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e Research

- Control of discrete-event/hybrid systems

o] €]

- Model-based fault diagnosis/prognosis i

- Privacy and security in cyber-physical systems @
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Outline

*  Motivation: Why we study discrete-event system
*  Partially-Observed Discrete-Event Systems

*  Analysis of Partially-Observed DES

- Verification of Security/Diagnosability/Prognosability
«  Control of Partially-Observed DES

- Synthesis of supervisory control strategies

- Synthesis of sensor activation strategies
«  Applications:

- Location-Based Services (analysis, security issue)

- Vehicular Electrical Power Systems (control, safety-critical systems)

Conclusion and Future Directions
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Cyber-Physical Control Systems
Cyber-Physical Control Systems
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Continuous Vv.s. Discrete

physical, continuous

xp — fp(xp»u:n)
5 = Gy (st )

X = fp (x¢,S)
U=4Jp (xcs)
Model: Differential Equation

Specification: Stability,
reference tracking, optimality...
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Continuous Vv.s. Discrete

physical, continuous computational, discrete
xp — fp(xp»u»n) (2. ‘
s = gp(xXp,u, 1) 0‘ 2
. O—GD
Xc = fp (x¢,S)
u = gp(xcs) S:0bs(L(G)) — 2F
Model: Differential Equation Model: Discrete-event systems, automata,
transition systems, formal languages
Specification: Stability, Specification: Safety, liveness,
reference tracking, optimality... diagnosability, security
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Current Practice

Current Control Design Process for Cyber-Physical Systems

e Given some spec (plain English) use art of design (engineering intuition,
experience) and extensive testing to come up with a single solution

* Ad hoc approaches, Large lists of “if-then-else” rules

 Little or no formal guarantees on correctness

o] €]
i
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Current Practice

Current Control Design Process for Cyber-Physical Systems

e Given some spec (plain English) use art of design (engineering intuition,
experience) and extensive testing to come up with a single solution

* Ad hoc approaches, Large lists of “if-then-else” rules

 Little or no formal guarantees on correctness

Better Alternative

e Formal Methods!

Ill
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Formal Approach: Verification and Synthesis

Formal Methods
(Model-Based Approach)

Requirements | | Assumptions

on the system on the Sys'rem

behavior' envuronment

for'mal System
specuflcahon model

Satisfied Violated Con'rr'oller' No S‘fCh

(+certificate) (+counterexm) (Correction solution
Guaranteed)
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Formal Approach: Verification and Synthesis

Formal Methods

Discrete-event syst
Iscrete-event systems (Model-Based Approach)

e Model: Automata

Requirements | | Assumptions

* Specification: Formal Languages on the system on the Sys'rem

behavior' envuronment

for'mal System
specuflcahon model

Satisfied Violated Con'rr'oller' No S‘fCh
(+certificate) (+counterexm) (Correction solution
Guaranteed)
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Formal Approach: Verification and Synthesis

Formal Methods

Discrete-event syst
Iscrete-event systems (Model-Based Approach)

e Model: Automata

Requirements | | Assumptions
* Specification: Formal Languages on the system on the System

behavior' envuronment

Verification (Analysis)

* Formal guarantee for specification f°f‘m°' Sys'rem
specuflcahon model

Satisfied Violated Con'rr'oller' No S‘fCh
(+certificate) (+counterexm) (Correction solution
Guaranteed)
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Formal Approach: Verification and Synthesis

Formal Methods

Discrete-event syst
Iscrete-event systems (Model-Based Approach)

e Model: Automata

Requirements | | Assumptions
* Specification: Formal Languages on the system on the Sys'rem
behavior' envuronment

Verification (Analysis)

* Formal guarantee for specification f°f‘m°' Sys'rem
specuflcahon model

Synthesis (Control Design)

