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Abstract.
The paper presents a procedure and the integrated tools for the aeroelastic analysis of an active
twist helicopter rotor (ATR). The active twisting of rotor blades is carried out by induced-strain
actuators distributed into the structure of the blade. Active fiber composites (AFC), made of
piezoelectric fibers actuated by interdigitated electrodes (IDE), are used to obtain anisotropic
induced-strain actuation capable of twisting the blade. The elastic, inertial and piezoelectric
properties of the blade section are determined by a dedicated semianalytical formulation that
accounts for the non-homogeneity and the anisotropy of the elastic and piezoelectric materials. A
three-dimensional Finite Element Analysis of the piezoelectric fiber with interdigitated electrodes
is used to estimate the equivalent homogeneous material properties required for the blade section
characterization. A four-blade, articulated rotor is analyzed in hover and forward flight conditions.
The system is modeled by an original multibody formulation, implemented in a code named MBDyn
(Multi-Body Dynamics). The equilibrium equations and the momenta are written for each body,
together with the constraint equations, as a redundant coordinate set formulation. The blades are
modeled as beam elements, by an original finite volume formulation for the analysis of nonlinear,
initially curved and twisted beams subject to large displacements and rotations. The formulation
is extended to include the effects of embedded piezoelectric devices as actuators. Electric and
control-related degrees of freedom and elements have been added to MBDyn. Preliminary results
related to the actuation authority of the active blade are presented
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Overview

The work is presented in the following phases: (a) description of the need for induced twist in beam-
like structures, and identification of the means to obtain it, (b) determination of the piezoelectric
properties of an elementary cell, made of a portion of a single piezoelectric fiber between two
adjacent electrodes, embedded in an epoxy matrix with reinforcing fiberglass, (c) determination of
the properties of an equivalent piezoelectric material, (d) characterization of the section of a blade
with embedded AFC actuators, and (e) dynamic analysis of the active blade in a suitable active
twist rotor blade application.

Active Twist Control

The strain-induced twisting of a slender body, like a rotor blade, requires the capability of in-
ducing shear strains in the beam section, that result in a global twist of the structure. A very
promising material for distributed and embedded induced strain actuation has been found with
piezoelectrics. The piezoelectric effect is represented by the capability of a material to produce an
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electric polarization when loaded, and, on the contrary, to strain when subject to an electric field.
In usual notation [1], the linearized piezoelectric constitutive law is:

{
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D

}

=

[

s(E) dT

d ε(T )

]{

T
E

}

(1)

where S6×1 and T6×1 are the strain and stress arrays, and E3×1 and D3×1 are the electric field and
the electric displacement arrays. Piezoelectric devices for distributed induced strain applications
are manufactured in two-dimensional laminæ, to be applied on, or embedded into, the passive host
structure. The usual implementation results in thin, thickness-wise (direction 3) polarized laminæ,
that show an isotropic behaviour in their plane, thus being unable to induce the desired twisting.
In fact, the shear strain in the plane of the piezoelectric lamina is:

γxs = 2 cos (α) sin (α) (S1 − S2) (2)

