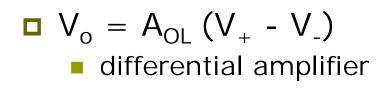
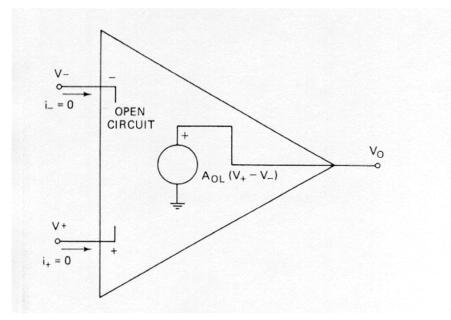
Analog I/O

ECE 153B Sensor & Peripheral Interface Design Winter 2016

Introduction


- Anytime we need to monitor or control analog signals with a digital system, we require analogto-digital (ADC) and digital-to-analog (DAC) conversion
- **Examples include**:
 - Process control
 - Digital audio and video
 - Interfacing to any type of continuous (vs. discrete) voltage or current


Op – Amps (Operational Amplifiers)

- Op Amps are the basic building blocks in analog input and output devices
 - Current-to-voltage converters, voltage amplifiers, buffers, active filters, sample-and-holds, etc.
- Characteristics: high gain, two analog signal inputs (inverting and non-inverting), and one or two analog signal outputs
- Often, two DC supply voltages of opposite polarity are required

The Ideal Op – Amp

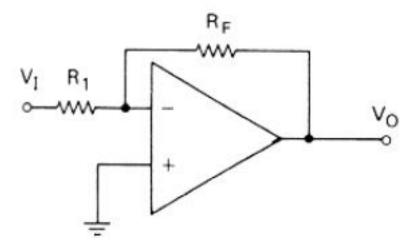
- Infinite input impedance
 - no current flows into input terminals
- Extremely high open loop gain (A_{OL})
 - typically 10⁴ to 10⁶

Common Op – Amp Circuits

- Because the open loop gain of an op-amp is so high, we generally employ "negative feedback" in circuit design
- The closed loop gain is (to a first approximation) dictated entirely by the external feedback components
 - Makes the design of linear circuits using op amps relatively straightforward
 - Analysis of transfer characteristics accomplished using virtual ground analysis

Virtual Ground Analysis - Requirements

- A first approximation of the operation of an op amp circuit can be done via virtual ground analysis if:
 - The op amp circuit employs negative feedback
 Output to V-
 - The op amp has a high open loop gain
 - The output of the op amp is operating in the linear range
 This restricts the closed loop gain and the input signal range

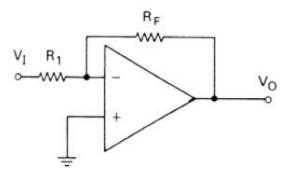

Virtual Ground Analysis - Assumptions

- Virtual ground analysis allows the following assumptions:
 - V+ = V-
 - Current (I) into either input terminal = 0

$$\Box I + = I - = 0$$

- This allows the elementary circuit laws to be used in analyzing these circuits
 - i.e., Ohm's and Kirchoff's

- We'll start with the inverting voltage amplifier
 - This is probably the most common application of an op amp



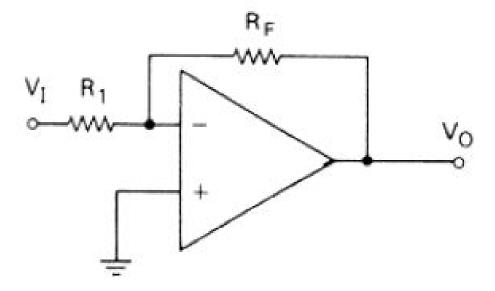
Based on the virtual ground analysis assumptions we know that:

