Analysis of growth hormone releasing peptide GHRP-2 for doping control purposes

Shinji Kageyama Anti-Doping Laboratory Mitsubishi Chemical Medience Corporation

★三菱化学メディエンス

Introduction

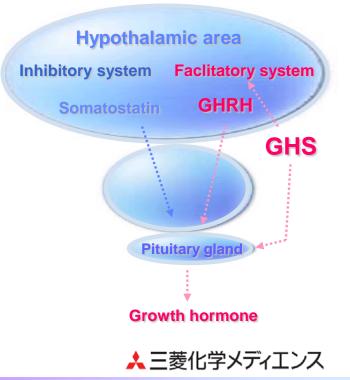
GHRP-2, which belongs to growth hormone secretagogues (GHS), has been used as diagnostic agent in Japan. Nasal GHRP-2 spray is on a clinical trial.

Out of Japan, several studies for oral products such as Capromorelin, Tabimorelin and others were going on.

GHSs are expected to be used more widely for clinical purposes and promotion of health.

Currently, many kinds of GHS such as hexarelin, sermorelin (Geref), GHRP-2 (Pralmorelin), tesamoreline (Egrifta), GHRP-6 and many kinds of GHS-containing supplements are available.

▲ 三菱化学メディエンス


Growth Hormone Secretagogue Doping?

Laboratories have been using Differential Isoform Immunoassay as an excellent method to detect GH Doping.

However, there are concerns about Doping violation by GHS, GHRH and their analogs.

Nowadays, there are numerous internet sites dealing with GHS.

We are afraid that GHS Doping becomes rampant.

Our Research for the detection of GHS Doping

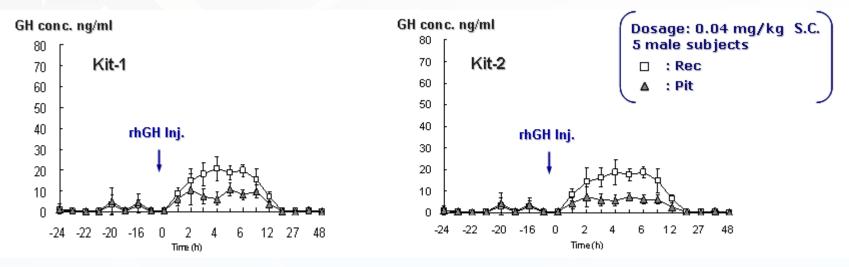
- 2008 The study of GHS-screening analysis
- 2009 Administration study of GHRP-2 and hGH
- 2010 Development of analysis method of GHRP-2
- 2011 •••

Administration of GH and GHRP-2 in 2009

Growth hormone

Generic name	: Somatropin (22-kDa rhGH)
Trade name	: Somatropin BS 5 mg SC Injection (Manufacturer: Sandoz K.K., Japan)
Dosage form	: Subcutaneous injection during fasting
Dosage	: 0.04 mg/kg single administration

UNKF-2	
Generic name	: Pralmorelin hydrochloride
Trade name	: GHRP KAKEN 100 inj. (Manufacturer: Kaken Pharmaceutical Co., Ltd.)
Dosage form	: Intravenous injection
Dosage	: 100 μL single administration