* Reactive to environment, e.g.,
uncontrollability & unobservability

. I Satisfied Violated Con'rr'oller' No S‘fCh

¢ CorrECt'by'ConStrUCtlon. (+certificate) (+counterexm) (Correction solution
(No need to verify) Guaranteed)
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Why Discrete-Event Models
Why Discrete-Event Models

*  Many systems are Inherently Event-Driven and have Discrete State-Spaces

Manufacturing Systems, Software Systems, PLCs, Protocols
- Z.-W. Li,, and M.-C. Zhou. "Elementary siphons of Petri nets and their application to deadlock prevention
in flexible manufacturing systems." IEEE Trans Systems, Man and Cybernetics, Part A, 34.1, 2004.
- Y. Pencolé, and M. Cordier. "A formal framework for the decentralised diagnosis of large scale discrete event
systems and its application to telecommunication networks." Artificial Intelligence, 164.1, 2005.
- H.-W. Liao, et al. "Eliminating concurrency bugs in multithreaded software: A new approach based on discrete-
event control." IEEE Trans Control Systems Technology, 21.6, 2013.
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- Z.-W. Li,, and M.-C. Zhou. "Elementary siphons of Petri nets and their application to deadlock prevention
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- Y. Pencolé, and M. Cordier. "A formal framework for the decentralised diagnosis of large scale discrete event
systems and its application to telecommunication networks." Artificial Intelligence, 164.1, 2005.
- H.-W. Liao, et al. "Eliminating concurrency bugs in multithreaded software: A new approach based on discrete-
event control." IEEE Trans Control Systems Technology, 21.6, 2013.

« DES Model comes from Finite Abstraction of the original continuous system

Linear Systems, Nonlinear Systems, Stochastic Systems, Networked Systems

- P. Tabuada and G. Pappas. "Linear time logic control of discrete-time linear systems." IEEE Trans Automatic
Control, 51.12, 2006.

- A. Girard, G. Pola, and P. Tabuada. "Approximately bisimilar symbolic models for incrementally stable switched
systems." IEEE Trans Automatic Control, 55.1, 2010.

- M. Zamani, A. Abate, and A. Girard. "Symbolic models for stochastic switched systems: a discretization and a
discretization-free approach." Automatica, 55,2015.

- M. Lahijanian, S. Andersson, and C. Belta. "Formal verification and synthesis for discrete-time stochastic

CigE
systems." IEEE Trans Automatic Control 60.8, 2015 hﬁd
- J. Liu, and N. Ozay. "Finite abstractions with robustness margins for temporal logic-based control
synthesis." Nonlinear Analysis: Hybrid Systems, 22, 2016. @
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Discrete-Event Systems

« System Model
G =(X,E, f,xy, X)) is a deterministic FSA

- X is the finite set of states

- Eis the finite set of events

- f:X X E - X is the partial transition function
- Xg is the initial state;

- X, is the set of marked states.

Plant G

SJTU 2016 May 2016 8/31



Discrete-Event Systems

+ System Model
G =(X,E, f,xy, X)) is a deterministic FSA

- X is the finite set of states

- Eis the finite set of events

- f:X X E — X is the partial transition function
- X is the initial state;

- X, is the set of marked states.

Plant G

« System's Behaviors
- String: a sequence of events, e.g., abccab....
[o]-E]
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Discrete-Event Systems

+ System Model
G =(X,E, f,xy, X)) is a deterministic FSA

- X is the finite set of states

- Eis the finite set of events

- f:X X E — X is the partial transition function
- X is the initial state;

- X, is the set of marked states.

Plant G
« System's Behaviors

- String: a sequence of events, e.g., abccab....

