ANALYSIS OF 2D TRUSSES BY STIFFNESS METHOD

Procedure for Truss Analysis

- Step 1: Notation
- Establish the x, y global coordinate system. You may take any joint as an origin
- Identify each joint and element numerically and specify near and far ends of each member.
- Specify the two code numbers at each joint, using the lowest numbers to identify degree of freedoms, followed by the highest degree of freedom to identify constrains.
- From the problem establish D_{k} and Q_{k}.

- Step 2: Structure Stiffness Matrix

- For each member of the truss determine λ_{x} and λ_{y} and the member stiffness matrix using the following general matrix

$$
\mathbf{k}=\frac{A E}{L}\left[\begin{array}{cccc}
\lambda_{x} & \lambda_{y} & F_{x} & F_{y} \\
\lambda_{x}^{2} & \lambda_{x} \lambda_{y} & -\lambda_{x}^{2} & -\lambda_{x} \lambda_{y} \\
\lambda_{x} \lambda_{y} & \lambda_{y}^{2} & -\lambda_{x} \lambda_{y} & -\lambda_{y}^{2} \\
-\lambda_{x}^{2} & -\lambda_{x} \lambda_{y} & \lambda_{x}^{2} & \lambda_{x} \lambda_{y} \\
\lambda_{x} \lambda_{y} & -\lambda_{y}^{2} & \lambda_{x} \lambda_{y} & \lambda_{y}^{2}
\end{array}\right] N_{y}, F_{y}
$$

- Assemble these matrices to form the stiffness matrix for the entire truss (as explained earlier on board).
- Note: The member and structure stiffness matrices should be symmetric

$$
\begin{aligned}
& \lambda_{x}=\underline{x}_{E}-x_{N} \\
& \lambda_{y} \\
& \lambda_{y}=\underline{y}_{E} \frac{-y_{N}}{L}
\end{aligned}
$$

- Step 3: Displacement and Loads
- Partition the structure stiffness matrix for easier calculations
- Determine the unknown joint displacement D_{x}, the support reactions Q_{x}.
- Using all the unknowns the member forces in each truss element using basic rules of truss analysis

Solved Problem 1:

Determine the horizontal displacement of joint (1) and the force in member 2 .
Take $A=0.75 \mathrm{in}^{2}$ and $E=29 \times 10^{3} \mathrm{ksi}$.

General stiffness matrix

$$
\mathrm{k}=\frac{A E}{L}\left[\begin{array}{cccc}
\lambda_{x} & N_{y}^{y} & F_{x} & F_{y} \\
\lambda_{x}^{2} & \lambda_{x} \lambda_{y} & -\lambda_{x}^{2} & -\lambda_{x} \lambda_{y} \\
\lambda_{x} \lambda_{y} & \lambda_{y}^{2} & -\lambda_{x} \lambda_{y} & -\lambda_{y}^{2} \\
-\lambda_{x}^{2} & -\lambda_{x} \lambda_{y} & \lambda_{x}^{2} & \lambda_{x} \lambda_{y} \lambda_{y} \\
\lambda_{x} \lambda_{y} & -\lambda_{y}^{y} & \lambda_{x} \lambda_{y} & \lambda_{y}^{2} \\
\lambda_{y} \\
N_{y} \\
F_{x} \\
F_{y}
\end{array}\right.
$$

- Member 1

$$
\begin{aligned}
& \lambda_{x}=\frac{0-4}{\sqrt{32}}=-0.707 \mathrm{I} \\
& \lambda_{y}=\frac{0-4}{\sqrt{32}}=-0.7071
\end{aligned}
$$

$$
\mathbf{k}_{1}=A E\left[\begin{array}{cccc}
1 & 2 & 3 & 4 \\
0.08839 & 0.08839 & -0.08839 & -0.08839 \\
0.08839 & 0.08839 & -0.08839 & -0.08839 \\
-0.08839 & -0.08839 & 0.08839 & 0.08839 \\
-0.08839 & -0.08839 & 0.08839 & 0.08839
\end{array}\right]
$$

- Member 2

$$
\begin{aligned}
& \lambda_{x}=\frac{4-4}{4}=0 \\
& \lambda_{y}=\frac{0-4}{4}=-1
\end{aligned}
$$

$$
\mathbf{k}_{\mathbf{z}}=A E\left[\begin{array}{cccc}
1 & 2 & 5 & 6 \\
0 & 0 & 0 & 0 \\
0 & 0.25 & 0 & -0.25 \\
0 & 0 & 0 & 0 \\
0 & -0.25 & 0 & 0.25
\end{array}\right]
$$

$$
\mathbf{k}=-\Lambda \underline{L}\left[\begin{array}{cccc}
\lambda_{x} & \lambda_{y}^{r} & F_{x} & F_{y} \\
\lambda_{x}^{2} & \lambda_{x} \lambda_{y} & -\lambda_{x}^{2} & -\lambda_{x} \lambda_{y} \\
\lambda_{x} \lambda_{y} & \lambda_{y}^{2} & -\lambda_{x} \lambda_{y} & -\lambda_{y}^{2} \\
-\lambda_{x}^{2} & -\lambda_{x} \lambda_{y} & \lambda_{x}^{2} & \lambda_{x} \lambda_{y} \\
\lambda_{x} \lambda_{y} & -\lambda_{y}^{2} & \lambda_{x} \lambda_{y} & \lambda_{y}^{2}
\end{array}\right] N_{x}
$$

- Member 3

$$
\begin{aligned}
& \lambda_{x}=0.6 \\
& \lambda_{3}=-0.8
\end{aligned}
$$

$$
\mathbf{k}_{3}=A E\left[\begin{array}{cccc}
0.072 & -0.096 & -0.072 & 0.096 \\
-0.096 & 0.128 & 0.096 & -0.128 \\
-0.072 & 0.096 & 0.072 & -0.096 \\
0.096 & -0.128 & -0.096 & 0.128
\end{array}\right]
$$

- Structural Stiffness Matrix:
$\mathbf{K}=\mathbf{k}_{1}+\mathbf{k}_{2}+\mathbf{k}_{3}$
$\mathbf{K}=\Lambda E\left[\begin{array}{cccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 0.16039 & -0.00761 & -0.08839 & -0.08839 & 0 & 0 & -0.072 & 0.096 \\ -0.00761 & 0.46639 & -0.08839 & -0.08839 & 0 & -0.25 & 0.096 & -0.128 \\ -0.08839 & -0.08839 & 0.08839 & 0.08839 & 0 & 0 & 0 & 0 \\ -0.08839 & -0.08839 & 0.08839 & 0.08839 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & -0.25 & 0 & 0 & 0 & 0.25 & 0 & 0 \\ -0.072 & 0.096 & 0 & 0 & 0 & 0 & 0.072 & -0.096 \\ 0.096 & -0.128 & 0 & 0 & 0 & 0 & -0.096 & 0.128\end{array}\right]$
- The Equation: $\quad \mathbf{Q}=\mathrm{K} \mathbf{D}$
$\left[\begin{array}{c}-500 \\ 0 \\ Q_{3} \\ \Omega_{4} \\ Q_{5} \\ Q_{6} \\ Q_{7} \\ Q_{\mathbf{3}}\end{array}\right]=\left[\begin{array}{cccccccc}0.16039 & -0.00761 & -0.08839 & -0.08839 & 0 & 0 & -0.072 & 0.096 \\ -0.00761 & 0.46639 & -0.08839 & -0.08839 & 0 & -0.25 & 0.096 & -0.128 \\ -0.08839 & -0.08839 & 0.08839 & 0.08839 & 0 & 0 & 0 & 0 \\ -0.08839 & -0.08839 & 0.08839 & 0.08839 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & -0.25 & 0 & 0 & 0 & 0.25 & 0 & 0 \\ -0.072 & 0.096 & 0 & 0 & 0 & 0 & 0.072 & -0.096 \\ 0.096 & -0.128 & 0 & 0 & 0 & 0 & -0.096 & 0.128\end{array}\right]\left[\begin{array}{c}D_{1} \\ D_{2} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0\end{array}\right]$
partition matrix

