%) 0.028

Favorable 646 (29.2) 36 (41.9)

Unfavorable 1542 (69.6) 50 (58.1)

Not available 28 (1.3) 0 (0.0)

GCS: motor Glasgow Coma Scale subscore; BMI: body mass index; DL: discharge location neurological; SOFA: sequential organ failure assessment; qSOFA: quick sequential

rgan failure assessment.
alibration, the mortality calibration plot in Fig. 2 shows that the
alibrated probabilities had improved agreement. Overall, the
est performing models for all clinical outcomes had a Brier
core ranging from 0.15 to 0.17. All these metrics are detailed in
able 2.
4

24 24

independent contribution to the final model performance of the
combined models.

These rankings also help identify which signals have more
utility. While the top 50 features for survival and neurological
outcome were lab results and heart rate derived features, the SpO2



Table 2
Model performance summary for all models for each clinical outcome and feature subset.

Model

type

AUROC Sensitivity Specificity AUPRC Precision F1 score Brier score Accuracy

Survival

outcome

EHR + PTS GLM 0.82 (0.82, 0.81) 0.80 (0.82, 0.79) 0.67 (0.69, 0.65) 0.72 (0.73, 0.70) 0.63 (0.64, 0.61) 0.70 (0.71, 0.69) 0.17 (0.18, 0.17) 0.72 (0.73, 0.72)

RF 0.81 (0.82, 0.80) 0.79 (0.80, 0.77) 0.69 (0.71, 0.67) 0.70 (0.72, 0.69) 0.63 (0.65, 0.62) 0.70 (0.71, 0.69) 0.17 (0.18, 0.17) 0.73 (0.74, 0.72)

*XGBoost 0.83 (0.84, 0.82) 0.79 (0.81, 0.77) 0.71 (0.73, 0.70) 0.74 (0.75, 0.73) 0.65 (0.67, 0.64) 0.71 (0.72, 0.70) 0.17 (0.17, 0.16) 0.74 (0.75, 0.74)

NN 0.81 (0.82, 0.80) 0.64 (0.68, 0.59) 0.81 (0.84, 0.79) 0.63 (0.66, 0.60) 0.69 (0.71, 0.68) 0.66 (0.68, 0.63) 0.18 (0.18, 0.17) 0.74 (0.75, 0.73)

EHR GLM 0.81 (0.82, 0.81) 0.78 (0.80, 0.77) 0.69 (0.71, 0.68) 0.72 (0.73, 0.71) 0.63 (0.65, 0.62) 0.70 (0.71, 0.69) 0.17 (0.18, 0.17) 0.73 (0.74, 0.72)

*RF 0.82 (0.82, 0.81) 0.75 (0.76, 0.73) 0.73 (0.74, 0.72) 0.71 (0.73, 0.70) 0.65 (0.66, 0.64) 0.70 (0.70, 0.69) 0.18 (0.18, 0.17) 0.74 (0.74, 0.73)

XGBoost 0.81 (0.82, 0.80) 0.78 (0.80, 0.76) 0.70 (0.71, 0.68) 0.72 (0.74, 0.71) 0.64 (0.65, 0.63) 0.70 (0.71, 0.69) 0.17 (0.18, 0.17) 0.73 (0.74, 0.72)

PTS GLM 0.76 (0.77, 0.75) 0.69 (0.71, 0.67) 0.69 (0.71, 0.67) 0.65 (0.66, 0.64) 0.60 (0.62, 0.59) 0.64 (0.65, 0.63) 0.19 (0.20, 0.19) 0.69 (0.70, 0.68)

RF 0.75 (0.76, 0.74) 0.74 (0.76, 0.72) 0.64 (0.65, 0.62) 0.64 (0.66, 0.62) 0.58 (0.59, 0.57) 0.65 (0.66, 0.64) 0.20 (0.20, 0.20) 0.68 (0.69, 0.67)