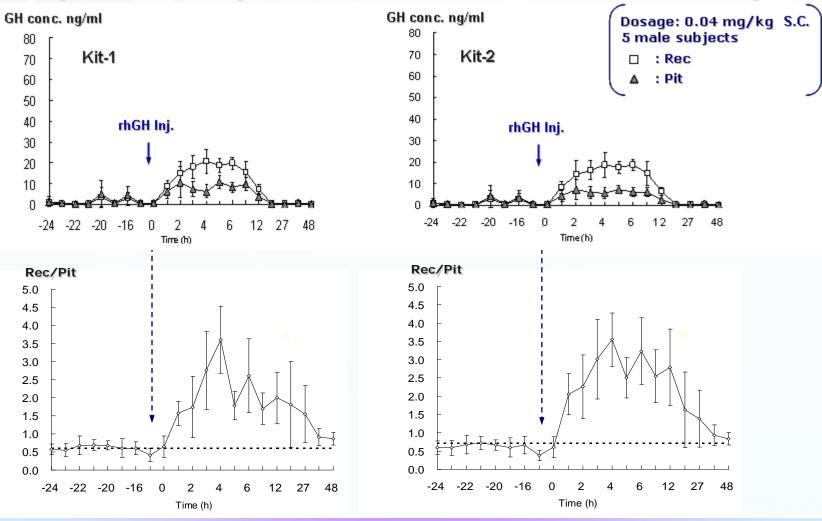

Subjects

Japanese male (n=5): Age 20 – 37, body weight 54 kg -63 kg, BMI 18.8-21.8

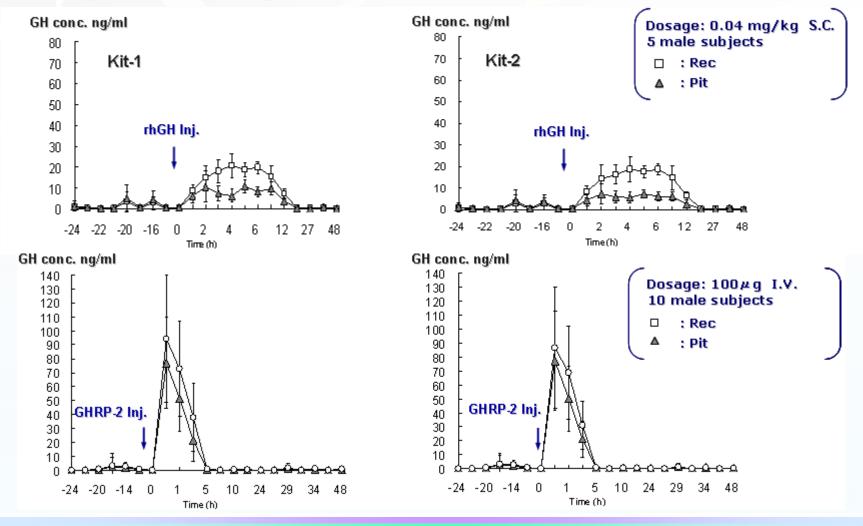
Time line of administration and sampling

-2day	-1day	post 1day	2day	3day 3
-36hr Admission	-24hr Start of sampling Urine and Blood	Ohr S.C. injection rGH <i>i.v</i> . injection GHRP-2	24hr	48hr Discharge ★三菱化学メディエンス

Analysis of GH by differential isoform immunoassay

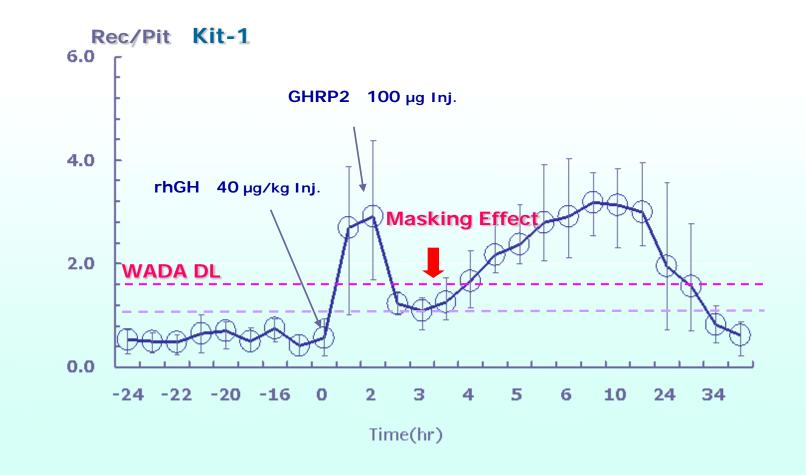


Kit1: CMZ-Assay GmbH (Berlin, Germany)


Ref.

Bidlingmaier M, Wu Z, Strasburger CJ, Test method: GH. *Bailliere's Clin Endocrinol Metab* 14:99-109 (2000). Bidlingmaier M *et al*, High-Sensitivity Chemiluminescence Immunoassays for Detection of Growth Hormone Doping in Sports. *Clin Chem* 55: 3 (2009).

