ANALOG-TO-DIGITAL (ADC) & DIGITAL-TO-ANALOG (DAC) CONVERTERS

- Many events monitored and controlled by the microprocessor are analog events.
 - These range from monitoring all forms of events, even speech, to controlling motors and like devices.
- > These devices are used to interface the microprocessor to the analog world.
- > The DAC0830 Digital-to-Analog Converter
 - A fairly common and low-cost digital-to-analog converter is the DAC0830. (National Semiconductor Corp.)
 - An 8-bit converter that transforms an 8-bit binary number into an analog voltage.
 - Other converters are available that convert from 10-, 12-, or 16-bit binary numbers into analog voltages.

- > The DAC0830 Digital-to-Analog Converter
 - The number of voltage steps generated by the converter is equal to the number of binary input combinations.
 - an 8-bit converter generates 256 voltage levels
 - o a 10-bit converter generates 1024 levels

➤ The DAC0830 Digital-to-Analog Converter

- The DAC0830 is a medium-speed converter that transforms a digital input to an analog output in approximately 1.0 μs.
- The device has eight data bus connections for the application of the digital input code.
- Analog outputs labeled IOUT1 & IOUT2 are inputs to an external operational amplifier.
- Because this is an 8-bit converter, its output step voltage is defined as –VREF (reference voltage), divided by 255.
 - the step voltage is often called the resolution of the converter. For VREF=-5.1v, find the output for 10010010

➤ The DAC0830 Digital-to-Analog Converter

➤ The DAC0830 Digital-to-Analog Converter

- This device contains two internal registers.
 - the first is a holding register
 - the second connects to the R–2R internal ladder converter
- The two latches allow one byte to be held while another is converted.
- The first latch is often disabled and the second for entering data into the converter.
- Both latches within the DAC0830 are transparent latches.
 - when G input is logic 1, data pass through
 - when G input becomes logic 0, data are latched

- ➤ The DAC0830 Digital-to-Analog Converter
 - The output of the R–2R ladder within the converter appears at IOUT1 and IOUT2.
 - These outputs are designed to be applied to an operational amplifier such as a 741 or similar device.

- > Example: Connecting the DAC0830 to the Microprocessor.
 - The DAC0830 is decoded at I/O port address 20H.
 - when an OUT 20H,AL instruction is executed, contents of data bus connections AD0–AD7 are passed to the converter in the DAC0830

> The ADC080X Analog-to-Digital Converter

- A common, low-cost ADC, compatible with a wide range of microprocessors.
 - while there are faster ADCs available with more resolution, this device is ideal for applications that do not require a high degree of accuracy
- ADC080X requires up to 100 μs to convert an analog input voltage into a digital output code.
- To operate the converter, the WR pin is pulsed with CS grounded to start the conversion process.

> The ADC080X Analog-to-Digital Converter

timing diagram shows the interaction of the control signals.

- If a time delay is used that allows at least 100 μs of time, there is no need to test INTR pin.
- Another option is to connect the INTR pin to an interrupt input, so when the conversion is complete, an interrupt occurs.

- > The ADC080X Analog-to-Digital Converter
 - Before ADC0804 can be connected, the two analog inputs must be understood:
 - VIN(+) and VIN(-)
 - These differential inputs are summed by the operational amplifier to produce a signal for the internal analog-to-digital converter.
 - These inputs are connected to an internal operational amplifier

- > The ADC080X Analog-to-Digital Converter
 - Generating the Clock Signal: ADC0804 requires a clock source to operate.
 - It can be an external clock applied to CLK IN pin or can be generated with an RC circuit.
 - permissible range of clock frequencies is 100KHz-1460 KHz.
 - desirable to use a frequency as close as possible to 1460
 KHz so conversion time is minimized

CLK R 19

CLK IN

R

If generated with an RC circuit,
 CLK IN and CLK R pins are connected to an RC circuit

- > The ADC080X Analog-to-Digital Converter
 - ADC0804 interfaced to an 8086
 - VREF is not attached to anything, which is normal

> The ADC080X Analog-to-Digital Converter

ADC0804 interfaced to an 8086

```
; A procedure that reads data from the ADC and returns
; it in AL.
ADCX PROC
           NEAR
     OUT
           40H,AL
                       :start conversion
ADCX1:
      IN AL, 42H
                       ;read INTR
     TEST AL, 80H
                       ;test INTR
     JNZ ADCX1
                        ;repeat until INTR = 0
      IN AL, 40H
                        ; get ADC data
     RET
ADCX
     ENDP
```

➤ Using the ADC0804 and the DAC0830

- This illustrates an example using an ADC0804 and a DAC0830 to capture and replay audio signals or speech.
- a speech synthesizer has been used in the past to generate speech, but quality was poor
- For human quality speech, we can use an ADC0804 to capture an audio signal and store it for later playback through a DAC0830.

➤ Using the ADC0804 and the DAC0830

➤ Using the ADC0804 and the DAC0830

- This illustrates an example using an ADC0804 and a DAC0830 to capture and replay audio signals or speech.
- a speech synthesizer has been used in the past to generate speech, but quality was poor
- For human quality speech, we can use an ADC0804 to capture an audio signal and store it for later playback through a DAC0830.