- Language: a set of strings

- Generated language: L(G) = {s € E™: f(xy,5)'}
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Formal Specifications

* Formal Specifications

» Safety: Regular language L,

* Non-blockingness: no deadlocks or livelocks

e Deadlock
‘ Livelock

<

O
@

e Other properties: Observation properties, Temporal logics
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Partially-Observed Discrete-Event Systems

4 2) )
([0 sl
. J

Plant G

K Not all behaviors can be observed \

- Internal behavior

- Limited sensor capability: energy, communication constraint

\_ /
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Partially-Observed Discrete-Event Systems

4 9 )
01@ D (" e
\_ J

Plant G

K Not all behaviors can be observed \

- Internal behavior

- Limited sensor capability: energy, communication constraint

e Observation Model
E=E,UE,,

* Natural Projection P: E* — E, erase events in E,,,
-E ={a,b,c},E, = {a, b}, P(abcca) = aba ﬁsﬁ

k - P(L(G)) is the behavior we can observe / @
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Property Verification of Partially-Observed DES

\

7
@

01@ Q> =

\_

Plant G )

Does the system satisfy some property ?

« Opacity: Security and privacy issue in information-flow
« Diagnosability: Fault detection and isolation

* Prognosability: Fault prediction and alarm
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The system has a secret

Opacity

5 ) [ — ] PG)
Projection
/Mask @

Intruder/ Malicious Observer

* Opacity

The system’s secret cannot be revealed based on the intruder’s observation.

Ill
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Opacity
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Plant G W,
The system has a secret

Intruder/ Malicious Observer

* Opacity

The system’s secret cannot be revealed based on the intruder’s observation.

Current State Opacity S t
P(s) = P(t)

)

* Asetofsecretstates X; € X

 The intruder never know the system is
at secret state

 Ex: 1 know that you are visiting hospital ‘

Ill
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K-Step Opacity and Infinite-Step Opacity

€ K-Step Opacity h

The intruder cannot infer that the system was at a secret state for some
specific instant K-step ahead in the past.

J
)

-
* Infinite-Step Opacity

The intruder cannot infer that the system was at a secret state for any specific

\lnstant in the past. p

Ill
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K-Step Opacity and Infinite-Step Opacity

€ K-Step Opacity h
The intruder cannot infer that the system was at a secret state for some
specific instant K-step ahead in the past. y
4 .. . )
* Infinite-Step Opacity
The intruder cannot infer that the system was at a secret state for any specific
\instant in the past.

J

-(O——@——0——0
4050@b@
a@b@ e

O g @
E, ={o,a,b}
X.Yin (UMich)
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K-Step Opacity and Infinite-Step Opacity

€ K-Step Opacity h
The intruder cannot infer that the system was at a secret state for some
specific instant K-step ahead in the past. y
£ Infinite-Step Opacity h
The intruder cannot infer that the system was at a secret state for any specific
instant in the past.

. J

Xs-0(0)
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K-Step Opacity and Infinite-Step Opacity

€ K-Step Opacity h

The intruder cannot infer that the system was at a secret state for some

specific instant K-step ahead in the past.

J

4 .. . )

* Infinite-Step Opacity

The intruder cannot infer that the system was at a secret state for any specific
\lnstant in the past. p

X\si-1(0)
|

0] | 1 0] 0]

Ill

E, ={o,a,b
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K-Step Opacity and Infinite-Step Opacity

(

* K-Step Opacity h
The intruder cannot infer that the system was at a secret state for some
specific instant K-step ahead in the past.
J
4 )
* Infinite-Step Opacity
The intruder cannot infer that the system was at a secret state for any specific
\lnstant in the past. p
X51-2(0)
== -
0 0 0
& 2 >@
uo
H—e—@D——E——0
uo
B[]
O—2—O——®—L—@) ®
E, ={o,a,b}
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K-Step Opacity and Infinite-Step Opacity

(

* K-Step Opacity h

The intruder cannot infer that the system was at a secret state for some

specific instant K-step ahead in the past. y
4 .. . )

* Infinite-Step Opacity

The intruder cannot infer that the system was at a secret state for any specific
\instant in the past. )

Xs-2(0)

It is not 2-step opaque!