Analysis of GH by differential isoform immunoassay

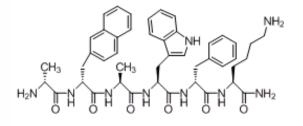


Analysis of GH by differential isoform immunoassay

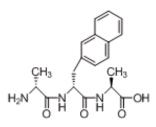
Administration study

Combined Administration of GHRP-2 and GH

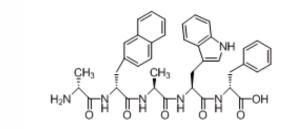
Therefore we have continued this research:


Determination of growth hormone secretagogue pralmorelin (GHRP-2) and its metabolite in human urine by liquid chromatography/electrospray ionizationtandem mass spectrometry

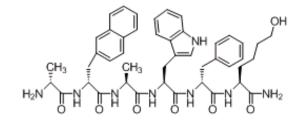
Target compounds for analysis


GHRP-2

Kaken Pharmaceutical Co., Ltd. Tokyo, Japan


D-Ala-D-(B-Naphthyl)-Ala-Ala-Trp-D-Phe-Lys-NH2

AA-3 Major metabolite


D-Ala-D-(β-Naphthyl)-Ala-Ala-OH

Reference Kaken pharmaceutical co.,LTD. AF-6

D-Ala-D-(β-Naphthyl)-Ala-Ala-Trp-D-Phe-OH

AK-6 GL Biochem Ltd. , Shanghai, China

D-Ala-D-(B-Naphthyl)-Ala-Ala-Trp-D-Phe-Lys-OH

Confirmation of elemental compositions of GHRP-2, AA-3 and Stable isotope-labeled GHRP-2

Equipments HPLC/TOFMS system : Applied Biosystems QSTAR XL MS/MS QTOF system (Life Technologies Corporation, Carlsbad, CA, USA) Agilent 1100 Series LC (Agilent Technologies, Palo Alto, CA, USA)

Analytical column: Supelco Discovery C₁₈ 4.0 x 50 mm (Sigma-Aldrich Co.) Column oven temperature: 25°C, Flow rate: 0.25 mL /min

Mobile phase A: 0.1 % TFA, Mobile phase B: CH₃CN Gradient elution: 35 % B for 1.0 min, linear to 85 % B in 6.0 min (hold 2.0 min) followed by a decrease to 35 % B in 0.1 min (hold 2.0 min) Injection volume: 10 μL

Ionspray temperature: 450, Ion source voltage: 5,500 V Declustering potential: 50 V, Focusing potential: 250 V Nebulizer gas: Nitrogen gas (2.85 L/min) Auxiliary gas: 4.80 L/min Ionization: ESI in positive mode

Accurate masses and elemental compositions of target peptides by LC/ESI (+)-TOFMS

Peptide	Formura		Observed ion	Theoretical ion	Mass error
			(<i>m/z</i>)	(<i>m/z</i>)	(ppm)
GHRP-2	C₄₅H₅₅N₀O₅	[M+H] ⁺	818.4348	818.4348	0.00
	C45F156NgO6	[M+2H] ²⁺	409.7208	409.7210	-0.49
AA-3	C ₁₉ H ₂₄ N ₃ O ₄	[M+H] ⁺	358.1763	358.1761	0.56
Stable Isotope Labeled	С ₃₆ Н ₅₆ N ₈ O ₆ ¹³ C9 ¹⁵ N	[M+H] ⁺	828.4610	828.4620	-1.21
GHRP-2		[M+2H] ²⁺	414.7360	414.7347	3.13
				人三菱化学>	メディエンス

Collision-induced dissociation experiments of GHRP-2, AA-3 and Stable isotope-labeled GHRP-2