The input terminals, V + = V - = GND = 0 V

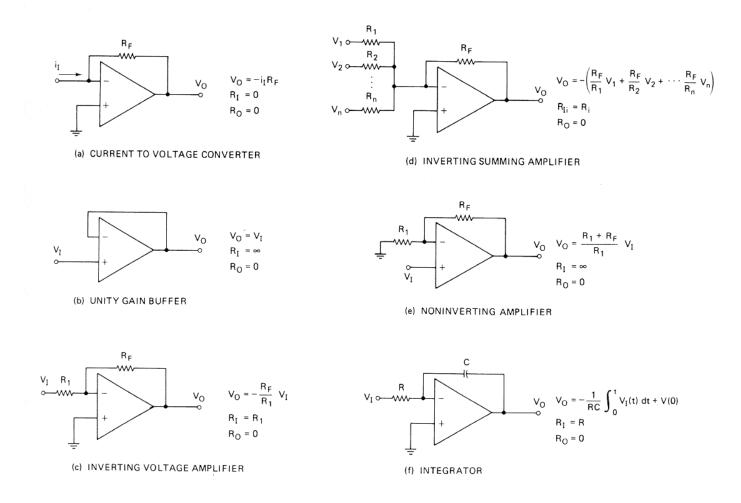
Since we know that V₁ is dropped across R₁ (to GND), we also know that:

• the current through R_1 is $I = V_1 / R_1$.

- Now we look at the second virtual ground analysis assumption:
 - I- (the current into the inverting terminal of the op amp) = 0
- Since the current produced by the voltage drop across R₁ has to go somewhere (Kirchoff's current law), it goes to V_o through R_F
 - The output voltage would then be the current through R_F (determined above to be V₁ / R₁) times its resistance:


$$V_{o} = -(V_{I} / R_{1}) R_{F} = -(R_{F} / R_{1}) V_{I}$$

The sign inversion is a result of

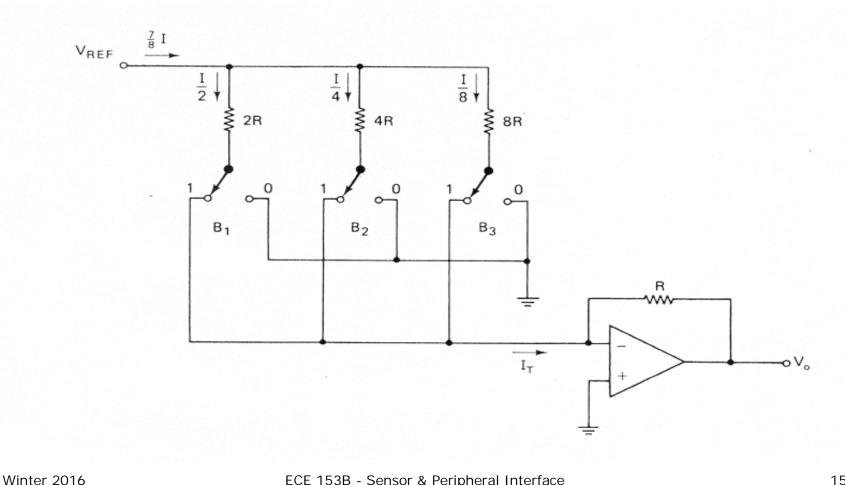

•
$$V + = V - = GND = 0 V$$

- If V₁ is positive, current flows into the node at V-(but not into the V- terminal itself), then into R_F and finally to V_o
 - Since V- is at GND, V_o must be a negative voltage assuming conventional current flow (+ to -)
- □ Conversely, if V₁ is negative
 - Current flows out of the node at V- and hence V_o must be a positive voltage

$$V_{o} = - (V_{I} / R_{1}) R_{F} = - (R_{F} / R_{1}) V_{I}$$

Common Op – Amp Circuits

Winter 2016


ECE 153B - Sensor & Peripheral Interface Design - Analog I/O

13

Digital-to-Analog Converters (DACs)

- DAC accepts an n-bit parallel digital word as its input and provides an analog current or voltage as its output
 - input can be signed or unsigned positional binary number
- Several types of DAC
 - different topologies, different speeds, different accuracies, different output types (voltage vs. current)