where s, a combination of the y and z axes, lies in the plane of the beam section, and x is the axis of
the beam, while S1 and S2 are the principal strains in the plane of the piezoelectric in the material
frame and α is the relative angle between the material and the beam reference frames, resulting in no
shear when the two induced strains, S1 and S2, are equal, due to the plane isotropy of the material.
An in-plane anisotropic piezoelectric material is required to obtain different electrically induced
strains in directions 1 and 2. A very effective mean has been found by applying the fiber composite
technology to the ceramic piezoelectric material, resulting in the Active Fiber Composites (AFC,
[2]). Previous research led to the development of the Inter-Digitated Electrodes (IDE) principle [3]
as a useful means to induce anisotropic in-plane actuation. Different solutions can be formulated,
ranging from the bonding of elongated strips of conventional piezoelectric material to the host
structure, which represent a macroscopic scale implementation of the piezo fiber concept, to the
use of interdigitated electrodes alone, which introduce the desired anisotropy in the electric field.
The interdigitated electrodes are aligned in pairs of conductive strips on both the upper and the
lower surface of the piezoelectric. The pairs of strips are alternately charged planewise, so that
an alternate, in-plane electric field normal to the strips is generated. The piezoeletric material
is initially polarized by means of the strips themselves during the manufacturing process. The
resulting device exploits the main piezoelectric coupling coefficient (d11), which is usually larger
than the secondary ones (d12, d13) and opposite in sign (d12, d13 = −kd11, with 0.2 ≤ k ≤ 0.5);
both the fibers and the polarization are in direction 1. When used in conjunction with AFC, the
interdigitated electrodes can apply the control tension exactly in the direction of the fiber, thus
completely decoupling the induced strain in the direction on the fiber from the strains in the other
directions. The electrically induced strain is applied in the direction of the piezoelectric fibers only,
resulting in a truly anisotropic actuation in the plane of the active ply. Equation 2 shows that
when the fibers are oriented 45o degrees apart from the beam axis, and the two normal strains
are equal in magnitude and of opposite sign, the maximal coupled axial-shear actuation of the ply
is obtained; the axial actuation loads can be cancelled by stacking the alternately charged active
plies oriented 90o apart from each other.

Material Characterization

Different techniques have been developed to predict the elastic properties of fibrous composite
materials starting from the elastic properties of their components, namely the fibers and the matrix.
Most of the analytical formulations rely on the introduction of an overall constraint tensor which
can be obtained by solving a problem for a single cylindrical cavity in an anisotropic medium, and
then by averaging the result to consider an arbitrary number of repetitive inclusions. Two examples
of such approach are represented by the so-called “self-consistent” and the Mori-Tanaka methods.
The topic is reviewed in [4], where extensions to the case of thermoelectroelastic materials have
been proposed, as well as in [5, 6]. Such models rely on the symmetry and the relative simplicity
of analytically modeling a single, indefinitely long fibrous inclusion. The case of the AFC with
IDE is far more complicated due to the peculiar geometry of the electrodes, that add a higher
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degree of complexity to the behaviour of the material. A ply of AFC material is usually made of
a single layer of piezoelectric fibers, bounded to two thin films that carry the electrode patterns.
It represents a three-dimensional, discrete, repetitive structure both from the mechanical and the
electric standpoint. As a consequence, the elastic and electric fields are fully three-dimensional and
periodical, due to the repetitivity of the pattern of the fibers in direction 2 and of the electrodes
in direction 1. The present technology allows to manufacture one-fiber thick plies of the order
of 0.10 mm [2]. The granularity of the repetitive pattern is such that, from a macroscopic point
of view, an equivalent, homogeneous orthotropic piezoelectric material is expected to exist, and
to be able to capture the fundamental behaviour of the AFC material. Here an attempt is made
to predict the properties of such corresponding continuum, by conventional electroelastic Finite
Element Analysis (FEA). By exploiting the symmetry of the piezoelectric component, a finite
portion of fiber, comprised between the centerlines of two rows of electrodes, is modeled by the
commercially available Abaqus FEA code; the FE models are shown in Figure 1. The figure refers
to the circular section fiber presently investigated at MIT [2] and to the rectangular section fiber
under investigation at NASA Langley Research Center (LaRC) [7]. The latter geometry seems to
be more promising in terms of ease of manufacturing, accuracy in bonding the IDEs to the fibers,
and homogeneity of properties. The fiber is made of raw piezoelectric material (presently Morgan
Matroc PZT-5H is being used at MIT’s Active Materials and Structures Laboratory [8]). The
circular fiber, manufactured by CeraNova Corp., has a 0.13 mm diameter, and dimensions smaller
than 0.10 mm are expected soon; the rectangular fiber, obtained by cutting monolithic ceramic
sheets, can be manufactured down to 0.13×0.07 mm sections [9]. The piezoelectric properties of
the specimen are determined by imposing one by one the boundary conditions pertaining to each
independent strain and electric field conditions (i.e. the three unit extensions, the three unit shear
deformation conditions, and the condition of unit electric field between two electrode sets) and
computing the stress resultants. All these boundary conditions are required because the beam
section analysis discussed later is based on the full three-dimensional properties of the material.
The resulting properties of the equivalent materials are reported in Table 1. Figures 2 and 3
respectively show the Von Mises stress due to the unit axial strain applied to the clamped and
close-circuit specimen and the detailed electric field due to the unit mean electric field applied to
the electrodes of the completely clamped specimen.