Equipment and condition

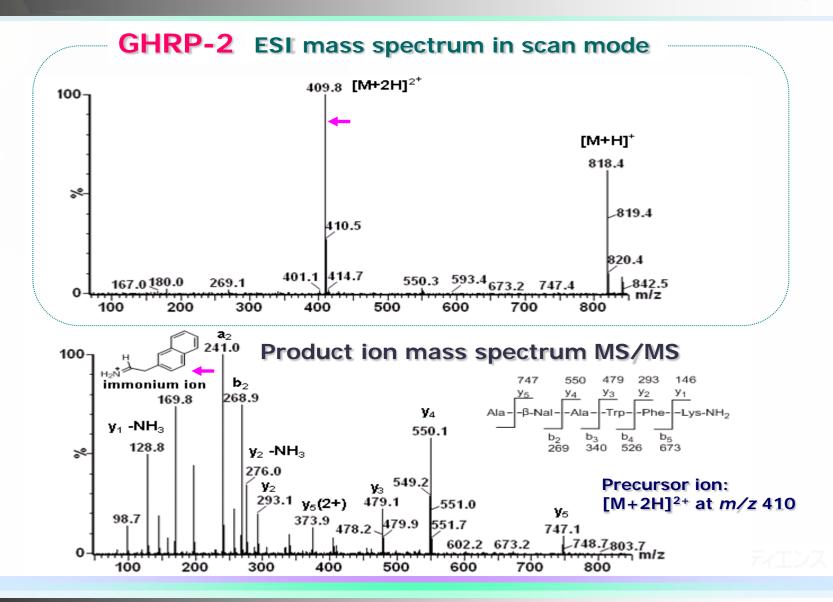
Ultra-performance liquid chromatography/tandem mass spectrometry, UPLC[®]/MS/MS: Acquity UPLC[®]/tandem quadrupole mass spectrometer TQD with an ESI-Source Z-spray (Waters Corporation)

The mass range: *m*/*z* 70 to 850 in scan analysis

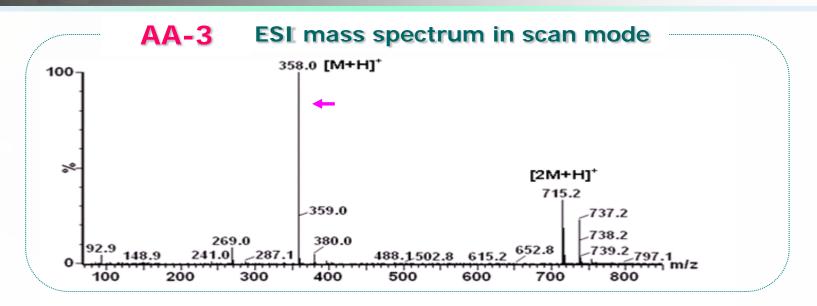
Analytical column: Acquity UPLC[®] BEH C₁₈ 2.1 mm x 50 mm, 1.7 μ m Column oven tem.: 25 °C, Flow rate: 0.5 mL/min (Waters Corporation) Mobile phases A: 0.1 % TFA, Mobile phases B: CH₃CN Gradient elution: 10 % B for 1.0 min, linear to 35 % B in 7.0 min, linear to 80 % B in 8.0 min followed by a decrease to 10 % B in 0.1 min.

