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Abstract

Time series data originates from the past; it is historical by construction. In most subjects of

the social sciences, it is common to analyse time series data from the more recent past since it

is most relevant to the present time. In historical research, one is particularly interested in data

from the more remote past which can stretch out over hundreds of years. The statistical analysis

of time series data should not be different when the data come from ancient times. However, the

accuracy in recording the data will be lower. We can also expect that historical data may not

be completely available for each year or each decennium. We show that statistical methodologies

based on state space time series models can treat the typical messy features in historical data in

an effective manner. An illustration is given for a multiple time series of commodity prices in the

economy of Babylonia for the period from 385 to 61 BC. Although many stretches of observations

can be observed at a daily frequency, most observations in this period need to be treated as missing.

Our main interests center on the question whether commoditity markets during these years have

operated efficiently in the economy of Babylonia.

∗We thank the participants of the KNAW Colloquium “The efficiency of Markets in Pre-industrial societies: the case
of Babylonia (c. 400-60 BC) in comparative perspective”, 19-21 May 2011 in Amsterdam. The discussions have been
very insightful.
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1 Introduction

In this paper we discuss the multivariate analysis of historical time series that typically are subject

to messy features such as missing observations and outlying observations. Our primary motivation is

the multiple analysis of monthly commodity prices in Babylonia between 385 – 61 BC. We consider

monthly price series for Barley, Dates, Mustard, Cress, Sesame and Wool. As it can be expected, the

data set is far from complete. The monthly time series span over 300 years and hence we could have

3,888 observations for each price series. However for most series we only have around 530 monthly

observations available. It means that the vast majority of data entries is missing. We need to treat

3,358 missing observations in the analysis. The available prices stretches over a long period of more

than three centuries. The treatments of commodities and the market conditions have changed greatly

in Babylonia during this long and hectic period. The time series of prices are subject to outliers

and structural breaks due to periods of war and other disasters. In times of turmoil, the supply of

commodities typically reduce and their availability becomes scarce. As a result, prices typically rise

and often to very high levels. Other contributions of this Volume will discuss further particularities

of this data set and related sets. Our contribution concentrates on the statistical treatment of these

historical data sets.

Different statistical methodologies for time series analysis can be pursued. It is not our purpose to

provide an overview of different time series methodologies. We can refer to reviews such as those of

Ord (1990). In our contribution we discuss the class of Unobserved Components Time Series (UCTS)

models for both univariate and multivariate analyses. A complete treatment is presented in Harvey

(1989) who refers to such models as “Structural Time Series Models”. An up-to-date discussion of

univariate UCTS models is presented in Section 2. The statistical analysis based on UCTS models

relies mainly on the representation of the model in state space form. Once the model is framed in its

state space form, the Kalman filter and related methods are used for the estimation of the dynamic

features of the model but also for the computation of the likelihood function. We will introduce the

state space form and the related methods in Section 3. We will argue that in particular the Kalman

filter plays a central role in time series analysis as it is general and can handle missing entries in a

time series as a routine matter. The generality of the UCTS model and the Kalman filter is further

illustrated in Section 4 where we show how the univariate UCTS model and its treatment can be

generalized towards a multivariate statistical analysis of a multiple time series.

The UCTS methodology is illustrated for our six monthly time series of commodity prices for

Barley, Dates, Mustard, Cress, Sesame and Wool. We analyse first each time series first by an

univariate UCTS model. It will be shown that we can obtain accurate estimates of the evolution of

the price levels over a time span of 600 years. We discuss how outliers and structural breaks affect

the analysis and how we can allow for these irregularities in the time series. A complete multivariate

analysis is also considered. In particular we investigate how common the price evolutions have been

for the different commodities.

