ANALYSIS OF 2D TRUSSES BY STIFFNESS METHOD

Procedure for Truss Analysis

<u>Step 1: Notation</u>

- Establish the x, y global coordinate system. You may take any joint as an origin
- Identify each joint and element numerically and specify near and far ends of each member.
- Specify the two code numbers at each joint, using the lowest numbers to identify degree of freedoms, followed by the highest degree of freedom to identify constrains.
- From the problem establish D_k and Q_k.

<u>Step 2: Structure Stiffness Matrix</u>

• For each member of the truss determine λ_x and λ_y and the member stiffness matrix using the following general matrix

$$\mathbf{k} = \frac{AE}{L} \begin{bmatrix} \lambda_x^2 & \lambda_x \lambda_y & F_x & F_y \\ \lambda_x^2 & \lambda_x \lambda_y & -\lambda_x^2 & -\lambda_x \lambda_y \\ \lambda_x \lambda_y & \lambda_y^2 & -\lambda_x \lambda_y & -\lambda_y^2 \\ -\lambda_x^2 & -\lambda_x \lambda_y & \lambda_x^2 & \lambda_x \lambda_y \\ \lambda_x \lambda_y & -\lambda_y^2 & \lambda_x \lambda_y & \lambda_y^2 \end{bmatrix} \begin{bmatrix} N_x \\ N_y \\ F_x \\ F_y \end{bmatrix}$$

- Assemble these matrices to form the stiffness matrix for the entire truss (as explained earlier on board).
- Note: The member and structure stiffness matrices should be symmetric

$$\lambda_{x} = \underline{x_{F} - x_{N}}$$

$$\lambda_{y} = \underline{y}_{\underline{F}} - \underline{y}_{\underline{N}}$$

100

<u>Step 3: Displacement and Loads</u>

- Partition the structure stiffness matrix for easier calculations
- Determine the unknown joint displacement D_x, the support reactions Q_x.
- Using all the unknowns the member forces in each truss element using basic rules of truss analysis

Solved Problem 1:

Determine the horizontal displacement of joint ① and the force in member 2.

Take A = 0.75 in² and $E = 29x10^3$ ksi.

General stiffness matrix

<u>Member 1</u>

$$\lambda_x = \frac{0-4}{\sqrt{32}} = -0.7071$$

$$\lambda_{y} = \frac{0-4}{\sqrt{32}} = -0.7071$$

 $\mathbf{k} = \frac{AE}{L} \begin{bmatrix} N_x & N_y & F_x & F_y \\ \lambda_x^2 & \lambda_x \lambda_y & -\lambda_x^2 & -\lambda_x \lambda_y \\ \lambda_x \lambda_y & \lambda_y^2 & -\lambda_x \lambda_y & -\lambda_y^2 \\ -\lambda_x^2 & -\lambda_x \lambda_y & \lambda_x^2 & \lambda_x \lambda_y \\ \lambda_y \lambda_y & -\lambda_y^2 & \lambda_x \lambda_y & \lambda_y^2 \end{bmatrix} \begin{bmatrix} N_x \\ N_y \\ N_y \\ F_y \end{bmatrix}$ 500 lb 1 🛈 4 ft 3 ft 4 ft

 $\mathbf{k}_{1} = AE \begin{bmatrix} 0.08839 & 0.08839 & -0.08839 & -0.08839 \\ 0.08839 & 0.08839 & -0.08839 & -0.08839 \\ -0.08839 & -0.08839 & -0.08839 & -0.08839 \\ -0.08839 & -0.08839 & 0.08839 & 0.08839 \end{bmatrix}$

• <u>Member 2</u>

$$\lambda_x = \frac{4-4}{4} = 0$$

$$\lambda_{\gamma} = \frac{0-4}{4} = -1$$

$$\mathbf{k}_{z} = AE \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0.25 & 0 & -0.25 \\ 0 & 0 & 0 & 0 \\ 0 & -0.25 & 0 & 0.25 \end{bmatrix}$$

$$\mathbf{k} = \frac{AE}{L} \begin{bmatrix} N_x & N_y & F_x & F_y \\ \lambda_x^2 & \lambda_x \lambda_y & -\lambda_x^2 & -\lambda_x \lambda_y \\ \lambda_x \lambda_y & \lambda_y^2 & -\lambda_x \lambda_y & -\lambda_y^2 \\ -\lambda_x^2 & -\lambda_x \lambda_y & \lambda_x^2 & \lambda_x \lambda_y \\ \lambda_x \lambda_y & -\lambda_y^2 & \lambda_x \lambda_y & \lambda_y^2 \end{bmatrix} \begin{bmatrix} N_x \\ N_y \\ F_y \end{bmatrix}$$

