

 © 2018, IJCSE All Rights Reserved 74

International Journal of Computer Sciences and Engineering Open Access

Research Paper Vol-6, Special Issue-6, July 2018 E-ISSN: 2347-2693

Analysis of Aggregate Functions in Relational Databases and NoSQL

Databases

Benymol Jose

1*
, Sajimon Abraham

2

1
School of Computer Sciences, Mahatma Gandhi University, Kottayam, India

2
School of Management and Business Studies, Mahatma Gandhi University, Kottayam, India

*Corresponding Author: benymol.jose@mariancollege.org, Tel.: +0091-9995237344

Available online at: www.ijcseonline.org

Abstract— The attractions in Big Data Analytics made a progress from relational databases to NoSQL databases. A NoSQL

structure can be utilized to enhance the distribution of storage and analysis work of data in the world of big data. MongoDB is a

type of NoSQL database which represents data as a collection of documents. Ordinary database systems like MySQL can store

only organized data in tabular form as rows and columns. As the majority of the data created now is in unstructured or semi

structured format, it is difficult for conventional database systems to store or process this data. NoSQL data stores like

MongoDB can store this huge data which additionally have very powerful query engines and indexing features. These features

made it simple and fast to execute extensive variety of queries including aggregate ones. The aggregation pipeline and map

reduce concepts in MongoDB provides support for aggregate operations. This paper primarily makes a comparison of

performance of aggregate queries in MySQL and MongoDB. A set of experiments were performed with two datasets of

different size in the two databases. The results show that MongoDB performs better in all the cases. The results can be a boost

for companies to change the structure of their databases from conventional form to NoSQL.

Keywords— Relational Databases, NoSQL Databases, MongoDB, MySQL, Aggregation.

I. INTRODUCTION

The relational model has ruled the computer industry since

the 1980s for the most part to store and retrieve data.

Gradually, relational database systems lost its highlight

because of the existence of a rigid schema. This

inflexibility caused the difficulty in making new

relationships between the entities [1]. Another critical

reason of its failure is that as the accessible data is coming

in varying formats, it is getting difficult to process this huge

volume of data with relational model. This is because of the

time consumed in joining a large number of tables [2].

Due to the boom of huge mass of unstructured data in these

years, non-conventional databases like MongoDB are

coming up to manage the issues which exists in connection

with conventional databases. MongoDB is exceptionally

valuable which can even replace the existing conventional

relational foundation [3].

MongoDB is a document-based NoSQL database developed

by MongoDB Inc, which is accessible as an open source.

MongoDB systems use documents and collections instead

of the tables used in traditional databases. JSON, BSON

based documents or sub documents are the fundamental

components of the collections in MongoDB. The capacity

issues of traditional database systems related with managing

huge volumes of unstructured data can be rectified by using

NoSQL systems like MongoDB [4].

An aggregation is a task that passes through a set of

records and does a calculation on a group of values and

gives a single value such as sum, average, max, min or

count as result. Often, people are interested in summarizing

data to determine trends or produce top level reports which

can help in decision making in commercial organizations.

Aggregate functions can assist with the summarization of

large volumes of data [5]. These aggregation tasks can be

achieved with both relational databases like MySQL and

document-based NoSQL databases like MongoDB. In a

distributed environment, each partition gives a fractional

outcome and after that these results are aggregated

productively so that it can give one response to the

application and client. The different aggregate functions and

operations available are count, min, max, sum, distinct,

group, sort etc.

The main aim of this paper is to make the comparison and

analysis of performance of queries using aggregate

functions both in MongoDB and MySQL and to see which

one performs well. The aggregate queries are executed with

two datasets of different sizes and the results show that

MongoDB performs well for both the cases. This is a

motive for business organizations to shift from conventional

 International Journal of Computer Sciences and Engineering Vol.6(6), Jul 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 75

databases to NoSQL databases for easy storage and fast

decision making.