The remainder of this paper is organised as follows. In Section 2 we discuss in detail our time

series methodology based on UCTS models. The general state space methods are briefly discussed in

Section 3. We introduce a number of interesting multivariate extensions for the UCTS methodology in

Section 4. Finally, the empirical study for the six monthly time series of commodity prices for Barley,

Dates, Mustard, Cress, Sesame and Wool in Babylonia between 385 – 61 BC is presented in Section

5. Section 6 concludes.
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2 Unobserved components time series models

The univariate unobserved components time series model that is particularly suitable for many eco-

nomic data sets is given by

yt = µt + γt + ψt + εt, εt ∼ NID(0, σ2ε), t = 1, . . . , n, (1)

where µt, γt, ψt, and εt represent trend, seasonal, cycle, and irregular components, respectively. The

trend, seasonal, and cycle components are modelled by linear dynamic stochastic processes which

depend on disturbances. The components are formulated in a flexible way and they are allowed

to change over time rather than being deterministic. The disturbances driving the components are

independent of each other. The definitions of the components are given below, but a full explanation

of the underlying rationale can be found in Harvey (1989, Chapter 2) where model (1) is referred to as

the “Structural Time Series Model”. The effectiveness of structural time series models compared to

ARIMA type models is discussed in Harvey, Koopman, and Penzer (1998). They stress that time series

models based on unobserved components are particularly effective when messy features are present

in the time series such as missing values, mixed frequencies (monthly and quarterly seasons of time

series), outliers, structural breaks and nonlinear non-Gaussian aspects. An elementary introduction

and a practical guide to unobserved component time series modeling is provided by Commandeur and

Koopman (2007).

2.1 Trend component

The trend component can be specified in many different ways. A selection of trend specifications is

given below.

Local level The trend component can simply be modelled as a random walk process and is then

given by

µt+1 = µt + ηt, ηt ∼ NID(0, σ2η), (2)

where NID(0, σ2) refers to a normally independently distributed series with mean zero and

variance σ2. The disturbance series ηt is therefore serially independent and mutually independent

of all other disturbance series related to yt in (1). The initial trend µ1 is for simplicity treated

as an unknown coefficient that needs to be estimated together with the unknown variance σ2η.

The estimation of parameters is discussed in Section 3.4. Harvey (1989, §2.3.6) defines the local

level model as yt = µt + εt with µt given by (2). In case σ2η = 0, the observations from a local

level model are generated by a NID process with constant mean µ1 and a constant variance σ2.

Local linear trend An extension of the random walk trend is obtained by including a stochastic

drift component

µt+1 = µt + βt + ηt, βt+1 = βt + ζt, ζt ∼ NID(0, σ2ζ ), (3)

where the disturbance series ηt is as in (2). The initial values µ1 and β1 are treated as unknown

coefficients. Harvey (1989, §2.3.6) defines the local linear trend model as yt = µt + εt with µt
given by (3).

In case σ2ζ = 0, the trend (3) reduces to µt+1 = µt + β1 + ηt where the drift β1 is fixed. This

specification is referred to as a random walk plus drift process. If in addition σ2η = 0, the trend
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reduces to the deterministic linear trend µt+1 = µ1 + β1t. When σ2η = 0 and σ2ζ > 0, the trend

µt in (3) is known as the integrated random walk process which can be visualised as a smooth

trend function.

2.2 Seasonal component

To account for the seasonal variation in a time series, the component γt is included in model (1).

More specifically, γt represents the seasonal effect at time t that is associated with season s = s(t) for

s = 1, . . . , S where S is the seasonal length (S = 4 for quarterly data and S = 12 for monthly data).

The time-varying seasonal component can be established in different ways.

Fixed trigonometric seasonal: A deterministic seasonal pattern can be constructed from a set

of sine and cosine functions. In this case the seasonal component γt is specified as a sum of

trigonometric cycles with seasonal frequencies. Specifically, we have

γt =

bS/2c∑
j=1

γj,t, γj,t = aj cos(λjt− bj), (4)

where b · c is the floor function, γj,t is the cosine function with amplitude aj , phase bj , and

seasonal frequency λj = 2πj/S (measured in radians) for j = 1, . . . , bS/2c and t = 1, . . . , n. The

seasonal effects are based on coefficients aj and bj . Given the trigonometric identities

cos(λ± ξ) = cosλ cos ξ ∓ sinλ sin ξ, sin(λ± ξ) = cosλ sin ξ ± sinλ cos ξ, (5)

we can express γj,t as the sine-cosine wave

γj,t = δc,j cos(λjt) + δs,j sin(λjt), (6)

where δc,j = aj cos bj and δs,j = aj sin bj . The reverse transformation is aj = δ2c,j + δ2s,j and

bj = tan−1(δs,j / δc,j). The seasonal effects are alternatively represented by coefficients δc,j and