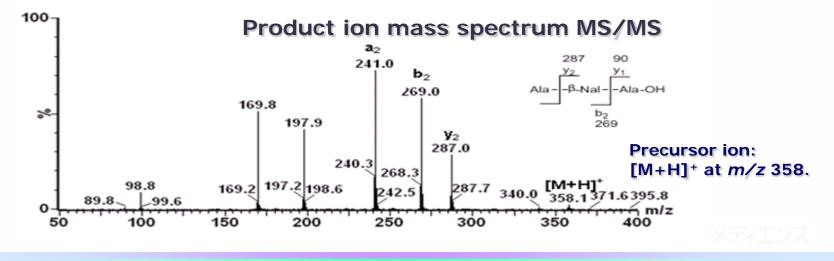
Injection volume: 10 µL

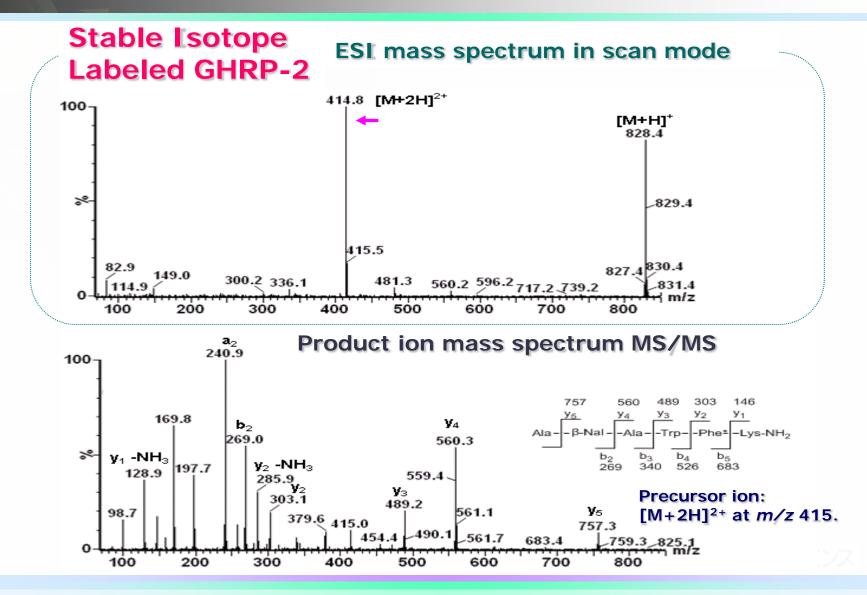
★三菱化学メディエンス


Equipment and condition

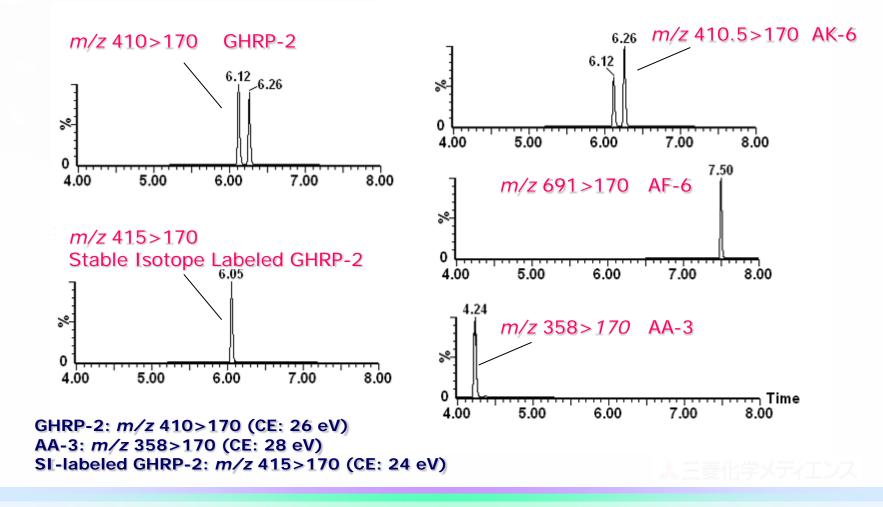
Ionization: ESI in positive mode Ionspray temperature: 120 °C, Desolvation temperature: 400 °C Capillary voltage: 3.5 kV, Cone voltage: 26 V, Cone N₂ gas: 50 L/hr Desolvation N₂ gas: 600 L/hr, Collision Ar gas: 0.2 mL/min


Collision energy: 15 eV


Precursor ions: *m/z* 410, 415 and 358 Product ion scan range for the CID experiment: *m/z* 50 to 850