 The paper is composed as follows: section II, depicts few

related studies and in section III, MongoDB Query

Aggregation options are compared with that of MySQL. In

section IV, an evaluation on performance of both the

databases is made by executing different queries with

aggregate functions and the time taken for the execution is

noted. Finally, in section V, graphs are drawn and the

performance is analyzed and the paper is concluded with

the comments on the comparison of aggregate query

performance in MySQL and MongoDB.

II. RELATED WORK

These days, there have been lot of discussions happening

worldwide about the performance of SQL and NoSQL

databases. But very few researches have occurred with the

performance comparison of SQL and NoSQL databases

with large datasets and simple queries. Here, we are

referring to few studies and works happened in this area. In

a recent study, a method was proposed to combine the

properties of MySQL and MongoDB by adding a

middleware between the layers of application and database.

It consists of metadata which includes different types of

packages [6]. In another contribution, different database

operations were performed in the SQL and NoSQL

databases with the same dataset for an e-commerce system.

And it is concluded that MongoDB does better for all

operations except for few aggregate operations [7]. In

another work, attempt is made to utilize NoSQL database in

place of the relational database. It is applied to traditional

information management systems, compared the two

database technologies, gave the key code of NoSQL

implementation, and finally listed the performance

comparison of the two schemes [8]. Another research is

endeavoring to evaluate the execution speed of five NoSQL

databases (Redis, MongoDB, Couchbase, Cassandra,

HBase) with an evaluating device called - YCSB [9].

III. MongoDB Query Aggregation Options

 There are two different aggregation methods available in

MongoDB. They are the aggregation pipelining and map

reducing methods.

A. Aggregation Pipeline in MongoDB
The aggregation pipeline’s working is similar to that of the

pipe command in Unix. The query and the diagram

explaining the working of the pipeline is shown in the

following figure, Figure 1.

Figure 1. Aggregation Pipeline from Mongodb.com

documentation

As the documents are moved through the pipeline, filtering

and changes can be applied as required on every operator.

Skip, match, and sort are the various functions that each

pipeline operator is supposed to perform. The performance

can be improved by reducing the quantity of the of data

being processed by applying filtering at the beginning of the

pipeline itself [10].

B. Map-Reduce in MongoDB
The automatic query processing flexibility which is not

included in aggregation pipeline is associated with the map-

reduce capability of MongoDB. It uses massively parallel

processing to manage the data whose size is very big. The

map-reduce codes are executed with a particular command

‘map-Reduce’ in MongoDB. In this, before applying

filtering and gathering of documents with the reduce task,

documents are matched with the map task.

The reduce process considers a group of (key, value) pairs

as input which is produced as the output of the map

procedure. Normally the input to a map procedure is a

collection and the reduce procedure can give a collection as

output or can be returned inline. Also, if the reduce process

outputs a collection it can act as input to one more map-

reduce process [10]. The working of map reduce process is

demonstrated in the following figure, Figure 2.

 International Journal of Computer Sciences and Engineering Vol.6(6), Jul 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 76

Figure 2. Map-Reduce from Mongodb.com documentation

IV. PERFORMANCE EVALUATION

The experiments are performed in a machine running with

Intel(R) Core(TM) i7-7500U CPU @ 2.70GHz, with

Windows10, 64-bit operating system. The machine has

8GB of physical memory and 256GB of SSD hard disk

space. The MySQL Workbench 6.3 and MongoDB Studio

3T 3.4.5 are the respective softwares used to test the data.

The data is first collected in Studio 3T and then migrated to

MySQL Workbench with the import option available there.

Queries with different aggregate functions are executed on

both the databases and the execution time is recorded.

The first dataset utilized comprises of the details of permits

issued by the Department of Buildings in the City of

Chicago from 2006 to the present. The dataset for every

year contains in excess of 65,000 records. Furthermore, the

dataset taken for the experiment and analysis consists of

around 1.5 lakhs of records. It is denoted as D1.

The second data set considered consists of radiation and

environmental data from all over the world which begun in

response to the nuclear disaster in Japan in March, 2011. It

consists of around 10 lakhs 50 thousand records of 1GB

size. To denote it in experiments the name D2 is used.

