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Abstract. We exploit a recently developed nonlocal vector calculus to provide a variational
analysis for a general class of nonlocal diffusion problems given by a linear integral equation on
bounded domains in Rd. The ubiquity of the nonlocal operator is illustrated by a number of appli-
cations ranging from continuum mechanics to graph theory. These applications elucidate different
interpretations of the operator and the governing equation. A probabilistic perspective explains
that the nonlocal operator corresponds to the infinitesimal generator for a symmetric jump process.
Sufficient conditions on the kernel of the operator and the notion of volume constraints lead to a
well-posed problem. The volume constraints are a proxy for boundary conditions that may not be
defined for the given kernel. In particular, we demonstrate for a general class of kernels that the
nonlocal operator is a mapping between a constrained subspace of a fractional Sobolev subspace and
its dual. We also demonstrate for some other kernels the operator’s inverse does not smooth but
does correspond to diffusion. The impact of our analyses is that both a continuum analysis and a
numerical method for the modeling of anomalous diffusion on bounded domains in Rd are provided.
The analytical framework also allows us to consider finite dimensional approximations using both
discontinuous or continuous Galerkin methods that are conforming for the nonlocal diffusion equa-
tion; error and condition number estimates are derived. The nonlocal vector calculus enables striking
analogies to be drawn with the problem of classical diffusion including a notion of nonlocal flux.
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1. Introduction. Let Ω ∈ Rd denote a bounded, open subset, let u, b : Ω → R,
and let L denote the linear integral operator

Lu(x) := 2

∫
Ω

(
u(y)− u(x)

)
γ(x,y) dy, x ∈ Ω̃ ⊆ Ω ⊆ Rd, (1.1)

where the volume of Ω̃ is non-zero and the kernel γ(x,y) : Ω×Ω→ R denotes a non-
negative symmetric mapping, e.g., γ(x,y) = γ(y,x). Consider the nonlocal volume-
constrained problem {

−Lu = b on Ω̃ ⊆ Ω

Vu = 0 on Ω \ Ω̃,
(1.2)
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2 Q. DU, M. GUNZBURGER, R. B. LEHOUCQ AND K. ZHOU

where V denotes a linear operator of constraints acting on the volume Ω \ Ω̃. The
operator L defined in (1.1) is nonlocal because the value of Lu at a point x requires
information about u at points y 6= x; this should be contrasted to local operators,
e.g., the value of ∇ · ∇u at a point x requires information about u only at x. The
problem (1.2) is the spatial contribution for nonlocal diffusion and nonlocal wave
equations; see Sections 6.1 and 3.2, respectively. Volume constraints arise naturally
when considering specific examples of diffusion; e.g., when Ω̃ = Ω the diffusion is
restricted to only occur in Ω whereas when Vu = u on some finite volume Ω \ Ω̃,

diffusion vanishes outside of Ω̃. The latter two cases are nonlocal analogues for pure
Neumann and homogenous Dirichlet boundary conditions, respectively.

If γ(x,y) = ∂2

∂y2 δ(x−y), where δ denotes the Dirac delta measure, then L ≡ ∆ in
the sense of distributions. Selecting other kernels and under an appropriate rescaling,
the operator L approximates the classical Laplacian operator [4, 46] or, more generally,
the operator ∇ ·D∇, where D denotes a second-order tensor [32]. In Section 2, using
a recently developed nonlocal vector calculus [25, 32], the operator L is recast as the
composition of a nonlocal divergence and gradient operators. In Sections 5.1 and 5.2,
the fractional Laplacian and a fractional derivative operator, respectively, are derived
as instances of L.

The operator L and its generalizations arise in many applications such as image
analyses [19, 30, 31, 36], machine learning [42], nonlocal Dirichlet forms [5, § 3.6],
kinetic equations, e.g., [12] and more recently [35], the modeling of phase transi-
tions [15] and the survey [29] containing an excellent annotated reference section, the
peridynamic model for mechanics [43], its one-dimensional variants [44, 45] for which
L arises directly, and nonlocal heat conduction [16]. We discuss some of the above ap-
plications and related mathematical work in Section 3, leaving the topic of anomalous
diffusion for Sections 5 and 6.

Section 7 contains the primary contribution of our paper; there, the well posede-
ness of volume-constrained problems is demonstrated by exploiting the nonlocal vector
calculus reviewed in Section 2. The notion of volume-constrained problems enables
us to formulate and solve diffusion problems in situations where boundary condi-
tions do not exist, e.g., diffusive regimes where the Fourier symbol of the self-adjoint
fractional operator is of positive order less than a half. Diffusion problems on these
spaces, e.g., the volume-constrained problem (1.2), allow discontinuous functions as
solutions, given appropriate conditions on the kernel γ. The well posedeness of the
fractional Laplacian and a fractional derivative operators on bounded domains in Rd
also follows readily. Section 8 briefly discusses other volume-constrained problems
not already considered, well-posedeness for nonlocal evolution problems, and vanish-
ing nonlocality. The latter aspect demonstrates that in the limit when the support of
γ decreases, the classical, local, diffusive operator is recovered.

Our nonlocal vector calculus makes transparent the analogies we draw between
the steady-state version of the nonlocal problem (1.2) and the second-order scalar
elliptic boundary-value problem{

−∇ ·D∇u = b on Ω

Bu = 0 on ∂Ω,
(1.3)

where D : R → Rd×d is a tensor and B denotes a linear operator acting on the
boundary ∂Ω of the volume Ω. Section 4 reviews classical diffusion and energy prin-
ciples whereas Section 6 considers the nonlocal case. In particular, crucial to the
study of nonlocal diffusion is the identification of the nonlocal flux provided in the
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NONLOCAL DIFFUSION PROBLEMS WITH VOLUME CONSTRAINTS 3

latter section. Our analogies replace the boundary-constraint operator B with the
volume-constraint operator V.

Another contribution of our paper is the analyses of the convergence and error and
condition number estimates of finite-dimensional discretizations of nonlocal volume-
constrained problems; these analyses are given in Section 9 where the focus is on
finite element methods. The finite element methods considered are conforming and,
for appropriate kernels γ, allow for the use of piecewise polynomials of nonnegative
degree that are not required to be continuous across element faces; discontinuous
Galerkin methods (DGMs) are an example of such methods. This is in stark contrast
to DGMs for the discretization of, e.g., (1.3) for which they are nonconforming; see,
e.g., [6].

At first glance, the differences between the volume-constrained and boundary-
value problems (1.2) and (1.3), respectively, are obvious. First, the former involves
an integral operator whereas the latter involves a differential operator. Second, in
(1.2), constraints are imposed on the solution over a nonzero volume Ω \ Ω̃ that is

not necessarily located near or at the boundary of Ω̃; on the other hand, in (1.3),
constraints are imposed precisely at the bounding surface ∂Ω. These distinctions are
essential in characterizing the differences in the properties of two problems (1.2) and
(1.3) and of their solutions.

Discussion of the need for imposing volume constraints for problems involving the
nonlocal operator L requires us to discuss in more detail and with greater precision the
differences between problems involving that operator and those involving second-order
elliptic operators. First, we recall that if u = 0 on ∂Ω and if appropriate conditions
on D are assumed, then, given data b ∈ H−1(Ω), a weak formulation of the boundary-
value problem (1.3) is well posed in H1

0 (Ω), i.e., we have that the solution u ∈ H1
0 (Ω).

Alternately, we have that ∇ · D∇ is a bounded operator from H1
0 (Ω) → H−1(Ω)

having a bounded inverse.

In contrast, if Vu = u, e.g., u = 0 on Ω \ Ω̃, then, for appropriate choices for
the kernel γ, we demonstrate in this paper that a variational formulation of the
volume-constrained problem (1.2) is well posed in the space Hs

c (Ω) with 0 < s < 1,
provided the given data b belongs to the dual space of Hs

c (Ω), where Hs
c (Ω) is the

subspace of the fractional Sobolev space Hs(Ω) constrained to satisfy the volume
constraint. We even demonstrate, for a particular choice of kernel, that the variational
formulation is well posed in L2

c(Ω), provided the given data b belongs to L2
c(Ω) as well.

Alternately, we have that L is a bounded operator from Hs
c (Ω) to its dual space or

from L2
c(Ω)→ L2

c(Ω), as the kernel warrants. In particular, the solution operator for
(1.2) regularizes, i.e., smooths, the data b to a lesser extent compared to the solution
operator for (1.3) and, under appropriate conditions on γ, the solution is no smoother
than the data. The latter occurs, for example, when L is a Hilbert-Schmidt operator.

The fact that weak formulations of the volume-constrained problem (1.2) are well
posed in subspaces of Hs(Ω) for s ∈ [0, 1/2] deserves further comment. First, why is
treating such a case important? The answer is that it is precisely these spaces that
contain functions with jump discontinuities. Thus, if one wants to admit solutions that
have jump discontinuities, one has to work with spaces such as Hs(Ω) for s ∈ [0, 1/2].
We next ask: could we instead impose a surface constraint, e.g., could we consider
the problem {

−Lu = b on Ω

u = 0 on ∂Ω.

