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5. Intrinsic Geometry

Intrinsic Geometry deals with geometry that can be deduced using just
measurements on the surface, such as the angle between two vectors, the
length of a vector, the length of a curve and the area of a region. Since
there are many ways to measure length on a surface besides using the
Pythagorean Theorem as in Euclidean geometry, this leads to many
Non-Euclidean geometries.

Using additional information coming from how a surface sits in space is
called Extrinsic Geometry. For example a piece of paper may be spread
out flat or rolled up in three space. Both have the same intrinsic
properties, but differ how they’re embedded.



6. Riemannian Metric.

Let us assume our surface is described by coordinates in an open set
(u, v) ∈ Ω ⊂ R2. At each point (u, v) ∈ Ω we are given an inner product
which measures vectors at that point, the Riemannian Metric,

ds2 = 〈•, •〉 = E (u, v) du2 + 2F (u, v) du dv + G (u, v) dv2

The matrix of functions

(
E F
F G

)
is assumed to be positive definite

quadratic form.

For example if we are given vector fields (a, b, c , d depend on (x , y))

V = a
d

du
+ b

d

dv
, W = c

d

du
+ d

d

dv

then their inner product at (u, v) is

〈V ,W 〉 = Eac + F (ad + bc) + Gbd



7. Length and Angle

Thus for

V = a
d

du
+ b

d

dv
, W = c

d

du
+ d

d

dv

the length is

‖V ‖ =
√
Ea2 + 2Fab + Gb2

and the cosine of the angle α between nonzero V and W is the usual

cosα =
〈V ,W 〉
‖V ‖ ‖W ‖

.



8. One Forms

It is convenient to express calculus using differential forms. A one-form
can be integrated along a curve in Ω. It is written

θ = p du + q dv

where p and q are functions on Ω. One-forms are dual to vector fields:
one-forms may be evaluated on vector fields to yield a function. If

V = a
d

du
= b

d

dv

then
θ(v) = ap + bq.

If
γ : [a, b]→ Ω

is a piecewise C1 curve, γ(t) = (u(t), v(t)), then the usual line integral is∫
γ
θ =

∫ b

a

{
p[u(t), v(t)] u′(t) + q[u(t), v(t)] v ′(t)

}
dt



9. Green’s Theorem

The exterior derivative of the one-form θ = p du + q dv is the two-form

d θ =

{
∂q

∂u
− ∂p

∂v

}
du ∧ dv

For a piecewise C1 closed curve ∂D bounding a simply connected region
D ⊂ Ω, Green’s Theorem (Stokes’ Theorem) reads∫

∂D
θ =

∫
D

d θ.

or more familiarly∫
∂D

p du + q dv =

∫
D

{
∂q

∂u
− ∂p

∂v

}
du dv



10. Wedge Product

A two-form may be produced by taking the wedge-product of two
one-forms. If

θ = p du + q dv , η = r du + s dv

then
θ ∧ η = {ps − qr} du ∧ dv .

Wedge is skew symmetric

θ ∧ η = −η ∧ θ.



11. Metric Yields an Orthonormal Co-frame

We analyze a Riemannian Surface which is given locally by a open set
and Riemannian metric (Ω, ds2). We may find vector fields V and W on
Ω which are independent at all points, e.g., V = d/du, W = d/dv . By
applying the Gram-Schmidt Procedure, we may reduce these to
ds2-orthonormal vector fields e1 and e2 on Ω. The dual one forms θi are
completely defined by the equations for i , j = 1, 2,

θi (ej) = δi j =

{
1, if i = j ;

0, if i 6= j .

Then the metric may be expressed as a sum of squares of these one-forms

ds2 = (θ1)2 + (θ2)2,

which amounts to the statement that a positive definite quadratic form is
the sum of squares of two linear forms. If the metric can be so
decomposed, then the one forms, and their corresponding dual vector
fields are ds2 orthonormal.



12. Sphere Example

Consider a neighborhood of the equator of the standard unit sphere
S2 ⊂ R3 given as the solution x2 + y2 + z2 = 1. We shall consider the
intrinsic metric given in latitude-longitude coordinates by pulling back the
R3 metric. Thus (u, v) ∈ (−π, π)× (−π/2, π/2) = Ω and X : Ω→ R3.