ﬁlgla
®
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Verification of K-Step Opacity and Infinite-Step Opacity

* Previous Result
- K-step opacity can be verified in O(|E,| x 21X x (|[E,| + 1)X) [Saboori & Hadjicostis, 2011]

2
- Infinite-step opacity can be verified in O(|E,| X 21X1 5 21X] ) [Saboori & Hadjicostis, 2013]

- Different approaches for different properties
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Verification of K-Step Opacity and Infinite-Step Opacity

* Previous Result
- K-step opacity can be verified in O(|E,| x 21X x (|[E,| + 1)X) [Saboori & Hadjicostis, 2011]
2
- Infinite-step opacity can be verified in O(|E,| X 21X1 5 21X ) [Saboori & Hadjicostis, 2013]

- Different approaches for different properties

- Recent Advances
- New approach for the verification of K-step and infinite-step opacity
- A unified approach based on a separation principle
- K-Step: O(|E,| x 2XI x min{|E |¥, 21X} vs O(|E,| x 21X x (|E,| + 1)X)
- Infinite-Step: O(|E, | x 2/¥I x 21Xy vs O(|E, | x 2!%1 x 2|X|2)

X.Yin and S. Lafortune. “A new approach for the verification of infinite-step and K-step
opacity using two-way observer," Automatica, under review, 2016.

Ill
X.Yin and S. Lafortune. “On two-way observer and its application to the verification of 5]
infinite-step and K-step opacity," 13t Int. Workshop on Discrete Event Systems, 2016. @
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Application of Opacity: Location-Based Services

Location-Based Services

* Provide services to mobile users by exploiting their location information
* Finding nearby restaurants, tracking users’ running routes, etc.

* May not be secure!

Server
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Application of Opacity: Location-Based Services

Location-Based Services

* Provide services to mobile users by exploiting their location information
* Finding nearby restaurants, tracking users’ running routes, etc.

* May not be secure!

Attack Model for the Intruder

* |slocated at the LBS server
* Has mobility patterns of users
e Receives location information in LBS queries

I d
ntruder o Is he visiting hospl'ral 9

<:> Server @

~ XYin (UMich) | SJTU 2016 May 2016 15/31
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Application of Opacity: Location-Based Services
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Recent Advances on Fault Diagnosis and Fault Prognosis

/Diagnosabilify [Sampath, et al, 1995] )
The occurrence of any fault event can be detected unambiguously within a finite delay.

Pr'ognosabilify [Genc & Lafortune, 2009, Kumar & Takai, 2011]

\The occurrence of any fault event can be predicted with no miss-alarm and no faIse—aIarmj

o] €]
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Recent Advances on Fault Diagnosis and Fault Prognosis

/Diagnosabilify [Sampath, et al, 1995] )
The occurrence of any fault event can be detected unambiguously within a finite delay.

Pr'ognosabilify [Genc & Lafortune, 2009, Kumar & Takai, 2011]

\The occurrence of any fault event can be predicted with no miss-alarm and no faIse—aIarmj

0 f 0
@-.@_M Not diagnosable if we cannot see event a
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Recent Advances on Fault Diagnosis and Fault Prognosis

/DiagnosabiIiTy [Sampath, et al, 1995]
The occurrence of any fault event can be detected unambiguously within a finite delay.

Prognosability [Genc & Lafortune, 2009, Kumar & Takai, 2011]

\The occurrence of any fault event can be predicted with no miss-alarm and no faIse—aIarmj

~

/ Recent Advances

e Diagnosability and observability are equivalent

- X.Yin and S. Lafortune, “Codiagnosability and coobservability under dynamic observations:
transformation and verification." Automatica, vol.61, pp. 241-252, 2015. (Regular Paper)

e Performance and reliability issue in decentralized fault prognosis

- X.Yin and Z.-J. Li. “Decentralized fault prognosis of discrete event systems with guaranteed
performance bound,” Automatica, vol.69, pp. 375-379, 2016.