S
an

di
a 

N
at

io
na

l L
ab

s 
S

A
N

D
 2

01
1-

31
68

J



4 Q. DU, M. GUNZBURGER, R. B. LEHOUCQ AND K. ZHOU

We have that, for appropriate kernels, Lu is well defined for u ∈ Hs(Ω) for s ∈ [0, 1).
However, the restriction of a function u ∈ Hs(Ω) onto ∂Ω is not defined for s ∈ [0, 1/2],
i.e., the trace of such u is not defined. This means that if s ∈ [0, 1/2], we cannot impose
constraints on u restricted to ∂Ω. However, a volume constraint where the operator
V is the restriction operator on Ω \ Ω̃ is well-defined for all s ∈ [0, 1) and beyond.
Thus, we conclude that for nonlocal operator equations posed on bounded domains, the
application of volume constraints is necessitated for operators that are bounded acting
on Hs(Ω) functions with s ∈ [0, 1/2]. For instance, the well-posedness of (1.3) when
∇ ·D∇ is replaced by ∆2s (the fractional Laplacian) is not discussed when 0 < s <
1/2. More generally, well-posedness and a tractable numerical method for pseudo-
differential, or fractional, self-adjoint differential operator on bounded domains when
the degree of the (Fourier) symbol lies in 0 < s < 1/2 are not available. In contrast, the
notion of a volume-constrained, nonlocal, problem (1.2) allows s ∈ [0, 1). For example,
this immediately removes the limitation encountered in [7, 28] to only consider a
fractional dispersion equation and kernels γ, respectively, where the solutions are in
Hs

0(Ω) for 1/2 < s < 1, and to present a numerical method for the solution of the
fractional Laplacian on bounded domains in lieu of the random walk approximation
used in [47].

An inspiration for this paper is to extend results of [27, 46] and [4, Chapters 1-3]
to the volume-constrained problem (1.2) on bounded domains. The well-posedness
results derived in this paper extend the result established in [32] on a bounded domain
for a class of kernels γ and volume constraint operators that lead to an operator L
whose inversion does not regularize the data. This latter result was extended in [2] to
another class of volume constraints. Chapter 1 of [4] considers the well posedness of
the Cauchy problem for the nonlocal diffusion equation (1.1) whereas Chapters 2 and
3 consider a special choice of volume constraints for the case of J ≡ γ a nonnegative
radial function that satisfies J(0) > 0 and

∫
Rd J = 1. Such conditions on γ imply that

L is a mapping from L2(Ω) to L2(Ω); conditions such that L smooths the data are
not considered.

2. Nonlocal vector calculus. In [25], a nonlocal vector calculus was developed;
here, we briefly review those aspects of that calculus that will be useful in the sequel.
The nonlocal vector calculus, a generalization of the conventional vector calculus
to nonlocal operators, enables us to recast nonlocal diffusion problems in a manner
analogous to classical diffusion. The clarity achieved benefits both the mathematical
analyses and physical interpretations, as the remainder of our paper demonstrates.

Suppose we are given an open subset Ω ⊂ Rd and the vector mappings

f(x,y), α(x,y) : Ω× Ω→ Rd,

where the components of α are anti-symmetric. Then, for any Ω̂ ⊆ Ω, define the
nonlocal divergence operator D acting on f(x,y) as

D(f)(x) :=

∫
Ω

(
f(x,y) + f(y,x)

)
·α(x,y) dy for x ∈ Ω̂ ⊆ Ω (2.1a)

and the operator N acting on f(x,y) as well as

N (f)(x) := −
∫

Ω

(
f(x,y) + f(y,x)

)
·α(x,y) dy for x ∈ Ω \ Ω̂. (2.1b)
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NONLOCAL DIFFUSION PROBLEMS WITH VOLUME CONSTRAINTS 5

We shall see later that the operator N is a nonlocal analog of the normal derivative
operator at the boundary encountered in the classical differential vector calculus; just
as the normal derivative operator is related to the diffusive flux at a boundary, we
shall also see that N f is related to a nonlocal diffusive flux from Ω̂ to its complement
Ω\ Ω̂. Note that D and N have similar definitions, with the only differences being the
sign and the regions over which Df and N f are defined. Note also that the mapping
f 7→ D(f) is scalar-valued in analogous fashion to the local differential divergence of
a vector function.

With D and N defined as in (2.1a) and (2.1b), respectively, we have the nonlocal
Gauss’ theorem ∫

Ω̂

D(f) dx =

∫
Ω\Ω̂
N (f) dx ∀ Ω̂ ⊆ Ω. (2.2)

Corresponding to D, we have the adjoint operator D∗ acting on a scalar function
u(x) given by

D∗(u)(x,y) = −
(
u(y)− u(x)

)
α(x,y) for y,x ∈ Ω. (2.3)

Note that the mapping u 7→ D∗(u) is vector-valued in analogous fashion to the local
differential gradient of a scalar function u(x). With D∗ being the adjoint of the
nonlocal divergence, we view D∗ as (the negative of) a nonlocal gradient.

Let u(x) and v(x) denote scalar functions and let Θ(x,y) denote a symmetric,
positive definite (in the matrix sense) “constitutive” second-order tensor Θ(x,y) : Ω×
Ω → Rd×d having elements that are symmetric in x and y, i.e., Θ(x,y) = Θ(y,x).
Then, it is a simple matter to show that the nonlocal divergence theorem (2.2) implies
the nonlocal Green’s first identity

−
∫

Ω̂

vD(ΘD∗u) dx +

∫
Ω

∫
Ω

(D∗v) · (ΘD∗u) dydx = −
∫

Ω\Ω̂
vN (ΘD∗u) dx. (2.4)

From (2.1a) and (2.3), one easily deduces that

D
(
ΘD∗u) = −2

∫
Ω̂

(
u(y)− u(x)

)
α ·Θα dx

so that, comparing with (1.1), we have that

−Lu = D
(
ΘD∗u

)
with γ = α ·Θα.

Thus we see that the operator −L is non-negative self-adjoint because D and D∗
are adjoint operators; see [30, Proposition 2.1] and also [12, 25, 32]. Thus, using
the nonlocal calculus introduced in [25], we have shown that the operator L is a
composition of nonlocal divergence and gradient operators.

To partially justify calling D and −D∗ the nonlocal divergence and nonlocal gra-
dient, respectively, and N f a nonlocal flux, consider the special case of α(x,y) =
− ∂
∂yδ(y − x), where δ denotes the Dirac delta measure. Then, a formal application

of Propositions 4 and 5 in [25] yields that

D(f) = ∇ · f(x,x) and −
∫

Ω

D∗(u)dy = ∇u(x).
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6 Q. DU, M. GUNZBURGER, R. B. LEHOUCQ AND K. ZHOU

Moreover, comparing the classical Gauss’ theorem for f(x,x) with the nonlocal Gauss’
theorem (2.2) yields, in this special case, that∫

Ω\Ω̂
N (f) dx =

∫
∂Ω̂

f(x,x) · n dA.

For details concerning the nonlocal calculus, see [25], where one also finds further
results for the nonlocal divergence operator D, including a nonlocal Green’s second
identity as well as analogous results for nonlocal gradient and curl operators.

3. Applications of the nonlocal operator L. We briefly describe four appli-
cations in which the operator L defined in (1.1) or a generalization to vector fields
arise. The application to nonlocal diffusion is discussed in subsection 6.1.

3.1. Peridynamic model for solid mechanics. Silling [43] derived the lin-
earized peridynamic balance of linear momentum

utt(x, t) = Λu(x, t) + b(x, t) x ∈ Rd, t > 0, (3.1a)

where u : Ω× (0, T ]→ Rd and

Λu(x, t) :=

∫
Rd

(
y − x

)
⊗
(
y − x

)
σ(|y − x|)

(
u(y, t)− u(x, t)

)
dy. (3.1b)

The operators L and Λ coincide when d = 1 and γ(x, y) = (y − x)2/2σ(|y − x|). In
[46], results are provided about the well-posedness of both the balance law (3.1a) and
the associated equilibrium equation Λu + b = 0. In [27], analyses are provided for
model one- and two-dimensional volume-constrained problems on bounded domains
that are evocative of boundary-value problems with Dirichlet and Neumann boundary
conditions. The theory developed in [27, 46] relies upon the analytic properties of σ,
showing how the data γ determines the regularity (or lack thereof) of the solution of
the volume-constrained problems involving the operator L.

3.2. Nonlocal wave equation. The operator L also arises in the nonlocal wave
equation: 

utt +D
(
ΘD∗u

)
= 0 , ∀x ∈ Ω̃ ⊆ Ω , t > 0

Vu = 0, ∀x ∈ Ω \ Ω̃ , t > 0

u(x, 0) = u0(x), ∀x ∈ Ω̃

ut(x, 0) = v0(x) ∀x ∈ Ω̃

(3.2)

that can be viewed as a special case of the time-dependent peridynamic model. The
one-dimensional free-space problem for the nonlocal wave equations was studied in
[45]. Define the energy

E(t) :=
1

2

∫
Ω

(
u2
t +

∫
Ω

(D∗u) · (ΘD∗u) dy

)
dx.

An application of the nonlocal Green’s first identity (2.4) with Ω̂ = Ω̃ and the anti-
symmetry of the integrand of D

(
ΘD∗(u)

)
grants that

d

dt
E(t) =

∫
Ω̃

(
utt +D(ΘD∗u)

)
ut dx +

∫
Ω\Ω̃

(
utt −N (ΘD∗u)

)
ut dx.
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NONLOCAL DIFFUSION PROBLEMS WITH VOLUME CONSTRAINTS 7

If the volume constraint V implies that the above integral is zero, e.g., u = 0 on Ω\ Ω̃,
then Ė(t) = 0 and the nonlocal wave equation conserves energy. This is an instance
of the peridynamic balance of energy, e.g., [43, Sect.4].