13. Sphere Example

X =

cos u cos v
sin u cos v

sin v

 , Xu =

− sin u cos v
cos u cos v

0

 , Xv =

− cos u sin v
− sin u sin v

cos v


so

E = Xu • Xu = cos2 v , F = Xu • Xv = 0, G = Xv • Xv = 1.

The metric may be decomposed into

θ1 = cos v du, θ2 = dv ,

ds2 = cos2 v du2 + dv2 = (θ1)2 + (θ2)2

Incidentally, e1 = sec v d
du , e2 = d

dv .



14. Connection Form

How does the frame field change from point to point? It depends on
one-form ω1

2, called the connection form. The connection form is
uniquely determined by the equations

d θ1 = −θ2 ∧ ω1
2, d θ2 = θ1 ∧ ω1

2

For convenience we write ω2
1 = −ω1

2 and ω1
1 = ω2

2 = 0.
Then the covariant derivative or directional derivative of the frame fields
are determined by

∇eiej =
2∑

k=1

ωj
k(ei ) ek

which extends to general vector fields V =
∑

v `e`, W =
∑

wmem by
linearity and Leibnitz formula

∇VW =
2∑
`=1

v `
2∑

m=1

[
(e`w

m) em + wm
2∑

k=1

ωk
m(e`)ek

]
where, as usual for a vector field Z = a d

dx + b d
dy and function f ,

Zf = afx + bfy .



15. Connection form in sphere

In the latitude/longitude coordinates, θ1 = cos v du, θ2 = dv so,
evidently ω1

2 = sin v du since

− sin v dv ∧ du = d θ1 = −θ2 ∧ ω1
2 = −dv ∧ (sin v du)

0 = d θ2 = θ1 ∧ ω1
2 = (cos v du) ∧ (sin v du)

It follows that

∇e1e1 = ω1
2(e1) e2 = sin v du

(
sec v

d

du

)
d

dv
= tan v

d

dv

∇e1e2 = ω2
1(e1) e1 = − sin v du

(
sec v

d

du

)
sec v

d

du
= − sec v tan v

d

dv

∇e2e1 = ω1
2(e2) e2 = sin v du

(
d

dv

)
d

dv
= 0

∇e2e2 = ω2
1(e2) e1 = − sin v du

(
d

dv

)
sec v

d

du
= 0.



16. Geodesic Curvature

The covariant derivative of ej measures the rate at which the ej vector
field turns as we move in the ei direction. Thus if γ(s) is a unit speed
curve in Ω then the geodesic curvature is the rate of turning of the
tangent vector γ′ in a perpendicular (γ′)⊥ direction

κg = 〈∇γ′γ′, (γ′)⊥〉

The geodesic curvature tells how much the steering wheel is turned from
center as you drive along an surface embedded in three space. A curve
that does not turn, that is, whose direction stays forward as it moves
along the curve is called a geodesic or auto-parallel curve. For example, if
you drive on a surface and keep the wheel centered, your car will follow a
geodesic along the surface. Similarly, Scotch Tape, which cannot turn
sideways, follows a geodesic as it is spread along a surface.



17. Geodesics on the sphere

Using the latitude/longitude coordinates, we may consider first the
longitude curves γ(t) = (u0, t), where u0 is constant. γ′ = d

dv = e2 so
(γ′)⊥ = e1. The longitude curves are geodesics because

∇γ′γ′ = ∇e2e2 = 0

On the other hand, the geodesic curvature of the latitude curves
γ(t) = (t, v0) have

γ′(t) =
d

du
= sin v0 e1.

Scaling to unit speed gives tangent γ′

‖γ1‖ = e1 so that the geodesic
curvature is

κg = 〈∇e1e1, e2〉 = 〈sinv0 e2, e2〉 = sin v0

Thus longitude lines above the equator are turning toward the north pole
whereas the equator v0 = 0 is a geodesic.



18. Gaussian Curvature

The first differentiation of the metric frame gives the connection form,
which tells how to differentiate vector fields. The second differentiation is
called the Gaussian Curvature, which is a function defined over Ω.
The Gaussian Curvature K is defined by the equation

dω1
2 = −K θ1 ∧ θ2

1 In case of the plane in rectangular coordinates, ω1
2 = 0 so that

K = 0 everywhere in Ω.

2 In the case of the unit sphere in latitude/longitude coordinates,

dω1
2 = d(sin v du) = cos v dv ∧ du = −(cos v du)∧ (dv) = −θ1 ∧ θ2

so K (x) = 1 at all points of Ω.



