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• Research 

         - Control of discrete-event/hybrid systems 

         - Model-based fault diagnosis/prognosis 

        -  Privacy and security in cyber-physical systems 
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Outline 
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• Motivation: Why we study discrete-event system 

• Partially-Observed Discrete-Event Systems 

• Analysis of Partially-Observed DES 

        - Verification of Security/Diagnosability/Prognosability 

• Control of Partially-Observed DES 

         - Synthesis of supervisory control strategies 

         - Synthesis of sensor activation strategies 

• Applications: 

         - Location-Based Services  (analysis, security issue)      

         - Vehicular Electrical Power Systems (control, safety-critical systems)  

• Conclusion and Future Directions 
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physical, continuous 

𝑥 𝑝 = 𝑓𝑝(𝑥𝑝, 𝑢, 𝜂) 

𝑠 = 𝑔𝑝(𝑥𝑝, 𝑢, 𝜇) 

𝑥 𝑐 = 𝑓𝑝(𝑥𝑐 , 𝑠) 

𝑢 = 𝑔𝑝(𝑥𝑐 , 𝑠) 

Model:   Differential Equation 
 

Specification:  Stability,  
reference tracking, optimality… 



4/31 

Continuous v.s. Discrete 

X.Yin  (UMich) May 2016 SJTU 2016 

physical, continuous 

𝑥 𝑝 = 𝑓𝑝(𝑥𝑝, 𝑢, 𝜂) 

𝑠 = 𝑔𝑝(𝑥𝑝, 𝑢, 𝜇) 

𝑥 𝑐 = 𝑓𝑝(𝑥𝑐 , 𝑠) 

𝑢 = 𝑔𝑝(𝑥𝑐 , 𝑠) 

Model:   Differential Equation 
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reference tracking, optimality… 

computational, discrete 

𝑆: 𝑂𝑏𝑠(𝐿 𝐺 ) → 2𝐸  

Model:    Discrete-event systems, automata, 
transition systems, formal languages 

Specification:    Safety, liveness, 
diagnosability, security  
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Current Practice 
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Current Control Design Process for Cyber-Physical Systems 

• Given some spec (plain English) use art of design (engineering intuition, 
experience) and extensive testing to come up with a single solution 

• Ad hoc approaches, Large lists of “if-then-else” rules 

• Little or no formal guarantees on correctness 
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Current Control Design Process for Cyber-Physical Systems 

• Given some spec (plain English) use art of design (engineering intuition, 
experience) and extensive testing to come up with a single solution 

• Ad hoc approaches, Large lists of “if-then-else” rules 

• Little or no formal guarantees on correctness 

Better Alternative 

• Formal Methods! 
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solution 

Formal Methods 

(Model-Based Approach) 
Discrete-event systems 

• Model: Automata  

• Specification: Formal Languages 

Verification (Analysis) 

• Formal guarantee for specification 

Synthesis (Control Design) 

• Reactive to environment, e.g.,  
uncontrollability & unobservability 

• Correct-by-construction!  
    (No need to verify) 
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Why Discrete-Event Models 

• Many systems are Inherently Event-Driven and have Discrete State-Spaces 

     Manufacturing Systems, Software Systems, PLCs, Protocols 
         - Z.-W. Li,, and M.-C. Zhou. "Elementary siphons of Petri nets and their application to deadlock prevention  
           in flexible manufacturing systems." IEEE Trans Systems, Man and Cybernetics, Part A, 34.1, 2004. 
         - Y. Pencolé, and M. Cordier. "A formal framework for the decentralised diagnosis of large scale discrete event  
           systems and its application to telecommunication networks." Artificial Intelligence, 164.1, 2005. 
         - H.-W. Liao, et al. "Eliminating concurrency bugs in multithreaded software: A new approach based on discrete-  
           event control." IEEE Trans Control Systems Technology, 21.6, 2013. 
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         - H.-W. Liao, et al. "Eliminating concurrency bugs in multithreaded software: A new approach based on discrete-  
           event control." IEEE Trans Control Systems Technology, 21.6, 2013. 

