
1

ANALYSING AND ASSESSING SECURITY OF FITBIT CHARGE HR

Kou Yong Kang
1
. Koh Ming Yang

2
.

1
Dunman High School. 10 Tanjong Rhu Rd, Singapore 436895

2
DSO National Laboratories. 20 Science Park Dr, Singapore 118230

ABSTRACT

With the advent of wearables, technology has become increasingly close to us, and at the

same time, collecting a lot more data from us than we could ever imagine. We decided to

look into Fitbit Charge HR, a fitness tracker produced by Fitbit Inc., to investigate its privacy

capabilities. We will present the communication protocol used between the tracker and

smartphone, along with observations made throughout this investigation.

INTRODUCTION

What is an embedded device?

An embedded device is an object that contains a special-purpose computing system.

Embedded systems have extensive applications in consumer, commercial, automotive,

industrial and healthcare markets. Embedded devices usually have limited computing

resources and strict power requirements
1
. Some examples include ATM, smartphones,

fitness trackers and pacemakers etc. Wearables are also an emerging form of embedded

devices.

Why choose wearables?

With the advent of wearables, technology has become increasingly closer to us, and at the

same time, collecting a lot more data from us than we could ever imagine. There is a

plethora of wearable devices collecting sensitive information from us, with increasing

precision and granularity. As wearable technology continues to become prevalent, its

application will only become more widespread, with more sensors embedded around us and

possibly inside us. Smart blood glucose monitors and smart pacemakers are just a few of

these possibilities. If any of these devices are ever compromised, there will definitely be

huge implications concerning more than just privacy issues, exposing ourselves to threats

that may even put our lives at stake.

Wearables are designed to be donned at all times and therefore has a need to keep its power

usage at its minimum. This design consideration influenced many of these wearables to

adopt Bluetooth Low Energy (BLE) as their mode of transmission. The BLE standard is

designed with security and privacy considerations, but with many of these features made

optional, several of these key features not being utilised.

Fitbit Charge HR is chosen to be analysed due to Fitbit’s high market share

2
 in the fitness

tracker market and also due to the fact that it features an optical heart rate sensor, a feature

that is becoming integral to both fitness trackers and also smartwatches. More importantly,

there had been several instances of security vulnerabilities in Fitbit products, such as the

1
 http://whatis.techtarget.com/definition/embedded-device

2
 http://www.wareable.com/fitbit/fitness-tracker-sales-2015-fitbit-1169

2

disclosure of sensitive user data
3
 and also security issues [1] and exploits

4
 with Fitbit

devices.

Aim of the project

The main aim of this project is to take a look at Fitbit Charge HR to see if vulnerabilities

discovered previously still exist on current devices. The project will help give insights into

the synchronisation protocol along with the encryption techniques employed to see if data

can be extracted in one way or another. A demonstration will also be performed to show how

sensitive information can be stolen by malicious hackers.

MATERIALS AND METHODS

Past efforts

There has been a previous attempt [2] which looked at Fitbit Flex, an older model that

predates the Charge HR. The analysis looked at several aspects of Fitbit Flex, from Bluetooth

to the Android application and also the server communication. This allowed us to gain initial

understanding into how Fitbit designed their protocols but did not give much details into the

synchronisation mechanism and encryption. Also, Fitbit has since updated the firmware for

various devices and the smartphone applications.

Tools

In order to analyse the underlying protocol in Fitbit devices, we analysed the Fitbit Android
application. Decompiling the .apk file using dex2jar

5
, we were able to get back some of the

java source code when viewing it using JD-GUI
6
. The Android SDK

7
 was also used for

logging purposes to better understand the obfuscated source code while performing static
analysis.

The Fitbit Android application was ran on a Samsung Galaxy S3 running Android 4.4.4.
Other than running the Fitbit mobile applications, another application used to retrieve data
from Fitbit Charge HR was nRF Master Control Panel (BLE)

8
, which allowed for standard

BLE communications with the Fitbit Charge HR without the need for the Fitbit application.

An attempt was also made to sniff the BLE traffic between the smartphone and Fitbit Charge
HR using CC2540 BLE development platform made by Texas Instrument. Texas Instrument
also provided a software, SmartRF Protocol Packet Sniffer

9
 to be used in conjunction with

CC2540 after it is programmed to be in sniffing mode.