19. Gaussian Curvature is an Intrinsic Quantity.

Theorem (Gauss’s Theorema Egregium, 1826)

Gauss Curvature is an invariant of the Riemannan metric on Ω.

No matter which choices of coordinates or frame fields are used to
compute it, the Gaussian Curvature is the same function.
Let us suppose that ẽ1 and ẽ2 is another orthonormal frame field
computed in another coordinate system (ũ, ṽ). Pulling back these
orthonormal vectors to the original coordinate system yields another
orthogonal frame. Thus there is a function ϕ(u, v) such that

ẽi =
2∑

j=1

ai
j ej where (ai

j) =

(
cosϕ sinϕ
− sinϕ cosϕ

)

Noting that A = (ai
j) is skew symmetric, its inverse is its transpose

B = A−1 = AT . Hence the dual coframe for the tilde frame is given by

θ̃i =
∑

θk bk
i =

∑
θk ai

k



20. Gaussian Curvature is an Intrinsic Quantity. -

Computing the connection form for the tilde frame,

d θ̃i =
2∑

k=1

{
d θk ai

k + θk ∧ d ai
k
}

=
2∑
`=1

θ` ∧

{
2∑

k=1

ω`
k ai

k + d ai
`

}

=
2∑

m=1

θ̃m ∧
2∑
`=1

{
2∑

k=1

am
`ω`

k ai
k + am

` d ai
`

}

Thus I claim

ω̃m
i =

2∑
`=1

{
2∑

k=1

am
`ω`

k ai
k + am

` d ai
`

}
(1)

This follows if we can show ω̃m
i is skew.



21. Gaussian Curvature is an Intrinsic Quantity. - -

By the skewness of ωk
` we have

2∑
`=1

2∑
k=1

am
`ω`

k ai
k = −

2∑
`=1

2∑
k=1

am
`ωk

` ai
k = −

2∑
k=1

2∑
`=1

ai
kωk

` am
`.

so the first term of (1) is skew. By differentiating

δ`
m =

2∑
j=1

a`
jbj

m =
2∑

j=1

a`
jam

j (2)

we find

0 =
2∑

j=1

am
j d a`

j +
2∑

j=1

a`
j d am

j

so the second term of (1) is skew also.



22. Gaussian Curvature is an Intrinsic Quantity. - - -

Now we compute the tilde Gaussian Curvature.

d ω̃m
i =

2∑
`=1

2∑
k=1

(
ai

k d am
` ∧ ω`k + am

` d ai
k ∧ ω`k + am

`ai
k dω1

2
)

+
2∑
`=1

d am
` ∧ d ai

`

d ω̃1
2 =

(
a2

2 d a1
1 − a1

2 d a2
1 + a2

1 d a1
2 − a1

1 d a2
2
)
ω1

2

−
(
a1

1a2
2 − a1

2a2
1
)
K θ1 ∧ θ2 +

2∑
`=1

d a1
` ∧ d a2

`

= −K θ̃1 ∧ θ̃2

so K = K̃ . This is because the first term cancels;



23. Gaussian Curvature is an Intrinsic Quantity. - - - -

the second equals

−
(
a1

1a2
2 − a1

2a2
1
)
K θ1 ∧ θ2 = −K

(
a1

1θ1 + a1
2θ2
)
∧
(
a2

1θ1 + a2
2θ2
)

= −K θ̃1 ∧ θ̃2.

Using δp
q =

∑2
j=1 bp

jaj
p =

∑2
j=1 aj

paj
q, the third equals

2∑
`=1

d a1
` ∧ d a2

` =
2∑

p=1

2∑
q=1

δp
q d a1

p ∧ d a2
q

=
2∑

j=1

2∑
p=1

2∑
q=1

aj
paj

q d a1
p ∧ d a2

q

=
2∑

j=1

 2∑
p=1

aj
p d a1

p

 ∧
 2∑

q=1

aj
q d a2

q

 = 0

because each parenthesis is skew the first is zero if j = 1 and the second
is zero if j = 2.



24. Local Gauss Bonne Formula

Theorem (Gauss Bonnet)

Let D ⊂ Ω be a region bounded by a continuously differentiable simple
closed curve ∂D. Then∫

D K dA +
∫
∂D κg ds = 2π

where K is the Gaussian Curvature function, dA is the area element and
κg is the geodesic curvature of the boundary curve ∂D.