3.3. Graph Laplacian. The paper [37] introduces a precise notion of the limit of
a sequence of dense finite graphs.1 The limit is a symmetric measurable function W :
[0, 1]× [0, 1] 7→ [0, 1] and represents the continuum analog of an adjacency matrix for a
simple unweighted graph. When W ≡ γ and (0, 1) ≡ Ω, the operator L represents the
continuum analog of the graph Laplacian for a simple unweighted graph. This allows
consideration of many properties of a graph associated with its Laplacian matrix
to be independent of the size of the graph size or its connectivity. This includes a
continuum analog of diffusion on a graph, where Ω̃ = Ω then corresponds to diffusion
restricted to occurring on the limit of a sequence of dense finite graphs; in effect, the
continuum analog of the graph Laplacian assumes the volume constraint

∫
R\[0,1]

(u(y)−
u(x))W (x, y) dy = 0. See also [23] for a discussion and applications of finite graphs
with boundary conditions.

We also remark that a discrete vector calculus has precedence in the graph theory
and machine learning literature; see, e.g., [24, Sect. 3] and [10, 34, 33] for some
recent work and citations to the literature. Our nonlocal vector calculus, then, is a
generalization of a discrete vector calculus to a graph with an uncountable number
of vertices. The remarkable result [37] then suggests that a continuum analogue of a
discrete vector calculus and its analysis and applications is of interest. This topic is
the subject of work that will be reported elsewhere.

3.4. Probabilistic interpretation. The operator L is also the infinitesimal
generator for a symmetric jump process2 and has been the subject of much recent
activity. For instance, Harnack inequalities, heat kernel estimates, and Hölder conti-
nuity for L are the subjects of [13, 14]; the Dirichlet fractional Laplacian and Cauchy
martingale problems for L are studied in [22] and [1], respectively. The stochastic
interpretation associated with volume constraints is that the sample path for a sym-
metric jump process exhibits discontinuous behavior and so “jumps ” to a point in the
exterior of a bounded domain; this exterior region, or volume, constrains the sample
path. For instance, a statistic of interest is the exit time for a process to exit a do-
main; see, e.g., [20] for further discussion. Our results complement these probabilistic
analyses and provides a variational approach useful for numerical simulations.

4. Fluxes, diffusion, and energy principles in the classical local setting.
Let Ω ⊆ Rd denote an open region and let Ω1 ⊂ Ω and Ω2 ⊂ Ω denote two disjoint
open regions. If Ω1 and Ω2 have a nonempty common boundary ∂Ω12 := Ω1 ∩ Ω2,
then, for a vector-valued function q, referred as the flux density, the expression∫

∂Ω12

q · n1 dA (4.1)

represents the classical, local flux of q out of Ω1 into Ω2, where n1 denotes the unit
normal on ∂Ω12 pointing outward from Ω1 and dA denotes a surface measure in Rd.
The flux, then, conveys a notion of direction out of and into a region and is a proxy

1A graph with n vertices is dense if the number of edges normalized by the number of vertices is
proportional to n.

2The infinitesimal generator corresponds to the operator L with a singular kernel; see Case 1 in
Section 7.2.
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8 Q. DU, M. GUNZBURGER, R. B. LEHOUCQ AND K. ZHOU

for an interaction between Ω1 and Ω2. It is important to note for later reference that
the flux from Ω1 into Ω2 occurs across their common boundary and that if the two
disjoint regions have no common boundary, then the flux from one to the other is zero.
The classical flux (4.1) is then deemed local since there is no interaction between Ω1

and Ω2 when separated by a finite distance.
The classical flux satisfies action-reaction:3∫
∂Ω12

q · n1 dA+

∫
∂Ω21

q · n2 dA =

∫
∂Ω12

q · n1 dA−
∫
∂Ω12

q · n1 dA = 0, (4.2)

where, of course, ∂Ω12 = ∂Ω21 and n2 = −n1 denotes the unit normal on ∂Ω21

pointing outward from Ω2. In words, the flux
∫
∂Ω12

q · n1 dA from Ω1 into Ω2 across

their common boundary ∂Ω12 is equal and opposite to the flux
∫
∂Ω21

q · n2 dA from
Ω2 into Ω1 across that same surface.

4.1. Local diffusion. Let Ω denote a bounded, open set in Rd. Then, classical
balance laws have the form

d

dt

∫
Ω̂

u(x, t) dx =

∫
Ω̂

b dx−
∫
∂Ω̂

q · n dA ∀ Ω̂ ⊆ Ω, (4.3)

where n denotes the unit normal on ∂Ω̂ pointing outwards from Ω̂, b denotes the source
density for u in Ω̂, and q now denotes the flux density along ∂Ω̂ corresponding to u.
In words, (4.3) states that the temporal rate of change of the quantity

∫
Ω̂
u(x, t) dx is

given by the amount of u created within Ω̂ by the source b minus the flux of u out of
Ω̂ through its boundary ∂Ω̂.

The classical diffusion flux for a quantity u arises when the flux density q ≡
−D∇u, where D denotes a symmetric, positive definite second-order tensor. Substi-
tution into (4.3) yields that

d

dt

∫
Ω̂

u(x, t) dx =

∫
Ω̂

b dx +

∫
∂Ω̂

(D∇u) · n dA ∀ Ω̂ ⊆ Ω, (4.4)

If b ≡ 0 in Ω̂ and (D∇u) · n ≡ 0 on ∂Ω̂, then
∫

Ω
u(x, t) dx =

∫
Ω
u(x, 0) dx, that is,∫

Ω̂
u(x, t) is conserved in Ω̂.

Because Ω̂ ⊆ Ω is arbitrary, the balance law (4.4) implies, using Gauss’ theorem,
the classical diffusion equation

ut −∇ · (D∇u) = b ∀x ∈ Ω , t > 0. (4.5a)

It is well known that (4.5a) does not uniquely determine u so that one must also
require u to satisfy an initial condition

u(x, 0) = u0(x) ∀x ∈ Ω (4.5b)

and a boundary condition

Bu = g ∀x ∈ ∂Ω , t > 0, (4.5c)

where B denotes an operator acting on functions defined on ∂Ω. Common choices
include Bv = v, Bv = (D∇v) · n, or Bv = (D∇v) · n + ϕv (with ϕ(x, t) ≥ 0), for v in

3One example is in mechanics where Newton’s third law, i.e., the force exerted upon on object
is equal and opposite to the force exerted by the object, is an action-reaction archtype.
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NONLOCAL DIFFUSION PROBLEMS WITH VOLUME CONSTRAINTS 9

appropriate spaces, applied on all of ∂Ω, giving the classical Dirichlet, Neumann, and
Robin problems, respectively. One can also have cases of mixed boundary conditions
for which two or more of these choices are applied on disjoint, covering parts of ∂Ω.
In (4.5a)–(4.5c), b(x, t) : Ω×(0, T )→ R, u0(x) : Ω→ R, and g(x, t) : ∂Ω×(0, T )→ R
are given functions. The balance law (4.4) models diffusion because if b = 0 and g = 0
and for any of the choices for B, we have that d

dt

∫
Ω
u2 dx = −2

∫
Ω

(D∇u) · ∇u dx < 0
for u not a constant function.

4.2. Steady-state local diffusion. Steady-state diffusion occurs when ut = 0
in (4.5a) or, equivalently, d

dt

∫
Ω̂
u(x, t) dx = 0 all Ω̂ ⊆ Ω. We then have that the

initial-boundary value problem (4.5a)–(4.5c) reduces to the elliptic boundary-value
problem (1.3), where, of course, now b and g do not depend on t.

The variational analysis for steady-state diffusion starts by considering the solu-
tion of

min
u∈H1(Ω)

1

2

∫
Ω

D∇u · ∇u dx +
1

2

∫
∂Ωr

ϕu2 dA−
∫

Ω

ub dx−
∫
∂Ωn∩∂Ωr

ug2 dA

subject to u = g1 on ∂Ωd,

(4.6)

where ∂Ωd, ∂Ωn, and ∂Ωr are the disjoint parts of the boundary ∂Ω on which Dirichlet,
Neumann, and Robin boundary conditions are applied, respectively. For economy of
exposition, we will consider only the “pure” Dirichlet and Neumann problems, that
is, ∂Ωr is empty and either ∂Ωn or ∂Ωd are empty as well, respectively. The cases of
Robin and mixed boundary condition can be treated in a similar manner. Again for
economy of exposition, we only consider the homogeneous boundary condition cases.

For the Dirichlet problem, define the constrained subspace H1
c (Ω) := H1

0 (Ω). We
then have that, for b ∈ H−1(Ω), solutions u ∈ H1

0 (Ω) of the minimization problem
(4.6) equivalently satisfy the Euler-Lagrange equations∫

Ω

D∇v · ∇u dx =

∫
Ω

vb dx ∀ v ∈ H1
0 (Ω). (4.7)

On the other hand, for the Neumann problem, that is, for (D∇u) · n = 0 on ∂Ω, we
now define the constrained subspace H1

c (Ω) := {u ∈ H1(Ω) |
∫

Ω
u dx = 0}. We then

have that, for b ∈ (H1
c (Ω))′ such that

∫
Ω
b dx = 0, where (H1

c (Ω))′ denotes the dual
space of H1

c (Ω), solutions u ∈ H1
c (Ω) of the minimization problem (4.6) equivalently

satisfy the Euler-Lagrange equation∫
Ω

D∇v · ∇u dx =

∫
Ω

vb dx ∀ v ∈ H1
c (Ω). (4.8)

The above formal procedures are made precise by defining the symmetric bilinear
form a(u, v) :=

∫
Ω

D∇v · ∇u dx and the linear functional l(v) :=
∫

Ω
vb dx and then

invoking the Lax-Milgram theorem. Necessary hypotheses are that the bilinear form
is continuous and coercive and the linear functional is continuous which, for both (4.7)
and (4.8), hold true; see, e.g., [18].

