
Analysis of Data Placement Strategy based on Computing Power of Nodes on
Heterogeneous Hadoop Clusters

by

Sanket Reddy Chintapalli

A project submitted to the Graduate Faculty of
Auburn University

in partial fulfillment of the
requirements for the Degree of

Master of Science

Auburn, Alabama
December 12, 2014

Keywords: MapReduce, HDFS, Computing Capability, Heterogenous

Copyright 2014 by Sanket Reddy Chintapalli

Approved by

Xiao Qin, Associate Professor of Computer Science and Software Engineering
James Cross, Professor of Computer Science and Software Engineering

Jeffrey Overbey, Assistant Professor of Computer Science and Software Engineering

Abstract

Hadoop and the term ’Big Data’ go hand in hand. The information explosion caused

due to cloud and distributed computing lead to the curiosity to process and analyze massive

amount of data. The process and analysis helps to add value to an organization or derive

valuable information.

The current Hadoop implementation assumes that computing nodes in a cluster are

homogeneous in nature. Hadoop relies on its capability to take computation to the nodes

rather than migrating the data around the nodes which might cause a significant network

overhead. This strategy has its potential benefits on homogeneous environment but it might

not be suitable on an heterogeneous environment. The time taken to process the data on a

slower node on a heterogeneous environment might be significantly higher than the sum of

network overhead and processing time on a faster node. Hence, it is necessary to study the

data placement policy where we can distribute the data based on the processing power of

a node. The project explores this data placement policy and notes the ramifications of this

strategy based on running few benchmark applications.

ii

Acknowledgments

I would like to express my deepest gratitude to my adviser Dr. Xiao Qin for shaping

my career. I would like to thank Dr. James Cross and Dr. Jeffrey Overbey for serving on

my advisory committee.

Auburn University has my regard for making me a better engineer and I would like to

thank all my professors and staff for shaping my intellect and personality. I would like to

thank my friends and family for supporting me throughout my tenure at Auburn. I had

great fun exploring various technologies, meeting interesting people, taking up challenges

and expanding my perspective on software development and engineering.

iii

Table of Contents

Abstract . ii

Acknowledgments . iii

List of Figures . vi

List of Tables . vii

1 Introduction . 1

1.1 Scope . 1

1.1.1 Data Distribution . 1

1.2 Contribution . 2

1.3 Organization . 2

2 Hadoop . 4

2.1 Hadoop Architecture . 4

2.2 MapReduce . 6

2.2.1 JobTracker and TaskTracker . 6

2.2.2 YARN . 9

2.3 HDFS . 10

2.3.1 NameNode, DataNode and Clients 11

2.3.2 Federated Namenode . 13

2.3.3 Backup Node and Secondary NameNode 14

2.3.4 Replica and Block Management . 15

3 Design . 16

3.1 Data Placement: Profiling . 16

3.2 Implementation Details . 18

4 Experiment SetUp . 20

iv

4.1 Hardware . 20

4.2 Software . 20

4.3 Benchmark:WordCount . 20

4.4 BenchMark:Grep . 21

5 Performance Evaluation . 23

5.1 WordCount . 23

5.2 Grep . 24

5.3 Summary . 26

Bibliography . 29

v

List of Figures

2.1 Hadoop Architecture [5] . 5

2.2 MapReduce data flow. 7

2.3 YARN . 9

2.4 HDFS Architecture [3] . 11

2.5 HDFS Federated Namenode . 13

3.1 Motivation . 17

3.2 Computation Ratio Balancer . 19

4.1 Word Count Descripion . 21

4.2 Grep description . 22

5.1 Calculating Computation Ratio for WordCount By Running On Individual Nodes 25

5.2 WordCount Performance Evaluation After Running CRBalancer 25

5.3 Calculating Computation Ratio for Grep By Running On Individual Nodes . . . 27

5.4 Grep Performance Evaluation After Running CRBalancer 27

vi

List of Tables

4.1 Node Information in Cluster . 20

5.1 Computation Ratio . 23

vii

Chapter 1

Introduction

Data intensive applications are growing at a fast pace. The need for storing the data

and processing them in order to extract value from skew data has paved way for parallel,

distributed processing applications like Hadoop.

The ability of such applications to process petabytes of data generated from websites

like Facebook, Amazon, Yahoo and search engines like Google and Bing have eventually

lead to a data revolution where by processing each and every minute information relating to

customers and users can add value, there by improving core competency.