• Member 3

$$\lambda_x = 0.6$$

$$\lambda_{y} = -0.8$$

<u>Structural Stiffness Matrix:</u>

 $\mathbf{K} = \mathbf{k}_1 + \mathbf{k}_2 + \mathbf{k}_3$

	1	2	3	4	5	6	7	8
	r 0.16039	-0.00761	-0.08839	-0.08839	0	0	-0.072	0.096]
	-0.00761	0.46639	0.08839	-0.08839	0	-0.25	0.096	-0.128
	-0.08839	-0.08839	0.08839	0.08839	0	0	0	0
$\mathbf{K} = AE$	-0.08839	-0.08839	0.08839	0.08839	0	0	0	0
KK - 714	1 0	0	0	0	0	0	0	0
	0	-0.25	0	0	0	0.25	0	0
	~0.072	0.096	0	0	0	0	0.072	-0.096
	0.096	-0.128	0	0	0	0	-0.096	0.128

• The Equation: $\mathbf{Q} = \mathbf{K} \mathbf{D}$

0 0 21		0.16039 0.00761 0.08839	-0.00761 0.46639 -0.08839	0.08839 0.08839 0.08839	-0.08839 -0.08839 0.08839	0 0	0 0.25 0	-0.072 0.096 0	0.096 0.128 0	
$Q_4 = Q_5$	AE	-0.08839 0	-0.08839 0	0.08839	0.08839	0	0	0	0	0
Q6 Q7 Q8		0 -0.072 0.096	-0.25 0.096 -0.128	0 0 0	0 0 0	0 0 0	0.25 0 0	0 0.072 0.096	0 0.096 0.128	0

partition matrix

$$\begin{bmatrix} -500\\ 0 \end{bmatrix} = AE \begin{bmatrix} 0.16039 & -0.00761\\ -0.00761 & 0.46639 \end{bmatrix} \begin{bmatrix} D_1\\ D_2 \end{bmatrix}$$

$$-500 = AE(0.16039D_1 - 0.00761D_2)$$
(1)

$$0 = AE(-0.00761D_1 + 0.46639D_2)$$
 (2)

Solving Eq. (1) and (2) yields :

$$D_1 = \frac{-3119.82}{AE} = \frac{-3119.85(12 \text{ in./ft})}{0.75 \text{ in}^2(29)(10^6) \text{ lb/in}^2} = -0.00172 \text{ in.}$$
$$D_2 = \frac{-50.917}{AE}$$

- Find out the values of Q_3 , Q_4 , Q_5 , Q_6 , Q_7 and Q_8 .
- Then find out forces in member no. 2 using method of joints.

Practice Problems No. 1

 Determine the unknown support reactions in the following truss. Take A= 0.5 in² and E = 29x10³ ksi for each member. All supports are hinge supports

SOLUTION HINT

Practice Problems No. 2

- Determine the unknown support reactions in the following truss.
- Take $A = 0.005 \text{ } m^2$ and E = 29 Gpa for each member.

SOLUTION HINT

Practice Problems No. 3

- Determine the unknown support reactions in the following truss.
- Take AE as constant

SOLUTION HINT

[4]		0.3536	-0.3536	-0.3536	0.3536	0	0	0	0 7	$[D_1]$
0		0.3536	0.8536	0.3536	-0.3536	0	0	0	-0.5	
0		-0.3536	0.3536	1.0607	-0.3536	-0.3536	0.3536	0.3536	-0.3536	D_3
0	= AE	0.3536	0.3536	-0.3536	1.0607	0.3536	-0.3536	-0.3536	-0.3536	D_4
0	- 12	0	0	-0.3536	0.3536	0.8536	-0.3536	-0.5	0	D
26		0	0	0.3536	-0.3536	0.3536	0.3536	0	0	0
2-		0	0	-0.3536	-0.3536	-0.5	0	0.8536	0.3536	
2		0	-0.5	-0.3536	-0.3536	0	0	0.3536	0.8536	0
6										

ASSIGNMENT NO. 2

Q1) Determine the unknown support seactions in the following truss. Take A= 0.005 m² and

E = 29 Gpa for each member.

Q1) Determine the unknown support reactions in the following truss. Take AE as constant.

Note: Submission date is 15-04-2015 (Wednesday)

HOW TO SOLVE MATRICES QUICKLY?

- In the matrices equation Q=KD, first the D matrix has to be determined. If there are 2 or three unknowns in D matrix then it can easily be determined by using equation method.
- But, if the no. of unknown increases it is recommended that you should use matrix inverse method for determining unknown D matrix.
- Since, Q=KD, so $D=K^{-1}Q$
- For determining inverse of a matrix, the Guass Jordan method can be used.

Gauss-Jordan Method for inverse Matrix?

Use a book, "Basic Structural Analysis by CS Reddy", Appendix A.5.2, Page No. 790 for this method (scanned copies in next slide)

Noe:

For checking the results. an excel sheet can be used to determine inverse of a matrix. The excel sheet is provided alongwith.