Blade Section Characterization

The beam model is very commonly used to represent flexible rotor blades. Apart from its ease of
implementation and use, it is able to describe the global behaviour of the blade with a good trade-
off between accuracy and demand of computational resources when nonlinear dynamics simulations
are addressed. Moreover, it naturally couples with the strip theory used to model the aerodynamic
forces, which considers the blade section as rigid from the aerodynamic standpoint. A more
sophisticated structural model would involve a fully three-dimensional modeling of the displacement
field, which on turn requires an aerodynamical model with a more detailed spatial resolution, at
least two-dimensional panel methods, which radically increase the computational effort required
for the analysis.
A beam model requires the knowledge of the elastic and piezoelectric properties of the passive and
active parts of the active twist blade section; they are the constitutive matrices of linear piezo-
electricity that express the internal forces and moments at each section of the beam as functions
of the strains, the curvatures and the electric tensions on the electrodes. In the literature, these
properties are usually estimated from the geometry of the structural part of the beam section, such
as the area, the second order moments, and the polar moment in the principal reference frame of
the section [10]. This approach is valid for a very first approximation computation, and can lead
to poor estimates of the stiffness properties when anisotropic materials are considered. In case of
hollow, thin-walled beam sections, interesting results can be obtained by generalizing the semi-
monocoque model to the analysis of piezoelectric sections; an interesting example is represented by
[11], where such a formulation is specialized to the analysis of multicell configurations. A more gen-
eral and refined approach to the characterization of the section of an anisotropic, non-homogeneous
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beam has been used in the present paper. It is based on an original formulation [12, 13] that has
been extended to the analysis of beams embedding piezoelectric inclusions [14, 15]. It relies on a
two-dimensional finite element discretization of the section, that gives the user a great flexibility
in the choice of the level of detail to be used in the characterization. The displacements s3×1 at

an arbitrary point f3×1 = [0, y, z]
T

of the section are expressed as the combination of a warping
displacement g3×1, superimposed to a reference rigid displacement and rotation of the whole sec-
tion: s = v (x) + g (x, y, z), where v = Zr is the reference displacement, Z3×6 = [I3×3,−f×] is
a linearized rotation-translation matrix, and r6×1 are the displacements and the rotations of the
reference point of the section. The strains S6×1 at an arbitrary point depend on both the reference
and the warping displacements. While the reference displacements are functions of the position
along the beam axis x only, the warping displacements depend also on the position in the beam
section. The generalized deformations of the beam, ψ6×1, are expressed as functions of the deriva-
tives of the reference displacements, i.e. ψ = r/x + Πr. The matrix Π6×6 adds the contribution of
the section rotation to the shear strain, i.e.:

Π =

[

03×3 ex×
03×3 03×3

]

where ex is the unit vector in the direction of the beam axis, x. The warping displacement contribu-
tion to the strains is hidden in the section characterization procedure. The warping displacements
relax the overconstrained reference displacements that are rigid in the plane of the section. This
relaxation, in usual beam formulations, is accounted for by transforming the three-dimensional ma-
terial properties into a uniaxial stress state; this naturally accounts for the unloaded side-surface
boundary conditions in the axial and bending load cases, while the torsion and the shear load
cases usually require geometry depedent adjustments to account for internal compatibility and
for boundary conditions, resulting in a roughly approximated, geometry-based description of the
effects of the warping. In case of non-homogeneous beam sections, the equilibrium and compati-
bility conditions must be enforced also at the boundaries between different materials, while in case
of anisotropic materials, the strains due to a uniaxial stress state are fully coupled and imply a
non-trivial warping solution. In this case, the usual beam characterization formulations fail even in
the simple cases of axial and bending loads. In the present formulation, the warping displacements
are discretized in a finite element way by means of arbitrary shape functions that describe the
displacements in terms of their nodal value; the nodal displacements retain the dependency on the
axial abscissa: g = N3×3n (y, z)u3n×1 (x). The electric potential V , which plays the role of the
electric unknown, is described by analogy with the warping by means of the same shape functions:
V = N1×n (y, z)ϕn×1 (x). The discretized strain and electric fields are:

{

S = ∂S

(

ψ, u, u/x

)

E = ∂E

(

ϕ, ϕ/x

)

where ∂S (·) and ∂E (·) are two linear differential operators. The virtual work principle, generalized
to include the electric work made by charging the piezoelectrics, is used; the domain of integration
is shown in Figure 4. The electric and the structural domains are not required to coincide, i.e. the
host structure usually does not belong to the electric domain unless its dielectric properties are
to be considered; the integration is intended to be performed only where the integrand fields are
defined. The internal work per unit length is:

δLi/x =

∫

A

(

δSTT + δETD
)

dA (3)

where T and D are the stresses and electric displacements from Eq. 1. The external work is made
of an electromechanical contribution that represents the transmission of the internal forces and of
the dielectric displacement along the beam, i.e. the work made by the stresses and the dielectric
displacement on the two surfaces obtained by cutting the infinitesimal slice of beam:

δLt/x =
∂

∂x

(∫

A

(

δsT p+ δV T q
)

dA

)

(4)
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being p = T · ex, q = D · ex the stresses and the dielectric charge on the surface normal to the
x axis. An external contribution comes from the work made by the polarization charge on the
electrodes of the piezoelectric devices:

δLe/x =

∫

c

δV T qp dl (5)

where qp is the polarization charge per unit length that is imposed on the electrodes c. The actual
electric field in the AFC with IDEs varies along the fiber in an alternate manner, as shown in
Figure 3, as the polarization direction does, but the averaged actuation behaviour is that of a
uniformly polarized piezoelectric material subject to an in-plane constant electric field in direction
1 (material frame). The correct material behaviour is obtained by using the averaged material
properties from the FEM analysis, while the effect of a constant electric field in direction 1 is
obtained by applying a tension across the constant thickness of the piezoelectric plies (direction 3

in the material frame) and by switching the rows 1 and 3 of the piezoelectric matrix, e = d s(E)−1
,

of the AFC material. By carrying out the differentiations in Eq. 4, by equating the internal
and external work expressions, Eq. 3 and Eqs. 4 and 5 respectively, and by operating some basic
differentiations, the virtual work balance results in a second-order differential equation of the form:

M2d/xx +M1d/x +M0d = F (6)

where d = {u, ϕ, ψ}T are the unknown nodal warpings and voltages and the generalized deforma-
tions of the sections. Matrices M0, M1 and M2 result from a standard finite element integration
and assembly procedure. Their expressions are not reported for the sake of conciseness; the inter-
ested reader should consult Refs. [15, 16]. The right-hand term, F , contains the internal forces in
the section under analysis, and the polarization charge densities on the conductive laminæ, namely
F = [0, Qc, ϑ]T . By assuming constant polarization charge densities and indicial internal forces,
with linear bending moments resulting from the constant transverse shears, i.e.:

F =







0
Q0

(

I6×6 + xΠT
)

ϑ0







=









0 0
I 0
0 I



 + x





0 0
ΠT 0
0 0









{

ϑ0

Q0

}

= (H0 + xH1) Θ0

Eq. 6 can be solved in terms of linear influence coefficients related to unit internal forces at x = 0,
ϑ0, together with an analogous solution due to unit polarization charges, Q0, yielding:

{

ds = (d0s + xd1s)ϑ0

de = d0eQ0

or:
d = (d0 + xd1) Θ0 (7)