$$
\begin{align*}
& {\left[\begin{array}{c}
-500 \\
0
\end{array}\right]=A E\left[\begin{array}{cc}
0.16039 & -0.00761 \\
-0.00761 & 0.46639
\end{array}\right]\left[\begin{array}{l}
D_{1} \\
D_{2}
\end{array}\right]} \\
& -500=A E\left(0.16039 D_{1}-0.00761 D_{2}\right) \tag{I}\\
& 0=A E\left(-0.00761 D_{1}+0.46639 D_{2}\right) \tag{2}
\end{align*}
$$

Solving Eq. (1) and (2) yields:

$$
\begin{aligned}
& D_{1}=\frac{-3119.82}{A E}=\frac{-3119.85(12 \mathrm{in} . / \mathrm{ft})}{0.75 \mathrm{in}^{2}(29)\left(10^{6}\right) \mathrm{lb} / \mathrm{in}^{2}}=-0.00172 \mathrm{in} . \\
& D_{2}=\frac{-50.917}{A E}
\end{aligned}
$$

- Find out the values of $Q_{3}, Q_{4}, Q_{5}, Q_{6}, Q_{7}$ and Q_{8}.
- Then find out forces in member no. 2 using method of joints.

Practice Problems No. 1

- Determine the unknown support reactions in the following truss. Take $A=0.5 \mathrm{in}^{2}$ and $E=29 \times 10^{3} \mathrm{ksi}$ for each member. All supports are hinge supports

SOLUTION HINT

$$
\left[\begin{array}{c}
0 \\
-4 \\
Q_{3} \\
Q_{4} \\
Q_{5} \\
Q_{6} \\
Q_{7} \\
Q_{4}
\end{array}\right]=\left[\begin{array}{cccccccc}
510.72 & 0 & -201.39 & 0 & -154.67 & -116 & -154.67 & 116 \\
0 & 174 & 0 & 0 & -116 & -87.0 & 116 & -87.0 \\
-201.39 & 0 & 201.39 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
-154.67 & -116 & 0 & 0 & 154.67 & 116 & 0 & 0 \\
-116 & -87.0 & 0 & 0 & 116 & 87.0 & 0 & 0 \\
-154.67 & 116 & 0 & 0 & 0 & 0 & 154.67 & -116 \\
116 & -87.0 & 0 & 0 & 0 & 0 & -116 & 87.0
\end{array}\right]\left[\begin{array}{c}
D_{1} \\
D_{2} \\
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

Practice Problems No. 2

- Determine the unknown support reactions in the following truss.
- Take $A=0.005 m^{2}$ and $E=29$ Gpa for each member.

SOLUTION HINT

$$
\left[\begin{array}{c}
0 \\
0 \\
0 \\
-10 \\
0 \\
Q_{6} \\
Q_{1} \\
Q_{4}
\end{array}\right]=A E\left[\begin{array}{cccccccc}
0.378 & 0.096 & 0 & 0 & -0.096 & -0.128 & -0.25 & 0 \\
0.096 & 0.4053 & 0 & -0.3333 & -0.072 & -0.096 & 0 & 0 \\
0 & 0 & 0.378 & -0.096 & 0 & -0.25 & -0.128 & 0.096 \\
0 & -0.3333 & -0.096 & 0.4053 & 0 & 0 & 0.096 & -0.072 \\
-0.096 & -0.072 & 0 & 0 & 0.4053 & 0.096 & 0 & -0.3333 \\
-0.128 & -0.096 & -0.25 & 0 & 0.096 & 0.378 & 0 & 0 \\
-0.25 & 0 & -0.128 & 0.096 & 0 & 0 & 0.378 & -0.096 \\
0 & 0 & 0.096 & -0.072 & -0.3333 & 0 & -0.096 & 0.4053
\end{array}\right]\left[\begin{array}{c}
D_{1} \\
D_{2} \\
D_{3} \\
D_{4} \\
D_{5} \\
0 \\
0 \\
0
\end{array}\right]
$$

Practice Problems No. 3

- Determine the unknown support reactions in the following truss.
- Take AE as constant

SOLUTION HINT

$$
\left[\begin{array}{l}
4 \\
0 \\
0 \\
0 \\
0 \\
Q_{6} \\
Q \\
Q_{4}
\end{array}\right]=A E\left[\begin{array}{cccccccc}
0.3536 & -0.3536 & -0.3536 & 0.3536 & 0 & 0 & 0 & 0 \\
-0.3536 & 0.8536 & 0.3536 & -0.3536 & 0 & 0 & 0 & -0.5 \\
-0.3536 & 0.3536 & 1.0607 & -0.3536 & -0.3536 & 0.3536 & -0.3536 & -0.3536 \\
0.3536 & -0.3536 & -0.3536 & 1.0607 & 0.3536 & -0.3536 & -0.3536 & -0.3536 \\
0 & 0 & -0.3536 & 0.3536 & 0.8536 & -0.3536 & -0.5 & 0 \\
0 & 0 & 0.3536 & -0.3536 & -0.3536 & 0.3536 & 0 & 0 \\
0 & 0 & -0.3536 & -0.3536 & -0.5 & 0 & 0.8536 & 0.3536 \\
0 & -0.5 & -0.3536 & -0.3536 & 0 & 0 & 0.3536 & 0.8536
\end{array}\right]\left[\begin{array}{l}
D_{1} \\
D_{2} \\
D_{3} \\
D_{4} \\
D_{5} \\
0 \\
0 \\
0
\end{array}\right]
$$

ASSIGNMENT NO. 2

Q1)
Devermine the vaborna support astions in the following tras. Take $A=0.005 \mathrm{~m}^{2}$ and $E=29 \mathrm{Gpa}$ for sach member.

Q1)
Devermine the valonom suppont asctions in the following vass. Take $A E$ ascoantant

HOW TO SOLVE MATRICES QUICKLY?

- In the matrices equation $\mathrm{Q}=\mathrm{KD}$, first the D matrix has to be determined. If there are 2 or three unknowns in D matrix then it can easily be determined by using equation method.
- But, if the no. of unknown increases it is recommended that you should use matrix inverse method for determining unknown D matrix.
- Since, $\quad \mathrm{Q}=\mathrm{KD}$, \quad so $\mathrm{D}=\mathrm{K}^{-1} \mathrm{Q}$
- For determining inverse of a matrix, the Guass Jordan method can be used.

Gauss-Jordan Method for inverse Matrix?

Use a book, "Basic Structural Analysis by CS Reddy", Appendix A.5.2, Page No. 790 for this method (scanned copies in next slide)

Noe:

For checking the results. an excel sheet can be used to determine inverse of a matrix. The excel sheet is provided alongwith.

A.5.2 Inversion of Matrix by Gauss-Jordan Method

When the size of matrix is larger than 4×4, inversion by Eq. A. 62 becomes very cumbersome. Many additional methods have been developed for inverting large matrices. One method which is most commonly used is the Gauss-Jordan or complete elimination method. This is by far the quickest method for the inversion of a matrix on a computer.