A.5.2 Inversion of Matrix by Gauss-Jordan Method

When the size of matrix is larger than 4×4 , inversion by Eq. A.62 becomes very cumbersome. Many additional methods have been developed for inverting large matrices. One method which is most commonly used is the Gauss-Jordan or complete elimination method. This is by far the quickest method for the inversion of a matrix on a computer.

As an example, consider the matrix

$$\mathbf{A} = \begin{bmatrix} 2 & 4 & 3 \\ 1 & 3 & 4 \\ -1 & 3 & 6 \end{bmatrix}$$
(A. 63)

As a first step, a rectangular matrix is formed by augmenting the given matrix with an identity matrix as shown

$$\begin{bmatrix} 2 & 4 & 3 & 1 & 0 & 0 \\ 1 & 3 & 4 & 0 & 1 & 0 \\ -1 & 3 & 6 & 0 & 0 & 1 \end{bmatrix}$$
(A.64)

The Gauss-Jordan elimination process is applied to the rectangular matrix reducing the left part of the matrix to an identity matrix with the right part attaining the elements denoted by b_{ij} . The resulting matrix is of the form

$$\begin{bmatrix} 1 & 0 & 0 & b_{11} & b_{12} & b_{13} \\ 0 & 1 & 0 & b_{21} & b_{22} & b_{23} \\ 0 & 0 & 1 & b_{31} & b_{32} & b_{33} \end{bmatrix}$$
(A.65)

The inversion of \mathbf{A} is

$$\mathbf{A}^{-1} = \mathbf{B} = \begin{bmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33} \end{bmatrix}$$
(A.66)

$$\mathbf{A} = \begin{bmatrix} 2 & 4 & 3 \\ 1 & 3 & 4 \\ -1 & 3 & 6 \end{bmatrix}$$

- N

Make an augmented matrix first

$$\begin{bmatrix} 2 & 4 & 3 & 1 & 0 & 0 \\ 1 & 3 & 4 & 0 & 1 & 0 \\ -1 & 3 & 6 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & \frac{3}{2} & \frac{1}{2} & 0 & 0 \end{bmatrix} = \begin{bmatrix} R_1 / 2 \\ R_2 - 1 \times R_1 \end{bmatrix}$$

 $\mathbf{A} = \begin{bmatrix} 2 & 4 & 3 \\ 1 & 3 & 4 \\ -1 & 3 & 6 \end{bmatrix}$

$$\begin{bmatrix} 1 & 2 & \frac{3}{2} & \frac{1}{2} & 0 & 0 \\ 0 & 1 & \frac{5}{2} & -\frac{1}{2} & 1 & 0 \end{bmatrix} = \begin{bmatrix} R_1 / 2 \\ R_2 - 1 \times R_1 \end{bmatrix}$$

$$\mathbf{A} = \begin{bmatrix} 2 & 4 & 3 \\ 1 & 3 & 4 \\ -1 & 3 & 6 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & \frac{3}{2} & \frac{1}{2} & 0 & 0 \\ 0 & 1 & \frac{5}{2} & -\frac{1}{2} & 1 & 0 \\ \end{bmatrix} \begin{array}{c} R_1 / 2 \\ R_2 - 1 \times R_1 \\ R_3 + 1 \times R_1 \end{array}$$

$$\mathbf{A} = \begin{bmatrix} 2 & 4 & 3 \\ 1 & 3 & 4 \\ -1 & 3 & 6 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & \frac{3}{2} & \frac{1}{2} & 0 & 0 \\ 0 & 1 & \frac{5}{2} & -\frac{1}{2} & 1 & 0 \\ 0 & 5 & \frac{15}{2} & \frac{1}{2} & 0 & 1 \end{bmatrix} \quad \begin{array}{c} R_1 / 2 \\ R_2 - 1 \times R_1 \\ R_3 + 1 \times R_1 \\ \end{array}$$

 $\mathbf{A} = \begin{bmatrix} 2 & 4 & 3 \\ 1 & 3 & 4 \\ -1 & 3 & 6 \end{bmatrix}$

Now don't touch first row and the first column

$$\begin{bmatrix} 1 & 2 & \frac{3}{2} & \frac{1}{2} & 0 & 0 \\ 0 & 1 & \frac{5}{2} & -\frac{1}{2} & 1 & 0 \\ 0 & 5 & \frac{15}{2} & \frac{1}{2} & 0 & 1 \end{bmatrix} \quad R_2 / (a_{22} = 1)$$

$$\mathbf{A} = \begin{bmatrix} 2 & 4 & 3 \\ 1 & 3 & 4 \\ -1 & 3 & 6 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & -\frac{7}{2} & \frac{3}{2} & -2 & 0 \\ 0 & 1 & \frac{5}{2} & -\frac{1}{2} & 1 & 0 \\ 0 & 0 & 1 & -\frac{3}{5} & 1 & -\frac{1}{5} \end{bmatrix} \begin{array}{c} R_1 - 2 R_2 \\ R_3 - 5 R_2 \end{array}$$

$$\begin{bmatrix} 1 & 0 & 0 & -\frac{3}{5} & \frac{3}{2} & -\frac{7}{10} \\ 0 & 1 & 0 & 1 & -\frac{3}{2} & \frac{1}{2} \\ 0 & 0 & 1 & -\frac{3}{5} & 1 & -\frac{1}{5} \end{bmatrix} \begin{array}{c} R_1 + 7/2 R_3 \\ R_2 - 5/2 R_3 \\ R_2 - 5/2 R_3 \end{array}$$