δs,j . When S is odd, the number of seasonal coefficients is S − 1 by construction. For S even,

variable δs,j , with j = S/2, drops out of (6) since frequency λj = π and sin(πt) = 0. Hence for

any seasonal length S > 1 we have S − 1 seasonal coefficients as in the fixed dummy seasonal

case.

The evaluation of each γj,t can be carried out recursively in t. By repeatedly applying the

trigonometric identities (5), we can express γj,t as the recursive expression(
γj,t+1

γ+j,t+1

)
=

[
cosλj sinλj
− sinλj cosλj

](
γj,t
γ+j,t

)
, (7)

with γj,0 = δc,j and γ+j,0 = δs,j for j = 1, . . . , bS/2c. The variable γ+j,t appears by construction as

an auxiliary variable. It follows that the seasonal effect γt is a linear function of the variables

γj,t and γ+j,t for j = 1, . . . , bS/2c (in case S is even, γ+j,t, with j = S/2, drops out).

Time-varying trigonometric seasonal: The recursive evaluation of the seasonal variables in (7)

allows the introduction of a time-varying trigonometric seasonal function. We obtain the stochas-
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tic trigonometric seasonal component γt by having(
γj,t+1

γ+j,t+1

)
=

[
cosλj sinλj
− sinλj cosλj

](
γj,t
γ+j,t

)
+

(
ωj,t
ω+
j,t

)
,

(
ωj,t
ω+
j,t

)
∼ NID(0, σ2ωI2), (8)

with λj = 2πj/S for j = 1, . . . , bS/2c and t = 1, . . . , n. The S − 1 initial variables γj,1 and γ+j,1
are treated as unknown coefficients. The seasonal disturbance series ωj,t and ω+

j,t are serially

and mutually independent, and are also independent of all the other disturbance series. In

case σ2ω = 0, equation (8) reduces to (7). The variance σ2ω is common to all disturbances

associated with different seasonal frequencies. These restrictions can be lifted and different

seasonal variances for different frequencies λj can be considered for j = 1, . . . , bS/2c.

The random walk seasonal: The random walk specification for a seasonal component is proposed

by Harrison and Stevens (1976) and is given by

γt = e′jγ
†
t , γ†t+1 = γ†t + ω†t , ω†t ∼ NID(0, σ2ωΩ), (9)

where the S×1 vector γ†t contains the seasonal effects, ej is the jth column of the S×S identity

matrix IS , S×1 disturbance vector ω†t is normally and independently distributed with mean zero

and S×S variance matrix σ2ωΩ. The seasonal effects evolve over time as random walk processes.

To ensure that the sum of seasonal effects is zero, the variance matrix Ω is subject to restriction

Ωι = 0 with ι as the S × 1 vector of ones. The seasonal index j, with j = 1, . . . , S, corresponds

to time index t and represents a specific month or quarter. A particular specification of Ω that is

subject to this restriction is given by Ω = IS−S−1ιι′. Due to the restriction of Ω, the S seasonal

random walk processes in γ†t are not evolving independently of each other. Proietti (2000) has

shown that the time-varying trigonometric seasonal model with specific variance restrictions is

equivalent to the random walk seasonal model (9) with Ω = IS − S−1ιι′.

Harvey (1989, §§2.3-2.5) studies the statistical properties of time-varying seasonal processes in

more detail. He concludes that the time-varying trigonometric seasonal evolves more smoothly over

time than time-varying dummy seasonals.

2.3 Cycle component

To capture business cycle features from economic time series, we can include a stationary cycle com-

ponent in the unobserved components time series model. For example, for a trend-plus-cycle model,

we can consider yt = µt + ψt + εt. Next we discuss various stochastic specifications for the cycle

component ψt.