FITBIT APPLICATION ANALYSIS

The Fitbit mobile application is the only method to synchronise aggregated data from Fitbit
devices to the Fitbit servers. It is therefore vital to take a deeper look into the Fitbit
application to better understand the underlying protocols and mechanisms.

3
 http://techcrunch.com/2011/07/03/sexual-activity-tracked-by-fitbit-shows-up-in-google-search-results/

4
 http://www.theregister.co.uk/2015/10/21/fitbit_hack

5
 http://sourceforge.net/projects/dex2jar/

6
 http:// jd.benow.ca/

7
 http://developer.android.com/sdk/index.html

8
 http://play.google.com/store/apps/details?id=no.nordicsemi.android.mcp

9
 http:// www.ti.com/tool/packet-sniffer

3

Synchronisation Process

Fitbit Device USB Dongle or Smartphone Fitbit Cloud Service

Figure 1: Overview of Fitbit Synchronisation

Synchronisation of Fitbit devices are performed over BLE via either the USB Sync dongle or

smartphone, with data directly forwarded to Fitbit servers over an encrypted connection.

Fitbit servers will send a response back to the USB Sync dongle or smartphone, which will

then forward the response to the Fitbit device, as show in Figure 1.

The Fitbit USB Sync dongle came along with the device, and is observed to operate on a
proprietary protocol, designed to interface only with the official Fitbit Connect

10
 application

available for Windows and Mac OS X. An open-source alternative, Galileo
11

, is a Python
script which achieves the same task. From the data dump saved by Galileo, which dumps the
data sent to and fro Fitbit servers, no obvious patterns could be observed, implying that the
data is encrypted. Also, Fitbit account credentials is not required in any of these cases.

When syncing using a smartphone, the Fitbit mobile application is necessary for pairing and

to perform synchronisation. Data remains encrypted when transiting through the smartphone.

This is evident as syncing cannot be performed when offline and the dashboard will not have

updated data until syncing with Fitbit servers is complete. When offline, the dashboard can

be refreshed with live data but this is not cached on the smartphone, neither can data with

more granularity be retrieved this way. When no Fitbit devices are around, data showing the

statistics as of the last synchronisation session will be fetched from the Fitbit servers, in a

similar manner to how data is displayed on the smartphone after synchronisation.

Decompilation and Logging
This analysis is done using a Samsung Galaxy S3 and a set of tools running on Ubuntu.

10

 http://www.fitbit.com/sg/setup
11

https://bitbucket.org/benallard/galileo

Logs

Android ADB
Device
Monitor

.apk .jar

file Dex2jar file

Source

JD-GUI
code

Figure 2: Method used to view Fitbit application source code and behaviour

4

The Fitbit Android application is extracted from the smartphone using adb from Android

SDK. The resulting application file (.apk file) is a zipped and signed archive of the

application. The archive contains the machine code of the Fitbit application, which is

difficult to understand.

In order to get source code that can be more easily understood and analysed, the application
was decompiled using dex2jar into its java source. The resulting java source (.jar file) was
opened using JD-GUI to display all the decompiled classes and methods. It is noted that the
source code has been obfuscated. To better understand the obfuscated code, we made use of
Android Device Monitor (also part of Android SDK) to look at the logs generated while
running the application.

ANALYSIS & DISCUSSION

Live Data Mode

Upon a detailed inspection of the source code, an interesting finding is the “live data” class.

Although the methods under the “live data” class did not reveal anything particularly useful,

there is brief mention of variables that are related to the data that Fitbit Charge HR collects,

such as steps, calories and heart rate. The “live data” class also led to the discovery of

another class named “GalileoOtaMessages.class”.

Figure 3: Snippet of code from "GalileoOtaMessages.class"

public RFLiveDataPacket(byte[] paramArrayOfByte)

{
this.timeStamp = b.b(paramArrayOfByte, 0);
this.steps = b.b(paramArrayOfByte, 4);
this.distance = b.b(paramArrayOfByte, 8);
this.calories = b.c(paramArrayOfByte, 12);
this.elevation = ((short)(b.c(paramArrayOfByte, 14) / 10)); if
(paramArrayOfByte.length >= 18)

{
this.veryActiveMinutes = b.c(paramArrayOfByte, 16);
if (paramArrayOfByte.length < 20) {

break label115;

}
this.heartRate = ((short)(paramArrayOfByte[18] & 0xFF));

}
for (this.heartRateConfidence = ((short)(paramArrayOfByte[19] & 0xFF));;

this.heartRateConfidence = 0)