For example, in the flat plane K = 0, then the integral of geodesic
curvature is just the total angle around the closed curve thus∫

D K dA +
∫
∂D κg ds = 0 + 2π.

For example, on the unit sphere S2, let D be the upper hemisphere.
Then since K = 1 on D and that ∂D is a great circle thus geodesic
κg = 0, the left side of the equation is∫

D K dA +
∫
∂D κg ds = A(D) + 0 = 2π.



25. Proof of Gauss Bonnet Theorem

The area form is dA = θ1 ∧ θ2. Applying Green’s Theorem to the
connection form, we find∫

D
K dA = −

∫
D

dω1
2 = −

∫
∂D
ω1

2.

Let γ(s) be a unit speed positively oriented parameterization of the curve
∂D (D is to the left as you follow ∂D in the V direction). The unit
tangent vector is

γ′ = V = cosϕ e1 + sinϕ e2

where ϕ(s) is the angle between e1 and V = γ′. Let

V⊥ = − sinϕ e1 + cosϕ e2



26. Proof of Gauss Bonnet Theorem -

Computing the covariant derivative of V along ∂D,

∇VV = ∇V (cosϕ e1 + sinϕ e2)

= (− sinϕ e1 + cosϕ e2)
dϕ

ds
+

+ cosϕ (cosϕ∇e1 + sinϕ∇e2) e1 + sinϕ (cosϕ∇e1 + sinϕ∇e2) e2

=
dϕ

ds
V⊥ + cos2 ϕ∇e1e1 + cosϕ sinϕ∇e2e1

+ sinϕ cosϕ∇e1e2 + sin2 ϕ∇e2e2

=
dϕ

ds
V⊥ + cos2 ϕω1

2(e1)e2 + cosϕ sinϕω1
2(e2)e2

+ sinϕ cosϕω2
1(e1)e1 + sin2 ϕω2

1(e2)e1

=
dϕ

ds
V⊥ + cosϕω1

2(V )e2 + sinϕω2
1(V )e1

=

(
dϕ

ds
+ ω1

2(V )

)
V⊥



27. Proof of Gauss Bonnet Theorem - -

Then the geodesic curvature of ∂D is given by

κg = 〈∇VV ,V
⊥〉

= dϕ
ds + ω1

2(V )

Hence the integral equals∫
D K dA = −

∫
∂D ω1

2

= −
∫ L
0 ω1

2(V ) ds

= −
∫ L
0

(
κg − dϕ

ds

)
ds

= −
∫ L
0 κg ds + 2π

since the total change in angle relative to the nonvanishing vector field
e1 in Ω going once around in the positive direction equals
ϕ(L)− ϕ(0) = 2π.



28. Local Gauss Bonnet for Domains with Corners

Theorem (Gauss Bonnet)

Let D ⊂ Ω be a region bounded by a piecewise C1 simple closed curve
γ = ∂D with corners at the points γ(si ), i = 1, . . . , n. Then∫

D K dA +
∫
∂D κg ds +

∑n
i=1 αi = 2π

where K, dA, κg are the Gaussian Curvature, area form and geodesic
curvature, as before, and αi is the exterior angle, the angle from γ′(si−)
to γ′(si+) at the corner γ(si ).



29. Plane Triangle Example

For example, if D is a triangle in the flat plane, and βi = π − αi are the
interior angles at the vertices, then the left side is just the total angle
around the triangle

2π =
∫
D K dA +

∫
∂D κg ds +

∑3
i=1 αi = 0 + 0 + α1 + α2 + α3

= 3π − β1 − β2 − β3,

In other words the sum of the interior angles β1 + β2 + β3 = π.



30. Sphere Example

Let D be the region of the unit
sphere in the first orthant with right
angled corners at (1, 0, 0), (0, 1, 0)
and (0, 0, 1)

The sides are great circles which are
geodesics, so κg = 0. The Gaussian
Curvature is K = 1. Thus the Local
Gauss Bonnet formula with corners
yields∫

D
K dA +

∫
∂D
κg ds +

n∑
i=1

αi

= A(D) + 0 +
3π

2

=
4π

8
+

3π

2
= 2π



31. Proof of Local Gauss Bonnet with Corners

The idea is to approximate γ (blue curve) with kinks at the corners γ(si ),
i = 1, . . . , n with a nearby curve γδ (red curve) that equals γ away from
the kinks but smoothly rounds out the corners. Applying the Local Gauss
Bonnet to γδ and taking the limit δ → 0 gives the result.