Hence the inverse matrix is

$$\mathbf{A}^{-1} = \begin{bmatrix} -\frac{3}{5} & \frac{3}{2} & -\frac{7}{10} \\ 1 & -\frac{3}{2} & \frac{1}{2} \\ -\frac{3}{5} & 1 & -\frac{1}{5} \end{bmatrix}$$

The result can be verified by the relationship

 $\mathbf{A}^{-1}\mathbf{A} = \mathbf{I}$

$$\begin{bmatrix} -\frac{3}{5} & \frac{3}{2} & -\frac{7}{10} \\ 1 & -\frac{3}{2} & \frac{1}{2} \\ -\frac{3}{5} & 1 & -\frac{1}{5} \end{bmatrix} \begin{bmatrix} 2 & 4 & 3 \\ 1 & 3 & 4 \\ -1 & 3 & 6 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

ANALYSIS OF FRAMES BY STIFFNESS METHOD

General Stiffness Matrix

rz $\left(\frac{AE}{L}\lambda_x^2 + \frac{12EI}{L^3}\lambda_y^2\right) \qquad \left(\frac{AE}{L} - \frac{12EI}{L^3}\right)\lambda_x\lambda_y \qquad -\frac{6EI}{L^2}\lambda_y \qquad -\left(\frac{AE}{L}\lambda_x^2 + \frac{12EI}{L^3}\lambda_y^2\right) \qquad -\left(\frac{AE}{L} - \frac{12EI}{L^3}\right)\lambda_x\lambda_y \qquad -\frac{6EI}{L^2}\lambda_y \qquad -\left(\frac{AE}{L}\lambda_x^2 + \frac{12EI}{L^3}\lambda_y^2\right) \qquad -\left(\frac{AE}{$ $= \begin{pmatrix} L & L^{2} & L^{3} & J \end{pmatrix} \begin{pmatrix} L & L^{3} & L^{3} & L \end{pmatrix} \begin{pmatrix} L & L^{3} & L^{3} & L^{3} & L^{3} \end{pmatrix} \begin{pmatrix} L & L^{3} & L^{3} & L^{3} & L^{3} \end{pmatrix} \begin{pmatrix} L & L^{3} & L^{3} & L^{3} & L^{3} & L^{3} \end{pmatrix} \begin{pmatrix} L & L^{3} & L^{3} & L^{3} & L^{3} & L^{3} \end{pmatrix} \begin{pmatrix} L & L^{3} & L^{3} & L^{3} & L^{3} & L^{3} \end{pmatrix} \begin{pmatrix} L & L^{3} & L^{3} & L^{3} & L^{3} & L^{3} & L^{3} \end{pmatrix} \begin{pmatrix} L & L^{3} & L^{3} & L^{3} & L^{3} & L^{3} & L^{3} \end{pmatrix} \begin{pmatrix} L & L^{3} \end{pmatrix} \begin{pmatrix} L & L^{3} & L^{3} & L^{3} & L^{3} & L^{3} & L^{3} \end{pmatrix} \begin{pmatrix} L & L^{3} & L^{3} & L^{3} & L^{3} & L^{3} & L^{3} \end{pmatrix} \begin{pmatrix} L & L^{3} & L^{3} & L^{3} & L^{3} & L^{3} & L^{3} \end{pmatrix} \begin{pmatrix} L & L^{3} \end{pmatrix} \begin{pmatrix} L & L^{3} & L^{3$ k =

Member 2

$\lambda_x = 0 \qquad \lambda_y = \frac{-8-0}{8} = -1$	$\frac{AE}{L} = \frac{10(29)(10^3)}{8(12)} = 3020.83$
$\frac{12EI}{L^3} = \frac{12(29)(10^3)(600)}{(8^3)(12^3)} = 236.00$	$\frac{6EI}{L^2} = \frac{6(29)(10^3)(600)}{(8^2)(12)^2} = 11\ 328.13$
$\frac{4EI}{L} = \frac{4(29)(10^3)(600)}{8(12)} = 725000$	$\frac{2EI}{L} = \frac{2(29)(10^3)(600)}{8(12)} = 362500$

k ₂		236.00	0 3020.\$3	11328.13 0	-236.00	0 -3020.83	11 328.13
	_	11 328.13	0	725 000	-11 328.13	0	362 500
		-236.00	0	-11 328.13	236.00	0	-11 328.13
		0	-3020.83	0	0	3020.83	0
	1	11 328.13	0	362 500	-11 328.13	0	725 000