The comparison between the databases is done by

performing a series of queries using aggregate functions

like sum, avg, min and max. The time taken for the

execution of these queries is noted in the corresponding

tables for both the datasets. To avoid complication, only

queries with dataset D1 are shown.

A. Sum() Function

The sum function is often applied to a set of numeric values

and it returns the sum of those values. The following table,

Table 1 shows the queries used in both MySQL and

MongoDB for the aggregate function sum and the time

taken for query execution in case of D1 and D2.

Table 1. Query and Execution time for MySQL and

MongoDB for the aggregate function sum with D1 and D2.

Query

in

MySQL

Query in

Studio

3T

Time in Milliseconds

D1 D2

MySQ

L

Mon

goDB

MySQ

L

Mongo

DB

SELEC

T

STREE

T_NUM

BER,su

m(ID)

FROM

building

GROUP

BY

STREE

T_NUM

BER;

db.buildi

ng.aggre

gate([{$g

roup:{_i

d:"$STR

EET_NU

MBER",

num:{$s

um:

"$ID"}}}

])

578 40 21641 2476

Here documents were grouped based on the field

“street_number” and on each appearance of street_number,

the existing value of sum is updated.

B. Avg() Function

 The avg () function is applied to a set of numeric values

and it returns the average or mean of those values. The

following table, Table 2 shows the queries used in both

MySQL and MongoDB for the aggregate function avg and

the time taken for query execution in case of D1 and D2.

Here documents were grouped based on street_number and

the average of their ID values are taken.

Table 2. Query and Execution time for MySQL and

MongoDB for the aggregate function avg with D1 and D2.

Query

in

MySQ

L

Query in

Studio

3T

Time in Milliseconds

D1 D2

MySQ

L

MongoD

B

MyS

QL

Mongo

DB

select

avg(ID)

from

buildin

g group

by

street_n

umber;

db.buildi

ng.aggre

gate([{$g

roup:{_id

:"$STRE

ET_NU

MBER",

num:{$a

vg:"$ID"

}}}])

516 63

1865

6

2016

 International Journal of Computer Sciences and Engineering Vol.6(6), Jul 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 77

C. Max() Function

This aggregate function is applied to a set of numeric values

and it returns the maximum from a group. The following

table, Table 3 shows the queries used in both MySQL and

MongoDB for the aggregate function max and the time

taken for query execution in case of D1 and D2.

Table 3. Query and Execution time for MySQL and

MongoDB for the aggregate function max with D1 and D2.

Query

in

MySQL

Query in

Studio 3T

Time in Milliseconds

D1 D1

MyS

QL

Mong

o DB

MyS

QL

Mong

o DB

select

max(ID)

from

building

group

by

street_n

umber;

db.building.a

ggregate([{$g

roup:{_id:"$S

TREET_NU

MBER",num:

{$max:"$ID"

}}}])

484

87

1950

0

2019

In this, documents are grouped based on street number and

the maximum ID value is chosen from it.

D. Min() Function

Here also the aggregate function min is applied to a set of

numeric values and it returns the minimum of those values.

The following table, Table 4 shows the queries used in both

the databases for the aggregate function min and the time

taken for query execution in case of D1 and D2.

Table 4. Query and Execution time for MySQL and

MongoDB for the aggregate function min with D1 and D2.

Query in

MySQL

Query in

Studio 3T

Time in Milliseconds

D1 D2

MyS

QL

Mong

o DB

MyS

QL

Mong

o DB

select

min(ID)

from

building

group by

street_nu

mber;

db.building.a

ggregate([{$

group:{_id:"

$STREET_

NUMBER",

num:{$min:

"$ID}}}])

484 114

2164

1

1998

In this, documents were grouped based on street_number

and the minimum ID value is chosen from it.

V. Analysis and Evaluations

The performance of relational and NoSQL databases is

compared with MySQL Workbench 6.3 and MongoDB

Studio 3T. For the different aggregate functions, sum, avg,

min and max, the queries are executed with D1 and D2 and

the time taken for the executions is noted in the following

tables, Table 5, Table 6 and combinedly in Table 7.