- X.Yin and Z.-J. Li. “Reliable decentralized fault prognosis of discrete-event systems,”

k IEEE Trans. Systems, Man, and Cybernetics: Systems, vol.46, no.8, 2016.

~
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From Verification to Synthesis

 What if Verification Fails?

- For example: LBS example
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From Verification to Synthesis

 What if Verification Fails?

- For example: LBS example

 Synthesisl!

- Synthesis of supervisory control strategies

- Synthesis of sensor activation strategies

X.Yin (UMich)
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Supervisory Control

Y Sys'rem Property v

* Property Enforcement via Supervisory Control
PIant G
P

S(s)
S: E; — F S
Supervisor

* Observation: Observaho\r}
E=E UE, Property
* Supervisor:
- - e
E=E.VUE,., E,. uncontrollable events (environment) 5]
Disable events in E. based on its observations @
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Formal Specifications

« System Property

- Safety: never visited illegal states
- Non-blockingness: no deadlocks or livelocks
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- Non-blockingness: no deadlocks or livelocks

- Observation Property

- Opacity, Diagnosability, Prognosability, Observability

« Maximal Permissiveness

- Optimality criterion is set inclusion.
Only disable an event if absolutely necessary
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Formal Specifications

« System Property

. i : Standard Supervisory Control
- Safety: never visited illegal states [Ramadge & Wonham, 1980s]

- Non-blockingness: no deadlocks or livelocks

- Observation Property

- Opacity, Diagnosability, Prognosability, Observability

« Maximal Permissiveness

- Optimality criterion is set inclusion.
Only disable an event if absolutely necessary
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Property Enforcing Supervisory Control Problem

Dlagnosablllty Detectablllty Attractablllty

Previous [1]-[3] [4],[5] None
Work
Previous None E, S E, E.CE, E.CE, N/A E.CE,
Assumptions E. € E,

[1] [Lin and Wonham, 1988] [5] [Saboori and Hadjicostis, 2011]
[2] [Cieslak et al., 1988] [6] [Sampath et al., 1998]
[3] [Ben Hadj-Alouane et al., 1996] [7] [Shu and Lin, 2013]
[4] [Dubreil et al., 2010] [8] [Schmidt and Breindl, 2014]

(D] +{E]
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Property Enforcing Supervisory Control Problem

Dlagnosablllty Detectablllty Attractablllty

Previous [1]-[3] [4],[5] None
Work
Previous None E, CE, E.CE, E.CE, N/A E.CE,
Assumptions E.CE,
_________ R I R
| Our None E, =E, None None E, =E, None I
| Assumption I
[1] [Lin and Wonham, 1988] [5] [Saboori and Hadjicostis, 2011]
[2] [Cieslak et al., 1988] [6] [Sampath et al., 1998]
[3] [Ben Hadj-Alouane et al., 1996] [7] [Shu and Lin, 2013]
[4] [Dubreil et al., 2010] [8] [Schmidt and Breindl, 2014]

A Uniform Approach

X.Yin and S. Lafortune, “A uniform approach for synthesizing property-enforcing supervisors for
partially-observed DES." IEEE Transactions Automatic Control, vol.61, no.8, 2016. (Regular Paper) |'|
8|

®
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A Uniform Approach for Property Enforcement

« Information State: a set of states; I = 2%, \

« State Estimate: all possible states consistent with observation

 Supervisor S disables nothing
* I1(0) =1{3,4},1(0o0) = {5,6}

— . —
1 ! ! 1
! ! H I
i ! ! 1

1 ! 1
L— - —

E. ={c1,c:},E, = {0}
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A Uniform Approach for Property Enforcement

K Information State: a set of states; [ = 2%, \
« State Estimate: all possible states consistent with observation
«  Information-State Based Property: ¢:2% — {0,1}

« Tt contains: safety, opacity, diagnosability, detectability, attractability,
anonimity, etc.

o /

 Supervisor S disables nothing
* I1(0) =1{3,4},1(0o0) = {5,6}

Y. Y o] ]
(7) (s) -
Ll N

E, = {c1, &2}, E, = {0} ®
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0(i)=0< inBAD £ ¢

/
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A Uniform Approach for Property Enforcement

K Information State: a set of states; [ = 2%, \
« State Estimate: all possible states consistent with observation
«  Information-State Based Property: ¢:2% — {0,1}

« Tt contains: safety, opacity, diagnosability, detectability, attractability,
anonimity, etc.

