Analyses of Lateral Loaded Piles with P-Y Curves - Observations on the Effect of <u>Pile Flexural Stiffness</u> and <u>Cyclic Loading</u>

Miguel A. Pando, Ph.D., P. Eng. Associate Professor, UNC Charlotte

NCDOT 7th Geo³ T², Raleigh, NC, Thursday, April 04, 2013

Session 3B - Geotechnical II (Room: Pinehurst) - Paper: 3B-1_A49

Outline

- Background
 - Beam on Elastic Foundation (BEF)
 - Subgrade Reaction
 - Beam Theory (related to net soil reaction per unit length (P) and pile lateral deflection (Y)
- P-Y curves
 - Elements of a P-Y curve (preferred terminology)
 - Commonly used P-Y Curves (empirical basis)
- The analytical methodology
- Possible limitations/challenges
 - Influence of pile cross section and EI?
 - Effects of lateral load cycles?
- Summary and Conclusions

BACKGROUND

Beam on Elastic Foundation (BEF)

• After Winkler (1867) aka as Beam on Winkler Foundation (BWF)

 k_h = Modulus of Lateral (Horizontal) Subgrade Reaction [F/L³]

Typically linear representation of soil reaction.

Vertical Modulus of Subgrade Reaction

- Modulus of subgrade reaction (k)
- Is it a soil property? <u>NO</u>
- Footing, rafts, pavement design
- Westergaard's work in 1920's
- q = k ∆ (used by structural engineers)
 q = applied or contact pressure [F/L²]
 - $-\Delta$ = settlement of footing under q [L]
- k = q/∆ = slope (linear spring constant) = modulus of subgrade reaction [F/L³]

Z_{inf},

Vertical Modulus of Subgrade Reaction (Continued)

- Elastic settlement of circular footing:
- $\Delta = I \frac{q.B.(1-\mu^2)}{E_S}$
- μ = 0.5 (undrained) ~ 0.3 (drained)
- $E_s = E_u$ (undrained) vs E' (drained)
- $k_{v} = {^{q}}/{_{\Delta}} = \frac{E_{s}}{I.B.(1-\mu^{2})}$
- Not a fundamental soil property
- Not readily measured
- Depends on many factors such as size and shape of footing, type of soil, relative stiffness of footing and soil, vary along footing, vary with time, etc.

Beam theory

Variable	Formula	Units
Distance along the length of the pile (measured from pile head)	х	[L]
Distance to neutral axis within pile cross section	Z	[L]
Deflection	У	[L]
Slope or rotation of pile section	$\phi = \frac{dy}{dx}$	[Dimensionless]
Curvature	$\kappa = \frac{d^2 y}{dx^2}$	[Radians/L]
Bending moment	$M = E_p I_p \cdot \frac{d^2 y}{dx^2} = E_p I_p \cdot \kappa$	[F x L]
Shear force	$\mathbf{V} = \mathbf{E}_{\mathbf{p}}\mathbf{I}_{\mathbf{p}} \cdot \frac{\mathbf{d}^{3}\mathbf{y}}{\mathbf{dx}^{3}}$	[F]
Axial load	Q	[F]
Soil reaction (or load intensity)	$p = E_p I_p \cdot \frac{d^4 y}{dx^4}$	[F/L]

Table 1 Relationships commonly used for elastic piles in flexion

Notes: E_pI_p = flexural stiffness of pile, where E_p = elastic modulus of pile material, and I_p = moment of inertia of pile cross section with respect to the neutral axis

Relationships between variables

The Genesis of the P-Y Curve:

(Reese and Van Impe, 2001)

P-Y CURVES

p-y model used for analysis of laterally loaded piles

Careful with confusing terminology:

- Horizontal modulus of subgrade reaction (k_h): relates lateral pressure q_h = k_h x y [units: F/L³]
- Subgrade reaction modulus (K): $p = K \times y$ [units: F/L^2] $\leftarrow K = k_h \times B$
- Coefficient of subgrade reaction (n_h) : rate of increase of subgrade reaction modulus (K) with depth (z): K = $n_h \ge z$ [units: F/L³]

Soil reaction (p-y curve) and Horizontal Modulus of Subgrade Reaction (k_h)

Careful units of k_h same as k_v (F/L³) but genesis is different

Elements of a p-y curve

Elements of a p-y curve

- 1. Initial slope E_{py-max}:
 - Considerable scatter of reported values.
 - Most $E_{py-max} = k_h \times B$
 - Some P-Y curves have $\mathsf{E}_{\mathsf{py-max}} \to \infty$
- 2. P_{ult} (asymptotic value):
 - From ultimate load theories (e.g., Broms, 1964):
 - Clays: 9S_uB;
 - Sands: $3K_p\sigma'_vB$ or $K_p^2\sigma'_vB$
- 3. Transition curve(s) from origin to P_{ult} .