Weighted Resistors into a Summing Junction – DAC Type #1

Weighted Resistors into Summing Junction DAC

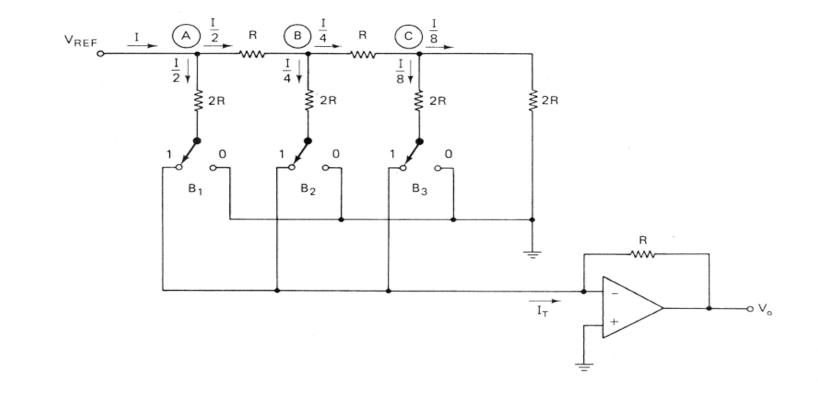
■ Fast, low precision technique

- Precision of resistors is critical to overall precision
 - Smaller resistors (more significant bits) require proportionally higher precision resistors (tighter tolerance)
 - Only good for a small number of bits as it becomes impractical to attain the required resistor tolerances
- Switches shown on schematic are actually transistors connected to incoming digital word
- B1 is most significant bit

Weighted Resistors Into Summing Junction DAC

- If input bit is 1, the switch is closed and the current is directed to the summing junction of the op amp
 - Conversely if input bit = 0, the current is directed to ground

$$\begin{aligned} V_{\text{OUT}} &= -I_T R \\ &= -\left(\frac{V_{\text{REF}}B_1}{2R} + \frac{V_{\text{REF}}B_2}{4R} + \frac{V_{\text{REF}}B_3}{8R}\right) R \\ &= -V_{\text{REF}}\left(\frac{B_1}{2} + \frac{B_2}{4} + \frac{B_3}{8}\right) \\ &= -V_{\text{REF}}\left(B_1 2^{-1} + B_2 2^{-2} + B_3 2^{-3}\right) \end{aligned}$$


Winter 2016

Weighted Resistors into Summing Junction DAC

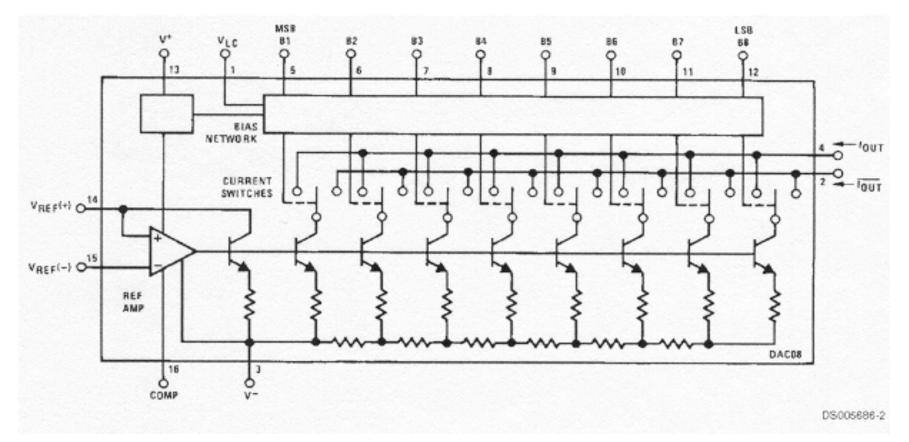
□ If V_{ref} is 10 volts, the maximum output will be