Autoregressive moving average process: The cycle component ψt can be formulated as a sta-

tionary autoregressive moving average (ARMA) process and given by

ϕψ(L)ψt+1 = ϑψ(L)ξt, ξt ∼ NID(0, σ2ξ ), (10)

where ϕψ(L) is the autoregressive polynomial in the lag operator L, of lag order p with coeffi-

cients ϕψ,1, . . . , ϕψ,p and ϑψ(L) is the moving average polynomial of lag order q with coefficients

ϑψ,1, . . . , ϑψ,q. The requirement of stationarity applies to the autoregressive polynomial ϕψ(L)
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and states that the roots of |ϕψ(L)| = 0 lie outside the unit circle. The theoretical autocor-

relation function of an ARMA process has cyclical properties when the roots of |ϕψ(L)| = 0

are within the complex range. It requires p > 1. In this case the autocorrelations converge to

zero when the corresponding lag is increasing, but the convergence pattern is cyclical. It implies

that the component ψt has cyclical dynamic properties. Once the autoregressive coefficients are

estimated, it can be established whether the empirical model with ψt as in (10) has detected

cyclical dynamics in the time series. The economic cycle component in the model of Clark (1987)

is specified as the stationary ARMA process (10) with lag orders p = 2 and q = 0.

Time-varying trigonometric cycle: An alternative stochastic formulation of the cycle component

can be based on a time-varying trigonometric process such as (8) but with frequency λc associated

with the typical length of an economic business cycle, say between 1.5 and 8 years, as suggested

by Burns and Mitchell (1946). We obtain(
ψt+1

ψ+
t+1

)
= ϕψ

[
cosλc sinλc
− sinλc cosλc

](
ψt
ψ+
t

)
+

(
κt
κ+t

)
, (11)

where the discount factor 0 < ϕψ < 1 is introduced to enforce a stationary process for the

stochastic cycle component. The disturbances and the initial conditions for the cycle variables

are given by (
κt
κ+t

)
∼ NID(0, σ2κI2),

(
ψ1

ψ+
1

)
∼ NID

(
0,

σ2κ
1− ϕ2

ψ

I2

)
,

where the disturbances κt and κ+t are serially independent and mutually independent, also with

respect to disturbances that are associated with other components. The coefficients ϕψ, λc and

σ2κ are unknown and need to be estimated together with the other parameters.

This stochastic cycle specification is discussed by Harvey (1989, §§2.3-2.5), where it is argued

that the process (11) is the same as the ARMA process (10) with p = 2 and q = 1 and where

the roots of |ϕψ(L)| = 0 are enforced to be within the complex range.

3 Linear Gaussian state space models

The state space form provides a unified representation of a wide range of linear time series models, see

Harvey (1989), Kitagawa and Gersch (1996) and Durbin and Koopman (2012). The linear Gaussian

state space form consists of a transition equation and a measurement equation. We formulate the

model as in de Jong (1991), that is

yt = Ztαt +Gtεt, αt+1 = Ttαt +Htεt, εt ∼ NID (0, I) , (12)

for t = 1, . . . , n, and where εt is a vector of serially independent disturbance series. The m × 1

state vector αt contains the unobserved components and their associated variables. The measurement

equation is the first equation in (12) and it relates the observation yt to the state vector αt through

the signal Ztαt. The transition equation is the second equation in (12) and it is used to formulate the

dynamic processes of the unobserved components in a companion form. The deterministic matrices

Tt, Zt, Ht and Gt, possibly time-varying, are referred to as system matrices and they will often be
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sparse and known matrices. Specific elements of the system matrices may be specified as functions of

an unknown parameter vector.

3.1 Unobserved component models in state space form

To illustrate how the unobserved components discussed in Section 2 can be formulated in the state

space form (12), we consider the basic structural model as given by

yt = µt + γt + εt, εt ∼ NID(0, σ2ε), (13)

with trend component µt as in (3), seasonal component γt as in (8) with seasonal length S = 4

(quarterly data) and irregular εt as in (1). We require a state vector of five elements and a disturbance

vector of four elements; they are given by

αt = (µt, βt, γt, γt−1, γt−2)
′ , εt = (εt, ηt, ζt, ωt)

′ .