*XGBoost 0.79 (0.80, 0.78) 0.74 (0.76, 0.72) 0.69 (0.71, 0.66) 0.68 (0.70, 0.67) 0.62 (0.63, 0.60) 0.67 (0.68, 0.66) 0.18 (0.19, 0.18) 0.71 (0.72, 0.70)

APACHE reference 0.74 (0.75, 0.73) 0.72 (0.75, 0.70) 0.63 (0.65, 0.60) 0.62 (0.63, 0.61) 0.57 (0.58, 0.56) 0.64 (0.64, 0.63) 0.20 (0.21, 0.20) 0.67 (0.68, 0.66)

Neurological

outcome

(mGCS)

EHR + PTS

L

L

GLM 0.86 (0.86, 0.85) 0.81 (0.83, 0.78) 0.73 (0.75, 0.71) 0.85 (0.86, 0.84) 0.77 (0.78, 0.76) 0.79 (0.80, 0.78) 0.15 (0.16, 0.15) 0.77 (0.78, 0.76)

RF 0.86 (0.86, 0.85) 0.82 (0.83, 0.80) 0.73 (0.74, 0.71) 0.84 (0.85, 0.84) 0.77 (0.78, 0.76) 0.79 (0.80, 0.79) 0.15 (0.16, 0.15) 0.77 (0.78, 0.77)

*XGBoost 0.87 (0.88, 0.86) 0.81 (0.82, 0.79) 0.76 (0.78, 0.75) 0.86 (0.87, 0.85) 0.79 (0.80, 0.78) 0.80 (0.81, 0.80) 0.15 (0.15, 0.14) 0.79 (0.79, 0.78)

NN 0.86 (0.86, 0.85) 0.80 (0.83, 0.78) 0.76 (0.78, 0.74) 0.68 (0.72, 0.63) 0.79 (0.80, 0.78) 0.80 (0.81, 0.79) 0.16 (0.16, 0.15) 0.78 (0.79, 0.78)

EHR GLM 0.85 (0.86, 0.85) 0.79 (0.80, 0.77) 0.77 (0.78, 0.75) 0.84 (0.85, 0.83) 0.79 (0.80, 0.78) 0.79 (0.80, 0.78) 0.15 (0.16, 0.15) 0.78 (0.78, 0.77)

RF 0.86 (0.87, 0.85) 0.79 (0.80, 0.77) 0.77 (0.79, 0.75) 0.84 (0.85, 0.83) 0.80 (0.81, 0.78) 0.79 (0.80, 0.78) 0.15 (0.16, 0.15) 0.78 (0.79, 0.77)

*XGBoost 0.86 (0.87, 0.85) 0.80 (0.81, 0.79) 0.76 (0.77, 0.74) 0.85 (0.87, 0.84) 0.79 (0.80, 0.78) 0.79 (0.80, 0.79) 0.15 (0.16, 0.15) 0.78 (0.79, 0.78)

PTS GLM 0.74 (0.75, 0.74) 0.70 (0.71, 0.68) 0.68 (0.70, 0.66) 0.74 (0.75, 0.73) 0.71 (0.72, 0.70) 0.70 (0.71, 0.69) 0.21 (0.21, 0.20) 0.69 (0.70, 0.68)

RF 0.76 (0.77, 0.75) 0.71 (0.73, 0.69) 0.66 (0.68, 0.64) 0.76 (0.77, 0.75) 0.70 (0.71, 0.69) 0.71 (0.72, 0.70) 0.20 (0.21, 0.20) 0.69 (0.70, 0.68)

*XGBoost 0.79 (0.80, 0.79) 0.73 (0.74, 0.71) 0.71 (0.73, 0.70) 0.79 (0.80, 0.78) 0.74 (0.75, 0.73) 0.73 (0.74, 0.72) 0.19 (0.19, 0.18) 0.72 (0.73, 0.71)