Table 5: Execution time for query in MySQL and

MongoDB with the different aggregate functions for D1

Aggregate

Function

Time in Milliseconds

D1

 MySQL MongoDB

sum() 578 40

Avg() 516 63

Max() 484 87

Min() 484 114

Table 6: Execution time for query in MySQL and

MongoDB with the different aggregate functions for D2

Aggregate

Function

Time in Milliseconds

D2

MySQL MongoDB

sum() 21641 2476

Avg() 18656 2016

Max() 19500 2019

Min() 21641 1998

Table 7: Combined execution time for query in MySQL and

MongoDB for the different aggregate functions with D1 and

D2

Aggregate

Function

Time in Milliseconds

D1 D2

MySQL MongoDB MySQL MongoDB

sum() 578 40 21641 2476

Avg() 516 63 18656 2016

Max() 484 87 19500 2019

Min() 484 114 21641 1998

Based on the data given in Table 5 and Table 6, graphs

are plotted and is shown in the following figures, Figure

3 and Figure 4.

On analyzing and looking at it, it is clear that, the execution

of MongoDB is great compared with that of MySQL. The

increased performance of the Aggregation Pipeline is used

to accomplish this.

 International Journal of Computer Sciences and Engineering Vol.6(6), Jul 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 78

But there is not much difference in the execution time taken

by both relational and NoSQL databases in case of

aggregate queries. In any case, MongoDB shows great

improvement by taking less time for the completion of

queries using aggregate functions compared to MySQL

which is a relational database.

Figure 3: Performance comparison of MySQL Workbench

with MongoDB Studio3T for the aggregate functions with

D1.

Figure 4: Performance comparison of MySQL Workbench

with MongoDB Studio3T for the aggregate functions with

D2.

Also, in the following tables, Table 8 and Table 9 the

performance of MySQL and MongoDB is shown separately

for the two datasets D1 and D2. The corresponding graphs

are drawn and shown in figures, Figure 5 and Figure 6.

Table 8: Execution time for query in MySQL for the

different aggregate functions with D1 and D2

Aggregate

Function

Time in Milliseconds

D1 D2

MySQL MySQL

sum() 578 21641

Avg() 516 18656

Max() 484 19500

Min() 484 21641

Table 9: Execution time for query in MongoDB for the

different aggregate functions with D1 and D2

Aggregate

Function

Time in Milliseconds

D1 D2

MongoDB MongoDB

sum() 40 2476

Avg() 63 2016

Max() 87 2019

Min() 114 1998

Figure 5: Performance comparison of MySQL Workbench

for aggregate functions with D1 and D2.

On analyzing the above two graphs it is clear that the time

taken by both MySQL and MongoDB increases as the size

of the dataset increases. Both takes less time to execute

queries with D1. And when D2 is used there is a relative

increase in the time taken compared to D1. There is a

proportionate increase in time both in case of MySQL and

MongoDB. MongoDB performs well in all cases by taking

less time for execution.

 International Journal of Computer Sciences and Engineering Vol.6(6), Jul 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 79

Figure 6: Performance comparison of MongoDB Studio3T

for the aggregate functions with D1 andD2.

VI. CONCLUSION

NoSQL databases show good performance and scalability

for most operations over huge datasets. In this paper, the

experiments are done with different workloads to find the

contrasts in execution time which is there with relational

and NoSQL databases. It was performed by executing

queries with the different aggregate functions with MySQL

workbench 6.3 and MongoDB studio3T 3.4.5. The

differences in execution time is shown using the graphs, but

there is not much difference in the execution time taken by

both in case of aggregation. But anyway, MongoDB

performs well by taking less time and thus can be favored

for its performance. It is a motive for the commercial

business organizations to shift from conventional database

systems to NoSQL databases in managing todays

unstructured data. This research can be further improved by

using several different types of queries with a higher

number of records for different types of NoSQL databases.

REFERENCES

[1] Ramez Elmasri, Shamkant B. Navathe, “Fundamentals of

Database Systems”, Pearson, India, pp. 621-622, 2007.