Hadoop is an open source application first developed by Yahoo inspired from the Google

File System. Hadoop comprises of task execution manager and a data storage unit known as

HDFS (Hadoop Distributed File System) based on Google’s Big Data Table [1]. Hadoop has

two predominant versions available today namely Hadoop 1.x and 2.x. The 2.x has features

pertaining to the improvement of the batch processing feature by introducing YARN (Yet

Another Resource Negotiator). YARN comprises of a Resource Manager and Node Manager.

The Resource Manger is responsible for managing and deploying resources and the Node

Manager is responsible for managing the datanode and reporting the status of the datanode

to the resource manager.

1.1 Scope

1.1.1 Data Distribution

We observed that data locality is a determining factor for MapReduce performance. To

balance workload in a cluster, Hadoop distributes data to multiple nodes based on disk space

1

availability. Such a data placement strategy is very practical and efficient for a homogeneous

environment, where computing nodes are identical in terms of computing and disk capacity.

In homogeneous computing environments, all nodes have identical workloads, indicating

that no data needs to be moved from one node to another. In a heterogeneous cluster,

however, a high-performance node can complete local data processing faster than a low-

performance node. After the fast node finishes processing the data residing in its local

disk, the node has to handle the unprocessed data in a slow remote node. The overhead

of transferring unprocessed data from slow nodes to fast ones is high if the amount of

data moved is large. An approach to improve MapReduce performance in heterogeneous

computing environments is to significantly reduce the amount of data moved between slow

and fast nodes in a heterogeneous cluster. To balance the data load in a heterogeneous

Hadoop cluster, we investigate data placement schemes, which aim to partition a large data

set into small fragments being distributed across multiple heterogeneous nodes in a cluster.

Unlike other data distribution algorithms, it takes care of replication and network topology

before moving the data between the nodes.

1.2 Contribution

Data placement in HDFS. We develop a data placement mechanism in the Hadoop

distributed system or HDFS to initially distribute a large data set to multiple computing

nodes in accordance with the computing capacity of each node. More specifically, a data

reorganization algorithm is implemented in HDFS.

1.3 Organization

This project is organized as follows. Chapter 2 explains in detail the Hadoop’s architec-

ture, HDFS and MapReduce framework in Hadoop along with the new YARN framework.

Chapter 3 explains the problem and explains existing solutions. Chapter 4 describes the

2

design of the redistribution mechanism. Chapter 5 analyzes the results and performance of

the balancer/redistribution algorithm.

3

Chapter 2

Hadoop

Apache Hadoop is an open source software project that enables the distributed process-

ing of large data sets across clusters of commodity servers. It is designed to scale up from

a single server to thousands of machines, with a very high degree of fault tolerance. Rather

than relying on high-end hardware, the resiliency of these clusters comes from the softwares

ability to detect and handle failures at the application layer. Hadoop enables a computing

solution that is scalable, cost effective, flexible and fault tolerant [2] [3].

2.1 Hadoop Architecture

Hadoop is implemented using Client-Master-Slave design pattern. Currently there are

two varied implementations of Hadoop namely 1.x and 2.x. Hadoop 1.x generally manages

the data and the task parallelism through Namenode and JobTracker respectively. On the

other hand Hadoop 2.x uses YARN (Yet Another Resource Negotiator).

In Hadoop 1.x there are two masters in the architecture, which are responsible for

the controlling the slaves across the cluster. The first master is the NameNode, which is

dedicated to manage the HDFS and control the slaves that store the data. Second master

is JobTracker, which manages parallel processing of HDFS data in slave nodes using the

MapReduce programming model. The rest of the cluster is made up of slave nodes which

runs both DataNode and TaskTracker daemons. DataNodes obey the commands from its

master NameNode and store parts of HDFS data decoupled from the meta-data in the

NameNode. TaskTrackers on the other hand obeys the commands from the JobTracker and

does all the computing work assigned by the JobTracker. Finally, Client machines are neither

Master or a Slave. The role of the Client machine is to give jobs to the masters to load data

4

into HDFS, submit Map Reduce jobs describing how that data should be processed, and

then retrieve or view the results of the job when its finished.

YARN uses ResourceManager which spawns multiple NodeManagers on subsequent

nodes on the cluster. The NodeManager is responsible for deploying the tasks and reporting

the status of the node to the Resource Manager [6].