APACHE reference 0.75 (0.76, 0.74) 0.76 (0.78, 0.75) 0.63 (0.64, 0.62) 0.72 (0.74, 0.71) 0.70 (0.70, 0.69) 0.73 (0.74, 0.72) 0.20 (0.20, 0.20) 0.70 (0.71, 0.69)

Discharge

location

outcome

(DL)

EHR + PTS GLM 0.78 (0.79, 0.78) 0.72 (0.74, 0.70) 0.71 (0.73, 0.69) 0.88 (0.89, 0.87) 0.86 (0.87, 0.85) 0.78 (0.79, 0.77) 0.16 (0.17, 0.16) 0.72 (0.73, 0.71)

RF 0.77 (0.78, 0.76) 0.65 (0.67, 0.63) 0.76 (0.78, 0.74) 0.87 (0.88, 0.86) 0.87 (0.87, 0.86) 0.74 (0.75, 0.73) 0.17 (0.17, 0.16) 0.68 (0.69, 0.67)

*XGBoost 0.80 (0.81, 0.79) 0.70 (0.73, 0.68) 0.75 (0.76, 0.73) 0.89 (0.90, 0.89) 0.87 (0.88, 0.86) 0.78 (0.79, 0.76) 0.16 (0.16, 0.16) 0.72 (0.73, 0.70)

NN 0.77 (0.78, 0.76) 0.82 (0.85, 0.80) 0.54 (0.58, 0.50) 0.72 (0.75, 0.69) 0.81 (0.82, 0.79) 0.81 (0.82, 0.80) 0.18 (0.18, 0.17) 0.74 (0.75, 0.73)

EHR *GLM 0.78 (0.79, 0.77) 0.70 (0.72, 0.68) 0.72 (0.74, 0.69) 0.87 (0.88, 0.87) 0.86 (0.86, 0.85) 0.77 (0.78, 0.76) 0.17 (0.17, 0.16) 0.71 (0.72, 0.70)

RF 0.77 (0.78, 0.76) 0.68 (0.70, 0.66) 0.72 (0.75, 0.69) 0.86 (0.87, 0.85) 0.85 (0.86, 0.84) 0.76 (0.77, 0.74) 0.17 (0.17, 0.17) 0.69 (0.71, 0.68)

XGBoost 0.76 (0.77, 0.75) 0.69 (0.70, 0.67) 0.71 (0.73, 0.69) 0.86 (0.87, 0.85) 0.85 (0.86, 0.84) 0.76 (0.77, 0.75) 0.17 (0.17, 0.17) 0.69 (0.70, 0.68)

PTS GLM 0.74 (0.75, 0.73) 0.69 (0.70, 0.67) 0.68 (0.70, 0.66) 0.85 (0.86, 0.84) 0.84 (0.84, 0.83) 0.75 (0.76, 0.74) 0.18 (0.18, 0.17) 0.68 (0.69, 0.67)

RF 0.73 (0.74, 0.72) 0.65 (0.67, 0.63) 0.69 (0.71, 0.67) 0.84 (0.86, 0.82) 0.83 (0.84, 0.83) 0.73 (0.74, 0.72) 0.18 (0.18, 0.18) 0.66 (0.67, 0.65)

*XGBoost 0.76 (0.76, 0.75) 0.70 (0.72, 0.68) 0.67 (0.69, 0.65) 0.86 (0.87, 0.86) 0.84 (0.84, 0.83) 0.76 (0.77, 0.75) 0.17 (0.17, 0.17) 0.69 (0.70, 0.68)

APACHE reference 0.71 (0.72, 0.70) 0.70 (0.73, 0.67) 0.60 (0.63, 0.57) 0.83 (0.83, 0.82) 0.81 (0.82, 0.80) 0.75 (0.76, 0.73) 0.18 (0.19, 0.18) 0.67 (0.68, 0.66)