{
return;
this.veryActiveMinutes =
0; break;
label115:
this.heartRate =
0;

}
}

public static int b(byte[] paramArrayOfByte, int paramInt)

{
return paramArrayOfByte[(paramInt + 3)] << 24 & 0xFF000000 |

paramArrayOfByte[(paramInt + 2)] << 16 & 0xFF0000 | paramArrayOfByte[(paramInt + 1)]
<< 8 & 0xFF00 | paramArrayOfByte[paramInt] & 0xFF;

}

5

Figure 3 shows the code that revealed the message format of live data packets and also how

the packets are being read into memory. From the code above, we could deduce that the data

is in little endian byte order and that each packet has a length of either 18 or 20 bytes. It is

worth noting that live data packets do not appear to be encrypted.

Byte no. Length (bytes) Data represented
0-3 4 Timestamp
4-7 4 Steps
8-11 4 Distance
12-13 2 Calories
14-15 2 Elevation
16-17 2 Very active minutes
18 1 Heart rate
19 1 Heart rate confidence

Table 1: Summary of message format for live data packets

The message format of each live data packet is shown in Table 1. Each live data packets are
can be either 18 or 20 bytes due to the last 2 bytes being related to heart rate, which will be
omitted by Fitbit devices without a heart rate sensor like Fitbit Charge HR.

From the logs, each time that a live data packet comes in, there will be a log statement which
contains processed data in the same sequence as the live data packets. It is noted that the
timestamp is in the UNIX format, i.e. seconds since 1 Jan 1970 UTC 00:00.

Fitbit Charge Authentication

We also looked into the Bluetooth communication between Fitbit Charge HR and

smartphone. Much like what was described in a previous analysis of Fitbit Flex [2],

authentication is done by computing a MAC over a random number generated (observed to

be 3 digits consistently in dynamic analysis) by Fitbit Charge HR, using a CBC-MAC with

the XTEA 64-bit block cipher, outlined in “TrackerAuthUtils.class” The XTEA block cipher

is provided by Spongy Castle
12

, a repackaged version of Bouncy Castle for Android. The

version of Spongy Castle included in the Fitbit application is 1.47.0.2, released in 2012.

Other than for authentication, Spongy Castle has no other apparent use in the application.

Figure 4: Diagram showing two rounds (one cycle) of the XTEA block cipher
Source: Wikimedia

12

 https://rtyley.github.io/spongycastle/

6

Fitbit Charge HR Synchronisation

Every time that the Fitbit application is run with a working internet connection, a

synchronisation session with Fitbit servers will be triggered. This process essentially captures

a megadump (a variable-length byte array containing data to be synced) from Fitbit Charge

HR and upload it onto Fitbit servers, then the Fitbit server will then return a megadump to be

uploaded onto Fitbit Charge HR. Due to packet size limitation of BLE, all the megadump are

broken down into 20 bytes per packet for transfer. The megadump that is pieced together

from all the 20-bytes long packets are then verified before upload. This synchronisation with

Fitbit servers is performed before the above mentioned authentication occurs. Therefore, it

implies that authentication is only necessary for retrieving live data from Fitbit Charge HR.

Fitbit Charge HR Cryptography
A brief analysis of the underlying encryption protocol was also conducted.

“SecureDataCoder.class” is the only cryptographic module we found in the application, the

java cipher class is imported into this particular class, with AES being used. A message

digest is also initialised to use the MD5 algorithm.

Other than identifying the encryption module, Fitbit application log statements also brought

to our attention two credential files while seeing the “SecureDataCoder.class” being evoked.

They are “authinfo_credentials.json” and “trackerAuthCredentials.json”. The two json files

are deduced to contain encryption keys used for different purposes. As these two json files

are stored in the private data directory (/data/data/com.fitbit.FitbitMobile), direct access to

them is restricted by the Android OS. However, as the smartphone used for testing is rooted,

it was then possible to extract out these two keys. Below are more details on each of these

keys.

authinfo_credentials.json
 length: 128 bytes
 created only after logging in with a Fitbit account
 user will be logged out if the file is deleted, implying that it contains the login credentials
 repeatedly used to initialise instance of “SecureDataCoder.class” as observed from the

logs

trackerAuthCredentials.json
 length: 152 bytes
 created just before the first live data session
 retrieved from Fitbit servers, not generated locally on the device

 used to initialise instance of “SecureDataCoder.class” before every MAC authentication

challenge
 likely to be crucial for MAC challenge as it is read just before every MAC challenge

By logging the Fitbit application, we have also identified the customised UUID of the

Generic Attribute Profile (GATT) services and characteristics, in which data is being

transferred between the Fitbit Charge HR and smartphone. Table 2 below is a list of all the

UUID with their function known, the standard BLE GATT characteristics are not listed

below.