Figure 2.1: Hadoop Architecture [5]

Figure 2.1 shows the basic organization of the Hadoop cluster. The client machines

communicates with the NameNode to add, move, manipulate, or delete files in HDFS. The

NameNode in turn calls the DataNodes to store, delete or make replicas of data being

added to HDFS. When the client machines want to process the data in the HDFS, they

communicate to the JobTracker to submit a job that uses MapReduce. JobTracker divides

the jobs to map/reduce tasks and assigns it to the TaskTracker to process it.

Typically, all nodes in Hadoop cluster are arranged in the air cooled racks in a data

center. The racks are linked with each other with the help of rack switches which runs on

TCP/IP.

5

2.2 MapReduce

In Introduction chapter we understood that MapReduce is a programming model de-

signed for processing large volumes of data in parallel by dividing the work into a set of

independent tasks. MapReduce programs are influenced by functional programming con-

structs used for processing lists of data. The MapReduce fetches the data from the HDFS

for parallel processing. These data are divided in to blocks as mentioned in the section

above.

2.2.1 JobTracker and TaskTracker

JobTracker is the master, to which the applications submit MapReduce jobs. The

JobTracker gets the map tasks based on input splits and assigns tasks to TaskTracker nodes

in the cluster. The JobTracker is aware of the data block location in the cluster and machines

which are near the data. The JobTracker assigns the job to TaskTracker that has the data

with it and if it cannot, then it schedules it to the nearest node to the data to optimize

the network bandwidth. The TaskTracker sends a HeartBeat message to the JobTracker

periodically, to let JobTracker know that it is healthy, and in the message it includes the

memory available, CPU frequency and etc. If the TaskTracker fails to send a HeartBeat to

the JobTracker, the JobTracker assumes that the TaskTracker is down and schedules the

task to the other node which is in the same rack as the failed node [3].

The Figure 2.2 [4] shows the data flow of MapReduce in couple of nodes . The steps

below explains the flow of the MapReduce [4].

1. Split the file: First the data in the HDFS are split up and read in InputFromat spec-

ified. InputFormat can be specified by the user and any InputFormat chosen would

read the files in the directory, select the files to be split into InputSplits and give it to

6

Figure 2.2: MapReduce data flow.

7

RecordReader to read the records in (key, value) pair that would be processed in fur-

ther steps. Standard InputFormats provided by the MapReduce are TextInputFormat,

SequenceInputFormat, MultipleInputFormat [3].

The InputSplit is the unit work that comprises a single map task in a MapReduce

program. The job submitted by the client is divided into the number of tasks, which

is equal to the number of InputSplits. The default InputSplit size is 64MB / 128MB

and can be configured by modifying split size parameter. The input splits enable the

parallel processing of MapReduce by scheduling the map tasks on other nodes in cluster

at same time. When the HDFS splits the file into blocks, the task assigned to that

node accesses the data locally.

2. Read the records in InputSplit: The InputSplit although is ready to be processed it

still does not make sense to the MapReduce program as the input to it is not in key-

value format. The RecordReader actually loads the data and converts it to key, value

pair expected by the Mapper task. The calls to RecordReader calls map() method of

Mapper.

3. Process the records: When the Mapper gets the key-value pair from the RecordReader,

it calls the map() function to process the input key-value pair and output an intermedi-

ate key-value pair. While these mappers are reading their share of data and processing

it in parallel fashion across the cluster, they do not communicate with each other as

they have no data to share. Along with the key-value pair, the Mapper also gets couple

of objects, which indicates where to forward the output and report the status of task

[2].

4. Partition and Shuffle: The mappers output the key,value pair which is the input for the

reducer. This stage the mappers begin exchanging the intermediate outputs and the

process is called shuffling. The reducer reduces the intermediate value with the same

key and it partitions all the intermediate output with the same key. The partitioner

8

Figure 2.3: YARN

determines which partition a given ¡key,value¿ pair go to. The intermediate data are

sorted before they are presented to the Reducer.

5. Reduce the mapper’s output: For every key in the assigned partition in the reducer a

reduce() function is called. Because the reducer reduces the partition with the same

key, it iterates over the partition to generate the output. The OutputFormat will

specify the format of the output records, and the reporter object reports the status.

The RecordWriter writes the data to file specified by the OutputFormat [2].

2.2.2 YARN

YARN is a tool which is responsible for managing the job and data allocation.The

fundamental idea of YARN is to split up the two major responsibilities of the Job-

Tracker i.e. resource management and job scheduling/monitoring, into separate dae-

mons: a global ResourceManager and per-application ApplicationMaster (AM) [6].