For sufficiently smooth u, (4.7) is equivalent to the second-order elliptic boundary
value problem {

−∇ · (D∇u) = b in Ω

u = 0 on ∂Ω.
(4.9)
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10 Q. DU, M. GUNZBURGER, R. B. LEHOUCQ AND K. ZHOU

This is easily seen by using the classical Green’s first identity and recalling that
v = 0 on ∂Ω. Likewise, (4.8) is equivalent to the second-order elliptic boundary value
problem 

−∇ · (D∇u) = b in Ω∫
Ω

u = 0

(D∇u) · n = 0 on ∂Ω.

(4.10)

Note that the second equations in both (4.9) and (4.10) are essential constraints, i.e.,
they must be imposed on candidate minimizers of the problem (4.6). On the other
hand, the third equation in (4.10), i.e., the Neumann boundary condition, is a natural
constraint and does no have to be imposed on candidate minimizers.

5. Anomalous diffusion. The diffusion modeled by the balance law (4.4) is
deemed classical. The surface integral

∫
∂Ω̂

D∇u · n dA represents the diffusive flux

into Ω̂ and is a statement of Fick’s first law. However, it is well understood that Fick’s
first law which is a constitutive relation for the balance of diffusion, is a questionable
model for numerous phenomena; see [11, 40] for discussions and numerous citations
to the literature. Equivalently, when the associated stochastic process is not given by
Brownian motion, then the diffusion is deemed anomalous.

In this section, we discuss two approaches for the modeling of anomalous diffusion
that replace ∇ · (D∇u) with the fractional Laplacian or a fractional derivative oper-
ator. Then, in Section 6, we explain how, compared to problems involving fractional
Laplacian or fractional derivative operators, a nonlocal volume-constrained problem
leads to the expedient modeling of a broader range of anomalous diffusion over general
domains in Rd. In particular, we demonstrate that instances of the integral operator
L include both the fractional Laplacian and fractional derivative operators. However,
as we will demonstrate, the notion of volume constraints and the nonlocal vector cal-
culus enable us to discuss well posedeness over bounded domains in Rd for a more
general class of diffusion problems.

5.1. Fractional Laplacian. The fractional Laplacian is the pseudo-differential
operator with Fourier symbol F satisfying

F
(
(−∆)su

)
(ξ) = |ξ|2sû(ξ), 0 < s ≤ 1,

where û denotes the Fourier transform of u. Suppose that u ∈ L2(Rd) and that∫
Rd

∫
Rd(u(x) − u(y))2|y − x|−(d+2s)dy dx < ∞; the vector space of such functions

defines the fractional Sobolev space Hs(Rd) when 0 < s < 1. The Fourier transform
can be used to show that an equivalent characterization of the fractional Laplacian is
given by

(−∆)su = Cd,s

∫
Rd

u(x)− u(y)

|y − x|d+2s
dy, 0 < s < 1,

for some normalizing constant Cd,s. When Ω̃ ≡ Rd and γ(x,y) ≡ |y−x|−(d+2s), then

L = −
(
−∆

)s
, 0 < s < 1,

thus establishing that, when Ω̃ = Ω = Rd, the fractional Laplacian is the special case
of the operator L for the choice of γ(x,y) proportional to 1/|y − x|d+2s.
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NONLOCAL DIFFUSION PROBLEMS WITH VOLUME CONSTRAINTS 11

A standard definition for the fractional Laplacian on a bounded domain Ω is∫
Ω

u(x)− u(y)

|y − x|d+2s
dy, 0 < s < 1.

However, in order for the constrained minimization problem

min
u∈Hs(Ω)

∫
Ω

∫
Ω

(
u(x)− u(y)

)2
|y − x|d+2s

dy dx−
∫

Ω

ub dx subject to u = 0 on ∂Ω (5.1)

to be well-posed, the condition 1/2 < s < 1 is required. On the other hand, as we will
demonstrate, replacing the above boundary constraint with the volume constraint

u = 0 on Ω \ Ω̃ (5.2)

delivers a well-posed minimization problem for 0 < s < 1 for Ω\ Ω̃ of nonzero volume.
This in turn demonstrates that the volume-constrained problem (1.2) is a well-posed
reformulation of the fractional Laplacian operator on bounded domains for 0 < s < 1.

5.2. Fractional derivatives. The authors of [39] propose the free-space frac-
tional dispersion equation{

ut(x, t) = c∇2s
Mu(x, t) x ∈ Rd, t > 0

u(x, 0) = u0(x) x ∈ Rd,
(5.3)

where 0 < s ≤ 1 and the Fourier symbol of ∇2s
M is given by

F
(
∇2s
Mu(x)

)
:= û(ξ)

∫
‖θ‖=1

(
iξ · θ

)2s
M(dθ),

M(dθ) denotes an arbitrary probability measure on the unit sphere, and û denotes the
Fourier transform of u. The operator ∇2s

M is a generalization of the fractional Lapla-
cian; the latter operator is recovered when the measure M(dθ) is the uniform measure
over the unit sphere. The paper [38] introduces a fractional divergence enabling the
consideration of a fractional flux.

In the special case when M(dθ) corresponds to a symmetric measure ω(dθ), i.e.,
ω(dθ) = ω(−dθ), then the Fourier symbol of ∇2s

ω is given by

F
(
∇2s
ω u(x)

)
:= û(ξ) cosπs

∫
‖θ‖=1

|ξ · θ|2s ω(dθ);

see [39, Eq.(8)]. The inverse Fourier transform may then be used to determine a

kernel γ so that when Ω̃ ≡ Rd,

L = Cd,s,ω∇2s
ω 0 < s ≤ 1

for a constant Cd,s,ω. In words, the fractional derivative operator∇2s
ω and the nonlocal

operator L are equivalent on bounded domains, e.g., Ω̃ = Ω = Rd.
A limitation of both the fractional Laplacian and derivative based approaches

for the modeling of anomalous diffusion occurs on general bounded domains on Rd
when the field u is constrained, e.g., boundary conditions when 1/2 < s < 1. This
limitation is apparent when considering a numerical method for fractional partial
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12 Q. DU, M. GUNZBURGER, R. B. LEHOUCQ AND K. ZHOU

differential; see [41] for recent work including many references to the literature. In an
impressive attempt to improve numerical methods for fractional differential equations,
the authors of [28] consider an equivalent reformulation of the fractional dispersion
equation (5.3) on bounded domains on Rd including a systematic numerical method.
The authors define a fractional derivative function space and demonstrate equivalence
with the fractional Sobolev space Hs(Ω) for s > 0 excluding integer multiples of 1/2.
However, the authors replace the volume constraint V of (1.2) with the boundary
constraint Bu = u and thus can only discuss the well-posedness over Hs

0(Ω) for 1/2 <
s < 1. Hence, a restricted notion of steady-state diffusion is addressed; see [28,
Theorem 6.1]. In contrast, the volume-constrained problem (1.2) is a well-posed
reformulation of the fractional derivative operator on bounded domains for 0 < s < 1
includes, as will be demonstrated, a conforming finite element method.

6. Nonlocal fluxes and diffusion. The key to understanding (1.1) as a model
for nonlocal diffusion is the identification of a nonlocal flux. This enables us to
postulate a nonlocal balance law that describes nonlocal diffusion as an instance of an
abstract balance law that postulates that the rate of change of an extensive quantity
over some region is equal to production of that quantity in that region minus the flux
of the same quantity out of that region.

For two disjoint open regions Ω1,Ω2 ⊂ Rd, both having nonzero volume, we
identify ∫

Ω1

∫
Ω2

f(x,y) dy dx (6.1)

as the interaction, or nonlocal flux from Ω1 into Ω2, where f : (Ω1∪Ω2)×(Ω1∪Ω2)→ R
denotes an anti-symmetric function, e.g., f(x,y) = −f(y,x) for all x,y ∈ Ω1 ∪ Ω2.
The antisymmetry of f(x,y) is equivalent to the nonlocal action-reaction principle∫

Ω1

∫
Ω2

f(x,y) dy dx +

∫
Ω2

∫
Ω1

f(x,y) dy dx = 0 ∀Ω1,Ω2 ⊂ Ω; (6.2)

(6.2) is the nonlocal analogue of (4.2). In words, (6.2) states that the interaction of
Ω1 upon Ω2 is equal and opposite to the interaction of Ω2 upon Ω1. The interaction
is nonlocal because, by (6.2), the interaction may be nonzero even when the closures
of Ω1 and Ω2 have an empty intersection. This is in stark contrast to classical local
interactions for which we have seen that the interaction between Ω1 and Ω2 vanishes
if their closures have empty intersection. Note that, because of the antisymmetry of
f(x,y), we have the useful relation that∫

Ω1

∫
Ω2

f(x,y) dy dx =

∫
Ω1

∫
Ω1∩Ω2

f(x,y) dy dx. (6.3)

6.1. Nonlocal diffusion. Let Ω denote a bounded, open set in Rd. Nonlocal
balance laws are stated as

d

dt

∫
Ω̂

u(x, t) dx =

∫
Ω̂

b dx−
∫

Ω̂

∫
Ω\Ω̂

f(x,y) dy dx ∀ Ω̂ ⊆ Ω̃, (6.4)

where b denotes the source density for u in Ω̂ and
∫

Ω\Ω̂ f dx denotes the flux density

corresponding to u. In words, the temporal rate of change of the quantity
∫

Ω̂
u(x, t) dx
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NONLOCAL DIFFUSION PROBLEMS WITH VOLUME CONSTRAINTS 13

is given by the amount of u created within Ω̂ ⊂ Ω by the source b minus the nonlocal
flux of u out of Ω̂ into Ω \ Ω̂.