« Key Result:
K Any IS-based property can be enforced by an IS-based supervisor /

 Supervisor S disables nothing
* I1(0) =1{3,4},1(0o0) = {5,6}

. - A o] ]
(7) (s) -
Ll N

E, = {c1, &2}, E, = {0} ®
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A Uniform Approach for Property Enforcement

 Basic Idea: Construct an information structure that captures all possible
controlled behaviors of the system

« All Inclusive Controller:
- A “Game” between environment and controller
- Two kinds of states: Y-states and Z-states

- It embeds (infinite many) solutions in its finite structure

= - =
1 ! ! 1
7 ) (g )
1 H H 1
L— - -

E. ={c1,c:},E, = {0}
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A Uniform Approach for Property Enforcement

 Basic Idea: Construct an information structure that captures all possible
behaviors

« All Inclusive Controller:
- A “Game” between environment and controller
- Two kinds of states: Y-states and Z-states
- It embeds (infinite many) solutions in its finite structure

« Synthesis: Pick a locally maximal control decision at each Y-state

Y, A A
1 ! ! 1
7 ) (g )
' i i :
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A Uniform Approach for Property Enforcement

Basic Idea: Construct aninformation structure that captures all possible
behaviors

All Inclusive Controller:

- A “Game” between environment and controller

- Two kinds of states: Y-states and Z-states

- It embeds (infinite many) solutions in its finite structure

Synthesis: Pick a locally maximal control decision at each Y-state

Non-blockingness is not

an IS-Based Prop! "

E. ={c1, 2} E, = {0} @ @
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Standard Supervisory Control Problem

| safety | SaferMax | SaferNB | SaferNB+Miax

Centralized [1],[2],[3] [4] OPEN
Upper Bound
Centralized [1],[2],[3] OPEN OPEN OPEN
Range
Decentralized  [2],[6] OPEN Undecidable Undecidable
Upper Bound [71,[8]
Decentralized  [2],[6] OPEN Undecidable Undecidable
Range
[1] [Lin and Wonham, 1988] [4][Ben Hadj-Alouane et al., 1996] [7][Tripakis, 2004]
[2] [Cieslak et al., 1988] [5][Yoo and Lafortune, 2006] [8][Thistle, 2005]

[3][Rudie and Wonham, 1990] [6][Rudie and Wonham, 1992]
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Standard Supervisory Control Problem

| safety | SaferMax | SafesnB

Centralized
Upper Bound

[11,(2],13]

Centralized
Range

[11,(2],13]

Decentralized
Upper Bound

[2],(6]

Decentralized
Range

[1] [Lin and Wonham, 1988]
[2] [Cieslak et al., 1988]
[3][Rudie and Wonham, 1990]

[2],[6]

Recent Advances

Safe+NB+Max

[4] Solved
Solved OPEN OPEN
OPEN Undecidable Undecidable

[7],[8]
OPEN Undecidable Undecidable

[4][Ben Hadj-Alouane et al.,
[5][Yoo and Lafortune, 2006]
[6][Rudie and Wonham, 1992]

1996] [7][Tripakis, 2004]

[8][Thistle, 2005]

X. Yin and S. Lafortune, “Synthesis of maximally permissive supervisors for partially observed DES."
IEEE Transactions Automatic Control, vol.61, no.5, 2016. (Regular Paper)

X. Yin and S. Lafortune. "Synthesis of maximally-permissive supervisors for the range control problem,"
IEEE Transactions Automatic Control, under review, 2016. (Regular Paper)
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Non-blocking Control Problem