As an example, consider the matrix

$$
\mathbf{A}=\left[\begin{array}{rrr}
2 & 4 & 3 \tag{A.63}\\
1 & 3 & 4 \\
-1 & 3 & 6
\end{array}\right]
$$

As a first step, a rectangular matrix is formed by augmenting the given matrix with an identity matrix as shown

$$
\left[\begin{array}{rrrrrr}
2 & 4 & 3 & 1 & 0 & 0 \tag{A.64}\\
1 & 3 & 4 & 0 & 1 & 0 \\
-1 & 3 & 6 & 0 & 0 & 1
\end{array}\right]
$$

The Gauss-Jordan elimination process is applied to the rectangular matrix reducing the left part of the matrix to an identity matrix with the right part attaining the elements denoted by $b_{i j}$. The resulting matrix is of the form

$$
\left[\begin{array}{cccc:cc}
1 & 0 & 0 & b_{11} & b_{12} & b_{13} \tag{A.65}\\
0 & 1 & 0 & b_{21} & b_{22} & b_{23} \\
0 & 0 & 1 & b_{31} & b_{32} & b_{33}
\end{array}\right]
$$

The inversion of \mathbf{A} is

$$
\mathbf{A}^{-1}=\mathbf{B}=\left[\begin{array}{lll}
b_{11} & b_{12} & b_{13} \tag{A.66}\\
b_{21} & b_{22} & b_{23} \\
b_{31} & b_{32} & b_{33}
\end{array}\right]
$$

$$
\mathbf{A}=\left[\begin{array}{rrr}
2 & 4 & 3 \\
1 & 3 & 4 \\
-1 & 3 & 6
\end{array}\right]
$$

Make an augmented matrix first

$$
\left[\begin{array}{rrrrrr}
2 & 4 & 3 & 1 & 0 & 0 \\
1 & 3 & 4 & 0 & 1 & 0 \\
-1 & 3 & 6 & 0 & 0 & 1
\end{array}\right]
$$

Apply the row operations to solve the matrix

$$
\mathbf{A}=\left[\begin{array}{rrr}
2 & 4 & 3 \\
1 & 3 & 4 \\
-1 & 3 & 6
\end{array}\right]
$$

$$
\left[\begin{array}{llllll}
1 & 2 & \frac{3}{2} & \frac{1}{2} & 0 & 0
\end{array}\right] \quad \begin{aligned}
& \mathrm{R}_{1} / 2 \\
& \mathrm{R}_{2}-1 \times \mathrm{R}_{1}
\end{aligned}
$$

Apply the row operations to solve the matrix

$$
\mathbf{A}=\left[\begin{array}{rrr}
2 & 4 & 3 \\
1 & 3 & 4 \\
-1 & 3 & 6
\end{array}\right]
$$

$$
\left[\begin{array}{llllll}
1 & 2 & \frac{3}{2} & \frac{1}{2} & 0 & 0 \\
0 & 1 & \frac{5}{2} & -\frac{1}{2} & 1 & 0
\end{array}\right] \quad \begin{aligned}
& \mathrm{R}_{1} / 2 \\
& \mathrm{R}_{2}-1 \times \mathrm{R}_{1}
\end{aligned}
$$

Apply the row operations to solve the matrix

$$
\mathbf{A}=\left[\begin{array}{rrr}
2 & 4 & 3 \\
1 & 3 & 4 \\
-1 & 3 & 6
\end{array}\right]
$$

$$
\left[\begin{array}{llllll}
1 & 2 & \frac{3}{2} & \frac{1}{2} & 0 & 0 \\
0 & 1 & \frac{5}{2} & -\frac{1}{2} & 1 & 0
\end{array}\right] \quad \begin{aligned}
& \mathrm{R}_{1} / 2 \\
& \mathrm{R}_{2}-1 \times \mathrm{R}_{1} \\
& \mathrm{R}_{3}+1 \times \mathrm{R}_{1}
\end{aligned}
$$

Apply the row operations to solve the matrix

$$
\mathbf{A}=\left[\begin{array}{rrr}
2 & 4 & 3 \\
1 & 3 & 4 \\
-1 & 3 & 6
\end{array}\right]
$$

$$
\left[\begin{array}{llll:l}
1 & 2 & \frac{3}{2} & \frac{1}{2} & 0 \\
0 & 1 & \frac{5}{2} & -\frac{1}{2} & 1
\end{array}\right) \quad 0 \quad \begin{aligned}
& \mathrm{R}_{1} / 2 \\
& 0
\end{aligned}
$$

Now don't touch first row and the first column

$$
\mathbf{A}=\left[\begin{array}{rrr}
2 & 4 & 3 \\
1 & 3 & 4 \\
-1 & 3 & 6
\end{array}\right]
$$

$\left[\begin{array}{cccc:c}1 & 2 & \frac{3}{2} & \frac{1}{2} & 0 \\ 0 \\ 0 & 1 & \frac{5}{2} & -\frac{1}{2} & 1 \\ 0 & 5 & \frac{15}{2} & \frac{1}{2} & 0\end{array} 1\right] \quad \mathrm{R}_{2} /\left(\mathrm{a}_{22}=1\right)$

$$
\begin{aligned}
& {\left[\begin{array}{rrrrrr}
1 & 0 & -\frac{7}{2} & \frac{3}{2} & -2 & 0 \\
0 & 1 & \frac{5}{2} & -\frac{1}{2} & 1 & 0 \\
0 & 0 & 1 & -\frac{3}{5} & 1 & -\frac{1}{5}
\end{array}\right] \quad \begin{array}{l}
\mathrm{R}_{1}-2 \mathrm{R}_{2} \\
\mathrm{R}_{3}-5 \mathrm{R}_{2}
\end{array}} \\
& {\left[\begin{array}{rrrrrr}
1 & 0 & 0 & -\frac{3}{5} & \frac{3}{2} & -\frac{7}{10} \\
0 & 1 & 0 & 1 & -\frac{3}{2} & \frac{1}{2} \\
0 & 0 & 1 & -\frac{3}{5} & 1 & -\frac{1}{5}
\end{array}\right] \begin{array}{l}
\mathrm{R}_{1}+7 / 2 \mathrm{R}_{3} \\
\mathrm{R}_{2}-5 / 2 \mathrm{R}_{3}
\end{array}}
\end{aligned}
$$

Hence the inverse matrix is

$$
\mathbf{A}^{-1}=\left[\begin{array}{ccc}
-\frac{3}{5} & \frac{3}{2} & -\frac{7}{10} \\
1 & -\frac{3}{2} & \frac{1}{2} \\
-\frac{3}{5} & 1 & -\frac{1}{5}
\end{array}\right]
$$

The result can be verified by the relationship

$$
\mathbf{A}^{-1} \mathbf{A}=\mathbf{I}
$$

$$
\left[\begin{array}{ccc}
-\frac{3}{5} & \frac{3}{2} & -\frac{7}{10} \\
1 & -\frac{3}{2} & \frac{1}{2} \\
-\frac{3}{5} & 1 & -\frac{1}{5}
\end{array}\right]\left[\begin{array}{ccc}
2 & 4 & 3 \\
1 & 3 & 4 \\
-1 & 3 & 6
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