AUROC: area under the receiver operating characteristic curve; AUPRC: area under the precision recall curve; RF: random forest; XGBoost: extreme gradient boosting; mGCS: motor Glasgow Coma Score; DL: discharge location; PTS:

physiologic time series; EHR: electronic health record; Reference APACHE (Acute Physiology and Chronic Health Evaluation) refers to a logistic regression model created utilizing variables used to compute the APACHE IV score to

predict our three clinical outcomes. APACHE reference is only used as an approximate reference/baseline point. The only direct APACHE reference comparison would be for post-CA survival (in-hospital mortality) outcome.
* The best performing models in each feature subset according to AUROC are marked with an asterisk.
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nd respiratory rate derived features had the largest impact on the
L outcome. Additionally, the DL outcome was associated with
ifferent lab results and SOFA component features compared to the
op 50 features of the other two outcomes.

The HCTSA PTS derived categories can be found in Table S2. In
greement with the frequency count of each category of HCTSA

3.5. External validation

Based on our inclusion and exclusion criteria, we found
86 matching MIMIC III post-CA ICU admission with available
clinical outcomes of interest and physiologic time series
data (Table 1). MIMIC III validation indicated reduced perfor-

ig. 2. Performance of computational models for all three labels.

The following calibration plots are visualized only for the best performing model. AUROC: Area under the receiver operating curve; AUPRC: Area under the precision recall

urve. GLM: generalized linear model. NN, neural network. Rf, random forest. Xg, gradient boost. mGCS, motor subscore of the Glasgow Coma Scale. The dotted line in the

UPRC plots represent the class imbalance.
ariables selected for each clinical outcome, many of the top PTS
eatures described correlation, time series model fitting, symbolic
ransformation, information theory, and wavelet coefficient
eatures. A detailed breakdown of each HCTSA variable broken
own by category and feature number can be found in Table S3.
6

mance when compared to eICU: The AUROC of the best MIMIC III
models was reduced by 7% for survival outcome, 2% for
neurological outcome, and 4% drop for DL outcome. A compre-
hensive overview of external validation results is in Table S4 and
Fig. S6.
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4. Discussion

Results demonstrate the value of a computational modeling
approach to predict short-term post-CA clinical trajectories in the
ICU setting. These models were established exclusively with data
available in the first 24 h after ICU admission and document the
importance of PTS as predictive variables. The findings show that
time-series feature engineering is a promising method to decode
clinically meaningful information from high-frequency physiolog-
ical data.

Feature exploration demonstrated that time series physiologi-
cal signals contain important predictive information. The majority
of the top 50 predictive features across all clinical outcomes were
PTS24 derived features. Our analysis makes clear that interpretable
statistical and mathematical features can be extracted from clinical
time series data, distinguishing this approach from ‘‘black box’’
neural network models.

Our analyses were performed using data, which are routinely
acquired in ICUs, suggesting the method could be scaled for
broader validation and use. The results suggest a pragmatic and
efficient computational approach to post-CA outcome prediction
that might complement existing prognostication systems. Addi-
tionally, modeling was based exclusively on data collected in the
first 24 h after ICU admission, demonstrating that early physio-
logical signatures are linked to outcome and need further
investigation. These early indicators could, if further validated,
represent a different paradigm from the current approach of
delaying prognostication until at least 72 h after CA [3].

Since the data for our CA patients was collected in multiple
institutions, we expected that the developed models might be
generalizable to a broader population of post-CA patients admitted
to hospitals in the USA. Notwithstanding clinical guidelines, there
is considerable variability between institutions (and even between
ICUs within the same institutions) in the acute care of patients
resuscitated from CA [11]. Our external validation in MIMIC III
found a decrease in model discrimination of 3%–8%. The reduction
in discrimination is not unexpected [12,13].

performance within epidemiologically disparate CA populations.
This study warrants further exploration of the predictor variables,
to gain insights on the clinical correlation and interpretability
provided by those variables. Furthermore, it will be important to
examine the value of computational approaches in integrating
prognostic data from different modalities, including neurophysi-
ology and brain MRI [29]. We plan to assess the impact of these
multimodal biomarkers in future studies. Last, work is needed to
understand the relevance of such models to long-term outcomes,
and to determine if comparable predictions are possible even
earlier in the ICU stay.