The state space formulation of the basic decomposition model is given by (12) with the system matrices

Tt =


1 1 0 0 0

0 1 0 0 0

0 0 −1 −1 −1

0 0 1 0 0

0 0 0 1 0

 , Ht =


0 ση 0 0

0 0 σζ 0

0 0 0 σω
0 0 0 0

0 0 0 0

 ,

Zt =
(

1 0 1 0 0
)
, Gt =

(
σε 0 0 0

)
.

Here the system matrices Tt, Ht, Zt and Gt do not depend on t; the matrices are time-invariant. The

standard deviations of the disturbances in Ht and Gt are fixed, unknown and need to be estimated.

The corresponding variances are σ2η, σ
2
ζ , σ

2
ω and σ2ε . It is common practice to transform the variances

into logs for the purpose of estimation; the log-variances can be estimated without constraints. The

unknown parameters are collected in the 4× 1 parameter vector θ. Estimation of θ can be carried out

by the method of maximum likelihood; see Section 3.4.

For the trend component µt in (3) the initial variables µ1 and β1 are treated as unknown coefficients.

For the dummy seasonal component γt in (8) with S = 4, the initial variables γ1, γ0 and γ−1 are also

treated as unknown coefficients. Given the composition of the state vector above, we can treat α1 as a

vector of unknown coeffients. We can estimate α1 simultaneously with θ by the method of maximum

likelihood or we can concentrate α1 from the likelihood function. We discuss the initialization issues

further in Section 3.4.

3.2 Kalman filter

Consider the linear Gaussian state space model (12). The predictive estimator of the state vector αt+1

is a linear function of the observations y1, . . . , yt. The Kalman filter computes the minimum mean

square linear estimator (MMSLE) of the state vector αt+1 conditional on the observations y1, . . . , yt,

denoted by at+1|t, together with its mean square error (MSE) matrix, denoted by Pt+1|t. We will also

refer to at+1|t as the state prediction estimate with Pt+1|t as its state prediction error variance matrix.

7



The Kalman filter is given by

vt = yt − Ztat|t−1, Ft = ZtPt|t−1Z
′
t +GtG

′
t,

Mt = TtPt|t−1Z
′
t +HtG

′
t, t = 1, . . . , n,

at+1|t = Ttat|t−1 +Ktvt, Pt+1|t = TtPt|t−1T
′
t +HtH

′
t −KtM

′
t ,

(14)

with Kalman gain matrix Kt = MtF
−1
t , and for particular initial values a1|0 and P1|0. The one-step

ahead prediction error is vt = yt − E(yt|y1, . . . , yt−1) with variance Var(vt) = Ft. The innovations

have mean zero and are serially independent by construction so that E(vtv
′
s) = 0 for t 6= s and

t, s = 1, . . . , n.

Before the MMSLE at+1|t and the MSE Pt+1|t are computed in the Kalman filter, the MMSLE

of the state vector αt conditional on y1, . . . , yt, denoted by at|t, and its corresponding MSE matrix,

denoted by Pt|t, can be computed as

at|t = at|t−1 + Pt|t−1Z
′
tF
−1
t vt, Pt|t = Pt|t−1 − Pt|t−1Z ′tF−1t ZtPt|t−1, (15)

It then follows that

at+1|t = Ttat|t, Pt+1|t = TtPt|tT
′
t +HtH

′
t.

Formal proofs of the Kalman filter can be found in Anderson and Moore (1979), Harvey (1989) and

Durbin and Koopman (2012).

3.3 Likelihood evaluation

The Kalman filter can be used to evaluate the Gaussian likelihood function via the prediction error

decomposition, see Schweppe (1965), Jones (1980) and Harvey (1989, §3.4). Given a model as described

in Section 2 for yt, we denote the joint density of y1, . . . , yn by p(y1, . . . , yn) and the prediction error

decomposition is then given by

p(y1, . . . , yn) = p(y1)
n∏
t=2

p(yt|y1, . . . , yt−1).