The ResourceManager and per-node slave, the NodeManager (NM), form the new,

9

and generic, system for managing applications in a distributed manner. Figure 2.3

gives an overview of the YARN architecture.

The ResourceManager is the ultimate authority that arbitrates resources among all

the applications in the system. The per-application ApplicationMaster is, in effect, a

framework specific entity and is tasked with negotiating resources from the ResourceM-

anager and working with the NodeManager(s) to execute and monitor the component

tasks.

The ResourceManager has a pluggable Scheduler, which is responsible for allocating re-

sources to the various running applications subject to familiar constraints of capacities,

queues etc. The Scheduler is a pure scheduler in the sense that it performs no monitor-

ing or tracking of status for the application, offering no guarantees on restarting failed

tasks either due to application failure or hardware failures. The Scheduler performs

its scheduling function based on the resource requirements of the applications; it does

so based on the abstract notion of a Resource Container which incorporates resource

elements such as memory, cpu, disk, network etc.

The NodeManager is the per-machine slave, which is responsible for launching the

applications containers, monitoring their resource usage (cpu, memory, disk, network)

and reporting the same to the ResourceManager.

The per-application ApplicationMaster has the responsibility of negotiating appropri-

ate resource containers from the Scheduler, tracking their status and monitoring for

progress. From the system perspective, the ApplicationMaster itself runs as a normal

container.

2.3 HDFS

Hadoop Distributed File System is the filesystem designed for Hadoop to store the

large sets of data reliably and stream those data to the user application at the high

10

Figure 2.4: HDFS Architecture [3]

throughput rather than providing low latency access. Hadoop is designed in Java and

that makes it incredibly portable across platform and operating systems. Like the

other distributed file systems like Lustre and PVFS, HDFS too stores the meta data

and the data separately. The NameNode stores the meta-data and the DataNodes store

the application data. But, unlike Lustre and PVFS, the HDFS stores the replicas of

the data to provide high throughput data access from multiple sources and also data

redundancy increases the fault tolerance of HDFS [5] [3].

When the HDFS replicates it does not replicate the entire file, it divides the files into

fixed sized blocks and the blocks are placed and replicated in the DataNodes. The

default block size in Hadoop is 64MB and is configurable.

2.3.1 NameNode, DataNode and Clients

The Figure 2.4 shows the HDFS architecture in Hadoop which contains three important

entities- NameNode, DataNode and Client. The NameNode is responsible for storing

11

the meta-data, and track the memory available and used in all the DataNodes. The

client which wants to read the data in the HDFS first contacts the NameNode. The

Namenode then looks for the block’s DataNode which is nearest to the client and tells

the client to access the data from it. Similarly, when the client wants to write a file to

the HDFS, it requests the NameNode to nominate 3 DataNodes to store the replicas

and the client writes to it in streamline fashion. The HDFS would work efficiently

if it stored the files of larger size, at least size of a block because the HDFS stores

the Namespace RAM. If it were all smaller files in HDFS then the inodes information

would occupy the entire RAM leaving no room for other operations.

The NameNode would register all the DataNodes at the start-up based on the NamspaceID.

The NameSpaceID would be generated when the NameNode formats the HDFS. The

DataNodes are not allowed to store any blocks of data if the NamespaceID does not

match with the ID of the NameNode. Apart from the registering the DataNodes in

the start-up the DataNodes send the block reports to the NameNode periodically. The

block report contains the block id, the generation report and the length of the each

block that DataNode holds. Every tenth report sent from the DataNode is a block

report to keep the NameNode updated about all the blocks. A DataNode also sends

the HeartBeat messages that just notify the NameNode that it is still healthy and all

the blocks in it are intact. When the NameNode does not receive a heartbeat message

from the DataNode for about 10 seconds, it assumes that the DataNode is dead and

uses it’s policies to replicate the data blocks in the dead node to other nodes that are

alive.

Similar to most conventional file systems, HDFS supports operations to read, write

and delete files, and operations to create and delete directories. The user references

files and directories by paths in the namespace. The user application generally does

not need to know that file system metadata and storage are on different servers, or

that blocks have multiple replicas.