• DES Model comes from Finite Abstraction of the original continuous system 

     Linear Systems, Nonlinear Systems, Stochastic Systems, Networked Systems  

        - P. Tabuada and G. Pappas. "Linear time logic control of discrete-time linear systems."  IEEE Trans Automatic  
           Control, 51.12, 2006. 
        - A. Girard, G. Pola, and P. Tabuada. "Approximately bisimilar symbolic models for incrementally stable switched   
          systems." IEEE Trans Automatic Control, 55.1, 2010.  
        - M. Zamani, A. Abate, and A. Girard. "Symbolic models for stochastic switched systems: a discretization and a  
          discretization-free approach." Automatica, 55,2015. 
        - M. Lahijanian, S. Andersson, and C. Belta. "Formal verification and synthesis for discrete-time stochastic   
           systems." IEEE Trans Automatic Control 60.8, 2015 
        - J. Liu, and N. Ozay. "Finite abstractions with robustness margins for temporal logic-based control  
          synthesis." Nonlinear Analysis: Hybrid Systems, 22, 2016. 
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Discrete-Event Systems  
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𝐺 = (𝑋, 𝐸, 𝑓, 𝑥0, 𝑋𝑚) is a deterministic FSA 

- 𝑋 is the finite set of states  
- 𝐸 is the finite set of events  
- 𝑓: 𝑋 × 𝐸 → 𝑋 is the partial transition function  
- 𝑥0 is the initial state; 
- 𝑋𝑚 is the set of marked states. 
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Formal Specifications 
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• Safety: Regular language 𝐿𝑎𝑚   

• Non-blockingness: no deadlocks or livelocks 
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• Formal Specifications 

• Other properties: Observation properties, Temporal logics  
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• Not all behaviors can be observed 

      - Internal behavior  

      - Limited sensor capability: energy, communication constraint 

• Observation Model 

        𝐸 = 𝐸𝑜 ∪ 𝐸𝑢𝑜   

• Natural Projection  𝑃: 𝐸∗ → 𝐸𝑜
∗ erase events in 𝐸𝑢𝑜 

      - 𝐸 = 𝑎, 𝑏, 𝑐 , 𝐸𝑜 = 𝑎, 𝑏 , 𝑃 𝑎𝑏𝑐𝑐𝑎 = 𝑎𝑏𝑎 

      - 𝑃(𝐿 𝐺 ) is the behavior we can observe 
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• Opacity: Security and privacy issue in information-flow       

• Diagnosability: Fault detection and isolation 

• Prognosability: Fault prediction and alarm 
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S NS 

𝑠 𝑡 
𝑃 𝑠 = 𝑃(𝑡) 

      Current State Opacity 

• A set of secret states 𝑋s ⊆ 𝑋 

• The intruder never know the system is 
at secret state 

• Ex: I know that you are visiting hospital 



13/31 

K-Step Opacity and Infinite-Step Opacity 

X.Yin  (UMich) May 2016 SJTU 2016 

• K-Step Opacity 

The intruder cannot infer that the system was at a secret state for some 
specific instant K-step ahead in the past. 

• Infinite-Step Opacity 

The intruder cannot infer that the system was at a secret state for any specific 
instant in the past. 
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• Previous Result 

     - K-step opacity can be verified in 𝑂( 𝐸𝑜 × 2 𝑋 × 𝐸𝑜
 + 1 𝐾)  

     - Infinite-step opacity can be verified in 𝑂( 𝐸𝑜 × 2 𝑋 × 2 𝑋 2
) 

     - Different approaches for different properties 

  

[Saboori & Hadjicostis, 2011]  

[Saboori & Hadjicostis, 2013]  
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• Recent Advances 

      - New approach for the verification of K-step and infinite-step opacity 

      - A unified approach based on a separation principle 

      - K-Step:   𝑂( 𝐸𝑜 × 2 𝑋 ×𝐦𝐢𝐧* 𝑬𝒐
𝑲, 𝟐 𝑿 +) vs 𝑂( 𝐸𝑜 × 2 𝑋 × 𝑬𝒐

 + 𝟏 𝑲) 

      - Infinite-Step: 𝑂( 𝐸𝑜 × 2 𝑋 × 𝟐 𝑿 ) vs 𝑂( 𝐸𝑜 × 2 𝑋 × 𝟐 𝑿 𝟐
) 

[Saboori & Hadjicostis, 2011]  

[Saboori & Hadjicostis, 2013]  

X. Yin and S. Lafortune. “A new approach for the verification of infinite-step and K-step 
opacity using two-way observer," Automatica, under review, 2016. 