The predictive density p(yt|y1, . . . , yt−1) is Gaussian and has mean E(yt|y1, . . . , yt−1) = Ztat|t−1 and

variance Var(yt|y1, . . . , yt−1) = ZtPt|t−1Z
′
t + GtG

′
t = Ft. For a realized time series y1, . . . , yn, the

log-likelihood function is given by

` = log p (y1, . . . , yn) =

n∑
t=1

log p (yt|y1, . . . , yt−1)

= −n
2

log (2π)− 1

2

n∑
t=1

log |Ft| −
1

2

n∑
t=1

v′tF
−1
t vt. (16)

The one-step ahead prediction errors vt and their variances Ft are computed by the Kalman filter for

a given value of the parameter vector θ. To make the dependence of the likelihood function on the

parameter vector θ explicit, we can write ` = `(θ).
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3.4 Parameter estimation

In a state space analysis we are concerned with two groups of parameters that need to be estimated

for a given model specification. The first group is contained in parameter vector θ, see Section 3.1

for an illustration. The second group consists of initial variables for the unobserved (non-stationary)

processes and the regression coefficients such as δ in (13). The initial conditions for unobserved

stationary processes can be derived from the theoretical autocovariance function.

Maximum likelihood estimation of θ: The log-likelihood function (16) can be maximised with

respect to θ numerically using a numerical quasi-Newton method. For example, the method of

Broyden-Fletcher-Goldfarb-Shanno (BFGS) is generally regarded as computationally efficient in

terms of convergence speed and numerical stability; see Nocedal and Wright (1999). The BFGS

iterative optimization method is based on information from the gradient (or score). Analytical

and computationally fast methods for computing the score for a current value of θ in a state space

analysis are developed by Koopman and Shephard (1992). The BFGS method is terminated when

some pre-chosen convergence criterion is satisfied. The convergence criterion is usually based on

the gradient evaluated at the current estimate, the parameter change compared to the previous

estimate or the likelihood value change compared to the previous estimate. The number of

iterations required to satisfy these criteria depends on the choice of the initial parameter values,

the tightness of the chosen criterion and the shape of the likelihood surface.

An alternative method for maximum likelihood estimation is the EM-algorithm; see Shumway

and Stoffer (1982) and Watson and Engle (1983) in the context of a state space analysis. The

basic EM procedure works roughly as follows. Consider the joint density p(y1, . . . , yn, α1, . . . , αn).

The Expectation (E) step takes the expectation of the state vectors conditional on y1, . . . , yn and

the Maximization (M) step maximizes the resulting expression with respect to θ. The E step

requires the evaluation of the estimated state vector using a smoothing algorithm related to the

Kalman filter, see de Jong (1989). The M step is usually carried out analytically and is simpler

than maximizing the full likelihood function directly. Given the ”new” estimate of θ from the M

step, we return to the E step and evaluate the smoothed estimates based on the new estimate.

This iterative procedure converges to the maximum likelihood estimate of θ. Under fairly weak

conditions it can be proven that each iteration of the EM algorithm increases the value of the

likelihood. The EM converges to a maximum of the likelihood as a result. In practice it is often

found that while the EM gets to a neighbourhood of the maximum quickly, it converges to the

maximum slowly. Therefore a mix of EM and direct maximization is often advocated. In case

θ only contains parameters in Gt and Ht, Koopman (1993) shows that the EM can be modified

toward a fast and simple procedure.

Estimation of initial states: The non-stationary trend and seasonal components, as discussed in

Section 2, rely on initial variables that are treated as fixed unknown coefficients. In the illus-

trations in Section 3.1 it is shown that these initial states are collectively placed in α1. We can

therefore concentrate on the estimation of the initial state vector α1.

Preferably we estimate α1 jointly with θ by the method of maximum likelihood as discussed

above. However, numerical problems may arise when the likelihood function is maximised with

respect to a high-dimensional parameter vector that joins θ and α1. Fortunately, the direct

maximization with respect to α1 can be avoided since the one-step ahead prediction error vt is

a linear function of the initial state α1, that is vt = vot + vαt α1 where vot is equal to vt when the
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Kalman filter (14) is started with a1|0 = 0 and P1|0 = 0 and vαt is a function of the system matrices

Zt, Tt, Gt and Ht. Given this linear dependence, the initial state vector can be concentrated out

from the log-likelihood function in the usual way. We then maximize the concentrated likelihood

with respect to θ. The implementation of this approach is developed by Rosenberg (1973).