- $10V \times (7/8) = -8.75 V$
- Could add inverting amplifier or DC offset to get positive results
- Step size is full scale value (V_{ref}) divided by 2ⁿ (where n is the number of bits)
 - Step size for this example is 10 / 8 = 1.25 V
 - This is referred to as the "resolution" of the DAC
 - Resolution is the size of the output step associated with a change of 1 in the least significant bit at the input

R–2R Ladder – DAC Type #2

R–2R Ladder DAC

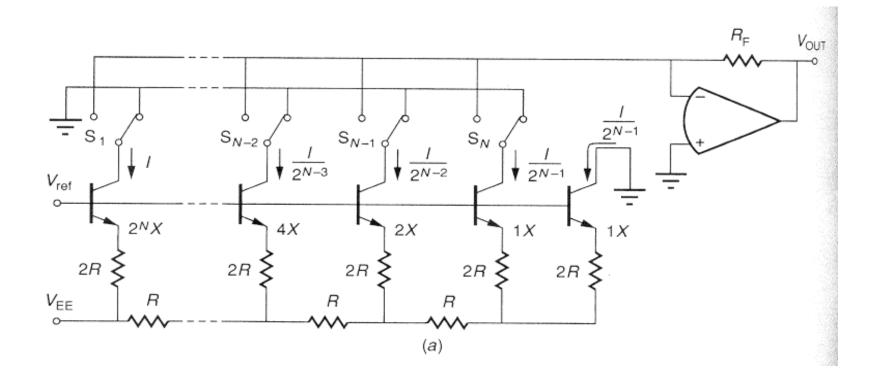
Requires only 2 resistor values


- Solves problem of absolute resistor precision we saw in weighted resistor summing junction DAC
- Resistors in R–2R ladder DAC have to be precisely matched, but their absolute resistance is not important
- Current into summing junction is the same as in weighted resistor summing junction DAC

R–2R Ladder DAC

- Scale and step size are also the same as scaled resistor DAC (for 3 bit, 10 V case)
- However, because resistor precision is relative for this design, the DAC can be scaled to many more bits
 - Additional bits provide greater resolution
 - For example:
 - 8 bit, 10V R–2R ladder DAC provides a step size (resolution) of 10 V / 2⁸ = 39.06 mV

Scaled Current Sources – DAC Type #3


DAC0802, for example

Winter 2016

Scaled Current Sources DAC

Generic View

Scaled Current Sources DAC

□ Similar Approach to R–2R Ladder DAC

- Bipolar Junction Transistors (BJTs) eliminate the number of floating nodes in the circuit
 - Reduces parasitic capacitance
 - Increases performance
- BJT emitters are sized to be proportional to the desired emitter current
 - 1x, 2x, 4x, etc.

DAC Interfacing Methods

- Store outgoing digital bit pattern in an external register (outside the processor) and apply the register contents continuously to the DAC inputs
 - Only necessary when DAC used has no internal latches (many do)
- Always some analog details to deal with ...
 - Reference voltage or current
 - Full-scale setting
 - External passive components
- And (as always), when in doubt : read the data sheet

Multiplying DACs (a.k.a. "MDACs")

- By using the full scale adjust (reference voltage) as an input on some DACs, you can create a "multiplying DAC" or simply an "MDAC"
 - Output = input (reference) voltage * digital code
- Multiplying DACs are often used to implement digital gain control in microprocessor and embedded computer systems

Range of DAC Output

Terminology

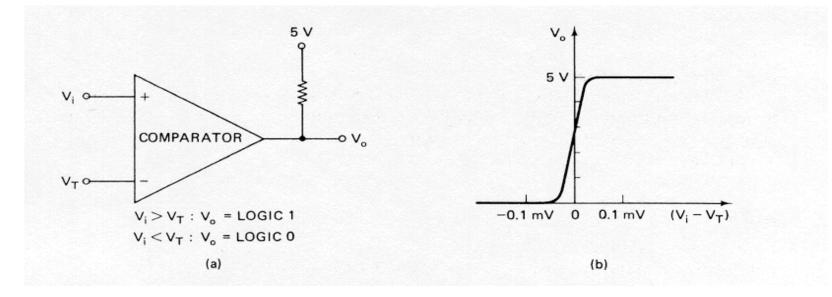
- Unipolar : output all positive (or all negative)
 i.e. there is a single power supply
- Bipolar : output goes both positive and negative
 - signed
 - requires two power supplies