Nonlocal diffusion flux arises when, in analogy to local diffusion,4∫
Ω̂

f(x,y) dx =

∫
Ω̂

(
Θ(x,y)D∗(u)(x,y) + Θ(y,x)D∗(u)(y,x)

)
·α(x,y) dx

= 2

∫
Ω̂

Θ(x,y)D∗(u)(x,y) ·α(x,y) dx,

(6.5)

where Θ(x,y) denotes a symmetric, positive definite (in the matrix sense) second-
order tensor having elements that are symmetric functions of x and y. Successively
using (6.2), (6.3), (6.5), and (2.1b) leads to the identity

−
∫

Ω̂

∫
Ω\Ω̂

f(x,y) dy dx =

∫
Ω\Ω̂

∫
Ω̂

f(x,y) dy dx

=

∫
Ω\Ω̂

∫
Ω̂

f(x,y) dy dx

= 2

∫
Ω\Ω̂

∫
Ω

(ΘD∗u) ·α dy dx

= −
∫

Ω\Ω̂
N (ΘD∗u) dx.

Once again, the operator N plays a role in the definition of the nonlocal diffusion
flux. Substitution of this result into (6.4) leads to the balance law governing nonlocal
diffusion:

d

dt

∫
Ω̂

u(x, t) dx =

∫
Ω̂

b dx−
∫

Ω\Ω̂
N (ΘD∗u) dx ∀ Ω̂ ⊆ Ω. (6.6)

If b ≡ 0 in Ω̂ ≡ Ω and N (ΘD∗u) ≡ 0 on Ω \ Ω̂, then
∫

Ω
u(x, t) dx =

∫
Ω
u(x, 0) dx,

that is,
∫

Ω̂
u(x, t) dx is conserved in Ω̂.

Let Ω̃ denote a given subset of Ω. Because Ω̂ ⊆ Ω̃ ⊂ Ω can be chosen arbitrarily,
the balance law (6.6) implies, using the nonlocal Gauss’ theorem (2.2), the nonlocal
diffusion equation

ut +D
(
ΘD∗u

)
= b ∀x ∈ Ω̃ ⊂ Ω , t > 0. (6.7)

To (6.7), we append the initial condition (4.5a) and a volume constraint

Vu = g on Ω \ Ω̃, (6.8)

where examples of the operator V are given in Section 7.
The balance law (6.6) represents diffusion because if b = 0 and g = 0, then

d

dt

∫
Ω

u2(x, t) dx = −2

∫
Ω

∫
Ω

D∗u ·
(
ΘD∗u

)
dy dx < 0

if u is not a constant function. This relationship is derived by multiplying (6.7) by u,

integrating the result over Ω̃, and using the nonlocal Green’s first identity (2.4) with

Ω̂ = Ω̃.

4Recall that D∗, being the adjoint of the nonlocal divergence, represents the negative of a nonlocal
gradient. This accounts for the absence of the minus sign when compared to the local relation
q = −D∇u.
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14 Q. DU, M. GUNZBURGER, R. B. LEHOUCQ AND K. ZHOU

7. Steady-state nonlocal volume-constrained diffusion problems. In this
section, as we did in Section 4.2 for classical local diffusion, we study the steady-state
nonlocal diffusion problem. For simplicity of exposition, we only treat homogeneous
volume constraints.

7.1. Nonlocal variational problems with volume constraints. Given an
open region Ω ⊂ Rd, let Ω̃ ⊂ Ω and define the energy functional

E(u) = Ef (u) + Eb(u), (7.1)

where, with γ = α ·Θα,

Ef (u) :=
1

2

∫
Ω

∫
Ω

D∗(u)(x,y) ·Θ(x,y)D∗(u)(x,y) dy dx

=
1

2

∫
Ω

∫
Ω

(
u(y)− u(x)

)2
γ(x,y) dy dx

Eb(u) := −
∫

Ω̃

b(x)u(x) dx.

Consider the constrained minimization problem

minE(u) subject to Ec(u) = 0, (7.2)

where Ec(u) denotes a constraint functional. Proceeding formally, the first-order
necessary conditions corresponding to the minimization problem (7.2) are given by∫

Ω

∫
Ω

D∗(u)(x,y) ·Θ(x,y)D∗(v)(x,y) dy dx =

∫
Ω̃

b(x)v(x) dx, (7.3)

where the test functions v(x) satisfy the constraint Ec(v) = 0.
For example, first let

Ec(u) = Edc (u) :=

∫
Ω\Ω̃

u2 dx. (7.4a)

Note that Edc (u) = 0 implies that u(x) = 0 a.e. in Ω \ Ω̃. Then, using the nonlocal
Green’s first identity (2.4), we obtain, using Edc (v) = 0, that∫

Ω̃

vD(ΘD∗u) dx +

∫
Ω\Ω̃

vN (ΘD∗u) dx =

∫
Ω̃

bv dx for x ∈ Ω̃.

Because v(x) = 0 a.e. in Ω \ Ω̃ but is otherwise arbitrary in Ω̃, we obtain, for the
constraint (7.4a), that solutions of the minimization problem (7.2) satisfy{

−L(u) = D
(
ΘD∗u

)
= b on Ω̃

u = 0 on Ω \ Ω̃.
(7.4b)

On the other hand, if

Ec(u) = Enc (u) :=
(∫

Ω

u dx
)2

(7.5a)
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NONLOCAL DIFFUSION PROBLEMS WITH VOLUME CONSTRAINTS 15

and if we assume that ∫
Ω

b dx = 0, (7.5b)

then, proceeding as we did for (7.4a), we obtain that solutions of the minimization
problem (7.2) satisfy5


−L(u) = D

(
ΘD∗u

)
= b on Ω̃

N
(
ΘD∗u

)
= 0 on Ω \ Ω̃∫

Ω

u dx = 0.

(7.5c)

The two choices discussed for the constraint operator Ec(u) in the variational prin-
ciple (7.2), or, equivalently, the second equation in the nonlocal volume-constrained
problem (7.4b) and the third equation in (7.5c), are essential to the variational prin-
ciple (7.2), i.e., they must be imposed on candidate minimizers. The second equation
in (7.5c), however, is natural to the variational principle (7.2), i.e., it does not have to
be imposed on candidate minimizers. Also, note that the constraints Edc (·) and Enc (·)
are quite different; the former constraint involves the selection of a subdomain Ω̃ ⊂ Ω
and the square of the integral of u over the complement of this subdomain whereas the
latter constraint does not require the selection of a subdomain and involves the square
of the integral of u over the domain Ω. This leads to distinct forms for the constraints
appearing in the nonlocal volume-constrained problems (7.4b) and (7.5c); the former

constraint holds pointwise almost everywhere in the subdomain Ω̃ whereas the latter
is a single integral constraint. With some justification and in analogy with Neumann
boundary-value problems for elliptic partial differential equations, one can view (7.5c)
as a nonlocal “Neumann” volume-constrained problem.6 On the other hand, again
with justification, one can view the second equation in (7.4b) as a nonlocal “Dirichlet”
constraint. See [25] for a related discussion.

In general, we assume that Ec(·) denotes a bounded, quadratic functional on a
suitable Hilbert space, e.g., if that space is L2(Ω), we have

Ec(u) ≤ ĉ ‖u‖2L2(Ω) ∀u ∈ L2(Ω). (7.6)

Moreover, we assume that the intersection of the set of constant-valued functions with
the set of functions satisfying Ec(u) = 0 is u ≡ 0. Clearly, Ec(u) as defined in both
(7.4a) and (7.5a) satisfy these assumptions.

7.2. The kernel. We assume that the domain Ω is bounded with piecewise
smooth boundary and satisfies the interior cone condition. For simplicity, we also
assume that both Ω̃ and Ω \ Ω̃ have the same properties. The smoothing effected
by the inversion of L = −D

(
ΘD∗(·)

)
depends upon the regularity associated with

γ = α ·Θα.

5Equation (7.5b) is a compatibility condition needed to ensure the existence of solutions of
the nonlocal problem (7.5c) whereas the third equation in (7.5c) is a constraint that ensures the
uniqueness of that solution.