Tunnicliffe-Wilson (1989) and Harvey and Shephard (1990) argue convincingly that the maxi-

mum likelihood estimation of α1 can lead to bias in the estimation of unknown variances in θ;

for example, it can increase the probability that a variance is estimated as zero while the true

variance is not zero. They advocate the estimation of θ via the maximimization of a marginal or

diffuse likelihood function with respect to initial state α1. In a state space analysis, this approach

can be embedded within a unified treatment for the initialization of the Kalman filter with re-

spect to initial states; see Ansley and Kohn (1985), de Jong (1991) and Koopman (1997). It is

recently argued by Francke, Koopman, and de Vos (2010) that the strict implementation of the

marginal likelihood function for models with initial states is preferred for parameter estimation.

Stationary conditions for the initial state: When the state vector only contains stationary vari-

ables, the initial conditions for α1 can be obtained from the theoretical autocovariance function.

In a time-invariant stationary state space model we have αt+1 = Tαt +Hεt with E(αt) = 0 and

P = Var(αt) for t = 1, . . . , n. It follows that P = TPT +HH ′ with solution

vec(P ∗) = (I − T ⊗ T )−1vec(HH ′).

Efficient algorithms for solving Riccati equations can be used to compute P ∗ when its dimension

is large, as discussed in Anderson and Moore (1979) and Hindrayanto, Koopman, and Ooms

(2010). Since this solution also applies to α1, we can initialize the Kalman filter (14) with

a1|0 = 0 and P1|0 = P ∗.

In most models, the initial state vector α1 contains initial stationary and nonstationary variables;

see also the illustrations in Section 3.1. The Kalman filter initialization methods of de Jong

(1991) and Koopman (1997) account for such general model specifications.

3.5 Diagnostic checking

The assumptions underlying the models in Section 2 are that all disturbances, such as εt, ηt and κt,

are normally distributed, are serially and mutually independent and have constant variances. Under

these assumptions the standardised one-step ahead prediction errors (or prediction residuals) are given

by

et =
vt√
Ft
, t = 1, . . . , n. (17)

The prediction residuals are also normally distributed and serially independent with unit variance.

We can investigate whether these properties hold by means of the following large-sample diagnostic

tests:

Normality: The first four moments of the standardised forecast errors are given by

m1 =
1

n

n∑
t=1

et, mq =
1

n

n∑
t=1

(et −m1)
q, q = 2, 3, 4.

Skewness and kurtosis are denoted by M3 and M4, respectively, and when the model assumptions
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are valid they are asymptotically normally distributed as

M3 =
m3√
m3

2

∼ N

(
0,

6

n

)
, M4 =

m4

m2
2

∼ N

(
3,

24

n

)
.

see Bowman and Shenton (1975). Standard statistical tests can be used to check whether the

observed values of M3 and M4 are consistent with their asymptotic densities. They can also be

combined as

MN = n

{
S2

6
+

(K − 3)2

24

}
,

which asymptotically has a χ2 distribution with two degrees of freedom under the null hypothesis

that the normality assumption is valid. The QQ plot is a graphical display of ordered residuals

against their theoretical quantiles. The 45 degree line is taken as a reference line (the closer the

residual plot to this line, the better the match).

Heteroscedasticity: A simple test for heteroscedasticity is obtained by comparing the sum of

squares of two exclusive subsets of the sample. For example, the statistic

H(h) =

∑n
t=n−h+1 e

2
t∑h

t=1 e
2
t

,

is Fh,h-distributed for some preset positive integer h, under the null hypothesis of homoscedas-

ticity.