General Stiffness Matrix

Structure stiffness matrix

	1	2	3	4	5	6	7	8	9	
	2249.89	0	11328.13	11328.13	0	-236.00	0	-2013.\$9	0	1
	0	3090.76	-5034.72	0	-5034.72	0	-3020.\$3	0	-69.93	
		-5034.72	1208333.33	362500	241666.67	-11328.13	0	0	5034.72	
	11328.13	0	362500	725000	Ô	-11328.13	0	0	0	
K =	0	-5034.72	241666.67	0	483 333.33	D	0	0	5034.72	
	-236.00	0	-11328.13	-11328.13	0	236.00	0	0	0	Ans
	0	-3020.83	0	0	0	0	3020.83	0	0	
	-2013.89	0	0	0	0	0	0	2013.89	0	
	0	-69.93	5034.72	D	5034.72	0	0	٥	69.93	
	L.								1	

Exercise 16-14

For solution refer to class lectures

Exercise 16-10

Determine the structure stiffness matrix **K** for the frame. Take $E = 29(10^3)$ ksi, I = 600 in⁴, A = 10 in² for each member. Assume joints ① and ③ are pinned; joint ② is fixed.

Member 1:

$$\lambda_{r} = \frac{12 - 0}{12} = 1 ; \qquad \lambda_{r} = \frac{0 - 0}{8} = 0$$

$$\mathbf{k}_{1} = \begin{bmatrix} 2013.89 & 0 & 0 & -2013.89 & 0 & 0\\ 0 & 69.927 & 5034.722 & 0 & -69.927 & 5034.722\\ 0 & 5034.722 & 483.33(10^{3}) & 0 & -5034.722 & 241.667(10^{3})\\ -2013.89 & 0 & 0 & 2013.89 & 0 & 0\\ 0 & -69.927 & -5034.722 & 0 & 69.927 & -5034.722\\ 0 & 5034.722 & 241.667(10^{3}) & 0 & -5034.722 & 483.33(10^{3}) \end{bmatrix}$$

Member 2:

$$\lambda_{x} = \frac{12 - 12}{12} = 0; \qquad \lambda_{y} = \frac{-8 - 0}{8} = -1$$

$$k_{z} = \begin{bmatrix} 236.003 & 0 & 11328.125 & -236.003 & 0 & 11328.125 \\ 0 & 3020.833 & 0 & 0 & -3020.833 & 0 \\ 11328.125 & 0 & 725000 & -11328.125 & 0 & 362500 \\ -236.003 & 0 & -11328.125 & 236.003 & 0 & -11328.125 \\ 0 & -3020.833 & 0 & 0 & 3020.833 & 0 \\ 11328.125 & 0 & 362500 & -11328.125 & 0 & 725000 \end{bmatrix}$$

	2249.492	0	11328.125	11328.125	0	-236	0	-2013.89	0 .
	0	3090.76	-5034.722	0	-5034.722	0	~3020.833	0	-69.927
	11328.125	5034.722	1201.33(107	362500	241666.67	-11328.125	Q	0	5 034.722
K ==	11321.125	0	362500	725000	0	-11328.125	0	0	0
	0	~5034.722	241666.67	0	483333.33	0	0	0	5034.722
	-236	0	-11328.125	-11328.125	0	236	0	0	0
	0	-3020.833	0	0	Ο.	0	3020.833	0	0
	-2013.89	0	0	0	0	0	0	2013.89	0
	0	+69.927	5034.722	D	5034.722	0	o	0	69.927

CONCEPT OF

TEMPERATURE EFFECTS, LACK OF FIT AND SUPPORT SETTLEMENT

INTRODUCTION TO FINITE ELEMENT METHOD (FEM)

Topics to be covered

- Introduction
 - How it works
 - Concepts of Nodes
 - Use of stiffness matrices
 - Stress Analysis
 - Application of FEM
- Types of FEM
 - 1-D (Line element)
 - 2-D (Plane element)
 - 3-D (Solid element)

Structure having Support Settlement

 Redo the solved problem 1 with support settlement of 0.1ft downwards at Joint 1

Lack of fit

• Redo the solved problem 1 if the member 1 is made 0;01ft too short before it was fitted into place.

Problem with temperature effect

 Redo the solved problem 1 when member 1 of the truss is subjected to an increase in temperature of 83 °C, tale temperature coefficient = 11.7 x 10-6/°C.