6Equivalently, the contraint
∫
Rd\Ω

(
u(y) − u(x)

)
γ(x,y) dy = 0 is prescribed for the problem∫

Rd

(
u(y)− u(x)

)
γ(x,y) dy = b, x ∈ Ω. This is the approach taken in [4, Chapter 3].
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16 Q. DU, M. GUNZBURGER, R. B. LEHOUCQ AND K. ZHOU

Given positive constants γ0 and ε, we first assume that γ satisfies

γ(x,y) ≥ 0 ∀y ∈ Bx
ε (7.7a)

γ(x,y) = 0 ∀y ∈ Ω \Bx
ε , (7.7b)

where Bx
ε := {y ∈ Ω: |y− x| ≤ ε}. Obviously, (7.7) imply that although interactions

are nonlocal, the are limited to a ball of radius ε. Also, recall that γ is symmetric,
e.g., γ(x,y) = γ(y,x). In addition, we consider the following two special cases.
Case 1. There exist positive constants s ∈ (0, 1), γ∗, and γ∗ such that

γ∗
|y − x|d+2s

≤ γ(x,y) ≤ γ∗

|y − x|d+2s
for |y − x| ≤ ε. (7.8)

Case 2. There exist positive constants γ1 and γ2 such that

γ1 ≤
∫

Ω∩Bx
ε

γ(x,y) dy ∀x ∈ Ω̃ ⊆ Ω (7.9a)∫
Ω

γ2(x,y) dy ≤ γ2
2 ∀x ∈ Ω̃ ⊆ Ω. (7.9b)

We remark that a complete classification of kernels is not our goal; rather, we
treat a sufficiently broad class, as given by the above two cases, that are of substantial
mathematical and practical interest.

7.3. Equivalence of spaces. We define the energy norm, nonlocal energy space,
and nonlocal volume-constrained energy space by

|||u||| :=
(
Ef (u)

)1/2
(7.10a)

V (Ω) =
{
u ∈ L2(Ω) : |||u||| <∞

}
(7.10b)

Vc(Ω) = {u ∈ V (Ω) : Ec(u) = 0} , (7.10c)

respectively. We also define |||u|||V ∗
c (Ω) to be the norm for the dual space V ∗c (Ω) of

Vc(Ω) with respect to the standard L2(Ω) duality pairing.
We now proceed to show that for Case 1, the nonlocal energy space V (Ω) is

equivalent to the fractional-order Sobolev space Hs(Ω) whereas for Case 2, the non-
local energy space is equivalent to L2(Ω). The equivalence of the nonlocal energy
space with a fractional Sobolev space or with L2(Ω) implies that the quotient space
Vc(Ω) is a Hilbert space equipped with the norm (Ef (u))1/2. As a result, the nonlocal
volume-constrained problems (7.4b) and (7.5c) are well posed; see Section 7.4.

For s ∈ (0, 1), the standard fractional-order Sobolev space is defined as

Hs(Ω) :=
{
u ∈ L2(Ω) : ‖u‖L2(Ω) + |u|Hs(Ω) <∞

}
,

where

|u|2Hs(Ω) :=

∫
Ω

∫
Ω

(
u(y)− u(x)

)2
|y − x|d+2s

dydx.

Moreover, define the subspace

Hs
c (Ω) := {u ∈ Hs(Ω) : Ec(u) = 0}

and recall that | · |Hs(Ω) is an equivalent norm on the quotient space Hs
c (Ω). Similarly,

we define the subspace

L2
c(Ω) :=

{
u ∈ L2(Ω) : Ec(u) = 0

}
.
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NONLOCAL DIFFUSION PROBLEMS WITH VOLUME CONSTRAINTS 17

7.3.1. Case 1. The following two lemmas will be used to demonstrate that, for
this case, the spaces Vc(Ω) and Hs

c (Ω) are continuously embedded within each other.
Lemma 7.1. Let the function γ satisfy (7.7) and the lower bound of (7.8). Then,

|u|2Hs(Ω) ≤ γ
−1
∗ |||u|||2 + 4|Ω|ε−(d+2s)‖u‖2L2(Ω).

Proof. We have

|u|2Hs =

∫
Ω

∫
Bε(x)∩Ω

(
u(y)− u(x)

)2
|y − x|d+2s

dydx +

∫
Ω

∫
Ω\Bε(x)

(
u(y)− u(x)

)2
|y − x|d+2s

dydx

≤ γ−1
∗ |||u|||2 + 2ε−(d+2s)

∫
Ω

∫
Ω

(
u2(x) + u2(y)

)
dydx

= γ−1
∗ |||u|||2 + 4|Ω|ε−(d+2s)‖u‖2L2(Ω).

Lemma 7.2. Let the function γ satisfy (7.7) and the upper bound of (7.8). Then,

|||u|||2 ≤ γ∗|u|2Hs(Ω).

Proof. The result directly follows from∫
Ω

∫
Ω

D∗u ·Θ(x,y)D∗u dy dx ≤ γ∗
∫

Ω

∫
Ω

(
u(y)− u(x)

)2
|y − x|d+2s

dydx.

The following is the first of two nonlocal Poincaré-type inequalities presented in
this paper. The inequality established in the next result depends crucially upon the
compact embedding of the fractional space Hs(Ω) into L2(Ω).

Lemma 7.3. (Nonlocal Poincaré inequality I) Let the function γ satisfy (7.7) and
(7.8). Then, there exists a positive constant C such that

‖u‖2L2(Ω) ≤ C|||u|||
2 ∀u ∈ Vc(Ω). (7.11)

Proof. We exploit the standard technique for establishing a Poincaré type in-
equality by implying a contradiction. Assume there exists a sequence {uk ∈ Vc(Ω)}
where ‖uk‖2L2(Ω) = 1 for all k such that 1 > k|||uk|||. By Lemma 7.1, we have

‖uk‖Hs(Ω) < 4|Ω|ε−(d+2s) + 1

for sufficiently large k. Because the embedding Hs(Ω) ↪→ L2(Ω) is compact and
Hs(Ω) is a Hilbert space, there exists a subsequence {ukj} of {uk} and an element
ũ ∈ Hs(Ω) such that ukj → ũ strongly in L2(Ω) so that

‖ũ‖L2(Ω) = 1. (7.12)

By Lemma 7.2, we have, for any v ∈ Hs(Ω), that v also belongs to V (Ω). By the
dominated convergence theorem

lim
kj→∞

|||ukj ||| = |||ũ||| = 0

S
an

di
a 

N
at

io
na

l L
ab

s 
S

A
N

D
 2

01
1-

31
68

J



18 Q. DU, M. GUNZBURGER, R. B. LEHOUCQ AND K. ZHOU

since 1 > k|||uk|||. The definition of ||| · ||| implies that ũ is a constant. Moreover

Ec(ũ) = lim
kj→∞

Ec(ukj ) = 0

so that ũ = 0. However, this contradicts (7.12) so that the conclusion (7.11) now
follows.

Lemmas 7.1–7.3 lead to the following result.

Theorem 7.4. If the function γ satisfies (7.7) and (7.8), then

C∗‖u‖Hs ≤ |||u||| ≤ C∗‖u‖Hs ∀u ∈ Vc(Ω),

where C∗ is a positive constants satisfying C−2
∗ = max

(
γ−1
∗ , C(1+4|Ω|ε−(d+2s))

)
and

C∗ = γ∗.

Proof. Lemmas 7.1 and 7.3 grant that

‖u‖2Hs ≤ γ−1
∗ |||u|||2 +

(
1 + 4|Ω|ε−(d+2s)

)
‖u‖2L2(Ω) ≤ C

−1
∗ |||u|||2.

In a similar fashion, Lemmas 7.2 and 7.3 lead to

|||u||| ≤ γ∗|u|2Hs(Ω) ≤ γ
∗(|u|2Hs(Ω) + ‖u‖2L2(Ω)

)
= C∗‖u‖Hs .

We then immediately obtain the following equivalence result between constrained
energy spaces and constrained Sobolev spaces.

Corollary 7.5. If the function γ satisfies (7.7) and (7.8), then we have the
equivalence of the constrained spaces Hs

c (Ω) and Vc(Ω).

This theorem and corollary explain that, if the function γ satisfies the two con-
ditions (7.7) and (7.8), then V (Ω) and its constrained subspace Vc(Ω) are compactly
embedded in L2(Ω) and L2

c(Ω), respectively.

We note that the space equivalence holds with no restrictions on the exponent
s ∈ (0, 1) because of our consideration of volume constraints in lieu of constraints
on the boundary of the domain (or some other lower dimensional manifold). This
is an important point, particularly, for s ≤ 1/2. Indeed, for s ≤ 1/2, there is no
well-defined trace space in the standard manner for functions in the Sobolev space
Hs(Ω) which is why conventional boundary value problems have not been discussed
for such cases in the literature. The volume-constrained problem (1.2), however, is
well-posed for any s ∈ (0, 1), as will be demonstrated in Section 7.4.

7.3.2. Case 2. We now demonstrate that, in this case, the constrained space
Vc(Ω) = L2

c(Ω). We choose to work with the more stringent conditions (7.9) rather
than other more general assumptions. This allows us to apply well-known results
about integral operators. The reader is referred [2, 4] for the case where γ is radial
and only L1(Ω) integrable.

We state the analogue of Lemma 7.2 that can be established through direct cal-
culation; see, e.g., [32, 46] for details.

Lemma 7.6. If the function γ satisfies (7.7) and (7.9), then

|||u||| ≤ C2‖u‖L2(Ω) ∀u ∈ Vc(Ω)

for some positive constant C2.
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NONLOCAL DIFFUSION PROBLEMS WITH VOLUME CONSTRAINTS 19

Next, we present a second Poincaré inequality that relies, in contrast to the hy-
potheses of Lemma 7.3, on the compactness of a Hilbert-Schmidt kernel; see, e.g., [8,
Chap. 12].

