
      IUVSTA 2011
Leinsweiler 16th - 19th of May

Analysis of A Thermal Transpiration Flow:
A Circular Cross Section Micro-tube Submitted

to a Temperature Gradient Along its Axis

Marcos Rojas, Pierre Perrier, Irina Graur
and J. Gilbert Meolans
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Introduction

Thermal transpiration is the Macroscopic movement of particles
due only to an imposed Temperature Gradient.

Objective: Measure the Mass Flow Rate along a tube induced
by thermal transpiration.
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Thermal Transpiration
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Thermal Transpiration
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Experimental apparatus
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Micro-tube

The circular cross-section glass micro-tube.

dtube = 485µm ± 1.2% ; dext = 6.5mm ± 0.1mm

Ltube = 5.27cm ± 0.01cm ; Λ = 1.14W/m◦C
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Temperature gradient

10030.5

Infrared camera caption of the temperature distribution along
the external surface of the micro-tube.

9 / 28



      IUVSTA 2011
Leinsweiler 16th - 19th of May

Temperature gradient
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The experimental methodology

Initial conditions:

  Inlet 
Volume

 Outlet 
Volume

1 2

p1=p2

T1<T2

micro-tube

big diameter

>

>

>

> >

12 / 28



      IUVSTA 2011
Leinsweiler 16th - 19th of May

The experimental methodology
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The experimental methodology
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The experimental methodology

Thermal Transpiration

Poiseuille Flow

Poiseille Flow = Mass flow imposed by a Pressure Gradient

Thermal Transpiration = Mass flow imposed by a Temperature Gradient
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Stages of the experiment

Thermal Transpiration

Poiseuille Flow

Poiseille Flow = Mass flow imposed by a Pressure Gradient

Thermal Transpiration = Mass flow imposed by a Temperature Gradient
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Stages of the experiment

Thermal Transpiration

Poiseuille Flow

Poiseille Flow = Mass flow imposed by a Pressure Gradient

Thermal Transpiration = Mass flow imposed by a Temperature Gradient

 1.45

 1.46

 1.47

 1.48

 1.49

 1.5

 0  10  20  30  40  50  60

P
re

ss
u

re
 [

to
rr

]

Time [s]

2

2

2 Stationary 
pressure variation

∆p

∆t
is linear

micro-tube

>

T  inlet < T  outlet

p  inlet < p  outlet

poiseuille flow generated
by pressure difference

thermal creep flow generated
by temperature difference

>>

>

2
inlet outlet

>

16 / 28



      IUVSTA 2011
Leinsweiler 16th - 19th of May

Stages of the experiment

Thermal Transpiration

Poiseuille Flow

Poiseille Flow = Mass flow imposed by a Pressure Gradient

Thermal Transpiration = Mass flow imposed by a Temperature Gradient
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Stages of the experiment

Thermal Transpiration

Poiseuille Flow

Poiseille Flow = Mass flow imposed by a Pressure Gradient

Thermal Transpiration = Mass flow imposed by a Temperature Gradient
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Exponential Behavior
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Exponential Behavior
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Stationary flow at t=0+
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Stationary flow at t=0+

Mass flow rate

→ PV = mRT → dP
P =

dm
m +

dT
T

Dividing by the experimental time length when the phenomenon is
still stationary (Stage 2).

dm
∆t =

V
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dP
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→ ǫ = dT/T
dP/P ≪ 1
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Stationary flow at t=0+

Mass flow rate

Ṁ =
V
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Stationary flow at t=0+
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Mass Flow Rate
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Conclusions

Conclusions:

◮ Still no efforts have been done to describe and analyze
experimentally a mass flow rate induced by thermal
transpiration: Here an original method is proposed.

◮ Thermal Transpiration can be introduced for high precision
rarefied gas flow control systems.
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Perspectives

Perspectives:

◮ The physics behind the exponential pressure variation in
time will be explored: Divergences in function of the gas
rarefaction, the temperature imposed gradient and the gas
nature will be investigated.

◮ A new experimental setup will be installed, different
geometries of the channel will be investigated.

◮ The experimental system will be equipped with
interchangeable reservoir volumes in order to investigate
the influence of the reservoirs in the system’s time reaction.
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