Several limitations in this work need to be noted. This was a
retrospective analysis suggesting potential errors due to bias,
confounders, and unrecorded or missing data. Our analysis was
centered on a subset of patients who remained in the ICU for >

24 h and for whom adequate data were available; these inclusion
criteria almost certainly introduced bias, since patients in very
unstable condition and/or dying in the first 24 h would have been
excluded, and documentation of PTS and/or outcomes may have
been less complete in this group. As a result, survival observed in
this sample was higher than in contemporary cohorts [30]. No
information was available about many variables, which are
commonly used for post-CA prognostication including bystander
resuscitation, time to return of spontaneous circulation, end-tidal
CO2, and results of tests such as EEG, evoked potentials or
imaging, among others. It is possible that inclusion of such
variables would have enhanced the predictive value of our EHR
model.

In addition, documentation was lacking on the use of TTM, an
important treatment variable, which can significantly influence
functional outcome in CA patients, or on withdrawal of life
sustaining therapy (WLST), which may occur in a significant
proportion of CA patients and can signal self-fulfilling prophecies
[14,31]. Another major limitation is that validated outcome
measures such as the cerebral performance category (CPC) score
or cognitive tests were not available in the eICU database. We
devised a surrogate outcome based on mGCS and discharge

Fig. 3. Receiver operating characteristic curves (ROC) of EHR-only vs. PTS24-only vs. EHR & PTS24 feature subset models. ROCs of the best performing models are plotted for

each feature subset. Algorithms with an asterisk in Table 2 identifies which models are visualized. mGCS, motor subscore of the Glasgow Coma Scale. EHR, model established

with electronic health record data. PTS, model established with physiological time series data. EHR + PTS, model combining features from EHR and PTS.
An important goal will be to validate our results on other post-
CA populations, in particular in prospective cohorts that would
allow the efficacy, generalizability, and practicability of this
approach to be tested in a real-world and real-time setting.
Additionally, we plan to validate our models in post-CA
populations outside North America to determine model fit and
7

location, however neither of these captures the functional state
information that is encompassed in scores like the CPC [15–
17]. Finally, it should be recognized that the performance of our
models, while rivaling those of scores derived at later time points
(> 72 h), will need to be significantly increased in order for them to
be considered in clinical decision-making.
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. Conclusions

Taken together, these findings demonstrate that computational
odels trained with high-resolution ICU time series data can

uccessfully discriminate discharge neurological outcome, dis-

accurate characterization of post-CA severity and clinical trajecto-
ries could in the future provide a window for personalizing
therapeutic interventions with the goal of achieving better
outcomes.

ig. 4. Feature importance visualized for the 410 survival outcome features using A) Random Forest relative importance visualized using feature categories with the top

5 features labeled, and B) Normalized GLM beta coefficients of the top 50 features. Both figures show simplified naming conventions for the HCTSA PTS derived features (full

ictionary available in the supplements). Similar plots for mGCS and DL outcomes are available in Figs. S3 and S4.
harge location, and survival of patients resuscitated from CA. We
ound that physiological signals contain valuable prognostic
nformation and that features derived from the first 24 h of ICU
dmission are associated with early post-CA recovery trajectories.
ur models are interpretable and indicate a number of predictive

eatures, which warrant exploration in future studies. Early and
8
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Our preprocessing can be separated into two steps: (1) clinically
implausible data (outlier) detection and (2) missing value
imputation.

This process is illustrated in Fig. S5. We reasoned that outlier
could be categorized as either an anomaly (artifact) or an accurate
reading (real clinical events). To identify outliers, the sliding
window median and median absolute deviation for PTS data were
calculated. Within the window, any single point or continuous
interval of points that falls outside of 3 absolute deviations from
the sliding window median are considered potential outliers. Next,
two rejecting bounds (lower and upper bounds deemed clinically
implausible by physicians) are set and can be found in Table S6. For
each potential outlier interval, the entire interval is removed if at
least one point meets the above outlier criteria. The rationale
behind these criteria is that outliers in the same interval are
triggered by either a clinical event or a machine malfunction event.
In any given temporal interval, if it was shown that one outlier was
an artifact, then all other outliers in this outlier interval were
considered an artifact, and the whole interval was removed.