7

UUID Function
adabfb01-6e7d-4601-bda2-bffaa68956ba Characteristic for downloading data from device
adabfb02-6e7d-4601-bda2-bffaa68956ba Characteristic for uploading data to device
558dfa01-4fa8-4105-9f02-4eaa93e62980 Characteristic for downloading live data

Table 2: List of commonly accessed UUID

Summary

With a basic understanding of the underlying mechanisms of the Fitbit application, we now
have a basic idea of how the synchronisation process is being carried out, as shown below.

 Toggle on

Live data

 Discovery of notifications for

 Fitbit devices live data streaming begins

 characteristic

 Fitbit Charge HR

 Connection to
MAC challenge

sends new live

 Fitbit device
 data whenever

 statistics changes

 Discovery of
Sync with Fitbit

available GATT

servers if internet

 services and

 is available

 characteristics

Figure 5: Outline of each sync session

BLE ANALYSIS

The BLE analysis is done via two approaches, firstly by passively sniffing the BLE
connection followed by actively connecting to Fitbit Charge HR over BLE.

Passive sniffing

Method

With the format of live data packets known, the best way to find out if they are encrypted is

to capture them over the air. To accomplish that, we used a commercially available BLE

development board, the Texas Instrument CC2540 USB dongle, as a BLE sniffer. CC2540

works with the SmartRF Protocol Packet Sniffer provided by Texas Instrument. The CC2540

is able to fully capture BLE traffic by following the channel hopping of Fitbit Charge HR and

smartphone upon successful capture of the connection packet containing all the connection

information. The sniffer programme provided by Texas Instrument is able to parse the

relevant headers and output the captured packets in a .psd file, which can be converted into

pcap format using open-source tools
13

 and viewed in Wireshark
14

. The alternative is to view

them directly in the sniffer programme itself.

13

 https://github.com/doggkruse/smartRFtoPcap
14

https://www.wireshark.org/

8

Results

All the BLE traffic can be captured by the sniffer beginning from the initial pairing to the
live data output. The raw data sent to the Fitbit servers via both the USB Sync dongle and
smartphone could be captured but there were no obvious patterns in them, thereby allowing
us to confidently infer that all these data are encrypted by Fitbit Charge HR itself. Since there
are no clues on how the data is being encrypted, no further attempt was made to decode the
data by brute force. The packets captured reaffirmed the observations made in the logs. By
looking at the live data pushed to the Fitbit application by Fitbit Charge HR, we are also able
to confirm that live data packets are not encrypted. Base on the known packet format
mentioned in Section 3.3.1, it was possible to directly parse the raw data by following that
format. An example is shown below.

EB 96 82 56 B6 14 00 00 5A 16 3A 00 A2 07 8C 00 13 00 45 02

Timestamp Step count Distance Calories Floors Active Heart rate Heart rate
0x568296EB 0x000014B6 0x000014B6 0x07A2 0x008C minutes 0x45 confidence
= 1451398891s = 5302 steps = 3806810m = 1954 = 140ft 0x0013 = 69 bpm 0x02

 12/29/2015, calories

 14 floors = 19 min = 2
 10:21:31 PM

 Table 3: Live data packet decoded example

In one of the sessions, there was a firmware update for Fitbit Charge HR, which is observed
to be 298137-bytes long, sent to the device through the Fitbit application.

Active connection

As live connections are not always available for capture, we also tried a more active
approach, by directly connecting to Fitbit Charge HR over BLE.

Method

Directly connecting to Fitbit Charge HR over BLE, we can see if any data can be retrieved

directly. This was done using nRF Master Control Panel, an Android application designed for

BLE developers to scan and communicate with BLE products. Although it is a generic BLE

debugging application, it is robust enough to be able to connect to BLE devices and properly

perform standard BLE operations and also allow for BLE interactions.

