

Analysis of A Thermal Transpiration Flow: A Circular Cross Section Micro-tube Submitted to a Temperature Gradient Along its Axis

Marcos Rojas, Pierre Perrier, Irina Graur and J. Gilbert Meolans

Université de Provence Aix-Marseille I, IUSTI, UMR 6595 CNRS, Marseille, France

> IUVSTA Leinsweiler Hof, Leinsweiler May 16th - 19th 2011

- 1 Introduction: Thermal Transpiration
- 2 The Experimental Apparatus
- 3 The Experimental Methodology
 - 3.1 The Stages of the Experiment
 - 3.2 The Mass flow rate
- 4 Results
- 5 Conclusions

Introduction

Thermal transpiration is the Macroscopic movement of particles due only to an imposed Temperature Gradient.

Objective: Measure the Mass Flow Rate along a tube induced by thermal transpiration.

Thermal Transpiration

IUVSTA 2011 Leinsweiler 16th - 19th of May

and a statement of the state of the

Thermal Transpiration

Macroscopic movement of gas particles:

Where are we?

- 1 Introduction: Thermal Transpiration
- 2 The Experimental Apparatus
- 3 The Experimental Methodology
 - 3.1 The Stages of the Experiment
 - 3.2 The Mass flow rate
- 4 Results
- 5 Conclusions

Experimental apparatus

The circular cross-section glass micro-tube.

 $d_{\textit{tube}} = 485 \mu \textit{m} \pm 1.2\%$; $d_{\textit{ext}} = 6.5 \textit{mm} \pm 0.1 \textit{mm}$

 $L_{tube}=5.27$ cm \pm 0.01 cm ; $\Lambda=1.14$ W/m $^{\circ}$ C

Temperature gradient

Infrared camera caption of the temperature distribution along the external surface of the micro-tube.

Temperature gradient

The temperature distribution along the external surface of the micro-tube.

Where are we?

- 1 Introduction: Thermal Transpiration
- 2 The Experimental Apparatus
- 3 The Experimental Methodology
 - 3.1 The Stages of the Experiment
 - 3.2 The Mass flow rate
- 4 Results
- 5 Conclusions

Initial conditions:

- Thermal Transpiration = Mass flow imposed by a Temperature Gradient
- Poiseille Flow = Mass flow imposed by a Pressure Gradient

IUVSTA 2011 Leinsweiler 16th – 19th of May

the second s

Exponential Behavior

Where are we?

- 1 Introduction: Thermal Transpiration
- 2 The Experimental Apparatus
- 3 The Experimental Methodology
 - 3.1 The Stages of the Experiment
 - 3.2 The Mass flow rate
- 4 Results
- 5 Conclusions

Stationary flow at t=0+

Exponential fit to the experimental data

Pressure variation in time: $p(t)=A [1 - e^{(-t/Tau_h)}] + c$

Stationary flow limit

Mass flow rate

$$\rightarrow PV = mRT \rightarrow \frac{dP}{P} = \frac{dm}{m} + \frac{dT}{T}$$

Dividing by the experimental time length when the phenomenon is still stationary (Stage 2).

$$\frac{dm}{\Delta t} = \frac{V}{RT} \frac{dP}{\Delta t} (1 - \epsilon)$$
$$\rightarrow \epsilon = \frac{dT/T}{dP/P} \ll 1$$

Stationary flow at t=0+

Mass flow rate

$$\dot{M} = \frac{V}{RT} \frac{dP}{\Delta t}$$

$$\Delta t < \mathbf{1}[s] \rightarrow \frac{dP}{\Delta t}$$
 is linear

Stationary flow at t=0+

Where are we?

- 1 Introduction: Thermal Transpiration
- 2 The Experimental Apparatus
- 3 The Experimental Methodology
 - 3.1 The Stages of the Experiment
 - 3.2 The Mass flow rate
- 4 Results
- 5 Conclusions

Working regimes

Hydro-dynamic continuum regime	Slip regime	Transitional regime	Free molecular regime		
nudsen number ⁰ .	01 0.	1 1	0		

Rarefied Gas

$$\delta = \frac{\sqrt{\pi}}{2} \cdot \frac{1}{Kn}$$

Working regimes

Hydro-dynamic continuum regime	Slip reg <mark>ime</mark>	Transitional regime	Free molecular regime	
Knudsen number ⁰ .	01 0.	.1 1	0	

Rarefied Gas

$$\delta = \frac{\sqrt{\pi}}{2} \cdot \frac{1}{Kn}$$

Mass Flow Rate

IUVSTA 2011 Leinsweiler 16th – 19th of May

and a statement of the state of the

Where are we?

- 1 Introduction: Thermal Transpiration
- 2 The Experimental Apparatus
- 3 The Experimental Methodology
 - 3.1 The Stages of the Experiment
 - 3.2 The Mass flow rate
- 4 Results
- 5 Conclusions

Conclusions:

- Still no efforts have been done to describe and analyze experimentally a mass flow rate induced by thermal transpiration: Here an original method is proposed.
- Thermal Transpiration can be introduced for high precision rarefied gas flow control systems.

Perspectives

Perspectives:

- The physics behind the exponential pressure variation in time will be explored: Divergences in function of the gas rarefaction, the temperature imposed gradient and the gas nature will be investigated.
- A new experimental setup will be installed, different geometries of the channel will be investigated.
- The experimental system will be equipped with interchangeable reservoir volumes in order to investigate the influence of the reservoirs in the system's time reaction.

Acknowledgments

The research leading to these results has received funding from the European Community's Seventh Framework Programme (FP7/2007-2013 under grant agreement n 215504).