FOR REFERENCE

- Solve examples in chapter 14 of RC Hibbeler, (6th or 7th Edition)
- Preferred examples are:
- Example 14-3
- Example 14-5 (problem with support settlement)
- Example 14-7 (problem for lack of fit)
- Example 14-8 (problem with temperature effect)

PRACTICE PROBLEMS

Following material related to this course has been uploaded on the site so far:

Lecture Schedule Structural Analysis Book Excel sheet for inverse of matrices Lectures

Practice Problems

Book: Structural Analysis by RC Hibbeler, 7th Edition

Beams:

- Eg 15-1
- Exercise 15-2
- Exercise 15-3
- Exercise 15-4
- Exercise 15-9

<u>Truss:</u>

- Eg 14-3
- Eg 14-5 (problem with support settlement)
- Exercise 14-1, 14-2, 14-3
- Exercise 14-8, 14-9
- Exercise 14-11, 14-12
- Exercise 14-13, 14-14

Book: Structural Analysis by RC Hibbeler, 7th Edition

Frames:

- Exercise 16-1
- Exercise 16-10
- Exercise 16-14

BEAMS EXERCISE SOLUTIONS

Exercise 15-2

Assume 1 as fixed, 2 as roller and 3 as pin.

Member 1

	1	0.096	0.24	-0.096
k	ET	0.24	0.80	-0.24
K ₁ -	24	0.24	-0.24	0.096
	3	0.24	0.40	-0.24

Member 2

$$\mathbf{k}_{2} = EI \begin{bmatrix} 0.768 & 0.96 & -0.768 & 0.96 \\ 0.96 & 1.60 & -0.96 & 0.80 \\ -0.768 & -0.96 & 0.768 & -0.96 \\ 0.96 & 0.80 & -0.96 & 1.60 \end{bmatrix}$$

[0]	۲ 1.60	0.80	-0.96	0.960	0	0 -	
18.75		0.80	2.40	-0.960	0.720	0.240	0.40	D
Q3	E	-0.96	0.96	0.768	-0.768	0	0	0
$Q_4 = 15.0$	= 14	0.96	0.72	-0.768	0.864	-0.096	-0.24	0
$Q_{\rm s} - 15.0$	1	0	0.24		-0.096			
Q6 - 18.75		L 0	0.40		-0.240		0.80	LO

By partition matrix

$$\begin{bmatrix} 0\\18.75 \end{bmatrix} = EI \begin{bmatrix} 1.60 & 0.80\\0.80 & 2.40 \end{bmatrix} \begin{bmatrix} D_1\\D \end{bmatrix}$$

$$D_1 = \frac{-4.6875}{EI}$$

 $D_2 = \frac{9.375}{EI}$

$$\begin{bmatrix} q_5 \\ q_6 \\ q_4 \\ q_2 \end{bmatrix} = E \begin{bmatrix} 0.096 & 0.24 & -0.096 & 0.24 \\ 0.24 & 0.80 & -0.24 & 0.40 \\ -096 & -0.24 & 0.096 & -0.24 \\ 0.24 & 0.40 & -0.24 & 0.80 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \\ -0.24 \end{bmatrix} \frac{1}{EI} + \begin{bmatrix} 15 \\ 18.75 \\ 15 \\ -18.75 \end{bmatrix}$$

$$q_6 = 0.40 EI \left(\frac{9.375}{EI}\right) + 18.75 = 22.5 \text{ kN} \cdot \text{m}$$
 And

$$q_2 = 0.80 EI \left(\frac{9.375}{EI} \right) - 18.75 = -11.25 \text{ kN} \cdot \text{m}$$
 Ans

$$q_5 = 0.24 EI \left(\frac{9.375}{EI}\right) + 15.0 = 17.25 \text{ kN}$$

$$q_4 - 0.24 EI \left(\frac{9.375}{EI}\right) + 15.0 = 12.75 \text{ kN}$$

Exercise 15-3

Assume 1 as fixed, 2 as roller and 3 as pin.

Member 1

$$\mathbf{k}_{1} = EI \begin{bmatrix} 0.096 & 0.24 & -0.096 & 0.24 \\ 0.24 & 0.8 & -0.24 & 0.4 \\ -0.096 & -0.24 & 0.096 & -0.24 \\ 0.24 & 0.4 & -0.24 & 0.8 \end{bmatrix}$$

Member 2

$$\mathbf{k}_2 = EI \begin{bmatrix} 0.768 & 0.96 & -0.768 & 0.96 \\ 0.96 & 1.6 & -0.96 & 0.8 \\ -0.768 & -0.96 & 0.768 & -0.96 \\ 0.96 & 0.8 & -0.96 & 1.6 \end{bmatrix}$$

0 D_1 1.6 0.96 0.8 -0.96 0 0 25.0 0.24 0.8 -0.96 0.72 0.42.4 <u>D.</u> Q, -0.768 -0.96 0.768 0 -0.96 0 Ð <u>Q.</u> - 30.0 1 = E 0.96 -0.096 0.72 0.864 -0.24 --0.768 0 0 0 -0.24 0.8 0.24 0.4 Q-25.0 0 D 0.24 -0.096 0.240.096 0 Q. - 30.0 0

$$Q_2 = -0.96ET\left(\frac{-6.25}{EI}\right) - 0.96ET\left(\frac{12.5}{EI}\right) = -6.00 \text{ kN}$$

$$Q_4 = 30.0 = 0.96 ET \left(\frac{-6.25}{EI}\right) + 0.72 \left(\frac{12.5}{EI}\right)$$