Results

The application could pick up the advertisement packet sent out by Fitbit Charge HR without

any problems, offering an option to establish a direct link. Connecting to Fitbit Charge HR

will stop it from sending out anymore advertisement packets, and allow for more data to be

sent directly to the application. All the GATT services adopted by Bluetooth Special Interest

Group (SIG) are parsed correctly and all the characteristics under these services could be read

correctly. However, when it comes to reading the live data characteristic (UUID 558dfa01-
4fa8-4105-9f02-4eaa93e62980), the data received is either a null byte, or it will be live
data that is not up-to-date and will also not be updated automatically. Reading live data

properly is possible if the Fitbit application is already set up on that device and left to run in

the background (by activating the call notification feature). This implies that authentication is

necessary for live data to be read. Once authenticated, the notification for live data

characteristic could be toggled on to allow Fitbit Charge HR to automatically push new live

data values to the application. It has been verified that the live data values received by the

application matches that of displayed on the LED panel of Fitbit Charge HR.

9

SUMMARY

In short, the live data packets can be captured in transit as they are unencrypted. However, to

be able to retrieve live data directly, one must be authenticated in the first place. Throughout

the BLE analysis, one thing to note is that the Bluetooth MAC address of Fitbit Charge HR

did not change at all, which making it possible to trace a device and indirectly track the Fitbit

device owner. The BLE specifications has a feature that allows for the MAC address to be

changed frequently to preserve privacy of users, however, this was observed to not be

implemented.

CONCLUSION AND FUTURE WORK

In conclusion, our analysis has revealed the underlying synchronisation mechanism used by

the Fitbit Android application to transfer data from Fitbit Charge HR to Fitbit servers, with

the smartphone acting as an intermediate that does not process the encrypted data to be

synced with Fitbit servers. Our analysis of the application also corroborated with previous

analysis [2] that BLE communication between Fitbit Charge HR and smartphone is

authenticated with a MAC in CBC mode using XTEA provided by Spongy Castle and we

further showed that authentication is not required for syncing with Fitbit servers. The

decompiled source code not only gave clues about the ciphers used in the application, it also

led to the discovery and extraction of two keys used by the application. Furthermore, the code

also revealed the message format of live data and helped to ascertain that the BLE packets

captured afterwards are indeed live data. Inspecting the logs generated by the Fitbit

application also revealed the nature of unknown GATT services and characteristics. The

synchronisation process becomes much clearer with all these insights.

Further analysis done by sniffing the BLE communication between Fitbit Charge HR and

smartphone revealed several key points. First of all, data that is supposed to be sent to Fitbit

servers are indeed encrypted while live data is retrieved directly from the tracker are not

encrypted in transit. With the message format known, the packets captured could be decoded

easily. Throughout the entire sniffing process, it is also observed that the Bluetooth MAC

address of Fitbit Charge HR remained the same, just as what previous analysis [2] observed.

Other than passive sniffing, an attempt was made to directly connect to Fitbit Charge HR

without the use of Fitbit Android application. Connection was possible without

authentication, but data that can be retrieved from the tracker remains limited, unless the

connection was made from a device running the Fitbit Android application in the background

to allow for proper authentication.

We did not find new vulnerabilities on the Fitbit Charge HR, although there are indeed ways
to anonymously collect real-time data about the user.

Future work could include emulating the authentication process given that the keys used can

be extracted, making it possible to independently read live data from a Fitbit device. One

major obstacle would be to obtain the necessary keys required to perform the MAC

authentication challenge with Fitbit Charge HR as it is not transmitted over the air. The

attacker also has to be in close proximity with the bearer of the device since Fitbit Charge HR

has a range of 6m for BLE. Another area for analysis would be the firmware of Fitbit Charge

HR, which could be captured during a firmware update session.

10

ACKNOWLEDGEMENT

This project would not have been possible without the guidance of Mr Koh Ming Yang, the
mentor for this project.

We would like to take the opportunity to express our heartfelt gratitude towards Mr Tan Jia
Jun and Mr Timothy Goh for their assistance and suggestions. Also, we would like to thank
Mr Sing Jiun Shin for loaning us the necessary equipment.

11

REFERENCES

[1] M. Rahman, B. Carbunar, and M. Banik, “Fit and vulnerable: Attacks and defenses for a
health monitoring device”, CoRR, vol. abs/1304.5672, 2013.

[2] B. Cyr, W. Horn, D. Miao, M. Specter, “Security Analysis of Wearable Fitness Devices
(Fitbit)”, MIT, 2014.