Analysis



S18 Rome Italy 15/16 June 2011

Selected ion chromatograms of GHRP-2 related peptide

Analysis

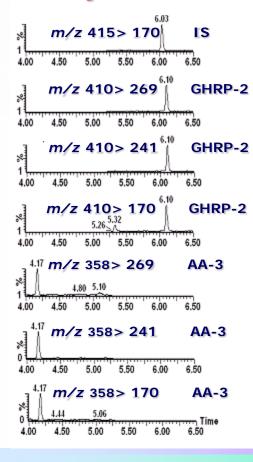
Sample preparation

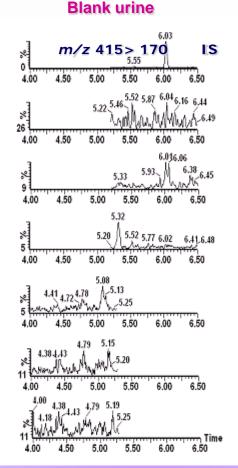
5 mL urine

Т

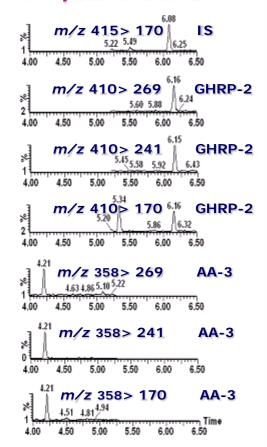
1 mL 2M glycine pH 2.2
50 μL of stable isotope labeled GHRP-2 (2μg/mL)
Soild-phase extraction
— wash 1 mL 0.1 % TFA
elution 2 mL 0.5 % glycerol in CH_3OH
eluent
Under N ₂ stream at 4 ° C
residue
$ 100 \mu L 0.1 \% TFA / CH3CN (90:10 v/v)$ Centrififuge separation (1,000 g)
supernatant
10 μL Injection into the LC/MS/MS

Summary of assay validation for quantification analysis by means of UPLC[®]/ESI (+)-MS/MS in MRM mode

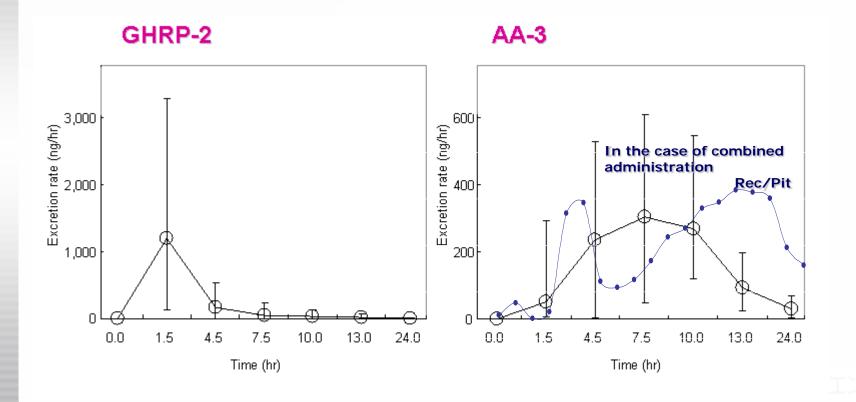

Compounds	Limit of detection	Correcttion coefficiency	Recovery rate	Conc.	Intra-day assay n=10		Inter-day assay 3days, n=30	
	ng/ml	r	x	ng/ml	Precision C.V. %	Accuracy %	Precision C.V. %	Accuracy %
				1	3.1	1.36	4.3	1.32
GHRP-2	0.05	0.9992	84	4	2.3	0.82	2.2	0.02
				9	1.6	2.67	1.9	0.77
				1	2.1	-2.38	3.2	-2.29
AA-3	0.02	0.9986	101	4	3.0	-2.16	3.8	-2.80
				9	3.8	-2.79	3.9	-1.79


★三菱化学メディエンス

Selected ion chromatograms of spiked urine, Blank urine and Administrated urine


Spiked urine

with 10 ng/mL of GHRP-2 and AA-3



Administrated urine 4.5hrs after I.V. injection of GHRP-2

Excretion rates of GHRP-2 and AA-3 after I.V. administration of GHRP-2 (100 μ g of pralmorelin dihydrochloride, n = 10).

23

Conclusion of our study

- Our LC/MS method is effective to detect GHPR-2 and its metabolite AA-3 in human urine. Also, the AA-3 is better suited for detecting GHRP-2 doping.
- The differential isoform method could detect GH doping, even if in the case of low dose administration of rhGH.
- GHRP-2 doping couldn't be detected by the method based on GH isoform-profile and GHRP-2 had masking effect against detecting rhGH doping. The analysis of GHS compensates the defect of the method based on GH isoform-profile.


Cologne: Thevis M *et al. Rapid Commun. Mass Spectrom.* 2006 Cologne: Thevis M *et al. Anal Bioanal Chem.* 2011 Barcelona: Gallego R *et al. Anal Biochem.* 2010

★三菱化学メディエンス

Acknowledgements

We conducted these study in cooperation with,

Ministry of Education, Culture, Sports, Science and Technology Asian-Regional Office, WADA Japan Anti-Doping Agency Staff of Mitsubishi Chemical Medience Co.