Figure 5 shows the FEM model of the NACA 0012 airfoil that has been used in this analysis,
while Figure 6 refers to the warping due to different mechanical and electric load conditions of the
blade section under analysis. Mention should be made of the electric boundary conditions for the
linear term of the structural solution: the electric potential on the conductors must be constant
along the beam axis, thus a non-holonomic constraint on the axial derivatives of the tensions must
be introduced, as highlighted in [15]. The elastic and piezoelectric properties are obtained by
substituting the solution, Eq. 7, evaluated at x = 0, into the expression of the internal work, Eq. 3,
written in the form of Eq. 6, resulting in:

δLi/x = δdT
(

M1d/x +M0d
)

= δΘ0
T dT

0 (M1d1 +M0d0) Θ0

= δΘ0
TCΘ0

where the generalized piezoelectric compliance matrix of the section, C, is introduced; its inverse
is the piezoelectric stiffness matrix D = C−1. It can be decomposed in a 6 × 6 stiffness matrix K
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that in case of arbitrarily anisotropic, non-homogeneous materials will be fully coupled, a Ne × 6
piezoelectric coupling matrix θ, Ne being the number of independent electrodes, and a Ne × Ne

dielectric matrix. These matrices can be used in classical finite element beam/truss analysis codes.
In this paper, a finite volume formulation, implemented in a multibody, nonlinear dynamics code,
has been used [17, 18, 19, 16].

Multibody Active Rotor Analysis

The detailed analysis of a helicopter rotor requires the ability to thoroughly describe the kinematics
of finite, and possibly large, displacements and rotations. The traditional approach is based on
dedicated comprehensive codes, that usually make some simplifying basic assumptions, such as
considering the blade motion as the superimposition of local rigid rotations about the rotor hinges
and of local flexible linear displacements, expressed in modal form, onto the rigid rotation, possibly
at constant velocity, of the rotor. This approach is valid, efficient in terms of computational speed
and cost, and it is surely able to describe the fundamental behaviour of the rotor; it can suffer
from some limitations in case large rotations, nonlinear elastic behaviour or nonuniform rotation
conditions are to be addressed. In this paper a rather different approach has been used, based
on a multibody description of the whole rotor. No assumptions are made on the kinematics of
the components of the rotor. The model is divided in independent bodies, that carry the lumped
inertia of the system. The six equilibrium equations are written for each body in the global
reference frame; the bodies are constrained by kinematic constraints and by flexible elements that
introduce configuration dependent forces. The kinematic constraints are accounted for by adding
the algebraic constraint equations to the system, and by introducing the constraint reactions as
unknowns in form of Lagrangian multipliers. Time integration is performed by an implicit, second-
order accurate, linear multistep integration formula that is unconditionally stable and allows the
control of the algorithmic dissipation [18]. The rotor blades are modeled by finite volumes C0 beams
[17, 19]; strip theory with dynamic stall, radial flow and Mach correction is used, in conjunction
with dynamic inflow modeling [20]. As discussed in [21, 18], this approach allows a detailed analysis
of the kinematics and of the dynamics of a rotorcraft avoiding any undue approximation in the
kinematics of the system, and with the same order of refinement of a finite element model in the
description of the flexibility, with reasonable and acceptable computational cost. The aerodynamic
model is not as sophisticated as the structural one is, though it is acceptable for most applications,
and will be the object of further development.

