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Introduction

O Anytime we need to monitor or control analog
sighals with a digital system, we require analog-
to-digital (ADC) and digital-to-analog (DAC)
conversion

0 Examples include:
= Process control
= Digital audio and video

= Interfacing to any type of continuous (vs. discrete)
voltage or current
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Op — Amps (Operational Amplifiers)

O Op — Amps are the basic building blocks in analog
Input and output devices

= Current-to-voltage converters, voltage amplifiers,
buffers, active filters, sample-and-holds, etc.

O Characteristics: high gain, two analog signal
Inputs (inverting and non-inverting), and one or
two analog signal outputs

o Often, two DC supply voltages of opposite
polarity are required
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The Ideal Op — Amp

O Infinite input
Impedance

= no current flows into
Input terminals

O Extremely high open

loop gain (Ag,)
= typically 10% to 106

oV,=A, (V,-V)
= differential amplifier
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Common Op — Amp Circuits

O Because the open loop gain of an op—amp iIs so
high, we generally employ “negative feedback” in

circuit design

O The closed loop gain is (to a first approximation)
dictated entirely by the external feedback

components

= Makes the design of linear circuits using op amps
relatively straightforward

= Analysis of transfer characteristics accomplished using
virtual ground analysis
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Virtual Ground Analysis - Requirements

O A first approximation of the operation of an op
amp circuit can be done via virtual ground
analysis if:

= The op amp circuit employs negative feedback
Output to V-

= The op amp has a high open loop gain

= The output of the op amp is operating in the linear range

This restricts the closed loop gain and the input signal
range
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Virtual Ground Analysis - Assumptions

O Virtual ground analysis allows the following
assumptions:
m V+ = V-
= Current (1) into either input terminal = 0O
I+=1-=0

o This allows the elementary circuit laws to be used
In analyzing these circuits
= I.e., Ohm’s and Kirchoff’s
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Virtual Ground Analysis
Inverting Voltage Amplifier

o We'll start with the inverting voltage amplifier
= This is probably the most common application of an op

amp
Re
AW
Vi Ry
Hu“* o=
Vo
o
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Virtual Ground Analysis
Inverting Voltage Amplifier

O Based on the virtual ground analysis assumptions
we know that:

= The input terminals, V+ =V-=GND =0V

O Since we know that V, is dropped across R, (to
GND), we also know that:

= the current through R;is | =V, /R;.

Vi Ry
O—AMA - Vo

r
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Virtual Ground Analysis
Inverting Voltage Amplifier

o Now we look at the second virtual ground

analysis assumption:
m |- (the current into the inverting terminal of the op amp) = 0

O Since the current produced by the voltage drop
across R, has to go somewhere (Kirchoff’s
current law), it goes to V, through R¢

= The output voltage would then be the current through R:
(determined above to be V, / R,) times its resistance:

Vo= -(Vi/R)Re= -(R: /Ry )V,

(0]
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Virtual Ground Analysis
Inverting Voltage Amplifier

O The sign inversion is a result of
= V+=V-=GND =0V

o If V, is positive, current flows into the node at V-
(but not into the V- terminal itself), then into R¢
and finally to V,

= Since V- is at GND, V, must be a negative voltage
assuming conventional current flow ( + to -)

o Conversely, if V, is negative

= Current flows out of the node at V- and hence V, must
be a positive voltage
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Virtual Ground Analysis
Inverting Voltage Amplifier

Vo=-(MMi /R )R =-(R: /R )V,

R
Vi Ry ‘
Vo
+ a
4
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Common Op — Amp Circults
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Digital-to—Analog Converters (DACs)

O DAC accepts an n-bit parallel digital word as its
Input and provides an analog current or voltage
as its output

= Iinput can be signed or unsigned positional binary
number

O Several types of DAC

= different topologies, different speeds, different
accuracies, different output types (voltage vs. current)
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Weighted Resistors into a Summing
Junction — DAC Type #1
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Weighted Resistors into Summing
Junction DAC