Lemma 7.7. (Nonlocal Poincaré inequality II) If the function γ satisfies (7.7)
and (7.9), then

C1‖u‖L2(Ω) ≤ |||u||| ∀u ∈ Vc(Ω)

for some positive constant C1.
Proof. Because

−1

2
Lu(x) =

∫
Ω

u(y) γ(x,y) dy − u(x)

∫
Ω

γ(x,y) dy,

we see that the hypothesis on the function γ imply that the nonlocal diffusion operator
−L = D

(
ΘD∗) is a self-adjoint operator on L2

c(Ω). As established at the end of
Section 2, −L is a non-negative operator. Moreover, by the properties of Hilbert-
Schmidt integral operators, we find that −L is also a compact perturbation of a
scalar multiple of the identity operator and is, in fact, uniformly bounded both above
and below by positive constant multiples of the identity operator. Furthermore, the
kernel of −L in L2

c(Ω) contains only the zero element. Therefore,

λ1 := inf
u∈L2(Ω)

|||u|||2

||u||2L2(Ω)

> 0,

e.g., the smallest eigenvalue of −L is strictly positive, and therefore we have√
λ1 ‖u‖L2(Ω) ≤ |||u||| ∀u ∈ L2

c(Ω).

Thus, the conclusion of this lemma holds with C1 =
√
λ1.

The following result is an immediate consequence of Lemmas 7.6 and 7.7.
Corollary 7.8. If the function γ satisfies the conditions (7.7) and (7.9), then

Vc(Ω) = L2
c(Ω).

7.4. Well-posedness of nonlocal volume-constrained problems. Subsec-
tion 7.3.1–7.3.2 established that the nonlocal energy space Vc(Ω) is equivalent to
Hs
c (Ω) or L2

c(Ω) depending upon whether Case 1 or Case 2, respectively, are as-
sumed. The following result demonstrates that minimization problem (7.2) has a
unique minimizer given general constraint functional (7.6).

Theorem 7.9. The nonlocal variational problem of minimizing E(u) = Ef (u) +
Eb(u) over Vc(Ω) has a unique solution u for any b ∈ V ∗c (Ω). Moreover, the Euler-
Lagrange equation is given by (7.4b) for Ec = Edc and (7.5c) for Ec = Enc . Further-
more, there exists a constant C > 0, independent of b, such that

|||u||| ≤ C‖b‖V ∗
c (Ω). (7.13)

Proof. The theorem is established via a direct application of the Lax-Milgram
theorem; see, e.g., [8, Section 3.6].

In Section 7.3, we established that the nonlocal constrained energy space Vc(Ω)
is equivalent to Hs

c (Ω) or L2
c(Ω) for Case 1 and Case 2, respectively. Thus, for
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20 Q. DU, M. GUNZBURGER, R. B. LEHOUCQ AND K. ZHOU

problems for which the function γ satisfies the assumptions of Case 1 or Case 2,
respectively, the estimate (7.13) implies that

‖u‖Hs(Ω) ≤ C‖b‖H−s(Ω), 0 < s < 1, or (7.14a)

‖u‖L2(Ω) ≤ C‖b‖L2(Ω), (7.14b)

hold, respectively. These should be contrasted with the analogous result for (1.3),
i.e., for classical boundary-value problems for elliptic partial differential equations,
for which we have

‖u‖H1(Ω) ≤ C‖b‖H−1(Ω). (7.14c)

The inequalities (7.14a)–(7.14b) explain that a gain of regularity of 2s and 0, respec-
tively, occurs for Case 1 or Case 2, respectively. In contrast, the inequality (7.14c)
results in a gain of regularity of 2. In other words, the solutions of the nonlocal
volume-constrained problems have no more than 2s more derivatives than the data
b whereas the boundary-value problem (1.3) has two more derivatives. These reg-
ularity conditions are analogous to those established in [46] for restricted classes of
one- and two-dimensional peridynamic models with constraints suggestive of nonlocal
volume-constrained conditions.

8. Additional comments about nonlocal volume-constrained problems.
In this section, we briefly discuss other volume-constrained problems not already
considered, well-posedeness for nonlocal evolution problems and vanishing nonlocality.

8.1. Other volume-constrained problems. We briefly describe how other
volume-constrained problems can be handled in the variational setting.

The essential volume constraint v = 0 in (7.4b) is replaced by the essential inho-
mogeneous volume constraint u = g by simply setting Ec(u) =

∫
Ω\Ω̃(u − g)2 dx. On

the other hand, the natural volume constraint N
(
ΘD∗u

)
= 0 in (7.5c) is replaced by

the natural inhomogeneous volume constraint N
(
ΘD∗u

)
= g by adding the energy

contribution Eg(u) = −
∫

Ω\Ω̃ ug dx to the energy functional E(u). In this case, the

compatibility condition (7.5b) is replaced by
∫

Ω̃
b dx +

∫
Ω\Ω̃ g dx = 0.

More generally, mixed “Dirichlet”-“Neumann” nonlocal constrained-value prob-
lems are defined by splitting Ω \ Ω̃ into two measurable, disjoint, subregions Ωd
and Ωn and then setting Ec(u) =

∫
Ωd

(u − gd)
2 dx and adding the contribution

Eg(u) = −
∫

Ωn
ugn dx to the energy functional E(u). No compatibility condition

on the data is needed. The resulting volume-constrained problem is given by
D
(
ΘD∗u

)
= b on Ω̃

u = gd on Ωd = Ω \ (Ω̃ ∪ Ωn)

N
(
ΘD∗u

)
= gn on Ωn = Ω \ (Ω̃ ∪ Ωd).

The second equation is an essential volume constraint whereas the third equation is
natural.

Finally, we consider the case of a “Robin” volume constraint that is treated by
adding the term Er(u) = 1

2

∫
Ω\Ω̃ ϕu

2 dx for ϕ(x) ≥ 0 to Ef (u) and the term Eg(u) =

−
∫

Ω\Ω̃ ug dx to the energy functional E(u). No compatibility condition on the data
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NONLOCAL DIFFUSION PROBLEMS WITH VOLUME CONSTRAINTS 21

is needed. The resulting volume-constrained problem is given by{
D
(
ΘD∗u

)
= b on Ω̃

N
(
ΘD∗u

)
+ ϕu = g on Ω \ Ω̃.

The second equation is a natural volume constraint. Well-posedness results for these
volume-constrained problems are entirely similar to those in Section 7 and Section 9
and can be obtained using techniques similar to those used in those sections.

8.2. Well-posedness for nonlocal evolution equations. Using the results
on the nonlocal operators and the variational problems established in this paper, we
may use standard techniques to establish the well-posedness for nonlocal evolution
equations such as the nonlocal diffusion (6.7) and the nonlocal wave (3.2) equations,
respectively . As an illustration, we consider the special case for which the constrained
energy space Vc(Ω) associated with the functional (7.4a) is established to be a Hilbert
space with its dual space V ∗c (Ω) and that the operator D

(
ΘD∗) is bounded and

coercive in Vc(Ω). For that case, we have the following result.
Theorem 8.1. The initial and volume-constrained problem (6.7) along with (6.7)

and (6.8) has a unique solution u ∈ C(0, T ;Vc(Ω))∩H1(0, T ;V ∗c (Ω)) provided that b ∈
L2(0, T ;V ∗c (Ω)) and u0 ∈ Vc(Ω). Moreover, the initial and volume constrained problem
(3.2) has a unique solution u ∈ L2(0, T ;Vc(Ω)) ∩ L2(0, T ;L2(Ω)) ∩ H1(0, T ;V ∗c (Ω))
provided that b ∈ L2(0, T ;V ∗c (Ω)) with u0 ∈ Vc(Ω) and u1 ∈ L2(Ω).

These results are consequences of standard semi-group theory or Galerkin type
arguments. We refer to [46] for more detailed proofs of these results in a special case
for which the techniques used are directly generalizable to the problems considered
here.

8.3. Vanishing nonlocality. In [25], the local limit of the operatorD(ΘD∗) was

examined and we demonstrated that the free-space operator, e.g., L where Ω̃ = Rd,
converges to −∇ · (D∇) as ε → 0 under suitable conditions on the kernel function.
More recently, in [4, 26], for kernel functions of radial type γ(x,y) = γ̃(|x − y|)
with γ̃ an element of L1, the local limit of the nonlocal diffusion equation has been
studied. Further, in the paper [26] finite element solutions for nonlocal diffusion and
the peridynamic model are also investigated.