Numerical Results

Model Description

The numerical analysis is based on an analytical model of the active twist rotor presented in
Reference [7]. This is the analytical benchmark full-scale helicopter rotor the NASA Langley
Research Center ATR wind tunnel model [22, 23] refers to. It is representative of a large class
of medium weight helicopter rotors. The basic properties of the rotor are described in Table 2.
Two analytical models have been studied in this paper. The first one uses the same elastic and
piezoelectric coefficients described in Ref. [7], for direct comparison and model validation purposes.
The second model is based on the proposed blade section characterization method. The numerical
results cannot be considered completely representative of the actual setup of the NASA ATR model,
because the final active twist fitting of the ATR model is still under refinement. The presented
results should be considered a sample application of the proposed analysis procedure. Table 3
presents the structural properties resulting from this analysis compared to those given in Ref. [7];
three increasingly refined meshes have been considered. The properties in Table 3 converge very
quickly to their final value; the most challenging term is the position of the shear center, that travels
from negative to positive as the mesh is refined. Further analyses with finer meshes confirmed that
the presented value has converged to the final value. The AFC with rectangular fiber described in
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Table 1 has been used. The other materials used, namely ±45o fiberglass (E-glass) for the outer
skin and between the piezoelectric plies, and T300 unidirectional graphite-epoxy for the inner part
of the spar, are described in Table 4. The spar laminate has been obtained by stacking, from the
inner side, a ply of fiberglass, followed by 9 plies of T300 and by three sets of substacks made of
fiberglass, +45o AFC, fiberglass and −45o AFC. A final ply of fiberglass has been used to wrap
the whole section, including the trailing part, that has been filled with non load carrying foam; a
schematic is shown in the detail of Figure 5. The thicknesses of the single plies are reported in
Table 4. The spar goes from the leading edge to 40% of the blade chord; the piezoelectric plies
are applied on the top and bottom surfaces approximately from 5% to 40% of the chord; in the
web and in the nose the fiberglass is used instead of the AFC. The full stiffness and piezoelectric
matrices obtained with the most refined mesh are reported in Table 5.

Model Validation

The benchmark active twist rotor model of Ref. [7] has been implemented. The analytical model
consists of the hub, a rigid body rotating at constant speed with respect to the ground; this
carries the hinges of the four blades. Coincident hinges for flap and lag are used, at 0.027 R
from the rotation axis. A pitch bearing is placed just outward each hinge. The flexible blades are
modeled by four three-node beam elements, with lumped inertia. The swashplate model contains:
(a) scissors to prevent the relative rotation about the rotor axis between the fixed plate and the
ground, and between the rotating plate and the hub, (b) the three variable distance actuators from
the ground to the fixed plate, and (c) fixed distance links from the rotating plate to each blade
to impose the blade pitch. The model was validated from a dynamic standpoint by comparing
the in vacuo rotating frequencies to those presented in Ref. [7]. The frequencies were obtained by
system identification from the time domain response of the rotor subject to random excitation. The
results are presented in Table 6. No lead-lag frequencies are reported, because no reference data is
available for comparison. The first lead-lag frequency (rigid motion), due to a hinge offset of 0.23
m (9 in., 0.027 R), is 0.20 Ω. Table 6 shows the results from the model with beam properties taken
from Ref. [7], followed by the results obtained with the beam properties estimated by the present
procedure. The agreement on the lower flap frequencies is quite good because they are dominated
by the centrifugal stiffness. The fourth frequency obtained from our model is appreciably lower than
in Ref. [7], due to the higher contribution of the structural stiffness to higher frequency flapping
modes. The simplified, diagonal stiffness matrix used in Ref. [7] represents a first approximation
of the true stiffness properties of the real beam. It can be useful for preliminary performance
evaluation, but may cause underestimation of cross-coupling effects due to the anisotropy of the
materials. The importance of the cross-coupling coefficients, in particular for the dynamics of
composite rotor blades, was highlighted in [24]. The stiffness matrix reported in Table 5 shows
significant couplings; some of them can be accounted for in a conventional beam analysis by
applying offsets to the shear center or to the normal strain center, namely the couplings between
twist and out-of-plane shear, or the couplings between axial force and in-plane bending. Other
couplings are strongly related to the anisotropy of the material, namely the coupling between axial
and out-of-plane shear forces, and that between axial force and twist. A simple hover simulation,
with 4o of collective pitch, has been performed first with the properties from Ref. [7], then with
properties from the proposed analysis. Both complete and “diagonalized”, i.e., neglecting the
coupling terms, situations were considered. A comparison of some significant results is shown in
Table 7.