32. Proof of Local Gauss Bonnet with Corners

To give more detail, suppose that the closed ε balls centered at the
corners are all contained in Ω. Then since the union K = ∪ni=1B(γ(si ), ε)
is a compact set, there is a constant c <∞ such that∣∣ω1

2(x)[V ]
∣∣ ≤ c for all x ∈ K and unit vector fields V

It follows that near the kinks, the integral of the approximating curve∣∣∣∣∣ si+δ∫si−δ κg ds − ϕ(si + δ) + ϕ(si − δ)

∣∣∣∣∣
=

∣∣∣∣∣ si+δ∫si−δ
(
κg − dϕ

ds

)
ds

∣∣∣∣∣ =
∣∣∣∫γδ[si−δ,si+δ] ω1

2
∣∣∣ ≤ 2c L(γδ[si − δ, si + δ])

which tends to zero as δ → 0. Since ϕ(si + δ)− ϕ(si − δ)→ αi , it
follows that

2π = lim
δ→0

∫
Dδ

K dA +
∫
γδ
κg ds =

∫
D K dA +

∫
∂D κg ds +

∑n
i=1 αi .



33. Geodesic Triangles

A geodesic triangle T is the region bounded by three geodesics that meet
in three points. By rewriting the Local Gauss Bonnet Theorem, the
integral curvature may be regarded as the correction to π of the sum of
interior angles.

β1 + β2 + β3 = π +
∫
D K dA

Gauss published this theorem in case K is constant.



34. Gauss’s Theorema Elegantissimum

Karl Friedrich Gauss (1777-1855)

Gauss, who worked at Göttingen all
of his life, made huge contributions
to algebra, number theory, complex
functions, geodesy, magnetism and
optics. He wrote his opus on
geometry Disquitiones Generales
circa Superficias Curvas fairly late in
his career in 1827. There he
commented about his theorem
about triangles

“this theorem, if we
mistake not, ought to
counted among the most
elegant in the theory of
curved surfaces.”



35. Riemannian Surfaces

The sphere is an example of a surface that cannot be covered by one
coordinate chart. The idea is to cover the surface by many charts in
which computations are consistent chart to chart.
A Riemannian surface or Riemannian manifold of dimension two, S , is a
topological space with a family of maps Xα : Ωα → S such that Ωα ⊂ R2

is an open set, and a family of Riemannian metrics gα(x)〈•, •〉α on each
Ωα such that

S = ∪αUα
For each pair α, β with Xα(Ωα) ∩ Xβ(Ωβ) = W 6= ∅ we have
X−1α (W ), X−1β (W ) are open sets in R2 and X−1α ◦ Xβ and X−1β ◦ Xα
are differentiable maps. If these maps also have positive Jacobian
determinant, we say the surface is orientable.

Also metrics are consistently defined: for all α, β as above, vector
fields U,V on X−1α (W ) ⊂ Ωα, if y = X−1β ◦ Xα(x),

gβ(y)〈dx (X−1β ◦ Xα)(U), dx (X−1β ◦ Xα)(V )〉 = gα(x)〈U,V 〉

The pair (Ωα,Xα) is called a local parameterization or coordinate system.



36. Global Gauss Bonnet Theorem

We would like to extend the formula to closed surfaces such as the torus
and the sphere.
A polygonal decomposition P of a closed surface S is a finite collection
of one-to-one coordinate charts Xα : Ωα → S and corresponding regions
Dα ⊂ Ωα bounded by piecewise smooth curves, such that their images
Xα(Dα) cover S in such a way that if any two overlap, they do so in
either a single common vertex or a single common edge. Every compact
surface S has a polygonal decomposition.



37. Euler Characteristic

Theorem (Euler Characteristic of S)

If P is a polygonal decomposition of the compact surface S and v, e and
f are the numbers of vertices, edges and faces in P, then the the integer

χ(S) = v − e + f

is the same for all polygonal decompositions of S.
χ(S) is called the Euler Characteristic of S.



38. Adding Handle Changes Euler Characteristic

Theorem

Adding a handle H to a compact surface M decreases the Euler
Characteristic by two χ(M + H) = χ(M)− 2.