As an example of a local limit, let Ω̃ be a bounded domain independent of ε and
D := limε→0 Dε, where

(Dε)ij =

∫
Bε(0)

γ̃(|z|) zizj dz for i, j = 1, 2, . . . , d;

then, a particular consequence of the results in [26] is

lim
ε→0

∫
Ω

∫
Ω

D∗u ·
(
ΘD∗v

)
dy dx =

∫
Ω

∇u ·
(
D∇v

)
dx (8.1)

for any given u, v ∈ H1(Ω) with support in Ω̃. A more general form of the above
limit was given in [26] for piecewise smooth functions with respect to a triangulation
of the domain which was used to examine the limiting properties of finite element
approximations and the corresponding error estimators. By setting u = v, we see
from (8.1) that

lim
ε→0

∫
Ω

∫
Ω

D∗u ·
(
ΘD∗u

)
dy dx =

∫
Ω

∇u ·
(
D∇u

)
dx.
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22 Q. DU, M. GUNZBURGER, R. B. LEHOUCQ AND K. ZHOU

This establishes the relationship between the nonlocal norms and the standard local
Sobolev space norms in the local limit. Moreover, it has been also shown in [46] that,
albeit for a special nonlocal boundary conditions, the solutions of nonlocal diffusion
equation converge to the solution of the local diffusion equation in suitable spaces in
such a limit. This relies on a key estimate showing that when D is positive definite, the
smallest eigenvalue of the nonlocal diffusion operator D(ΘD∗) remains larger than a
positive constant uniformly in ε as ε→ 0. In the context of peridynamic models, this
is equivalent to the assumption that the materials have well-defined elastic moduli
[46]. When such a property holds for more general volume-constrained problems
considered here, we may also see that the solutions uε of (7.3) converge, at least
weakly in L2(Ω) to the unique solution u of the equation (4.8) in the local limit. By
passing to the limit in the respective weak forms, we recover stronger convergence
results, in particular, for b bounded in L2(Ω), we get

lim
ε→0

∫
Ω

∫
Ω

D∗uε ·
(
ΘD∗uε

)
dy dx =

∫
Ω

∇u ·
(
D∇u

)
dx .

One may draw analogy of the above results with other existing studies on the
characterization of Sobolev spaces and their norms, for instance, using the character-
ization established in [17], it was shown in [7] that

lim
n→∞

∫
Ω

∫
Ω

(
u(x)− u(y)

)2
|y − x|2

ρn(|y − x|) dy dx ∝ |u|H1(Ω)

for a sequence of radial mollifiers {ρn}. In particular, the authors of [7] demonstrate

that the norm induced by
∫

Ω

∫
Ω

(u(x)−u(y))2

|y−x|2 ρn(|y − x|) dy dx is equivalent to |u|Hs
0Ω

for 1/2 < s < 1. We note that our results cover wider classes of Sobolev spaces and
kernel functions.

9. Finite-dimensional approximations. Given the variational formulation
(7.2) of the nonlocal volume-constrained problem (1.2), one may naturally consider
its finite dimensional approximations within the variational framework. Here, we
establish a priori error and condition number estimates for finite-dimensional ap-
proximations of the nonlocal volume-constrained problem (1.2) under both Case 1
and Case 2. These results are analogous to those established in [46] for a restricted
class of one- and two-dimensional volume-constrained problems associated with linear
peridynamic models.

Let {V nc } denote a sequence of finite-dimensional subspaces of Vc(Ω) and assume
that, as n→∞, {V nc } is dense in Vc(Ω), i.e., for any v ∈ Vc(Ω), there exists a sequence
{vn ∈ V nc } such that

|||v − vn||| → 0 as n→∞ . (9.1)

Throughout the remainder of this section, we let u denote the solution of the vari-
ational problem. We seek the Ritz-Galerkin approximation un ∈ V nc to the nonlo-
cal variational problem posed on V nc that fall within the class of “internal” (see [9,
p. 86]) or “conforming” approximations, i.e., we seek un that minimizes E(·) over
V nc ⊂ Vc(Ω).

9.1. Convergence and error estimates. We first state an abstract conver-
gence result which gives the best approximation property of the finite dimensional
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NONLOCAL DIFFUSION PROBLEMS WITH VOLUME CONSTRAINTS 23

Ritz-Galerkin solution.
Theorem 9.1. If the function γ satisfies (7.7) and either (7.8) or (7.9), then,

for any b ∈ V ∗c (Ω), we have

|||u− un||| ≤ min
vn∈V n

c

|||u− vn||| → 0 as n→∞ . (9.2)

Proof. Standard variational argument shows that the Ritz-Galerkin approxima-
tion is the best approximation to u in V nc with respect to the energy norm. This,
together with (9.1), gives the result of the theorem.

We now consider a more concrete example of finite dimensional approximations.
Let us focus on, in particular, finite element approximations for the case that both
Ω and Ω̃ are polyhedral domains. For a given triangulation of Ω that simultaneously
triangulates Ω̃, we let V nc consist of those functions in Vc(Ω) that are piecewise polyno-
mials of degree no more than m defined with respect to the triangulation. We assume
that the triangulation is shape-regular and quasiuniform [18] as the mesh parameter,
the diameter of the largest element, h→ 0, i.e., as n, the dimension of the space V nc ,
goes to ∞. Note that generally n is of order hd for small h. If the exact solution u is
sufficiently smooth, we have the following result.

Theorem 9.2. Let m be a non-negative integer and 0 < s < 1.
Case 1. Suppose that u ∈ Vc(Ω) ∩Hm+t(Ω) where 0 ≤ r ≤ s and s ≤ t ≤ 1. Then,
there exists a constant C such that for sufficiently small h,

‖u− un‖Hr(Ω) ≤ Chm+t−r‖u‖Hm+t(Ω). (9.3a)

Case 2. Suppose that u ∈ Vc(Ω) ∩Hm+t(Ω) where 0 ≤ t ≤ 1. Then, there exists a
constant C such that for sufficiently small h,

‖u− un‖L2(Ω) ≤ Chm+s‖u‖Hm+s(Ω). (9.3b)

Proof. The proof follows similar derivations as that given in [46] for a linear
peridynamic model. We thus only outline the main ingredients. By Theorem 9.1
and the norm equivalence established in earlier sections, the error estimate (9.3a) for
the case r = s and the estimate (9.3b) follow from standard approximation prop-
erties in Sobolev spaces [18] of integer order. The estimate for r = 0 can then be
obtained via a standard duality argument as that for the conforming (internal) finite
element approximations of second-order elliptic equations [9, 18]. One may then use
interpolation theory for the more general case of (9.3a) for r ∈ (0, s).

In particular, if m = 1, then a second-order convergence with respect to the L2(Ω)
norm can be expected for linear elements by setting r = 0, t = 1 in Case 1 and t = 1
in Case 2.

It is important to note that for Case 1 for s < 1/2 and for Case 2, discontin-
uous (across element boundaries) finite element spaces are conforming. This should
be contrasted with discontinuous Galrekin methods for second-order elliptic partial
differential equations which are nonconforming and thus require special handling, e.g.,
penalty terms, at element boundaries. For nonlocal volume-constrained problems, no
such special handling is needed if s < q/2.

9.2. Condition numbers. For the finite element approximations of the non-
local operator L using basis functions {φi}ni=1, let us consider the nonlocal stiffness
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24 Q. DU, M. GUNZBURGER, R. B. LEHOUCQ AND K. ZHOU

matrix K = (kij)n×n, where the entries {kij} are defined by

kij = −(L(φi), φj) for i, j = 1, . . . , n.

The condition number of the stiffness matrix is an indicator for both the sensitive
dependence of the discrete solution on the data and the performance of iterative solvers
such as the conjugate-gradient method. Our condition number estimates allow the
development of preconditioners for nonlocal problems and extend the existing results
in [3] to the case when L smooths the data.

The choice of particular basis function can affect the order of condition numbers.
We consider the case where the conventional nodal finite element basis {φi}ni=1 is used
[18], so that under the shape-regular and quasi-uniform mesh assumptions, there exist
positive constants c1 and c2 such that, for h small,

c1h
d

n∑
i=1

u2
i ≤ ‖

n∑
i=1

uiφi‖2L2(Ω) ≤ c2h
d

n∑
i=1

u2
i

holds for any uh =
∑n
i=1 uiφ ∈ V nc (Ω).

Then, we have the following condition number estimates.
Theorem 9.3. For the nonlocal stiffness matrix K, we have, for h small,

a) if γ satisfies (7.7) and (7.8), then for some generic constant c > 0,

cond(K) ≤ ch−2s; (9.4)

b) if γ satisfies (7.7) and (7.9), then for some generic constant c > 0,

cond(K) ≤ c. (9.5)

Proof. The proof again follows the same line of derivations as that given in [46] for
a linear nonlocal peridynamic model. The main ingredients are the norm equivalence
as established in earlier sections and the inverse inequality of the type:

‖uh‖2Hs(Ω) ≤ ch
−2s‖uh‖2L2(Ω)

for any finite element function

uh =
n∑
i=1

uiφ ∈ V nc (Ω)

with the conventional Sobolev space norms [18].
These results are again consistent with the ones given in [46] for special boundary

conditions corresponding to special peridynamic nonlocal models. We again note that
if s ∈ (0, 1/2), the error and condition number estimates also hold for discontinuous
Galerkin approximations, because in this case all the piecewise polynomial spaces with
respect to the triangulation, globally continuous or not, are conforming elements for
the internal discretization of the nonlocal problem; see [21, 46]. Moreover, note that
for the Case 1 with s ∈ (0, 1), the condition number grows slower, as h → 0, than
that for elliptic partial differential equations for which the condition number grows
with h−2.

Interestingly, in relation to the discussion given earlier, the finite-dimensional
stiffness matrices may also be related to graph Laplacians. We note that whereas
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in some cases the condition number may grow with the system size, in other cases,
it may be uniformly bounded. Such results shed light on why for some graph or
discrete Laplacians it remains challenging to find effective solvers and preconditioners
while some other cases, fast iterative solvers are more readily available given the
independence of the condition number on the system size.
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