Harmonic Actuation

The effectiveness of the active twist of the rotor blade was investigated by performing analyses of
the rotor in air with harmonic actuation of the blade. The hover condition was considered first.
Root to tip twist and root flap angles due to harmonic actuation of the active twist blade are
shown in Figure 7 for the frequency range 0.25 to 10 Ω. A voltage of 250 V was applied to the
electrodes of the AFC, corresponding to an average electric field of 1300 V/mm (33,000 V/in).
The frequency response shows a peak at about 3.5/rev corresponding to the first twist mode of the
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blade, that is only lightly damped by the aerodynamics. Another peak at about 2/rev results from
the excitation of the first flexible flap mode of the blade, that resonates at a lower than expected
frequency due to the high aerodynamic damping of the flap modes. The blade twist from Ref. [7]
does show the peak at 2/rev, but there is no evidence of the first twist mode at about 3.5/rev
(Figure 7), possibly due to the unsteady aerodynamics model used in the mentioned reference, that
adds considerable aerodynamic damping to the pitch movement. In the present work, structural
damping is the main source of damping for the pitch movement. The frequency response of the
thrust (not shown) showed a peak at zero frequency, due to the steady change in pitch, and the
two peaks at 2/rev and 3.5/revmentioned above. The thrust is nearly zero at 1.02/rev, because
at the first, rigid flap frequency, all the work made by the aerodynamic forces is spent in rigidly
flapping the blades at blade rigid flapping resonance.
A primary goal for the active control of rotorcraft by controlling the pitch of the blades is to obtain
an induced twist of the order of 2o in the range of 0–5 Ω [25, 7]; Figure 7 clearly shows that the
goal is achievable.
Forward flight conditions at different advance ratios have been subsequently considered; open-loop
2/rev actuation has been performed with the objective of reducing the vibrations at the mast
induced by the steady forward flight. These vibrations mainly are 4/rev due to the periodic forces
generated by the four blades of the rotor; they can be cancelled by using 2/rev actuation since
2/rev pitch change causes 2/rev flapping of the rotor, which in turn results in Coriolis forces in
the plane of the rotor at twice the frequency of the flapping motion. Open loop control results are
reported in Figures 8, 9, 10 at different advance ratios ranging from 0.20 to 0.30. Convergence at
higher advance ratios is difficult.

Conclusions

An approach to the analysis of complex dynamic systems, like helicopter rotors in presence of
distributed active control, has been depicted. It connect several advanced tools for the structural
characterization of the system at different levels. A formulation for blade section characterization
with embedded piezoelectric devices has been established. It has been used to determine the
stiffness and piezoelectric properties of the blade of an active twist rotor analytical model. A
procedure based on finite element analysis has been used to characterize the active fiber composite
piezoelectric material with interdigitated electrodes that is required to obtain in-plane anisotropic
strain induction, and thus rotor blade twist induction. Multi-body analysis was used to investigate
the behaviour of an active twist rotor in vibration suppression by open- and close-loop control
in the frame of a global modeling approach. Partial results on the ability of the active twisting
in reducing the airloads transmitted by the rotor have been illustrated. The predicted properties
of the AFC blade show good agreement with available analytical data, and moreover they give
a deeper insight into the properties of a composite piezoelectric beam in terms of stiffness cross-
couplings. The proposed approach to the analysis of actively twisted rotor blades is able to analyse
the complex operating conditions of an actively controlled rotorcraft to a comparatively high degree
of refinement. The active twisting of the blade represents an interesting and very promising means
for the active control of the dynamics of a rotor.
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Table 1: Equivalent Material Properties

Property Circular Circulara Rectangular
C11 71.7e+3 82.5e+3 83.5e+3 [MPa]

C12 7.9e+3 7.0e+3 14.8e+3 [MPa]

C13 8.6e+3 7.5e+3 20.2e+3 [MPa]

C22 24.4e+3 24.5e+3 42.4e+3 [MPa]

C23 6.7e+3 6.9e+3 15.6e+3 [MPa]

C33 26.7e+3 26.8e+3 56.1e+3 [MPa]

C44 3.5e+3 3.5e+3 5.6e+3 [MPa]