X. Yin and S. Lafortune. “On two-way observer and its application to the verification of 
infinite-step and K-step opacity," 13th Int. Workshop on Discrete Event Systems, 2016. 
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Attack Model for the Intruder 

• Is located at the LBS server 

• Has mobility patterns of users 

• Receives location information in LBS queries 

Intruder 

User Server Network 

Location-Based Services 

• Provide services to mobile users by exploiting their location information 

• Finding nearby restaurants, tracking users’ running routes, etc. 

• May not be secure! 
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Y.-C. Wu, K. Sankararaman and S. Lafortune. "Ensuring privacy in location-based services: An 
approach based on opacity enforcement." WODES14,  47.2 (2014): 33-38. 
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• Is state 6 (cancer center) opaque? 

• No! Consider string 𝒄𝒅𝒅 
Y.-C. Wu, K. Sankararaman and S. Lafortune. "Ensuring privacy in location-based services: An 
approach based on opacity enforcement." WODES14,  47.2 (2014): 33-38. 
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Diagnosability [Sampath, et al, 1995] 

The occurrence of any fault event can be detected unambiguously within a finite delay. 

Prognosability [Genc & Lafortune, 2009, Kumar & Takai, 2011] 

The occurrence of any fault event can be predicted with no miss-alarm and no false-alarm. 

   Recent Advances 

• Diagnosability and observability are equivalent 

      - X. Yin and S. Lafortune, “Codiagnosability and coobservability under dynamic observations:  
        transformation and verification." Automatica, vol.61, pp. 241-252, 2015. (Regular Paper) 

• Performance and reliability issue in decentralized fault prognosis 

      - X. Yin and Z.-J. Li. “Decentralized fault prognosis of discrete event systems with guaranteed            
        performance bound,” Automatica, vol.69, pp. 375-379, 2016. 
      - X. Yin and Z.-J. Li. “Reliable decentralized fault prognosis of discrete-event systems,”                           
        IEEE Trans. Systems, Man, and Cybernetics: Systems, vol.46, no.8, 2016. 
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• What if Verification Fails? 

       - For example: LBS example 

 
• Synthesis!  

    - Synthesis of supervisory control strategies 

     - Synthesis of sensor activation strategies 
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Plant G 

0 

1 

2 3 

4 

5 

Supervisor 

𝑆: 𝐸𝑜
∗
 
 → Γ  

𝑆(𝑠)  

𝑃  

• Property Enforcement via Supervisory Control 

• Observation:   

          𝐸 = 𝐸𝑜 ∪ 𝐸𝑢𝑜 

• Supervisor:     

         𝐸 = 𝐸𝑐 ∪ 𝐸𝑢𝑐, 𝐸𝑢𝑐  uncontrollable events (environment) 

         Disable events in 𝐸𝑐 based on its observations 

 

System Property √  

𝑠 

𝑃(𝑠) 

Observation 
Property   √  
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• System Property 

      - Safety: never visited illegal states 

      - Non-blockingness: no deadlocks or livelocks 

• Observation Property 

      - Opacity, Diagnosability, Prognosability, Observability 

• Maximal Permissiveness 

      - Optimality criterion is set inclusion.  
        Only disable an event if absolutely necessary 

Standard Supervisory Control 
[Ramadge & Wonham, 1980s] 
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Property Safety Opacity Diagnosability Detectability Anonymity Attractability 

Previous 
Work 

[1]-[3] [4],[5] [6] [7] None 
 

[8] 

Previous 
Assumptions 

None 𝐸𝑎 ⊆ 𝐸𝑜 
𝐸𝑐 ⊆ 𝐸𝑜 

𝐸𝑐 ⊆ 𝐸𝑜 𝐸𝑐 ⊆ 𝐸𝑜 N/A 𝐸𝑐 ⊆ 𝐸𝑜 

[1] [Lin and Wonham, 1988]                   [5] [Saboori and Hadjicostis, 2011] 
[2] [Cieslak et al., 1988]                           [6] [Sampath et al., 1998] 
[3] [Ben Hadj-Alouane et al., 1996]       [7] [Shu and  Lin, 2013] 
[4] [Dubreil et al., 2010]                          [8] [Schmidt and Breindl, 2014] 
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Property Safety Opacity Diagnosability Detectability Anonymity Attractability 

Previous 
Work 

[1]-[3] [4],[5] [6] [7] None 
 

[8] 