O Fast, low precision technique

= Precision of resistors is critical to overall precision

Smaller resistors (more significant bits) require
proportionally higher precision resistors (tighter tolerance)

Only good for a small number of bits as it becomes
iImpractical to attain the required resistor tolerances

O Switches shown on schematic are actually
transistors connected to incoming digital word

O Bl is most significant bit
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Weighted Resistors Into Summing
Junction DAC

o If input bit is 1, the switch is closed and the current is
directed to the summing junction of the op amp

m Conversely if input bit = 0O, the current is directed to ground

Vour = —IrR

VeerB1 | VrerB2 | VrerBs
( 2R * 4R t g8R )R

Il

Bl BI BB
e el 8)

= — Veer(B127' + B,27%2 + B,273)
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Weighted Resistors into Summing
Junction DAC

o If V. is 10 volts, the maximum output will be
= 10V x (7/8) = —8.75V

= Could add inverting amplifier or DC offset to get positive
results

O Step size is full scale value (V,.s) divided by 2"
(where n is the number of bits)

m Step size for this exampleis10/8 =1.25V

This is referred to as the “resolution” of the DAC

= Resolution is the size of the output step associated with a
change of 1 in the least significant bit at the input
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R-2R Ladder — DAC Type #2

r 1 1
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+
Winter 2016 ECE 153B - Sensor & Peripheral Interface

Design - Analog 1/0

19



R—-2R Ladder DAC

O Requires only 2 resistor values

= Solves problem of absolute resistor precision we saw In
weighted resistor summing junction DAC

= Resistors in R—2R ladder DAC have to be precisely
matched, but their absolute resistance is not important

O Current into summing junction is the same as in
weighted resistor summing junction DAC

Winter 2016 ECE 153B - Sensor & Peripheral Interface
Design - Analog 1/0

20



R—-2R Ladder DAC

O Scale and step size are also the same as scaled
resistor DAC (for 3 - bit, 10 V case)

O However, because resistor precision is relative for
this design, the DAC can be scaled to many more
bits

= Additional bits provide greater resolution

= For example:

8 - bit, 10V R—2R ladder DAC provides a step size
(resolution) of 10V / 28 = 39.06 mV

Winter 2016 ECE 153B - Sensor & Peripheral Interface 21
Design - Analog 1/0



Scaled Current Sources — DAC Type #3

0 DACO0802, for example
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Scaled Current Sources DAC

O Generic View
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Scaled Current Sources DAC

O Similar Approach to R—2R Ladder DAC

O Bipolar Junction Transistors (BJTs) eliminate the
number of floating nodes in the circuit
= Reduces parasitic capacitance
m Increases performance

O BJT emitters are sized to be proportional to the
desired emitter current
m 1x, 2X, 4X, etc.
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DAC Interfacing Methods

O Store outgoing digital bit pattern in an external
register (outside the processor) and apply the
register contents continuously to the DAC inputs

= Only necessary when DAC used has no internal latches
(many do)

O Always some analog details to deal with ...
= Reference voltage or current
= Full-scale setting
= External passive components

o And (as always), when in doubt : read the data
sheet
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Multiplying DACs (a.k.a. “MDACSs”)

O By using the full scale adjust (reference voltage)
as an input on some DACs, you can create a
“multiplying DAC” or simply an “MDAC”

= Output = input (reference) voltage * digital code

O Multiplying DACs are often used to implement
digital gain control in microprocessor and
embedded computer systems
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Range of DAC Output

O Terminology

= Unipolar : output all positive (or all negative)
I.e. there is a single power supply
= Bipolar : output goes both positive and
negative
sighed
requires two power supplies

O External op amp circuits can also be used
= to move range of output voltages up or down
= to buffer or amplify output
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Analog—-to-Digital Converters
(ADCs)

O Analog—to—Digital converters perform two
basic operations

= Quantization

mapping of a continuous signal into one of several
possible ranges

= Coding
assignment of a unique binary code to each discrete
range

= Binary, BCD, sign magnitude, 2’s complement, 1’s
complement, offset binary, etc.