For PTS data imputation, the first step was to capture data in the
nurse charting records. In many ICUs, nurses manually record
various features such as heart rate, blood pressure, and
temperature. These data are then archived in the EHR. Incons-
istencies can sometimes be observed between manually recorded
data and PTS data; this may be due to offsets between the time vital
signs are recorded and the physiological occurrence. However,
when EHR and PTS data are strongly correlated, EHR data is a
valuable resource for imputation of missing PTS data. We binned
nurse charting data into 5 min intervals, mirroring the format of
the PTS data. Next, the Pearson correlation for all overlapping time
points between the EHR and PTS data was calculated. EHR data
were used for imputation if the degree of correlation was larger
than 0.8 for more than 15 common time points. The remaining
missing data were imputed by linear interpolation.

Variable extraction and selection
Based on prior studies, quantitative variables in the EHR

relevant to post-CA patients were selected. EHR features were
composed of 338 variables extracted from demographics, nurse
examinations, laboratory results, medication, initial rhythm,
admission diagnosis, and SOFA score/components, all limited to
the first day of ICU admission. Highly comparative time-series
analysis (HTCSA), an automated feature extraction tool, was used
to derive approximately 4000 derived features per PTS24 signal
(heart rate, SpO2, respiratory rate, diastolic blood pressure, and
systolic blood pressure). HCTSA PTS24 derived features included
distribution, correlation, trends, frequency, information theory
features, and many others. A simplified list of features by variable
category utilized for subsequent modeling can be found in Table
S2. HCTSA has been successfully used across multiple fields of
study, and therefore was selected to identify signal derived
features that be applicable in this use case [7,8].

The PTS24 (19,691 variables) and EHR (338 variables) features
were pruned in two steps to ensure selected features were tailored
for each clinical outcome. First, PTS24 signal derived features were
down selected based on a nested random forest feature importance
ranking. The average number of features needed to reach the
maximal AUROC across 10 cross validation folds were selected per
signal [18]. Then variance inflation factor (VIF) analysis was used to
evaluate the collinearity between the combined feature space of
EHR and derived features from each PTS signal to further reduce
Appendices

PTS preprocessing
Given medical data irregularities, specifically PTS data, pre-

processing steps were needed to standardize and impute the data.
9

24

the number of features and ensure minimal cross correlation
[19]. This resulted in three distinct feature spaces for each clinical
outcome reducing the 20,029 features to 410, 508, and 436 features
for survival outcome, mGCS neurologic outcome, and DL outcome
respectively. A breakdown of HCTSA feature categories included in
our model can be found in Table S2 and Table S3.

https://physionet.org/
https://cran.r-project.org/
https://cran.r-project.org/
https://pytorch.org/
https://github.com/benfulcher/hctsa
https://physionet.org/
https://physionet.org/
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Missing data
EHR variables for which > 40% of data were missing were

xcluded from the analysis. For the remaining variables, a random
orest unsupervised imputation was used to fill missing values.
his multiple imputation method takes the non-linearity and

nteraction among variables into account and has been shown to
rovide robust imputations [20]. This multiple imputation method
akes the non-linearity and interaction among variables into
ccount and has been shown to provide robust imputations. Five
mputation iterations were performed each creating 50,000
nsupervised decision trees using a subset of both the samples
nd features. The resulting imputation is averaged initially within
he 50,000 decision trees then averaged over the five iterations to
rovide a robust missing data imputation of EHR variables.