External op amp circuits can also be used

- to move range of output voltages up or down
- to buffer or amplify output

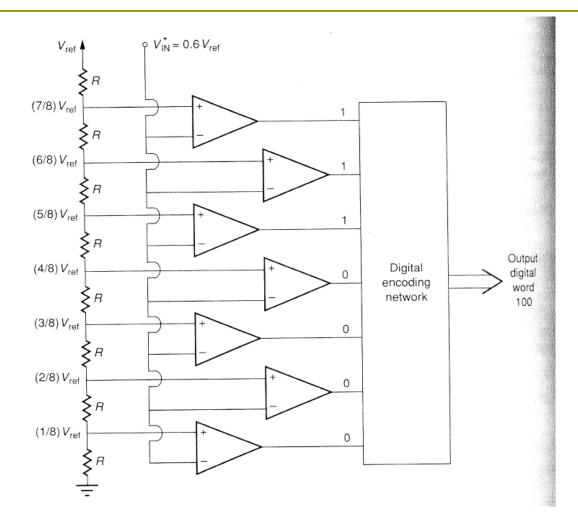
Analog-to-Digital Converters (ADCs)

Analog-to-Digital converters perform two basic operations


- Quantization
 - mapping of a continuous signal into one of several possible ranges
- Coding
 - assignment of a unique binary code to each discrete range
 - Binary, BCD, sign magnitude, 2's complement, 1's complement, offset binary, etc.

Like DACs, there are several types

The Comparator Component


Fundamental component of any ADC

- essentially an open loop op amp
- functions as a 1 bit ADC
 - \Box V_i is input, V_T is threshold voltage

ECE 153B - Sensor & Peripheral Interface Design - Analog I/O

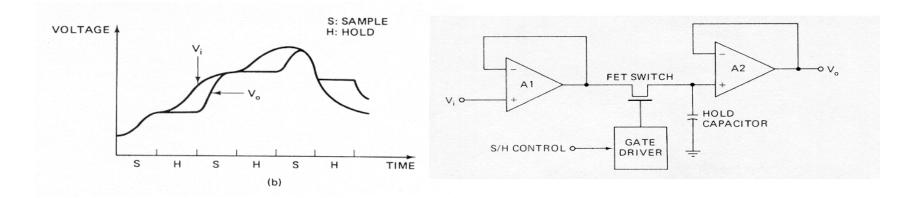
Parallel or "Flash" ADC

ECE 153B - Sensor & Peripheral Interface Design - Analog I/O

Parallel or "Flash" ADC

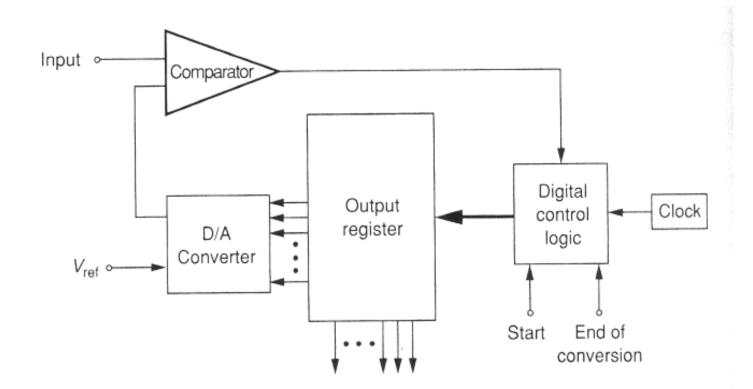
- Input signal is fed to n comparators in parallel
- Each comparator attached to n equallyspaced reference voltages
 - generated by a resistor ladder