ANALYSIS OF FRAMES
BY STIFFNESS METHOD

General Stiffness Matrix

	N_{χ}	N_{y}	N_{z}	F_{x}	F_{y}	F_{2}
	$\begin{gathered} \left(\frac{A E}{L} \lambda_{x}^{2}+\frac{12 E I}{L^{3}} \lambda_{y}^{2}\right) \\ \left(\frac{A E}{L}-\frac{12 E I}{L^{3}}\right) \lambda_{x} \lambda_{y} \\ -\frac{6 E I}{L^{2}} \lambda_{y} \end{gathered}$	$\begin{gathered} \left(\frac{A E}{L}-\frac{12 E I}{L^{3}}\right) \lambda_{x} \lambda_{y} \\ \left(\frac{A E}{L} \lambda_{y}{ }^{2}+\frac{12 E I}{L^{3}} \lambda_{x}{ }^{2}\right) \\ \because \frac{6 E I}{L^{2}} \lambda_{x} \end{gathered}$	$\begin{aligned} & -\frac{6 E I}{L^{2}} \lambda_{y} \\ & \frac{6 E I}{L^{2}} \lambda_{x} \\ & \frac{4 E I}{L} \end{aligned}$	$\begin{gathered} -\left(\frac{A E}{L} \lambda_{x}{ }^{2}+\frac{12 E I}{L^{3}} \lambda_{y}{ }^{2}\right) \\ -\left(\frac{A E}{L}-\frac{12 E I}{L^{3}}\right) \lambda_{x} \lambda_{y} \\ \frac{6 E I}{L^{2}} \lambda_{y} \end{gathered}$	$\begin{gathered} -\left(\frac{A E}{L}-\frac{12 E I}{L^{3}}\right) \lambda_{x} \lambda \\ -\left(\frac{A E}{L} \lambda_{y}{ }^{2}+\frac{12 E I}{L^{3}} \lambda_{x}\right. \\ -\frac{6 E I}{L^{2}} \lambda_{x} \end{gathered}$	$\begin{aligned} & -\frac{6 E I}{L^{2}} \lambda_{y} \\ & \frac{6 E I}{L^{2}} \lambda_{x} \\ & \frac{2 E I}{L} \end{aligned}$
	$\begin{gathered} -\left(\frac{A E}{L} \lambda_{x}^{2}+\frac{12 E I}{L^{3}} \lambda_{y}{ }^{2}\right) \\ -\left(\frac{A E}{L}-\frac{12 E I}{L^{3}}\right) \lambda_{x} \lambda_{y} \\ -\frac{6 E I}{L^{2}} \lambda_{y} \end{gathered}$	$\begin{gathered} -\left(\frac{A E}{L}-\frac{12 E I}{L^{3}}\right) \lambda_{x} \lambda_{y} \\ -\left(\frac{A E}{L} \lambda_{y}{ }^{2}+\frac{12 E I}{L^{3}} \lambda_{x}\right) \\ \frac{6 E I}{L^{2}} \lambda_{x} \end{gathered}$	$\begin{gathered} \frac{6 E I}{L^{2}} \lambda_{y} \\ -\frac{6 E I}{L^{2}} \lambda_{x} \\ \frac{2 E I}{L} \end{gathered}$	$\begin{gathered} \left(\frac{A E}{L} \lambda_{x}^{2}+\frac{12 E I}{L^{3}} \lambda_{y}^{2}\right) \\ \left(\frac{A E}{L}-\frac{12 E I}{L^{3}}\right) \lambda_{x} \lambda_{y} \\ \frac{6 E I}{L^{2}} \lambda_{y} \end{gathered}$	$\begin{gathered} \left(\frac{A E}{L}-\frac{12 E I}{L^{3}}\right) \lambda_{x} \lambda_{y} \\ \left(\frac{A E}{L} \lambda_{x}{ }^{2}+\frac{12 E I}{L^{3}} \lambda_{x}{ }^{2}\right) \\ -\frac{6 E I}{L^{2}} \lambda_{x} \end{gathered}$	$\left.\begin{array}{c} \frac{6 E I}{L^{2}} \lambda_{y} \\ -\frac{6 E I}{L^{2}} \lambda_{x} \\ \frac{4 E I}{L} \end{array}\right]$

Exercise 16-1

Determine the structure stiffness matrix \mathbf{K} for the frame. Assume (1) and (3) are pins. Take $E=29\left(10^{3}\right) \mathrm{ksi}$, $I=600 \mathrm{in}^{4}, A=10 \mathrm{in}^{2}$ for each member.

Mernber 1

$$
\begin{aligned}
& \lambda_{x}=\frac{12-0}{12}=1 \quad \lambda_{y}=0 \\
& \frac{12 E I}{L^{3}}=\frac{12(29)\left(10^{3}\right)(600)}{\left(12^{3}\right)\left(12^{3}\right)}=69.93 \\
& \frac{4 E I}{L}=\frac{4(29)\left(10^{3}\right)(600)}{(12)(12)}=483333.33
\end{aligned}
$$

$$
\frac{A E}{L}=\frac{(10)(29)\left(10^{3}\right)}{(12)(12)}=2013.89
$$

$$
\frac{6 E I}{L^{2}}=\frac{6(29)\left(10^{3}\right)(600)}{\left(12^{2}\right)\left(12^{2}\right)}=5034.72
$$

$$
\frac{2 E I}{L}=\frac{2(29)\left(10^{3}\right)(600)}{(12)(12)}=241666.67
$$

$$
\mathbf{K}_{1}=\left[\begin{array}{cccccc}
2013.89 & 0 & 0 & -2013.89 & 0 & 0 \\
0 & 69.93 & 5034.72 & 0 & -69.93 & 5034.72 \\
0 & 5034.72 & 433333.33 & 0 & -5034.72 & 241666.67 \\
-2013.89 & 0 & 0 & 2013.89 & 0 & 0 \\
0 & -69.93 & -5034.72 & 0 & 69.93 & -5034.72 \\
0 & 5034.72 & 241666.67 & 0 & -5034.72 & 483333.33
\end{array}\right]
$$