PTS24 signals with missing data were imputed using two
ifferent criteria after the removal of implausible data points based
n clinician-defined cut-offs. First, any missing signal gap less than
 hour was linearly interpolated. Then, as the HCTSA tool required
ll 5-minute time points to have a corresponding value, the
emaining missing values were filled in by carrying forward the
revious value.

Model development
All models were developed exclusively using features extracted

rom the first 24 h following ICU admission. Models were trained
sing different feature subsets (EHR features, PTS24 features, and
ombined EHR and PTS24 features) following feature selection, to
redict each of the three principal outcomes. Four ML approaches
ere used to train the prediction models: generalized linear model

GLM), random forest (RF), gradient boost (XGBoost) and neural
etwork (NN). The NN architecture contained fully connected (FC)

ayers for static EHR features and recurrent layers (RNN) for the
ve raw PTS24 signals (Fig. S2). Fig. S1 summarizes the model
raining and testing schema implemented. The implemented
ested cross-validation contained an outer and an inner loop. The
uter loop resampled the 80% training and 20% testing five times,
nsuring all samples were included in the test set once while
eeping each outer loop’s testing and training samples indepen-
ent. The inner loop refers to the traditional k-fold cross-validation

oop and was repeated three times per outer loop; and was used to
valuate the training performance and hyper parameter tune each
L approach. The five outer loops enabled the estimation of

eneralized model performances across more combinations of
raining and testing data compared to the traditional single
raining and single testing set. Therefore, the nested cross-
alidation approach reduced the risk of overestimating the final
odel performance due to chance.

Class imbalance was handled by weighting the disproportion-
te classes to impose a heavier cost when errors were made in the
inority class. Weights were objectively determined by imposing

he proportion of class 1 as weights to class-2 samples and the
roportion of class 2 as weights to class-1 samples. Class
eighting, therefore, provided a significant benefit to reduce over
tting to the majority class. The class imbalance of our eICU and
IMIC CA cohort per clinical outcome can be found in Table S1.

Supervised learning pipeline
Fig. S1 illustrates training and evaluating of our models using a

ested cross-validation method containing two cross-validation
oops. The inner loop is for hyper parameter tuning, while the
uter, 5-fold � 5 times loop is used to estimate the generalized
erformance and to compare performances across different

non-nested, cross-validated error estimate for the classifier with
the optimal parameters is a substantially biased estimate of the
true error that the classifier would incur on another, independent
dataset [21–23]. The nested cross-validation resampling strategy
has been shown to be an unbiased estimator of the true error
[22,24].

Model optimization
For each model, hyper parameters were tuned in the inner loop

of nested cross-validation (10-fold � 3 times, see Fig. S1). Hyper
parameters for models except NN were tuned using the grid-search
method with default hyper parameter space in the ‘‘caret’’ package.
In addition, for the best performing first-level models (such as
XGBoost, GLM-elastic net, RF, and NN), Bayesian (model-based)
optimization was implemented using the ‘‘mlrMBO’’ package in R
[25,26].

Neural network architecture
The neural network consists of two structures: fully connected

(FC) network for the static data and recurrent neural network
(RNN) for the dynamic data, where, for each patient, static data are
constant and dynamic data varies over time. Fig. S2 shows the
neural network pipeline for the input combing EHR and
PTS24. First, EHR data are separated into categorical data and
continuous data. Continuous EHR and HCTSA package derived PTS
features are normalized by the batch norm layer and then pass
with the categorical EHR data through two fully connected layers.
A gated recurrent unit (GRU) with the attention layer is
implemented for the dynamic data. The attention layer has been
widely used on medical data such as healthcare image data for
lesion detection and PTS data [27,28]. The outputs from FC network
and RNN network then pass through a fully connected layer to
obtain a final prediction. The neural net schema described above
was implemented in ‘‘Python 3.7’’ with ‘‘pytorch 0.4.1’’ package.

Appendix A. Supplementary data

Supplementary material related to this article can be found, in
the online version, at doi:https://doi.org/10.1016/j.accpm.2021.
101015.
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