« (Observation: 2% is not sufficient to make a decision

— . —
1 ! ! 1
! ! H I
i ! ! 1

1 ! 1
L— - —

E. = {C1; Cz}» E, = {0}
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Non-blocking Control Problem

« Observation: 2% is not sufficient to make a decision
« Basic Idea: unfold the solution space until it converges

« Key Result: We need additional, but finite, information

E. = {C1; Cz}» E, = {0}
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Non-blocking Control Problem

« Observation: 2% is not sufficient to make a decision
« Basic Idea: unfold the solution space until it converges

« Key Result: We need additional, but finite, information

e

13.4}

C1 {c1}
(e} O {3;} (c2}

E. = {C1; Cz}» E, = {0}
v

=
W=
L ]
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Non-blocking Control Problem

« Observation: 2% is not sufficient to make a decision
« Basic Idea: unfold the solution space until it converges

« Key Result: We need additional, but finite, information
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Centralized Sensor Activation Problem

/Sensor activation policy

Dynamic Sensor Activation Problem

Find a sensor activation policy w such that
- some property can be guaranteed

A function that determines which events to monitor next

N

\_ ant G )

& It is optimal: numerical (average cost) or logical (set inclusion) /

SJTU 2016

Property Vi
|
|
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Centralized Sensor Activation Problem

/Sensor activation policy \ g

A function that determines which events to monitor next

Dynamic Sensor Activation Problem

\_ ant G )

Find a sensor activation policy w such that Property v/

- some property can be guaranteed
& It is optimal: numerical (average cost) or logical (set inclusion) /

0 - Static Sensors: always observe aand b
b,o f a, o

@‘a\}/ b>@>:> pw(s___

A Fault Diagnosis Problem

o] €]
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Centralized Sensor Activation Problem

/Sensor activation policy \ g

A function that determines which events to monitor next

Dynamic Sensor Activation Problem

\_ ant G )

Find a sensor activation policy w such that Property v/

- some property can be guaranteed
& It is optimal: numerical (average cost) or logical (set inclusion) /

0 « Static Sensors: always observe aand b
b, 0 . f . 4,0 . Dynamic Sensors:
@‘ D) ’@I) - observe both a and b initially Fo, (54'___
A Fault Diagnosis Problem - furn off all sensors after seeing a or b a\
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Centralized Sensor Activation Problem

/Sensor activation policy \
A function that determines which events to monitor next
Dynamic Sensor Activation Problem

Find a sensor activation policy w such that
- some property can be guaranteed

& It is optimal: numerical (average cost) or logical (set inclusion) /

0 « Static Sensors: always observe aand b

b,o f 4.0 . Dynamic Sensors:

b
@461 D) P@ - observe both a and b initially

A Fault Diagnosis Problem - furn off all sensors after seeing a or b

J

P (s) ®===

Property Vv

/Recent Advances
- A general approach for solving sensor activation problem
- A new structure called the Most Permissive Observer

- A minimal sensor activation policy can be synthesized from the MPO

~

Ill
X. Yin and S. Lafortune. “A general approach for solving dynamic sensor activation problems for a =
Qlass of properties,” in 54th IEEE Conference on Decision and Control, pp. 3610-3615, 2015. @
=
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Decentralized Sensor Activation Problem

Coordinator
*Faul‘r Alarm

X. Yin and S. Lafortune. “Minimization of sensor activation in decentralized fault diagnosis of discretigs

Decentralized Diagnosis Problem
* Large-scale systems

* Plant is monitored by multiple agents

Synthesis Problem

* Synthesis of local sensor activation
strategies for each agent such that they are
diagnose the fault as a group

Solution Approach

* Person-by-person approach
* Iteration converge finitely

* Itis an optimal solution

s
£

event systems,” in 54th IEEE Conference on Decision and Control, pp. 1014-1019, 2015
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Apply Synthesis Techniques to Vehicular Electrical Power Systems