C55 16.9e+3 16.9e+3 19.3e+3 [MPa]

C66 8.1e+3 8.1e+3 11.4e+3 [MPa]

e11 8.344 0.114 18.3 [C/m2]

e12 -0.674 -0.009 -3.0 [C/m2]

e13 -0.907 -0.012 -4.5 [C/m2]
a No contact between the electrode and the piezoelectric fiber
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Table 2: Rotor Geometric and Dynamic Properties (Ref. [7])

Symbol Property baseline AFC blade
R blade radius 8.53 [m] (same)

336 [in]

Ω rotation speed 22.25 [rad/s] (same)
m section mass 7.65 [kg/m] 7.10 [kg/m]

1.11e-3 [lb-s2/in/in] 1.03e-3 [lb-s2/in/in]

c/R nondimensional chord 0.0488 (same)
θ1 linear pretwist -8 deg/R (same)
γ Lock number 9.77 (same)
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Table 3: Stiffness Properties (Rectangular Fiber)

Stiffness Mesh 1 Mesh 2 Mesh 3 Ref. [7]
Axial [N] 7.96e7 8.23e7 8.27e7 n.a.
Shear in plane [N] 8.14e6 8.05e6 7.96e6 n.a.
Shear out of plane [N] 1.10e6 9.16e5 8.72e5 n.a.
Twist [Nm2] 1.22e4 1.16e4 1.14e4 1.08e4
Bending out of plane [Nm2] 2.85e4 2.92e4 2.94e4 3.79e4
Bending in plane [Nm2] 2.22e5 2.45e5 2.51e5 n.a.
Axial force center [% chord] 2.28 2.79 2.96 0.00
Shear center [% chord] -1.68 1.26 2.18 0.00
Nodes 175 362 662 —
Elements 162 336 618 —
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Table 4: Material and Laminæ Properties

Property glass-epoxy graphite-epoxy
c11 14.8e+3 181.8e+3 [MPa]

c12 1.3e+3 2.9e+3 [MPa]

c22 13.7e+3 10.3e+3 [MPa]

c66 1.9e+3 7.2e+3 [MPa]

ρ 1.8e+3 1.6e+3 [Kg/m3]

thicknessa h 0.130 0.125 [mm]

aThe thickness of the AFC plies is 0.140 [mm].
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Table 5: Stiffness and Piezoelectric Matrices, ref. 25% chord. Units: N, m and V.

Axial Shear Twist Bending
in plane out of plane in plane out of plane

Axial 8.27e+7 0.00e+0 8.50e+2 1.77e+2 0.00e+0 -3.11e+5
Shear in plane 7.96e+6 0.00e+0 0.00e+0 -3.08e+1 0.00e+0
Shear out of plane 8.72e+5 2.42e+3 0.00e+0 -1.31e+2
Twist 1.06e+3 0.00e+0 -3.25e+0
Bending out of plane sym. 2.73e+3 0.00e+0
Bending in plane 2.33e+4
Piezo 0.00e+0 0.00e+0 5.74e-1 7.69e-2 0.00e+0 0.00e+0
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Table 6: Comparison of In-Vacuo Rotating Frequencies [1/rev]

Mode AFC blade reference blade
MBDyn MBDyna [7] MBDyn [7]

1st flap 1.02 1.02 1.02 1.02 1.02
2nd flap 2.59 2.58 2.62 2.61 2.62
3rd flap 4.69 4.55 4.79 4.67 4.79
4th flap 7.31 6.89 7.85 7.20 7.85
1st twist 3.31 3.38 3.38 6.48 6.16
2nd twist 9.65 10.0 9.78 18.4 18.3

aStiffness properties from beam section analysis
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Table 7: Hover Simulations with Different Stiffness Properties

Ref. [7] diagonal coupled
Tip vertical displacement [m] 0.3369 0.3370 0.3153
Flap at flap hinge [deg] 2.275 2.276 2.129
Elastic twist from root to tip [deg] -0.006 -0.005 -0.120
Thrust [N] 2.277e4 2.284e4 2.183e4
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