In the diagram, a four sided face is removed from both M and H and the
surfaces are glued along the four edges. Thus M + H has four fewer
vertices, four fewer edges and two fewer faces than M ∪ H.



39. Euler Characteristic is a Topological Invariant

Theorem

Diffeomorphic surfaces have the same Euler Characteristic.

The polygonal decomposition of one surface is mapped to a polygonal
decomposition of the second with the same number of vertices, edges
and faces. In fact, Euler Characteristic is preserved by homeomorphism,
so is a topological invariant.

Suppose we start with a sphere Σ and successively add h handles
(h = 0, 1, 2, . . .) to obtain a new surface Σ(h). Then

χ(Σ(h)) = χ(Σ)− 2h = 2− 2h.

Theorem

Every compact orientable surface is diffeomorphic to some Σ(h).



40. Global Gauss Bonnet Theorem

Theorem (Gauss Bonnet Theorem)

Let S be a compact, oreintable, Riemannian surface. Then its total
curvature equals 2π times its Euler Characteristic.∫

S K dA = 2πχ(S)

The Gauss Bonnet Theorem has many deep corollaries.

Corollary

Suppose that S is a compact oriented Riemannian surface whose Gauss
Curvature is everywhere positive K (x) > 0 for all x ∈ S. Then S is
diffeomorphic to the standard sphere.

An oriented surface must be diffeomorphic to one of the Σ(h)’s.
However, the total curvature

0 < 1
2π

∫
S K dA = χ(S) = χ(Σ(h)) = 2− 2h

implies that h = 0 and S is diffeomorphic to the sphere Σ(0).



41. Bonnet’s Generalization

Pierre Ossian Bonnet (1819–1892)

Bonnet made many important
contributions to the differential
geometry of surfaces. He sharpened
and recognized the importance of
many of Gauss’s theorems

Bonnet published the local theorem
for variable curvature for domains
with corners in Journ. Ecole
Polytechnique 19 (1848).
This proof using Green’s Theorem
was noticed by Gaston Darboux in
1894.



42. Proof of Global Gauss Bonnet Theorem

Fix a polygonal decomposition of S = ∪fi=1Xi (Di ) which has v vertices, e
edges and f faces. Suppose that the polygon Di has ei edges and thus ei
vertices. Call the interior angles βi ,j . Then the Local Gauss Bonnet
Theorem applied to one polygon may be written∫

Di
K dA = 2π −

∑ei
j=1(π − βi ,j)−

∫
∂di

κg ds

Summing the integrals of curvature, and applying this on each polygon∫
S K dA =

∑f
i=1

∫
Di

K dA

=
∑f

i=1

{
2π −

∑ei
j=1(π − βi ,j)−

∫
∂di

κg ds
}

Each edge occurs exactly twice in the sum. Since S is positively oriented
then a shared edge between two neighboring polygons is integrated in
opposite directions in the two polygons, resulting in cancellation of the
all line integrals.



43. Proof of Global Gauss Bonnet Theorem

Since each edge occurs in exactly two faces

f∑
i=1

ei = 2e.

Because the surface is smooth at each vertex, the sum of interior angles
around each vertex is 2π. Also, there are v vertices so

f∑
i=1

ei∑
j=1

βi ,j = 2πv .

Inserting into the sum,∫
S
K dA = 2πf − 2πe + 2πv = 2πχ(S).

Note that the same argument may be applied to any region R ⊂ S which
has a polygonal decomposition. The line integrals on the boundary of R
and exterior angles don’t cancel yielding∫

R
K dA +

∫
∂R
κg ds +

∑
corners of ∂R

αi = 2πχ(R)



44. Poincaré Model of the Hyperbolic Plane

Here is the Poincaré Plane, a Riemannian surface whose Gaussian
curvature is K = −1. Let Ω = {(u, v) ∈ R2 : u2 + v2 < 1} be the unit
disk. Then the Poincaré metric is

ds2 =
4(du2 + dv2)

(1− u2 − v2)2
.

An orthonormal frame is

θ1 =
2 du

1− u2 − v2
, θ2 =

2 dv

1− u2 − v2
.