12

Figure 2.5: HDFS Federated Namenode

2.3.2 Federated Namenode

In hadoop 2.x a new concept know as federated namenode has been introduced. In

order to scale the name service horizontally, federation uses multiple independent Na-

menodes/namespaces. The Namenodes are federated, that is, the Namenodes are

independent and dont require coordination with each other. The datanodes are used

as common storage for blocks by all the Namenodes. Each datanode registers with all

the Namenodes in the cluster. Datanodes send periodic heartbeats and block reports

and handles commands from the Namenodes. The Key benefits of a federated namen-

ode are namespace scalability, performance and isolation. Figure 2.5 gives an overview

about the architecture

13

6. Namespace Scalability: HDFS cluster storage scales horizontally but the namespace

does not. Large deployments or deployments using lot of small files benefit from scaling

the namespace by adding more Namenodes to the cluster

7. Performance: File system operation throughput is limited by a single Namenode in

the prior architecture. Adding more Namenodes to the cluster scales the file system

read/write operations throughput.

8. Isolation: A single Namenode offers no isolation in multi user environment. An ex-

perimental application can overload the Namenode and slow down production critical

applications. With multiple Namenodes, different categories of applications and users

can be isolated to different namespaces.

2.3.3 Backup Node and Secondary NameNode

The NameNode is the single point of failure for the Hadoop cluster, so the HDFS copies

the of the Namespace in NameNode periodically to a persistent storage for reliability

and this process is called checkpointing. Along with the NameSpace it also maintains a

log of the actions that change the Namespace, this log is called journal. The checkpoint

node copies the NameSpace and journal from NameNode to applies the transactions

in journal on the Namespace to create most up to date information of the namespace

in NameNode. The backup node however copies the Namespace and accepts journal

stream of Namespace and applies transactions on the namespace stored in its storage

directory. It also stores the upto-date information of the Namespace in memory and

synchronizes itself with the NameSpace. When the NameNode fails, the HDFS picks

up the Namespace from either BackupNode or CheckPointNode [5] [3].

14

2.3.4 Replica and Block Management

HDFS makes replicas of a block with a strategy to enhance both the performance and

reliability. By default the replica count is 3, and it places the first block in the node

of the writer, the second is placed in the same rack but different node and the third

replica is placed in different rack. In the end, no DataNode contains more than one

replica of a block and no rack contains more than two replicas of same block. The

nodes chosen on the basis of proximity to the writer, to place the blocks.

There are situations when the blocks might be over-replicated or under-replicated. In

case of over-replication the NameNode deletes the replicas within the same rack first

and from the DataNode, which has least available space. In case of under-replication,

the NameNode maintains a priority queue for the blocks to replicate and the priority

is high for the least replicated blocks.

There are tools in HDFS to maintain the balance and integrity of the data. Balancer

is a tool that balances the data placement based on the node disk utilization in the

cluster. The Block Scanner is a tool used to check integrity using checksums. Distcp

is a tool that is used for inter/intra cluster copying. The intention of this project is to

modify the Balancer to take into consideration the computing capacity of the nodes

as opposed to the space.

15

Chapter 3

Design

The project focuses on distributing the data based on computing capacity. In the

case of a homogeneous environment, the computing capacity and disk capacity are

indifferent. As a result, the data gets distributed based on the availability of space

on the cluster. In a homogeneous environment, the transfer of data from one node

to another in order to fill spaces will cause severe network congestion. Hadoop has a

balancing functionality which balances the data before running the applications in the

event of severe data accumulation on few nodes. The replication factor also plays a

major role in the data movement and the balancer takes care of this aspect. We name

the balancer as CRBalancer, Computation Ratio Balancer.

On the other hand, in a heterogeneous environment, it makes perfect sense to migrate

the data from one node to another, as a faster node accounts for the overhead of data

migration and task processing. As a result, the data placement policy suggested in

the project tries to explore the ramifications of migrating large portion of data to a

faster node in a heterogeneous environment. The data placement algorithm and the

implementation details give a greater overview of the implementation that has been

carried out to achieve the goal.

3.1 Data Placement: Profiling

Profiling in this scenario is done to compute the computation ratios of nodes within

the cluster. In order to accomplish this task, we need run a set of benchmark appli-

cations namely Grep and WordCount. The computation ratio is calculated based on

16

Figure 3.1: Motivation

the processing capacity of the nodes. Lets assume we have 3 nodes A, B and C with A

being the fastest, then B and slowest being C. Lets assume it takes 10 seconds to run

an application on A, 20 seconds on B and 30 seconds on C. Now, the computation ratio

of A would be 6, 3 for B and 2 for C based on the least common multiple principle.