 $Q_4 = 33 \text{ kN}$ Ans

 $D_1 = \frac{-6.25}{EI}$ $D_2 = \frac{12.5}{EI}$

$$Q_5 - 25.0 = 0 + 0.4EI\left(\frac{12.5}{EI}\right)$$

 $Q_5 = 30 \text{ kN} \cdot \text{m}$ Ans

$$Q_4 - 30.0 = 0 + 0.24 EI \left(\frac{12.5}{EI}\right)$$

 $Q_4 = 33.0 \text{ kN}$ Ans

Am

$$\begin{bmatrix} q_5 \\ q_6 \\ q_4 \\ q_2 \end{bmatrix} = E \begin{bmatrix} 0.096 & 0.24 & -0.096 & 0.24 \\ 0.24 & 0.80 & -0.24 & 0.40 \\ -096 & -0.24 & 0.096 & -0.24 \\ 0.24 & 0.40 & -0.24 & 0.80 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \frac{1}{EI} + \begin{bmatrix} 15 \\ 18.75 \\ 15 \\ -18.75 \end{bmatrix}$$

$$q_6 = 0.40 EI \left(\frac{9.375}{EI}\right) + 18.75 = 22.5 \text{ kN} \cdot \text{m}$$
 Ans

$$q_2 = 0.80 EI \left(\frac{9.375}{EI} \right) - 18.75 = -11.25 \text{ kN} \cdot \text{m}$$
 Ans

$$q_5 = 0.24 EI \left(\frac{9.375}{EI}\right) + 15.0 = 17.25 \text{ kN}$$

$$q_4 - 0.24 EI \left(\frac{9.375}{EI}\right) + 15.0 = 12.75 \text{ kN}$$

Exercise 15-4

75		1.1667	-0.07292	0.16667	0.33333	-0.09375	0.25	
Q - 75.0		-0.07292	0.07899	-0.05556	-0.16667	-0.02344	0.09375	0
B - 75.0		0.16667		0.05556		0	0	0
Q75.0	= 2	0.33333	-0.16667	0.16667	0.66667	0	0	0
Qs		-0.09375	-0.02344	0	0	0.02344	-0.09375	0
Q		0.25	0.09375	0	0	-0.09375	0.5	10

$$Q_2 = 75.0 = -0.07292ET \left(\frac{64.286}{ET} \right)$$

 $Q_2 = 70.31 \text{ kN}$

Partition matrix

75.0 = EI(1.16667)I $D_1 = \frac{64.286}{EI}$

$$Q_{3} - 75.0 = 0.16667 EI \left(\frac{64.286}{EI}\right)$$

$$Q_{3} = \$5.71 \text{ kN}$$

$$Q_{4} - 75.0 = 0.33333EI \left(\frac{64.286}{EI}\right)$$

$$Q_{4} = M_{1} = 96.43 \text{ kN} \cdot \text{m} = 96.4 \text{ kN} \cdot \text{m} \qquad \text{Ams}$$

$$Q_{5} = -0.09375EI \left(\frac{64.286}{EI}\right) = -6.03 \text{ kN} = 6.03 \text{ kN}$$

$$Q_{4} = M_{3} = 0.25EI \left(\frac{64.286}{EI}\right) = 16.07 \text{ kN} \cdot \text{m} = 16.1 \text{ kN} \cdot \text{m}$$

A

Exercise 15-9

Support 2 settles 0.1ft

Member 1

$$\mathbf{k}_{2} = EI\begin{bmatrix} \frac{12}{(24)^{3}} & \frac{6}{(24)^{1}} & \frac{-12}{(24)^{3}} & \frac{6}{(24)^{2}} \\ \frac{6}{(24)^{2}} & \frac{4}{24} & \frac{-6}{(24)^{2}} & \frac{2}{24} \\ \frac{-12}{(24)^{3}} & \frac{-6}{(24)^{2}} & \frac{12}{(24)^{3}} & \frac{-6}{(24)^{2}} \\ \frac{6}{(24)^{2}} & \frac{2}{24} & \frac{-6}{(24)^{2}} & \frac{4}{24} \end{bmatrix}$$