Differentating we find the connection form

d θ1 =
4v dv ∧ du

(1− u2 − v2)2
= θ2 ∧ ω2

1 =
2 dv

1− u2 − v2
∧ 2(v du − u dv)

1− u2 − v2

d θ2 =
4u du ∧ dv

(1− u2 − v2)2
= θ1 ∧ ω1

2 =
2 du

1− u2 − v2
∧ 2(u dv − v du)

1− u2 − v2



45. Poincaré Model -

Differentiating the connection form we find the curvature

dω1
2 = d

(
2(u dv − v du)

1− u2 − v2

)
=

4du ∧ dv

1− u2 − v2
+

2(u du + v dv) ∧ 2(u dv − v du)

(1− u2 − v2)2

=
4
(
1− u2 − v2

)
du ∧ dv + 4

(
u2 + v2

)
du ∧ dv

(1− u2 − v2)2

=
4 du ∧ dv

(1− u2 − v2)2
= θ1 ∧ θ2

thus K = −1.



46. Upper Halfspace Model of Hyperbolic Geometry

In the upper halfspace Ω = {(u, v) ∈ R2 : v > 0}, the metric is

ds2 =
du2 + dv2

v2
; θ1 =

du

v
; θ2 =

dv

v

so e1 = v
d

du
, e2 = v

d

dv
. Then

d θ1 = −dv ∧ du

v2
= θ2 ∧ ω2

1 =
dv

v
∧
(
−du

v

)
d θ2 = 0 = θ1 ∧ ω1

2 =
dv

v
∧
(
du

v

)
Thus ω1

2 =
du

v
= θ1. Also

dω1
2 = d θ1 = θ2 ∧ ω2

1 = −θ2 ∧ θ1 = θ1 ∧ θ2

so K = −1.
Let γ(s) = (u(s), v(s)) ∈ Ω be a geodesic. Then it satisfies the ODE

∇γ′γ′ = 0.



47. Geodesics in the Upper Half Space Model

Writing the tangent vector

γ′(s) = u′(s) d
du + v ′(s) d

dv = u′

v e1 + v ′

v e2

Thus using ω1
2 = θ1,

∇γ′γ′ = ∇γ′
(
u′

v e1 + v ′

v e2
)

=
(
u′

v

)′
e1 + u′

v ∇γ′e1 +
(
v ′

v

)′
e2 + v ′

v ∇γ′e2

=
(
u′

v

)′
e1 + u′

v

(
u′

v ∇e1e1 + v ′

v ∇e2e1
)

+
(
v ′

v

)′
e2 + v ′

v

(
u′

v ∇e1e2 + v ′

v ∇e2e2
)

=
(
u′

v

)′
e1 + (u′)2

v2 ω1
2(e1)e2 + u′v ′

v2 ω1
2(e2)e1

+
(
v ′

v

)′
e2 + u′v ′

v2 ω2
1(e1)e1 + (v ′)2

v2 ω2(e2)e1

=
(
u′

v

)′
e1 + (u′)2

v2 e2 +
(
v ′

v

)′
e2 − u′v ′

v2 e1



48. Geodesics of the Upper Half-plane Model

Grouping the equations by basis, the equation for a geodesic is(
u′

v

)′
− u′v ′

v2 = 0(
v ′

v

)′
+ (u′)2

v2 = 0

If u′ = 0 then the first equation says u′ = 0 for all s. Hence vertical
curves γ(s) = (u0, ae

bs) are geodesics.
The other geodesics may be written down explicitly. Indeed the curves

u(s) = k + a tanh[b(s − s0)], v(s) = a sech[b(s − s0)]

depend on four constants and satisfy the ODE. Checking,

u′ = ab sech2[b(s − s0)], v ′ = −ab tanh[b(s − s0)] sech[b(s − s0)],

u′

v
= b sech[b(s − s0)],

v ′

v
= −b tanh[b(s − s0)]



49. Geodesics of the Upper Half-plane Model -

Hence the ODE’s are stisfied.(
u′

v

)′
= b2 sech[b(s − s0)] tanh[b(s − s0)] = u′v ′

v2(
v ′

v

)′
= −b2 sech2[b(s − s0)] = − (u′)2

v2

When a > 0 and b 6= 0 then the curves

u(s) = k + a tanh[b(s − s0)], v(s) = a sech[b(s − s0)]

are semicircles of radius a centered on (k , 0) since

(u − k)2 + v2 = a2 tanh2[b(s − s0)] + a2 sech2[b(s − s0)] = a2.