Priority encoder generates a log₂n output code

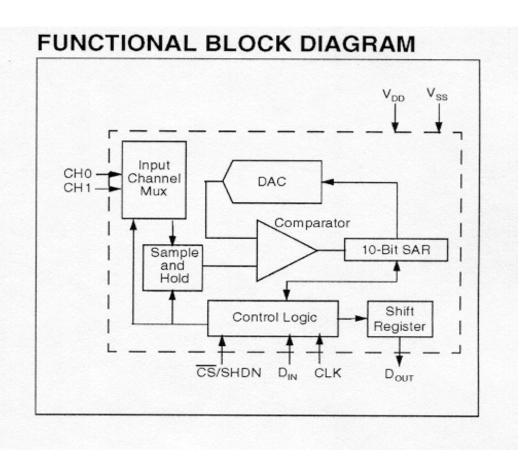

Parallel or "Flash" ADC

Flash is fastest ADC (parallel)

- up to ~300 Msps ... perhaps even faster
- small number of bits
 usually < 10 due to cost
 internal componentry grows as 2ⁿ
- Because of high speed, a sample and hold (S/H) circuit is not necessary
 - S/H is necessary with slower converters


Sample and Hold Circuits

- Needed when analog signal changes faster than the conversion rate of ADC
 - Conversion must take place before the analog input changes ± ½ Isb or result is inaccurate



Winter 2016

□ Generic view

- MCP3002 (from ECE 153B lab experiment)
 - 10 bit conversion
 - 2 input channels
 - On-chip sample and hold
 - Serial Interface

- Use a DAC and binary search to find correct conversion of n bits after n conversion steps
 - Slower than flash ADC due to n steps needed for n bits of resolution

Inputs

- Vin : voltage to be converted
 - Sample and hold often needed
 - Usually (as in MCP3002) S/H is integrated within the ADC
- Start : external command to begin conversion
- Clock : digital clock oscillator

Outputs

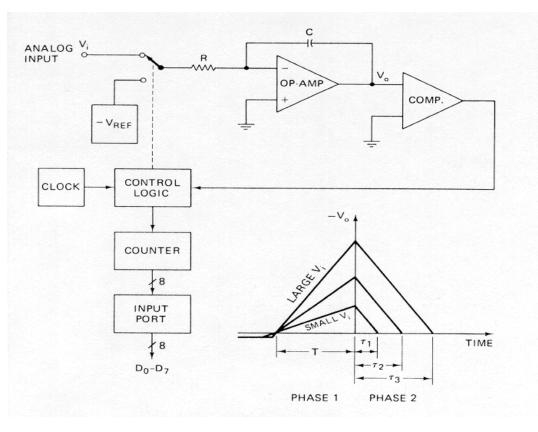
- EOC : End of Conversion
- Data out
 - Data [n-1:0], if parallel output
 - Dout, if serial
- Conversion (sample) time
 - 1 μs to 50 μs

Accuracy

8 to 12 bits

Cost

\$5 - \$400


Cost is based on speed and accuracy

Potential issues

- unipolar vs. bipolar
- range
- sample and hold requirements
- input impedance

Dual Slope Integrating ADC

□ also known as Delta – Sigma ($\Delta\Sigma$) ADC

Dual Slope Integrating ADC

- Strategy is to cancel the input current with a switched current source
 - Input drives an integrator whose output is compared with any fixed voltage (e.g., ground)
 - Depending on the comparator's output, fixed length pulses of current are switched into the summing junction of the integrator at each clock transition

Maintains zero average current into summing junction

Dual Slope Integrating ADC

- A counter keeps track of the number of pulses switched to the summing junction for a given number of clocks (e.g., 4096 for a 12-bit ADC)
 - Count is the output (it's proportional to input level)
- Hardware integrating ADC are typically low-speed devices
- They are also capable of high accuracy at low cost due to minimal analog circuitry