Previous 
Assumptions 

None 𝐸𝑎 ⊆ 𝐸𝑜 
𝐸𝑐 ⊆ 𝐸𝑜 

𝐸𝑐 ⊆ 𝐸𝑜 𝐸𝑐 ⊆ 𝐸𝑜 N/A 𝐸𝑐 ⊆ 𝐸𝑜 

Our 
Assumption 

None 𝐸𝑎 = 𝐸𝑜 None 
 

None 
 

𝐸𝑎 = 𝐸𝑜 None 
 

[1] [Lin and Wonham, 1988]                   [5] [Saboori and Hadjicostis, 2011] 
[2] [Cieslak et al., 1988]                           [6] [Sampath et al., 1998] 
[3] [Ben Hadj-Alouane et al., 1996]       [7] [Shu and  Lin, 2013] 
[4] [Dubreil et al., 2010]                          [8] [Schmidt and Breindl, 2014] 

X. Yin and S. Lafortune, “A uniform approach for synthesizing property-enforcing supervisors for 
partially-observed DES." IEEE Transactions Automatic Control, vol.61, no.8, 2016. (Regular Paper) 

A Uniform Approach 
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• Information State: a set of states; 𝐼 = 2𝑋. 

• State Estimate: all possible states consistent with observation 

𝐸𝑐 = *𝑐1, 𝑐2+, 𝐸𝑜 = *𝑜+ 

• Supervisor 𝑆 disables nothing 
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• Key Result:  
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• Basic Idea: Construct an information structure that captures all possible 
controlled behaviors of the system 

• All Inclusive Controller: 

         - A “Game” between environment and controller  

         - Two kinds of states: Y-states and Z-states 

         - It embeds (infinite many) solutions in its finite structure 
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Safety Safe+Max Safe+NB Safe+NB+Max 

Centralized 
Upper Bound 

[1],[2],[3] [4] [5] OPEN 

Centralized 
Range 

[1],[2],[3] OPEN 
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Decentralized 
Upper Bound 

[2],[6] OPEN 
 

Undecidable 
[7],[8] 

Undecidable 
 

Decentralized 
Range 

[2],[6] 
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Undecidable 
 

Undecidable 
 

[1] [Lin and Wonham, 1988]  
[2] [Cieslak et al., 1988]            
[3][Rudie and Wonham, 1990]          

[4][Ben Hadj-Alouane et al., 1996]                 
[5][Yoo and Lafortune, 2006]   
[6][Rudie and Wonham, 1992]  

[7][Tripakis, 2004]  
[8][Thistle, 2005] 
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X. Yin and S. Lafortune, “Synthesis of maximally permissive supervisors for partially observed DES."   
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   Sensor activation policy  

A function that determines which events to monitor next  

   Dynamic Sensor Activation Problem 

Find a sensor activation policy 𝜔 such that 
 -  some property can be guaranteed                                 
 -  It is optimal: numerical (average cost) or logical (set inclusion)            
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   Recent Advances 

 - A general approach for solving sensor activation problem 

 - A new structure called the Most Permissive Observer 

 - A minimal sensor activation policy can be synthesized from the MPO 

   Sensor activation policy  

A function that determines which events to monitor next  

   Dynamic Sensor Activation Problem 

Find a sensor activation policy 𝜔 such that 
 -  some property can be guaranteed                                 
 -  It is optimal: numerical (average cost) or logical (set inclusion)            

X. Yin and S. Lafortune. “A general approach for solving dynamic sensor activation problems for a 
class of properties,” in 54th IEEE Conference on Decision and Control, pp. 3610-3615, 2015. 
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Decentralized Diagnosis Problem 

• Large-scale systems 

• Plant is monitored by multiple agents 

Synthesis Problem 

• Synthesis of local sensor activation 
strategies for each agent such that they are 
diagnose the fault as a group 

Solution Approach 

• Person-by-person approach 

• Iteration converge finitely  

• It is an optimal solution 

X. Yin and S. Lafortune. “Minimization of sensor activation in decentralized fault diagnosis of discrete 
event systems,” in 54th IEEE Conference on Decision and Control, pp. 1014-1019, 2015 
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When the system is huge 

• Safety-critical system 

• Intuition is hard to handle 

• Need formal synthesis techniques! 

 

An aircraft EPS: Honeywell Inc. patent 

Our Results 

• Build DES Model: the state-space is already discrete; discretize time 

• Apply supervisor synthesis technique developed 

• Algorithm implemented by Alloy*, an efficient model finder embedding SAT solver 
(On going) 
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       - Sensor Activation Strategies: centralized/decentralized solutions 

• Two Applications: LBS and EPS 
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