@ @ Assumption

e Generators cannot fail at the same time

S * Only one failure/recovery occurs within T, 4

S e I I * A control action takes time t,f

III
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Apply Synthesis Techniques to Vehicular Electrical Power Systems

@ @ Assumption

e Generators cannot fail at the same time

- * Only one failure/recovery occurs within T, 4

o I I m— * A control action takes time t;,f
Specification

* Generators paralleling is not allowed, i.e., no bus should be powered by
more than one generators at the same time

* Buses should not be unpowered for more than T,,, 44
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Apply Synthesis Techniques to Vehicular Electrical Power Systems

@ @ Assumption

e Generators cannot fail at the same time

- * Only one failure/recovery occurs within T, 4

— I I — * A control action takes time t;,f

Specification
* Generators paralleling is not allowed, i.e., no bus should be powered by
more than one generators at the same time

* Buses should not be unpowered for more that T;,,

/————'\\

I( :::|\\I@ |

Local Supervisor 1I |

o — — —

Local Supervisor 2

|
s
I /| I'I

|
|
|
I |
l \
Large-Scale System is Decentralized !
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Apply Synthesis Techniques to Vehicular Electrical Power Systems

L J— L T T
B A s A s

I S TR e When the system is huge
e Safety-critical system

T T |
LVAC Bus 1 H |-A,—| LVAC Bus 2 | —

e Intuition is hard to handle

: T 1 |
——p—— LVACESSBus3 | |-e—| LVACESS Bus4 |1 . .
N— T e = * Need formal synthesis techniques!

Hi
LVDG ESS Bus 1 | LVDCESS Bus 2
: | T H H T | |
I N !
L 7 T
T e
L [ icBwss M |—r-| LVDG Bus 4 |—,—

_____________________________________________________

An aircraft EPS: Honeywell Inc. patent
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Apply Synthesis Techniques to Vehicular Electrical Power Systems

L J— L T T
B A s A s

| R | —{_wocEmz_] When the system is huge
Aa ACT| ACT—_Hi

e Safety-critical system

T 0T !
LVAC Bus 1 H |-A,—| WVACBus2 | —i

e Intuition is hard to handle

: T T |
——p—— LVACESSBus3 | |-e—| LVAC ESS Bus 4 I——f\—S—
= -

N e e - * Need formal synthesis techniques!
T = L = = N [0 ]
[ LVJDSESSBUS‘I |—|Hi_| L\TESSELEQ |

e — T ii T =
] —II_;DCBuss |—||+| LVDCBus—I4— |—,_

_____________________________________________________

An aircraft EPS: Honeywell Inc. patent

Our Results

e Build DES Model: the state-space is already discrete; discretize time

. i i i o]
Apply supervisor synthesis technique developed il

e Algorithm implemented by Alloy*, an efficient model finder embedding SAT solver @
(On going)
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Future Works

/ Summary \

Recent Advances on the verification and synthesis of partially-observed DES

«  Verification: Opacity, Diagnosability, Prognosability
«  Synthesis

- Supervisory Control Strategies: a uniform approach & non-blockingness

- Sensor Activation Strategies: centralized/decentralized solutions

- Two Applications: LBS and EPS /

Ill
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Future Works

/ Summary \

Recent Advances on the verification and synthesis of partially-observed DES

«  Verification: Opacity, Diagnosability, Prognosability
«  Synthesis
- Supervisory Control Strategies: a uniform approach & non-blockingness

- Sensor Activation Strategies: centralized/decentralized solutions

K Two Applications: LBS and EPS /
- )
\

Future Directions
More Properties: Temporal Logic, LTL, CTL*..., (Bi)Simulation
More Models: Petri nets, Stochastic DES (Markov chains)

More Applications to Cyber-Physical Systems: Iﬁgﬁl
SCADA systems (PLC), Intelligent transportation systems, Cyber-security @
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