	$\begin{gathered} \left(\frac{A E}{L} \lambda_{x}{ }^{2}+\frac{12 E I}{L^{3}} \lambda_{y}{ }^{2}\right) \\ \left(\frac{A E}{L}-\frac{12 E I}{L^{3}}\right) \lambda_{x} \lambda_{y} \\ -\frac{6 E I}{L^{2}} \lambda_{y} \end{gathered}$	$\begin{aligned} & \left(\frac{A E}{L}-\frac{12 E I}{L^{3}}\right) \lambda_{x} \lambda_{y} \\ & \left(\frac{A E}{L} \lambda_{y}{ }^{2}+\frac{12 E I}{L^{3}} \lambda_{x}{ }^{2}\right) \end{aligned}$	$-\frac{\sigma E I}{L^{2}} \lambda_{y}$	$\begin{aligned} & -\left(\frac{A E}{L} \lambda_{x}{ }^{2}+\frac{12 E I}{L^{3}} \lambda_{y}{ }^{2}\right) \\ & -\left(\frac{A B}{L}-\frac{12 E I}{L^{3}}\right) \lambda_{x} \lambda_{y} \\ & \frac{6 E I}{L^{2}} \lambda_{y} \end{aligned}$	$\begin{gathered} -\left(\frac{A E}{L}-\frac{12 E I}{L^{3}}\right) \lambda_{x} \\ -\left(\frac{A E}{L} \lambda_{y}{ }^{2}+\frac{12 E I}{L^{3}} \lambda\right. \\ -\frac{6 E I}{L^{2}} \lambda_{x} \end{gathered}$	$\left.\begin{array}{c} -\frac{6 E I}{L^{2}} \lambda_{y} \\ \frac{6 E I}{L^{2}} \lambda_{x} \\ \frac{2 E I}{L} \end{array}\right]$
	$\begin{gathered} \ldots\left(\frac{A E}{L} \lambda_{x}^{2}+\frac{12 E I}{L^{3}} \lambda_{y}{ }^{2}\right. \\ -\left(\frac{A E}{L}-\frac{12 E I}{L^{3}}\right) \lambda_{x} \lambda \\ -\frac{6 E I}{L^{2}} \lambda_{y} \end{gathered}$	$\begin{aligned} & -\left(\frac{A E}{L}-\frac{12 E I}{L^{3}}\right) \lambda_{x} \\ & -\left(\frac{A E}{L} \lambda_{y}{ }^{2}+\frac{12 E I}{L^{3}} \lambda\right. \\ & \frac{6 E I}{L^{2}} \lambda_{x} \end{aligned}$	$\begin{aligned} & \frac{6 E I}{L^{2}} \lambda_{y} \\ & -\frac{6 E I}{L^{2}} \lambda_{x} \\ & \frac{2 E I}{L} \end{aligned}$	$\begin{gathered} \left(\frac{A E}{L} \lambda_{x}{ }^{2}+\frac{12 E I}{L^{3}} \lambda_{y}^{2}\right) \\ \left(\frac{A E}{L}-\frac{12 E I}{L^{3}}\right) \lambda_{x} \lambda_{y} \\ \frac{6 E I}{L^{2}} \lambda_{y} \end{gathered}$	$\begin{gathered} \left(\frac{A E}{L}-\frac{12 E I}{L^{3}}\right) \lambda_{x} \lambda_{y} \\ \left(\frac{A E}{L} \lambda_{x}{ }^{2}+\frac{12 E I}{L^{3}} \lambda_{x}{ }^{2}\right) \\ -\frac{6 E I}{L^{2}} \lambda_{x} \end{gathered}$	$\left.\begin{array}{c} \frac{6 E I}{L^{2}} \lambda_{y} \\ -\frac{6 E I}{L^{2}} \lambda_{x} \\ \frac{4 E I}{L} \end{array}\right]$

Member 2

$$
\begin{array}{ll}
\lambda_{x}=0 \quad \lambda_{y}=\frac{-8-0}{8}=-1 & \frac{A E}{L}=\frac{10(29)\left(10^{3}\right)}{8(12)}=3020.83 \\
\frac{12 E I}{L^{3}}=\frac{12(29)\left(10^{3}\right)(600)}{\left(8^{3}\right)\left(12^{3}\right)}=236.00 & \frac{6 E I}{L^{2}}=\frac{6(29)\left(10^{3}\right)(600)}{\left(8^{2}\right)(12)^{2}}=11328.13 \\
\frac{4 E I}{L}=\frac{4(29)\left(10^{3}\right)(600)}{8(12)}=725000 & \frac{2 E I}{L}=\frac{2(29)\left(10^{3}\right)(600)}{8(12)}=362.500
\end{array}
$$

$$
\mathbf{k}_{2}=\left[\begin{array}{cccccc}
236.00 & 0 & 11328.13 & -236.00 & 0 & 11328.13 \\
0 & 3020.13 & 0 & 0 & -3020.83 & 0 \\
11328.13 & 0 & 725000 & -11328.13 & 0 & 362500 \\
-236.00 & 0 & -11328.13 & 236.00 & 0 & -11328.13 \\
0 & -3020.13 & 0 & 0 & 3020.83 & 0 \\
11328.13 & 0 & 362500 & -11328.13 & 0 & 725000
\end{array}\right]
$$

General Stiffness Matrix

	N_{χ}	N_{y}	N_{z}	F_{x}	F_{y}	F_{2}
	$\begin{gathered} \left(\frac{A E}{L} \lambda_{x}^{2}+\frac{12 E I}{L^{3}} \lambda_{y}^{2}\right) \\ \left(\frac{A E}{L}-\frac{12 E I}{L^{3}}\right) \lambda_{x} \lambda_{y} \\ -\frac{6 E I}{L^{2}} \lambda_{y} \end{gathered}$	$\begin{gathered} \left(\frac{A E}{L}-\frac{12 E I}{L^{3}}\right) \lambda_{x} \lambda_{y} \\ \left(\frac{A E}{L} \lambda_{y}{ }^{2}+\frac{12 E I}{L^{3}} \lambda_{x}{ }^{2}\right) \\ \because \frac{6 E I}{L^{2}} \lambda_{x} \end{gathered}$	$\begin{aligned} & -\frac{6 E I}{L^{2}} \lambda_{y} \\ & \frac{6 E I}{L^{2}} \lambda_{x} \\ & \frac{4 E I}{L} \end{aligned}$	$\begin{gathered} -\left(\frac{A E}{L} \lambda_{x}{ }^{2}+\frac{12 E I}{L^{3}} \lambda_{y}{ }^{2}\right) \\ -\left(\frac{A E}{L}-\frac{12 E I}{L^{3}}\right) \lambda_{x} \lambda_{y} \\ \frac{6 E I}{L^{2}} \lambda_{y} \end{gathered}$	$\begin{gathered} -\left(\frac{A E}{L}-\frac{12 E I}{L^{3}}\right) \lambda_{x} \lambda \\ -\left(\frac{A E}{L} \lambda_{y}{ }^{2}+\frac{12 E I}{L^{3}} \lambda_{x}\right. \\ -\frac{6 E I}{L^{2}} \lambda_{x} \end{gathered}$	$\begin{aligned} & -\frac{6 E I}{L^{2}} \lambda_{y} \\ & \frac{6 E I}{L^{2}} \lambda_{x} \\ & \frac{2 E I}{L} \end{aligned}$
	$\begin{gathered} -\left(\frac{A E}{L} \lambda_{x}^{2}+\frac{12 E I}{L^{3}} \lambda_{y}{ }^{2}\right) \\ -\left(\frac{A E}{L}-\frac{12 E I}{L^{3}}\right) \lambda_{x} \lambda_{y} \\ -\frac{6 E I}{L^{2}} \lambda_{y} \end{gathered}$	$\begin{gathered} -\left(\frac{A E}{L}-\frac{12 E I}{L^{3}}\right) \lambda_{x} \lambda_{y} \\ -\left(\frac{A E}{L} \lambda_{y}{ }^{2}+\frac{12 E I}{L^{3}} \lambda_{x}\right) \\ \frac{6 E I}{L^{2}} \lambda_{x} \end{gathered}$	$\begin{gathered} \frac{6 E I}{L^{2}} \lambda_{y} \\ -\frac{6 E I}{L^{2}} \lambda_{x} \\ \frac{2 E I}{L} \end{gathered}$	$\begin{gathered} \left(\frac{A E}{L} \lambda_{x}^{2}+\frac{12 E I}{L^{3}} \lambda_{y}^{2}\right) \\ \left(\frac{A E}{L}-\frac{12 E I}{L^{3}}\right) \lambda_{x} \lambda_{y} \\ \frac{6 E I}{L^{2}} \lambda_{y} \end{gathered}$	$\begin{gathered} \left(\frac{A E}{L}-\frac{12 E I}{L^{3}}\right) \lambda_{x} \lambda_{y} \\ \left(\frac{A E}{L} \lambda_{x}{ }^{2}+\frac{12 E I}{L^{3}} \lambda_{x}{ }^{2}\right) \\ -\frac{6 E I}{L^{2}} \lambda_{x} \end{gathered}$	$\left.\begin{array}{c} \frac{6 E I}{L^{2}} \lambda_{y} \\ -\frac{6 E I}{L^{2}} \lambda_{x} \\ \frac{4 E I}{L} \end{array}\right]$