E_{py-max}

(p,y)

p_{ult}

Example p-y curves in Sands (Reese et al. 1974)

P-Y Curves for Different Soil Types

Experimental P-Y Curves

- Lateral load tests on instrumented piles
- Vey few high quality tests are available
- Basis for P-Y Curves proposed in the literature
- Typically from deflected shape measurements (e.g., inclinometers)
- Better if from Moment (or curvature) measurements using closely spaced pairs of strain gages (very few of these)

Additional Instrumentation

P-Y Curves from Experiments

P-Y Curves from Experiments

STEP 6

Make an average of the moments obtained on steps 3, 4 and 5, and assign it to the center-most node in step 4 Recall from beam theory: $p = \frac{d^2M}{dx^2}$

Commonly used p-y curves for different soils

Soil Type and Condition	Reference
Soft clay below the water table	Matlock (1970)
Stiff clay below the water table	Reese, Cox, and Koop (1975)
Stiff clay above the water table	Welch and Reese (1972),
	Reese and Welch (1972)
Sands	Reese, Cox, and Koop (1974)
Sands	API RP2A (1991)
Soils with cohesion and friction	Evans and Duncan (1982)
Weak rock	Reese (1997)
Strong rock	Nyman (1982)

(adapted from Reese and Isenhower, 1997)

ANALYTICAL METHODOLOGY

Software for p-y based analysis:

- Solve beam equation with finite difference or finite elements
- COM624
- LPILE
- FB-Pier (FB-Multipier)
- Matlab or Mathcad spreadsheets

Other Methodologies

- Strain Wedge Model
- FEM
- Characteristic Load Method (LPILE based)

POSSIBLE LIMITATIONS OR CHALLENGES

Potential Limitations P-Y Curves

 The soil is idealized as a series of independent nonlinear springs represented by p-y curves. Therefore, the continuous nature of the soil is not explicitly modeled.

Potential Limitations P-Y Curves

- The results are very sensitive to the p-y curves used. The selection of adequate p-y curves is the most crucial problem when using this methodology to analyze laterally loaded piles (Reese and Van Impe 2001).
- P-Y curves in literature are empirical in nature. Need to carefully review applicability of the selected curves.

On selection of appropriate p-y modulus and p-y curves

- Important and difficult task.
- Selection of values of initial p-y modulus, E_{py-max}, although related to the soil modulus, is also related to the interaction between the pile and the soil.
- Reese and Van Impe (2001) point out that p-y curves and modulus are influenced by several pile related factors, such as:
 - Pile type and flexural stiffness,
 - Type of loading (monotonic or cyclic),
 - Pile geometry,
 - Pile cap conditions, and
 - Pile installation conditions.

Potential Limitations (Continued) Cross section of pile

 Most P-Y curves only depend on pile width (B). Shape or Depth is not explicitly included in P-Y curves currently in the literature.

$$p_1 \longrightarrow p_1 \longrightarrow p_1 \longrightarrow p_1$$

$$p_2 \longrightarrow p_2 \longrightarrow p_2$$

 $p_2 > p_1 > p_3$

$$p_3 \longrightarrow p_3 \longrightarrow p_3$$

 $I_{p} = \frac{0.004 \text{ m}^{2}}{E_{p}} = \frac{200 \text{ GPa}}{E_{p}I_{p} = \frac{8.2E5 \text{ kN-m}^{2}}{2}}$ (constante)

 $I_p = \frac{0.0055 \text{ m}^2}{E_p = \frac{26.5 \text{ GPa}}{E_p I_p = \frac{1.585 \text{ kN} \text{ m}^2}}$ (no lineal)

 $I_{p} = \frac{0.00034 \text{ m}^{2}}{E_{p} = \frac{275 \text{ MPa}}{1.2E2 \text{ kN-m}^{2}}}$ (no Lineal)

Potential Limitations (Continued) Flexural Stiffness (EI) of pile

• P-Y curves don't directly incorporated effects of EI of pile (Only in pile model).

The traditional p-y curve (in LPILE) does not account for the pile/shaft EI variation

Effect of Pile Bending Stiffness on the p-y Curve in Sand

Strands tied to a No. 15M gage wire external spiral with a 0.15 m pitch. Long. rebar tied to a No. 9M external spiral with a 0.15 m pitch. Long. rebar welded to a No. 9M internal spiral with a 0.23m pitch.

Lateral Deflection at Groud Surface (mm)

Lateral Cyclic loading on Piles

- Limited experimental data.
- API P-Y curves for sands suggest incorporating 10% degradation of p-y curve for offshore piles.
- A few experimental studies developed cyclic P-Y curves

Effect of Cyclic Loading

Cyclic P-Y Curves by Little and Briaud (1988):

Most experiments up to 20 lateral load

Cyclic P-Y Curves by Long and Vanneste (1994):

- 34 experiments (some up to 500 lateral load cycles).
- 20000 Modified P_n and Y_n N = 1• $P_N = P_1 \cdot N^{-0.4t}$ N = 1015000 Soil resitance (kN/m) N = 100• $y_N = y_1 . N^{0.6t}$ N = 100010000 5000 0 0.00 0.25 0.50 0.75 Deflection (m)

Possible limitation with cyclic loading

- Little experience and scarce availability of experimental data.
- Available experiments very few load cycles.
- Wind action on highway signs, sound barrier foundations; Or loading on bridge piles (thermal, current, wave, etc) can involve N > 10⁴ load cycles during pile design life.

Experiments on Model Pile by Peng et al (2006) (N=10⁴ cycles)

Summary & Conclusions

- The P-Y Curve based methodology for analysis of laterally loaded piles is easy and reliable
- Empirical in nature, but backed by decades of experience.
- However, several items may still need additional research to overcome some identified possible limitations. (i.e., still room for improvement).
- Also practitioners should be aware of alternative emerging methodologies such as the SWM (Need to incorporate into design tool box) (Several DoT's already using).

THANK YOU!

Contact information:

Dr. Miguel A. Pando Associate Professor CEE Dept, UNC Charlotte mpando@uncc.edu