17

3.2 Implementation Details

The CRBalancer is responsible for migrating the data from one node to another. The

Figure 3.2 describes the pattern and the methodology in which the CRBalancer mi-

grates the data. It first takes into consideration the network topology, then calculates

the under utilized and over utilized datanodes. Mapping between the under utilized

and over utilized datanodes takes place by moving the blocks concurrently among the

nodes. It also takes into consideration the replication factor by limiting the migration

if the data is already present on the node for the corresponding file. After balancing

takes place the benchmarks are run and tested for the results.

The CRBalancer uses CRNamenodeConnector application to connect to the namenode

in order to get the information about the datanodes on the fly in order to decide the

amount of data to be transferred to the under-utilized nodes from the over-utilized

nodes. It also uses CRBalancingPolicy application to keep track of the amount of data

within each node.

The CRBalancer can be run in the background while other applications are running on

the nodes. The CRBalancer takes care of the network overhead while transferring the

blocks. It steals some bandwidth without interrupting the processing of the applica-

tions. The expectation is that a similar application performs better when it executed

again at some point of time.

18

Figure 3.2: Computation Ratio Balancer

19

Chapter 4

Experiment SetUp

4.1 Hardware

The hardware setup consists of three nodes with a their respective configurations de-

scribed in the Table 4.1 below.

Node Processor Speed Cache Storage
A HP Xeon 4 core * 2.4 GHz 8MB 142.9 GB
B HP Xeon 4 core * 2.4 GHz 8MB 142.9 GB
C HP Celeron 1 core * 2.2 GHz 512KB 142.9 GB
D HP Celeron 1 core * 2.2 GHz 512KB 142.9 GB

Table 4.1: Node Information in Cluster

4.2 Software

The software used in this experiment comprises of Hadoop application 2.3.0. A node is

assigned the master status and other nodes are assigned the slave status. The master

node contains the namenode which the computing ratio balancer uses to connect to the

namenode. It reads block information from the namenode and runs the distribution

algorithm in order to distribute the data based on the computing capacity of the nodes.

4.3 Benchmark:WordCount

The word count is a proved cpu intensive benchmark which reads the data-set and

counts the number of words within the data-set based on a space delimiter per line.

20

Figure 4.1: Word Count Descripion

The figure below describes the image corresponding to the mechanics of the mapper

and reducer in order to obtain the word count within a data-set.

4.4 BenchMark:Grep

The grep is a proved cpu intensive benchmark which reads the data-set and counts the

number of words within the data-set based on a search pattern mentioned as an input.

The figure below describes the image corresponding to the mechanics of the mapper

and reducer in order to obtain the search pattern within a data-set.

21

Figure 4.2: Grep description

22

Chapter 5

Performance Evaluation

The performance evaluation notably runs two benchmark tests namely WordCount and

Grep. The computing ratios are calculated by the principle of least common multiple.

There are two file sizes 1.1GB, 2.2GB that have been taken into consideration for

testing. The time taken to run these files is indicated in the Figure 5.1 and Figure

5.3 corresponding to the two benchmarks. The observation clearly indicates that the

time taken by individual nodes to process the file size is linear with respect to time.

Hence, computing ratio is a very good metric to balance and process the data based

on the computing power of the nodes. The Table 5.1 describes the calculation of the

computation ratio. The calculated ratios are put into a configuration file and send as

an argument to the balancer to migrate the data from under utilized nodes to over

utilized nodes.

Node WordCount Grep
HP Xeon 0.36 0.4
HP Xeon 0.36 0.4

HP Celeron 0.14 0.1
HP Celeron 0.14 0.1

Table 5.1: Computation Ratio

5.1 WordCount

The WordCount Performance graphs indicate that Node A and B being the faster

nodes tend to process the entire dataset faster individually. On the other hand Node

C and D are considerably slower that the faster performing nodes. Hence, it signifies

23

that more amount of data has to be present in the faster performing nodes to process

the application faster. Therefore, the balancer is run in order to make the distribution

according to the computing power. This movement is carried out under the assumption

there is sufficient space available on the individual nodes.