Strocure stiffness matrix
$\mathbf{K}=\left[\begin{array}{ccccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 2249.89 & 0 & 11328.13 & 11328.13 & 0 & -236.00 & 0 & -2013.89 & 0 \\ 0 & 3090.76 & -5034.72 & 0 & -5034.72 & 0 & -3020.83 & 0 & -69.93 \\ 11321.13 & -5034.72 & 1208333.33 & 362500 & 241666.67 & -11328.13 & 0 & 0 & 5034.72 \\ 11323.13 & 0 & 362500 & 725000 & 0 & -11328.13 & 0 & 0 & 0 \\ 0 & -5034.72 & 241666.67 & 0 & 483333.33 & 0 & 0 & 0 & 0 \\ -236.00 & 0 & -11328.13 & -11328.13 & 0 & 236.00 & 0 & 0 & 0 \\ 0 & -3020.83 & 0 & 0 & 0 & 0 & 3020.83 & 0 & 0 \\ -2013.89 & 0 & 0 & 0 & 0 & 0 & 0 & 2083.89 & 0 \\ 0 & -69.93 & 5034.72 & 0 & 5034.72 & 0 & 0 & 0 & 69.93 \\ & & & & & & & 0\end{array}\right]$

Exercise 16-14

For solution refer to class lectures

Exercise 16-10

Determine the structure stiffness matrix \mathbf{K} for the frame. Take $E=29\left(10^{3}\right) \mathrm{ksi}, I=600 \mathrm{in}^{4}, A=10 \mathrm{in}^{2}$ for each member. Assume joints (1) and (3) are pinned; joint (2) is fixed.

Mernber 1 :

$$
\begin{gathered}
\lambda_{x}=\frac{12-0}{12}=1 ; \\
\mathbf{k}_{1}=\left[\begin{array}{cccccc}
2013.89 & 0 & 0 & -2013.89 & 0 & 0 \\
0 & 69.927 & 5034.722 & 0 & -69.927 & 5034.722 \\
0 & 5034.722 & 483.33\left(10^{3}\right) & 0 & -5034.722 & 241.667\left(10^{3}\right) \\
-2013.89 & 0 & 0 & 2013.89 & 0 & 0 \\
0 & -69.927 & -5034.722 & 0 & 69.927 & -5034.722 \\
0 & 5034.722 & 241.667\left(10^{3}\right) & 0 & -5034.722 & 483.33\left(10^{3}\right)
\end{array}\right]
\end{gathered}
$$

Member 2:

$$
\begin{gathered}
\lambda_{1}=\frac{12-12}{12}=0 ; \\
k_{2}=\left[\begin{array}{cccccc}
236.003 & 0 & 11328.125 & -236.003 & 0 & 11328.125 \\
0 & 3020.833 & 0 & 0 & -3020.833 & 0 \\
11328.125 & 0 & 725000 & -11328.125 & 0 & 362500 \\
-236.003 & 0 & -11328.125 & 236.003 & 0 & -11328.125 \\
0 & -3020.833 & 0 & 0 & 3020.833 & 0 \\
11328.125 & 0 & 362500 & -11328.125 & 0 & 725000
\end{array}\right]
\end{gathered}
$$

CONCEPT OF

TEMPERATURE EFFECTS,

 LACK OF FIT AND SUPPORT SETTLEMENT
INTRODUCTION TO FINITE ELEMENT METHOD (FEM)

Topics to be covered

- Introduction
- How it works
- Concepts of Nodes
- Use of stiffness matrices
- Stress Analysis
- Application of FEM
- Types of FEM
- 1-D (Line element)
- 2-D (Plane element)
-3-D (Solid element)

Structure having Support Settlement

- Redo the solved problem 1 with support settlement of 0.1 ft downwards at Joint 1

Lack of fit

- Redo the solved problem 1 if the member 1 is made $0 ; 01 \mathrm{ft}$ too short before it was fitted into place.

Problem with temperature effect

- Redo the solved problem 1 when member 1 of the truss is subjected to an increase in temperature of $83^{\circ} \mathrm{C}$, tale temperature coefficient $=11.7 \times 10-6 /{ }^{\circ} \mathrm{C}$.

FOR REFERENCE

- Solve examples in chapter 14 of RC Hibbeler, ($6^{\text {th }}$ or $7^{\text {th }}$ Edition)
- Preferred examples are:
- Example 14-3
- Example 14-5 (problem with support settlement)
- Example 14-7 (problem for lack of fit)
- Example 14-8 (problem with temperature effect)

PRACTICE PROBLEMS

Following material related to this course has been uploaded on the site so far:

Lecture Schedule
Structural Analysis Book
Excel sheet for inverse of matrices
Lectures

Practice Problems

Book: Structural Analysis by RC Hibbeler, $7^{\text {th }}$ Edition

Beams:

- Eg 15-1
- Exercise 15-2
- Exercise 15-3
- Exercise 15-4
- Exercise 15-9

Truss:

- Eg 14-3
- Eg 14-5 (problem with support settlement)
- Exercise 14-1, 14-2, 14-3
- Exercise 14-8, 14-9
- Exercise 14-11, 14-12
- Exercise 14-13, 14-14

Book: Structural Analysis by RC Hibbeler, $7^{\text {th }}$ Edition

Frames:

- Exercise 16-1
- Exercise 16-10
- Exercise 16-14

BEAMS
 EXERCISE SOLUTIONS

Exercise 15-2

Assume 1 as fixed, 2 as roller and 3 as pin.

Member 1

$$
\mathbf{k}_{1}=E I\left[\begin{array}{ccc}
0.096 & 0.24 & -0.096 \\
0.24 & 0.80 & -0.24 \\
-0.096 & -0.24 & 0.096 \\
0.24 & 0.40 & -0.24
\end{array}\right.
$$

Member 2

$$
\mathbf{k}_{1}=E\left[\begin{array}{cccc}
0.768 & 0.96 & -0.768 & 0.96 \\
0.96 & 1.60 & -0.96 & 0.80 \\
-0.768 & -0.96 & 0.768 & -0.96 \\
0.96 & 0.80 & -0.96 & 1.60
\end{array}\right]
$$

$$
\mathbf{K}=E\left[\left[\begin{array}{cccccc}
1.60 & 0.80 & -0.96 & 0.960 & 0 & 0 \\
0.80 & 2.40 & -0.96 & 0.72 & 0.24 & 0.40 \\
-0.96 & -0.96 & 0.768 & -0.768 & 0 & 0 \\
0.96 & 0.72 & -0.768 & 0.864 & -0.096 & -0.24 \\
0 & 0.24 & 0 & -0.096 & 0.096 & 0.24 \\
0 & 0.40 & 0 & -0.240 & 0.24 & 0.80
\end{array}\right]\right.
$$

$$
\left[\begin{array}{c}
0 \\
18.75 \\
Q_{3} \\
Q_{4}-15.0 \\
Q_{S}-15.0 \\
Q_{\delta}-18.75
\end{array}\right]=E\left[\begin{array}{cccccc}
1.60 & 0.80 & -0.96 & 0.960 & 0 & 0 \\
0.80 & 2.40 & -0.960 & 0.720 & 0.240 & 0.40 \\
-0.96 & -0.96 & 0.768 & -0.768 & 0 & 0 \\
0.96 & 0.72 & -0.768 & 0.864 & -0.096 & -0.24 \\
0 & 0.24 & 0 & -0.096 & 0.096 & 0.24 \\
0 & 0.40 & 0 & -0.240 & 0.24 & 0.80
\end{array}\right]\left[\begin{array}{c}
D_{1} \\
D_{2} \\
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