50. Geodesics of the Upper Half-plane Model - -

Geodesics in the Upper Half-plane Model are semicircles centered on the
x-axis. The sum of the interior angles of triangle ABC is less than π.

We can see this is a Non-Euclidean geometry. It violates the parallel
postulate. Indeed, through the point P there are at least two geodesic
lines, M and N, that are parallel to the given line L not containing P.
(L and M are parallel because they do not intersect in the Upper
Half-plane.)



51. Corollary of the Gauss Bonnet Theorem

The hyperboloid of one sheet H is
the surface detrmined by

x2 + y2 = 1 + z2

Corollary

The only simple closed geodesic on
the hyperboloid of one sheet is the
equatorial circle z = 0.

We’ll show that the Gauss Curvature
is negative. Simple means that the
geodesic curve γ has no
self-intersections. Either γ meets
z = 0 or not. If not, then it either
winds around the hyperboloid or
not. If not then it encloses a domain
D ⊂ H on which the Local Gauss
Bonnet formula says

2π =
∫
D K dA +

∫
γ κg ds < 0 + 0

which is a contradiction.



52. Hyperboloid Application

Similarly, if γ loops araound H then there is an annular region U
bounded by γ and z = 0. Then, the corresponding global Gauss Bonnet
Theorem says

0 = 2πχ(U) =
∫
u K dA +

∫
γ κg ds < 0 + 0

which is also a contradiction.
Finally, if γ meets z = 0 then it must cross it transversally, otherwise the
curves agree. Then there must be at least two crossing points since γ
must recross to close up. Then consider the geodesic bigon B bounded
by segments of γ and z = 0 between two consecutive crossing points.
Since the γ part of ∂B is entirely above or below z = 0, we must have
the exterior angles 0 < αi < π at the two corners. The Local Gauss
Bonnet Theorem with corners says

2π =
∫
B K dA +

∫
∂B κg ds + α1 + α2 < 0 + 0 + π + π

which is also a contradiction.



53. Hyperboloid Application -

It remains to show K < 0 for the hyperboloid. Let f (v) =
√

1 + v2, then
the parameterixation of H may be given by

X =

f (v) cos u
f (v) sin u

v

 , Xu =

−f (v) sin u
f (v) cos u

0

 , Xv =

f ′(v) cos u
f ′(v) sin u

1

 ,

so

E = Xu•Xu = f (v)2, F = Xu•Xv = 0, G = Xv •Xv = 1+f ′(v)2.

The metric may be decomposed into

θ1 = f (v) du, θ2 =
√

1 + f ′(v)2 dv

ds2 = f (v)2 du2 + (1 + f ′(v)2) dv2 = (θ1)2 + (θ2)2

Incidentally, e1 = 1
f (v)

d
du , e2 = 1√

1+f ′(v)2
d
dv .



54. Hyperboloid Application - -

Computing the connection form

f ′(v) dv ∧ du = d θ1 = θ2 ∧ ω2
1 =

√
1 + f ′(v)2 dv ∧

(
f ′(v) du√
1 + f ′(v)2

)

0 = d θ2 = θ1 ∧ ω1
2 = (f (v) du) ∧

(
− f ′(v) du√

1 + f ′(v)2

)

It follows that

dω2
1 = d

(
f ′(v) du√
1 + f ′(v)2

)
=

f ′′(v) dv ∧ du[
1 + f ′(v)2

]3/2 = K (x) θ1 ∧ θ2

so that

K = − f ′′(v)

f (v)
[
1 + f ′(v)2

]2 .
In case f (v) =

√
1 + v2 we have f ′′(v) = (1 + v2)−3/2 so K < 0.



55. Geodesics on Positively Curved Surfaces

Theorem

Let S be a compact, positively oriented surface with positive gaussian
Curvature. Then any two simple closed geodesics intersect.

We have already noticed that S is diffeomorphic to the sphere. Suppose
two simple closed geodesics gamma1 and γ2 don’t intersect. Then the
set between the two curves is a region that has both curves as boundary
∂R = γ1 ∪ γ2 and that has the topology of a cylinder so χ(R) = 0. The
Gauss Bonnet Theorem applies to this region to yield

0 = 2πχ(R) =

∫
R
K dA +

∫
∂R
κg ds > 0 + 0

which is a contradiction.



Thanks!