$$\begin{bmatrix} 72.0\\ Q_2 - 36.0\\ Q_3 + 144\\ Q_4 - 72.0\\ Q_5 - 216\\ Q_6 - 36.0 \end{bmatrix} = EI \begin{bmatrix} \frac{5}{18} & \frac{-6}{(24)^2} & \frac{2}{24} & \frac{5}{864} & \frac{2}{36} & \frac{6}{(36)^2}\\ \frac{-6}{(24)^2} & \frac{12}{(24)^3} & \frac{-6}{(24)^2} & \frac{-12}{(24)^3} & 0 & 0\\ \frac{2}{24} & \frac{-6}{(24)^2} & \frac{4}{24} & \frac{6}{(24)^2} & 0 & 0\\ \frac{5}{864} & \frac{-12}{(24)^3} & \frac{6}{(24)^2} & \frac{35}{31 \cdot 104} & \frac{-6}{(36)^2} & \frac{-12}{(36)^3}\\ \frac{2}{36} & 0 & 0 & \frac{-6}{(36)^2} & \frac{4}{36} & \frac{6}{(36)^2}\\ \frac{6}{(36)^2} & 0 & 0 & \frac{-12}{(36)^3} & \frac{6}{(36)^2} & \frac{12}{(36)^3} \end{bmatrix} \begin{bmatrix} D_1\\ 0\\ 0\\ -0.1\\ 0\\ 0 \end{bmatrix}$$

$$72.0 = 9500 \left[\frac{5}{18} D_1 + \frac{5}{864} (-0.1) \right]$$

 $D_1 = 0.029368 \, \mathrm{rad}$

$$Q_3 + 144 = 9500 \left[\frac{2}{24} (0.029368) + \frac{6}{(24)^2} (-0.1) \right]$$

 $Q_3 = -130.65 \text{ k} \cdot \text{ft} = 131 \text{ k} \cdot \text{ft}$ Ans

$$Q_{\rm s} + 216 = 9500 \left[\frac{2}{36} \left(0.029368 \right) + \frac{6}{(36)^2} \left(-0.1 \right) \right]$$

 $Q_{\rm s} = 235.90 \, \text{k-ft} = 236 \, \text{k-ft} \quad \text{Ans}$

Member 1

$$\mathbf{k}_{1} = EI \begin{bmatrix} 1.5 & 1.5 & -1.5 & 1.5 \\ 1.5 & 2 & -1.5 & 1 \\ -1.5 & -1.5 & 1.5 & -1.5 \\ 1.5 & 1 & -1.5 & 2 \end{bmatrix}$$

Member 1

$$\mathbf{k}_2 = EI \begin{bmatrix} 1.5 & 1.5 & -1.5 & 1.5 \\ 1.5 & 2 & -1.5 & 1 \\ -1.5 & -1.5 & 1.5 & -1.5 \\ 1.5 & 1 & -1.5 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 3\\ -1\\ -2\\ Q_4 - 6\\ Q_5 - 12\\ Q_6 - 6 \end{bmatrix} = E\begin{bmatrix} 2 & 1 & 0 & -1.5 & 1.5 & 0\\ 1 & 4 & 1 & -1.5 & 0 & 1.5\\ 0 & 1 & 2 & 0 & -1.5 & 1.5\\ -1.5 & -1.5 & 0 & 1.5 & -1.5 & 0\\ 1.5 & 0 & -1.5 & -1.5 & 3 & -1.5\\ 0 & 1.5 & 1.5 & 0 & -1.5 & 1.5 \end{bmatrix} \begin{bmatrix} D_1\\ D_2\\ D_3\\ D_3\\ 0\\ 0\\ 0 \end{bmatrix}$$

$$\frac{3}{El} = 2D_1 + 1D_2$$

$$\frac{-1}{El} = 1D_1 + 4D_2 + 1D_3$$

$$\frac{-2}{El} = 1D_2 + 2D_3$$

$$Q_{4} - 6.0 = -1.5EI\left(\frac{1.75}{EI}\right) - 1.5EI\left(\frac{-0.50}{EI}\right) + 0$$

$$Q_{4} = 4.125 \text{ kN} \quad \text{Ans}$$

$$Q_{5} - 12.0 = 1.5EI\left(\frac{1.75}{EI}\right) + 0 - 1.5EI\left(\frac{-0.75}{EI}\right)$$

Solving these equations yields

$$Q_5 - 12.0 = 1.5EI\left(\frac{1.75}{EI}\right) + 0 - 1.5EI\left(\frac{-0.75}{EI}\right)$$

 $Q_4 = 15.75 \text{ kN}$ Ans

Check for equilibrium

$$D_1 = \frac{1.75}{EI}$$

 $Q_6 - 6.0 = 0 + 1.5 EI \left(\frac{-0.50}{EI}\right) + 1.5 EI \left(\frac{-0.75}{EI}\right)$ $Q_6 = 4.125 \, \text{kN}$ Ans

 $D_2 = \frac{-0.50}{EI}$ $D_3 = \frac{-0.75}{EI}$

$$\langle +\Sigma M_2 = 0; 4.125(2) + 12(1) - 4.125(2) - 12(1) = 0$$
 (Check)
+ $\hat{T}\Sigma F_2 = 0; 4.125 + 15.75 + 4.125 - 12 - 12 = 0$ (Check)