By partition matrix

$$
\left[\begin{array}{c}
0 \\
18.75
\end{array}\right]=E \leq\left[\begin{array}{ll}
1.60 & 0.80 \\
0.80 & 2.40
\end{array}\right]\left[\begin{array}{c}
D_{1} \\
D
\end{array}\right]
$$

$$
\begin{aligned}
& D_{1}=\frac{-4.6875}{E I} \\
& D_{2}=\frac{9.375}{E I}
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\begin{array}{l}
q_{5} \\
q_{6} \\
q_{4} \\
q_{2}
\end{array}\right]=E\left[\begin{array}{cccc}
0.096 & 0.24 & -0.096 & 0.24 \\
0.24 & 0.80 & -0.24 & 0.40 \\
-096 & -0.24 & 0.096 & -0.24 \\
0.24 & 0.40 & -0.24 & 0.80
\end{array}\right]\left[\begin{array}{c}
0 \\
0 \\
0 \\
9.375
\end{array}\right] \frac{1}{E I}+\left[\begin{array}{c}
15 \\
18.75 \\
15 \\
-18.75
\end{array}\right]} \\
& q_{6}=0.40 E I\left(\frac{9.375}{E I}\right)+18.75=22.5 \mathrm{kN} \cdot \mathrm{~m} \quad \text { Ams } \\
& q_{2}=0.80 E I\left(\frac{9.375}{E I}\right)-18.75=-11.25 \mathrm{kN} \cdot \mathrm{~m} \quad \text { Ans } \\
& q_{5}=0.24 E I\left(\frac{9.375}{E I}\right)+15.0=17.25 \mathrm{kN} \\
& q_{4}-0.24 E I\left(\frac{9.375}{F I}\right)+15.0=12.75 \mathrm{kN}
\end{aligned}
$$

Exercise 15-3

Assume 1 as fixed, 2 as roller and 3 as pin.

Mernber I

$$
k_{i}=E\left[\begin{array}{cccc}
0.096 & 0.24 & -0.096 & 0.24 \\
0.24 & 0.8 & -0.24 & 0.4 \\
-0.096 & -0.24 & 0.096 & -0.24 \\
0.24 & 0.4 & -0.24 & 0.8
\end{array}\right]
$$

Mermber 2

$$
k_{2}=E\left[\begin{array}{cccc}
0.768 & 0.96 & -0.768 & 0.96 \\
0.96 & 1.6 & -0.96 & 0.8 \\
-0.768 & -0.96 & 0.768 & -0.96 \\
0.96 & 0.8 & -0.96 & 1.6
\end{array}\right]
$$

$$
\left[\begin{array}{c}
0 \\
25.0 \\
Q_{3} \\
Q_{-}-30.0 \\
Q_{5}-25.0 \\
Q_{4}-30.0
\end{array}\right]=\left[\begin{array}{cccccc}
1.6 & 0.8 & -0.96 & 0.96 & 0 & 0 \\
0.8 & 2.4 & -0.96 & 0.72 & 0.4 & 0.24 \\
-0.96 & -0.96 & 0.768 & -0.768 & 0 & 0 \\
0.96 & 0.72 & -0.768 & 0.864 & -0.24 & -0.096 \\
0 & 0.4 & 0 & -0.24 & 0.8 & 0.24 \\
0 & 0.24 & 0 & -0.096 & 0.24 & 0.096
\end{array}\right]\left[\begin{array}{c}
D_{1} \\
D_{2} \\
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

$$
\begin{aligned}
& Q_{1}=-0.96 E\left(\frac{-6.25}{E J}\right)-0.96 E\left(\frac{12.5}{E I}\right)=-6.00 \mathrm{kN} \\
& \begin{array}{l}
Q_{4}-30.0=0.96 E\left(\frac{-6.25}{E D}\right)+0.72\left(\frac{12.5}{E}\right) \\
Q_{4}=33 \mathrm{kN} \quad \mathrm{AEs}
\end{array} \\
& Q_{S}-25.0=0+0.4 E\left(\frac{12.5}{E}\right) \\
& D_{1}=\frac{I 25}{E I} \\
& Q_{S}=30 \mathrm{kN} \cdot \mathrm{~m} \\
& Q_{6}-30.0=0+0.24 E\left(\frac{12.5}{E}\right) \\
& Q_{6}=33.0 \mathrm{kN} \\
& \text { Abs }
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\begin{array}{l}
q_{5} \\
q_{6} \\
q_{4} \\
q_{2}
\end{array}\right]=E\left[\begin{array}{cccc}
0.096 & 0.24 & -0.096 & 0.24 \\
0.24 & 0.80 & -0.24 & 0.40 \\
-096 & -0.24 & 0.096 & -0.24 \\
0.24 & 0.40 & -0.24 & 0.80
\end{array}\right]\left[\begin{array}{c}
0 \\
0 \\
0 \\
9.375
\end{array}\right] \frac{1}{E I}+\left[\begin{array}{c}
15 \\
18.75 \\
15 \\
-18.75
\end{array}\right]} \\
& q_{6}=0.40 E I\left(\frac{9.375}{E I}\right)+18.75=22.5 \mathrm{kN} \cdot \mathrm{~m} \quad \text { Ams } \\
& q_{2}=0.80 E I\left(\frac{9.375}{E I}\right)-18.75=-11.25 \mathrm{kN} \cdot \mathrm{~m} \quad \text { Ans } \\
& q_{5}=0.24 E I\left(\frac{9.375}{E I}\right)+15.0=17.25 \mathrm{kN} \\
& q_{4}-0.24 E I\left(\frac{9.375}{F I}\right)+15.0=12.75 \mathrm{kN}
\end{aligned}
$$

Exercise 15-4

$$
\left[\begin{array}{c}
75 \\
Q_{2}-75.0 \\
Q_{3}-75.0 \\
Q_{1}-75.0 \\
Q_{5} \\
Q_{5}
\end{array}\right]=\Sigma\left[\begin{array}{cccccc}
1.1667 & -0.07292 & 0.16667 & 0.33333 & -0.09375 & 0.25 \\
-0.07292 & 0.07899 & -0.05556 & -0.16667 & -0.02344 & 0.09375 \\
0.16667 & -0.05556 & 0.05556 & 0.16667 & 0 & 0 \\
0.33333 & -0.16667 & 0.16667 & 0.66667 & 0 & 0 \\
-0.09375 & -0.02344 & 0 & 0 & 0.02344 & -0.09375 \\
0.25 & 0.09375 & 0 & 0 & -0.09375 & 0.5
\end{array}\right]\left[\begin{array}{c}
D_{1} \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

Parition marrix

$$
\begin{aligned}
& Q_{1}-75.0=-0.07292 \square\left(\frac{64.286}{\square}\right) \\
& Q_{2}=70.31 \mathrm{kN}
\end{aligned}
$$