O Like DACs, there are several types
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The Comparator Component

O Fundamental component of any ADC
= essentially an open loop op amp

m functions as a 1 — bit ADC
oV, is input, V; is threshold voltage

V;>Vr oV, =LOGIC1 -0.1mV 0 0.1mV (W, — V)
V,<WVy:V,=LOGICO
(a) {b)
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Parallel or “Flash” ADC
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Parallel or “Flash” ADC

O Input signal is fed to n comparators in
parallel

0 Each comparator attached to n equally-
spaced reference voltages
= generated by a resistor ladder

O Priority encoder generates a log,n output
code
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Parallel or “Flash” ADC

O Flash is fastest ADC (parallel)
= up to —300 Msps ... perhaps even faster

= small number of bits
usually < 10 due to cost
iInternal componentry grows as 2"

O Because of high speed, a sample and hold
(S/H) circuit iIs not necessary
= S/H Is necessary with slower converters
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Sample and Hold Circults

0 Needed when analog signal changes faster
than the conversion rate of ADC

= Conversion must take place before the analog
Input changes = %2 Isb or result is inaccurate

S: SAMPLE

VOLTAGE | H: HOLD
v, | ~

i A2 —0 W

= FET SWITCH v 2

/ﬂ v, o—\_t - L
—i_ -L HOLD
CAPACITOR
., : | ; | | : 5/H.CONTROL o—=—icl SRR
s H S H S H TIME
(b}
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Successive Approximation ADC

O Generic view

Input o—— @ ]

o Digital
u_tput —a— control "—@

D/A - register logic

Converter .
Vrsl' o - ol I I
e Start  End of
: conversion
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Successive Approximation ADC

o MCP3002 (from FUNCTIONAL BLOCK DIAGRAM
ECE 153B lab
experiment) " jﬁ
= 10 - bit : _. ________ 1
conversion CHO ] Channel - |
| 2 |nput Channe|S j 3 Comparator |F
= On-chip sample i ‘Sg;;:g"e > ”*-Bi;w N
and hold : eld i :
= Serial Interface l contelioge m | |
"——:F——T-f——%—J
CS/SHDN D,, CLK Bais
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Successive Approximation ADC

0 Use a DAC and binary search to find correct
conversion of n bits after n conversion steps

= Slower than flash ADC due to n steps needed for n bits
of resolution

O Inputs

= Vin : voltage to be converted
Sample and hold often needed
Usually (as in MCP3002) S/H is integrated within the ADC

= Start : external command to begin conversion
= Clock : digital clock oscillator
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Successive Approximation ADC

O Outputs
m EOC : End of Conversion

= Data out
o Data [n-1:0], if parallel output
o Dout, if serial

o Conversion (sample) time
m 1 pus to 50 us

O Accuracy
= 8 to 12 bits
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Successive Approximation ADC

O Cost
m $5 - $400

o Cost is based on speed and accuracy

O Potential issues
= unipolar vs. bipolar
= range
= sample and hold requirements
= input impedance
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Dual Slope Integrating ADC

O also known as Delta — Sigma (A2) ADC
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Dual Slope Integrating ADC

O Strategy is to cancel the input current with a
switched current source

= Input drives an integrator whose output is compared
with any fixed voltage (e.g., ground)

= Depending on the comparator’s output, fixed length
pulses of current are switched into the summing junction
of the integrator at each clock transition

Maintains zero average current into summing junction
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Dual Slope Integrating ADC

O A counter keeps track of the number of pulses
switched to the summing junction for a given
number of clocks (e.g., 4096 for a 12-bit ADC)

= Count is the output (it’s proportional to input level)

O Hardware integrating ADC are typically low-speed
devices

O They are also capable of high accuracy at low
cost due to minimal analog circuitry
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