The Figure 5.2 shows that 6 different tests are performed. The tests are performed

to test the impact of network overload and computing power of the nodes. The bar

graphs with the title ’In A - Distributed’ describes that the nodes B, C and D are

switched off and the datasets are placed in A. After placing the datasets into node

A, the nodes B, C and D switched back on. Now the data from A are distributed to

B,C and D. Since the data gets distributed during the start up, there is a delay during

the start of the cluster. Hence, the additional time during the start up indicates the

distribution. Hence, the additional time is taken for processing when compared to ’All

- Unbalanced’. Similarly, the tests are run by placing the datasets into B,C and D

respectively.

’All - Unbalanced’ signifies the Hadoop distribution which distributes the data evenly

across all the nodes. ’All - Balanced’ indicates the data distributed across all the nodes

after running the CRBalancer application.

After the balancing takes place the Figure 5.2 shows a significant improvement of

about 11 percent approximately with respect to the WordCount Application. The

improvement tends to increase with larger dataset.

5.2 Grep

The Grep Performance graphs indicate that Node A and B being the faster nodes

tend to process the entire dataset faster individually. On the other hand Node C

and D are considerably slower than the faster performing nodes. Hence, it signifies

that more amount of data has to be present in the faster performing nodes to process

24

Figure 5.1: Calculating Computation Ratio for WordCount By Running On Individual Nodes

Figure 5.2: WordCount Performance Evaluation After Running CRBalancer

Figure 5.3: Calculating Computation Ratio for Grep By Running On Individual Nodes

25

Figure 5.4: Grep Performance Evaluation After Running CRBalancer

the application faster. Therefore, the balancer is run in order to make the distribution

according to the computing power. This movement is carried out under the assumption

there is sufficient space available on the individual nodes.

The Figure 5.4 shows that 6 different tests are performed. The tests are performed

to test the impact of network overload and computing power of the nodes. The bar

graphs with the title ’In A - Distributed’ describes that the nodes B, C and D are

switched off and the datasets are placed in A. After placing the datasets into node

A, the nodes B, C and D switched back on. Now the data from A are distributed to

B,C and D. Since the data gets distributed during the start up, there is a delay during

the start of the cluster. Hence, the additional time during the start up indicates the

distribution. Hence, the additional time is taken for processing when compared to ’All

- Unbalanced’. Similarly, the tests are run by placing the datasets into B,C and D

respectively.

’All - Unbalanced’ signifies the Hadoop distribution which distributes the data evenly

across all the nodes. ’All - Balanced’ indicates the data distributed across all the nodes

after running the CRBalancer application.

After the balancing takes place the Figure 5.4 shows a significant improvement of about

25 percent with respect to the Grep Application for a larger dataset although there is no

26

significant variation when compared to an unbalanced dataset. This clearly indicates

that with the increase in datasize the placement algorithm will gain more leverage until

a trade-off is made with space and network overload. Hence, this distribution would

be suitable for small to moderate workload conditions

5.3 Summary

In this Chapter, we described a performance problem in Hadoop Distributed File Sys-

tem on heterogeneous clusters. Motivated by the performance degradation caused by

heterogeneity, we designed and implemented a data placement mechanism in HDFS.

The new mechanism distributes fragments of an input file to heterogeneous nodes

according to their computing capacities. Our approach significantly improves perfor-

mance of Hadoop heterogeneous clusters. For example, the empirical results show

that our data placement mechanism can boost the performance of the two Hadoop

applications (i.e., Grep and Word- Count) by up to 25 and 11 percent approximately.

The current project also deals with the replication and cluster network aware data

placement. Future work has to deal with data placement with respect to multiple

applications running a set of clusters. Also, we might have to deal with the storage

space issue and the network overhead and device an efficient data placement algorithm

which is dynamic in nature for optimum performance.

27

Bibliography

[1] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wal-
lach, Mike Burrows, Tushar Chandra, Andrew Fikes, and Robert E. Gruber.
2006. Bigtable: a distributed storage system for structured data. In Proceedings
of the 7th USENIX Symposium on Operating Systems Design and Implementa-
tion - Volume 7 (OSDI ’06), Vol. 7. USENIX Association, Berkeley, CA, USA,
15-15.

[2] MapReduce: Simplified Data Processing on Large Clusters, Jeffrey Dean, Sanjay
Ghemawat.

[3] Cooling Hadoop: Temperature Aware Schedulers in Data Centers, Sanjay Kulka-
rni, Xiao Qin.

[4] Yahoo Developer Network, https://developer.yahoo.com/hadoop/tutorial/module4.html.

[5] Hadoop Official Site, http://hadoop.apache.org/.

[6] HortonWorks Official Site, http://hortonworks.com

28