$75.0=E f(1.16667)$

$$
D_{1}=\frac{64.286}{E}
$$

$$
\begin{aligned}
& Q_{3}-75.0=0.16667 E\left(\frac{64.286}{E}\right) \\
& Q_{3}=85.71 \mathrm{kN} \\
& Q_{4}-75.0=0.33333 E\left(\frac{64.286}{G}\right) \\
& Q_{1}=M_{1}=96.43 \mathrm{kN} \cdot \mathrm{~m}=96.4 \mathrm{kN} \cdot \mathrm{~m} \quad \text { Ans } \\
& Q_{3}=-0.09375 E\left(\frac{64.286}{E}\right)=-6.03 \mathrm{kN}=6.03 \mathrm{kN} \\
& Q_{3}=M_{y}=0.25 E\left(\frac{64.286}{\square}\right)=16.07 \mathrm{kN} \cdot m=16.1 \mathrm{kN} \cdot \mathrm{~m} \quad A B
\end{aligned}
$$

Exercise 15-9

Support 2 settles 0.1 ft

Member 1
$\mathbf{k}_{1}=E_{1}\left[\begin{array}{cccc}\frac{12}{(36)^{2}} & \frac{6}{(36)^{2}} & \frac{-12}{(36)^{2}} & \frac{6}{(36)^{2}} \\ \frac{6}{(36)^{2}} & \frac{4}{36} & \frac{-6}{(36)^{2}} & \frac{2}{36} \\ \frac{-12}{(36)^{3}} & \frac{-6}{(36)^{2}} & \frac{12}{(36)^{2}} & \frac{-6}{(36)^{2}} \\ \frac{6}{(36)^{2}} & \frac{2}{36} & \frac{-6}{(36)^{2}} & \frac{4}{36}\end{array}\right]$

Mernber 1
$\mathbf{k}_{2}=E\left[\begin{array}{cccc}\frac{12}{(24)^{2}} & \frac{6}{(24)^{2}} & \frac{-12}{(24)^{3}} & \frac{6}{(24)^{2}} \\ \frac{6}{(24)^{2}} & \frac{4}{24} & \frac{-6}{(24)^{2}} & \frac{2}{24} \\ \frac{-12}{(24)^{3}} & \frac{-6}{(24)^{2}} & \frac{12}{(24)^{2}} & \frac{-6}{(24)^{2}} \\ \frac{6}{(24)^{2}} & \frac{2}{24} & \frac{-6}{(24)^{2}} & \frac{4}{24}\end{array}\right]$

$$
\left[\begin{array}{c}
720 \\
Q_{2}-36.0 \\
Q_{3}+144 \\
Q_{1}-72.0 \\
Q_{5}-216 \\
Q_{6}-36.0
\end{array}\right]=E r\left[\begin{array}{cccccc}
\frac{5}{13} & \frac{-6}{(24)^{2}} & \frac{2}{24} & \frac{5}{364} & \frac{2}{36} & \frac{6}{(36)^{2}} \\
\frac{-6}{(24)^{2}} & \frac{12}{(24)^{2}} & \frac{-6}{(24)^{2}} & \frac{-12}{(24)^{2}} & 0 & 0 \\
\frac{2}{24} & \frac{-6}{(24)^{2}} & \frac{4}{24} & \frac{6}{(24)^{2}} & 0 & 0 \\
\frac{5}{364} & \frac{-12}{(24)^{3}} & \frac{6}{(24)^{2}} & \frac{35}{31104} & \frac{-6}{(36)^{2}} & \frac{-12}{(36)^{2}} \\
\frac{2}{36} & 0 & 0 & \frac{-6}{(36)^{2}} & \frac{4}{36} & \frac{6}{\left.(36)^{2}\right)^{2}} \\
\frac{6}{(36)^{2}} & 0 & 0 & \frac{-12}{(36)^{3}} & \frac{6}{(36)^{2}} & \frac{12}{(36)^{2}}
\end{array}\right]\left[\begin{array}{c}
D_{1} \\
0 \\
0 \\
0 \\
-0.1 \\
0 \\
0
\end{array}\right]
$$

$72.0=9500\left[\frac{5}{18} D_{1}+\frac{5}{864}(-0.1)\right]$
$D_{1}=0.029368 \mathrm{rad}$
$Q_{3}+144=9500\left[\frac{2}{24}(0.029368)+\frac{6}{(24)^{2}}(-0.1)\right]$
$Q_{3}=-130.65 \mathrm{k} \cdot \mathrm{ft}=131 \mathrm{k} \cdot \mathrm{ft}$
Ans
$Q_{s}+216=9500\left[\frac{2}{36}(0.029368)+\frac{6}{(36)^{2}}(-0.1)\right]$
$Q_{t}=235.90 \mathrm{k} \cdot \mathrm{ft}=236 \mathrm{k} \cdot \mathrm{ft} \quad$ Ans

Exercise 15-9

Member 1
$\mathbf{k}_{1}=E I\left[\begin{array}{cccc}1.5 & 1.5 & -1.5 & 1.5 \\ 1.5 & 2 & -1.5 & 1 \\ -1.5 & -1.5 & 1.5 & -1.5 \\ 1.5 & 1 & -1.5 & 2\end{array}\right]$
Member 1

$$
\mathbf{k}_{2}=E J\left[\begin{array}{cccc}
1.5 & 1.5 & -1.5 & 1.5 \\
1.5 & 2 & -1.5 & 1 \\
-1.5 & -1.5 & 1.5 & -1.5 \\
1.5 & 1 & -1.5 & 2
\end{array}\right]
$$

$$
\left[\begin{array}{c}
3 \\
-1 \\
-2 \\
Q_{4}-6 \\
Q_{5}-12 \\
Q_{6}-6
\end{array}\right]=E=\left[\begin{array}{cccccc}
2 & 1 & 0 & -1.5 & 1.5 & 0 \\
1 & 4 & 1 & -1.5 & 0 & 1.5 \\
0 & 1 & 2 & 0 & -1.5 & 1.5 \\
-1.5 & -1.5 & 0 & 1.5 & -1.5 & 0 \\
1.5 & 0 & -1.5 & -1.5 & 3 & -1.5 \\
0 & 1.5 & 1.5 & 0 & -1.5 & 1.5
\end{array}\right]\left[\begin{array}{c}
D_{1} \\
D_{2} \\
D_{3} \\
0 \\
0 \\
0
\end{array}\right]
$$

$\frac{3}{E}=2 D_{1}+1 D_{2}$
$\frac{-1}{E I}=1 D_{1}+4 D_{2}+1 D_{3}$
$\frac{-2}{E}=1 D_{2}+2 D_{3}$
Solving thase equrions yields
$D_{1}=\frac{1.75}{E I}$
$D_{2}=\frac{-0.50}{E I}$

$$
D_{3}=\frac{-0.75}{E I}
$$

Q. $-6.0=-1.5 E Z\left(\frac{1.75}{E I}\right)-1.5 E\left(\frac{-0.50}{E I}\right)+0$
$Q_{4}=4.125 \mathrm{kN}$ Ams
$Q_{5}-12.0=1.5 E\left(\frac{1.75}{E I}\right)+0-1.5 E Z\left(\frac{-0.75}{E I}\right)$
$Q_{4}=15.75 \mathrm{kN}$ Ans
$Q_{6}-6.0=0+1.5 E\left(\frac{-0.50}{E I}\right)+1.5 E\left(\frac{-0.75}{E I}\right)$
$Q_{6}=4.125 \mathrm{kN}$ Ans
Chack for equilibrium

$$
\begin{align*}
& \zeta+\Sigma M_{2}=0 ; \quad 4.125(2)+12(1)-4.125(2)-12(1)=0 \tag{Chect}\\
& +T \Sigma F_{y}=0 ; \quad 4.125+15.75+4.125-12-12=0
\end{align*}
$$