[2] Mary Femy P.F, Reshma K.R, Surekha Mariam Varghese,

“Outcome Analysis Using Neo4j Graph Database”, International

Journal on Cybernetics & Informatics, Vol 5, No.2, pp.229-236,

2016.

[3] Dipina Damodaran B, Shirin Salim, Surekha Marium Varghese,

“Performance Evaluation of MySQL and MongoDB databases”,

International Journal of Cybernetics and Informatics”, Vol.5,

No.2, pp. 387-394, 2016

[4] Guoxi Wang, and Jianfeng Tang, “The NoSQL Principles and

Basic Application of Cassandra Model”, In the proceeding of the

International Conference on Computer Science and Service

Systems, Washington, pp.1332-1335, 2012.

[5] Yue Cui, William Perrizo, “Aggregate Function Computation

and Iceberg Querying in Vertical databases”, A Thesis

submitted to the Graduate Faculty of the North Dakota State

University, North Dakota, pp. 10, 2005.

 [6] Sanobar Khan, Vanita Mane, “SQL support over MongoDB using

metadata”, International Journal of Scientific and Research

publications, Vol.3, Issue.10, pp.1-5, 2013.

 [7] Seyyed Hamid Aboutorabi, Mehdi Rezapour, Milad

Moradi, Nasser Ghadiri, “Performance evaluation of SQL and

MongoDB databases for big e-commerce data”, In the

proceeding of the International Symposium on Computer Science

and Software Engineering (CSSE), Iran,pp.72-78, 2015.

 [8] Zhu Wei-ping, Li Ming-xin, Chen Huan, “Using MongoDB to

implement textbook management system instead of MySQL”, In

the proceeding of the IEEE 3rd International Conference on

Communication Software and Networks, Xi’an, China, pp.828-

830, 2011.

 [9] Enqing Tang, Yushun Fan, “Performance Comparison

between Five NoSQL Databases”, In the proceeding of the 7th

International Conference on Cloud Computing and Big Data

(CCBD), China, pp.105-109, 2016.

 [10] https://docs.mongodb.com/manual/

Authors Profile

Benymol Jose pursed Masters in

Computer Science from Bharathidasan

University, Thiruchirappally, Tamil

Nadu in 1999 and M.Phil in Computer

Science from Madurai Kamaraj

University, Madurai, Tamil Nadu in

the year 2009. She is currently

working as Assistant Professor in Department of

Computer Applications, Marian College, Kuttikkanam,

Idukki, and is pursuing Ph.D. in Mahatma Gandhi

University, Kottayam in the topic of Unstructured data

mining and NoSQL databases. She had published many

papers in journals and conference proceedings

including IEEE. Her main research work focuses on

unstructured data mining, NoSQL databases and Big

Data Analytics. She has 18 years of teaching

experience and 3 years of Research Experience.

Sajimon Abraham M.Sc. Mathematics,

M.C.A, M.B.A, Ph.D. in Computer

Science. He has been working as

Assistant Professor in Computer & IT,

School of Management and Business

Studies, Mahatma Gandhi University,

Kottayam. He currently holds the additional charge of

Director(Hon), University Center for International Co-

operation. He was previously working as System

Analyst at Institute of Human Resource Development

and as Database Architect at Royal University of

Bhutan under Colombo Plan on deputation through

Ministry of External Affairs, Govt. of India. His

research area includes Data science, Mobility Mining,

Spatio Temporal Databases, Big Data Analytics and E-

learning and has published 52 articles in National,

International journals and Conference proceedings.

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Seyyed%20Hamid%20Aboutorabi.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Mehdi%20Rezapour.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Milad%20Moradi.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Milad%20Moradi.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Nasser%20Ghadiri.QT.&newsearch=true
http://ieeexplore.ieee.org/document/7369245/
http://ieeexplore.ieee.org/document/7369245/
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7363408
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7363408
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7363408
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Zhu%20Wei-ping.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Li%20Ming-xin.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Chen%20Huan.QT.&newsearch=true
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5993482
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5993482
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5993482