Serial correlation: The correlogram of the prediction residuals should not reveal significant serial

correlation. A standard portmanteau test statistic for serial correlation is based on the Box-

Ljung statistic suggested by Ljung and Box (1978). This is given by

Q(k) = n(n+ 2)

k∑
j=1

c2j
n− j

,

for some positive integer k, where cj is the jth correlation:

cj =
1

nm2

n∑
t=j+1

(et −m1)(et−j −m1).

Although these statistics can be used for formal hypothesis testing, in practice they are used as

diagnostic tests. Diagnostic graphic tools can be even more informative and they include a time series

plot, a histogram and a correlogram of the prediction residuals.

3.6 Missing values

A convenient property of the Kalman filter and related methods is their ability to account for missing

observations in a data set. In a relatively straightforward manner, the filter can be amended when it

is confronted with missing data. Some calculations are skipped while other calculations do not need

to be changed. This feature is of high practical relevance as many data-sets have at least some data

points not available. In our context, it also offers a solution to the forecasting problem since we can

regard the future observations as a set of missing observations.
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The Kalman filter produces one-step ahead predictions of the state vector as denoted by at+1|t
with its error variance matrices Pt+1|t for t = 1, . . . , n. In the Kalman filter, if yτ is missing, we do

not know its value or its one-step ahead prediction error vτ . The missing information on vτ can be

reflected by having Fτ →∞ as it indicates that we have no information about vτ . The consequences

of having Fτ → ∞ in the Kalman filter is that Kτ → 0 while the remaining computations in the

Kalman filter can still be carried out. The prediction step of the Kalman filter reduces to

at+1|t = Ttat|t−1, Pt+1|t = TtPt|t−1T
′
t +HtH

′
t, (18)

for t = τ as Fτ → ∞. Note that at|t = at|t−1 and Pt|t = Pt|t−1 for t = τ . The implementation of a

Kalman filter with missing data entries is straightforward and relies simply on a conditional statement:

if yt is observed, carry out the Kalman filter as in (14); if yt is missing, carry out the prediction step

(18). Missing entries are allowed throughout the data sample y1, . . . , yn, individually and in blocks.

The treatment of missing values can be adopted to the computation of forecasts and their forecast

error variances. After the last observation, we add a series of missing values to the data set and carry

on with the Kalman filter. It treats the future observations as missing values in the way described

above. We then effectively obtain the state prediction estimates an+h|n and its prediction error variance

matrix Pn+h|n for h = 1, 2, . . .. The observation forecasts ŷn+h|n = E(yn+h|y1, . . . , yn) and its error

variance matrix Vn+h|n = Var(yn+h − ŷn+h|y1, . . . , yn) are then computed by

ŷn+h|h = Zn+han+h|n, Vn+h|n = Zn+hPn+h|nZ
′
n+h +Hn+hH

′
n+h,

for h = 1, 2, . . .. This simple treatment of missing observations and forecasting is one of the attractions

of state space analysis.

4 Multivariate extensions

In Section 2 we have set out a comprehensive class of unobserved components time series models.

In economic theory one focuses on the dynamic relationships between variables. Hence the need

of econometricians to simultaneously analyze and model a multiple set of related time series. The

multivariate analysis of time series is a challenging task because the dynamic interactions between

time series can be intricate and the number of parameters in a model can increase rapidly. In this

section we will highlight a number of multivariate extensions of decomposition models together with

a number of applications.

4.1 Multivariate trend model

The decomposition models can easily be extended for the modelling of multivariate time series. For

example, letting yt denote a p × 1 vector of observations, the multivariate local level model for yt is

given by

yt = µt + εt, εt ∼ NID(0,Σε),

µt+1 = µt + ξt, ξt ∼ NID(0,Σξ),
(19)

for t = 1, . . . , n, where µt, εt, and ξt are p× 1 vectors and Σε and Σξ are p× p variance matrices. In

what is known as the seemingly unrelated time series equations model (19), the series are modelled
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as in the univariate situation, but the disturbances driving the level components are allowed to be

instantaneously correlated across the p series. When slope, seasonal, or cycle components are involved,

each of these three components also has an associated p × p variance matrix allowing for correlated

disturbances across series.

The dynamic properties implied by the trend decomposition model (19) further depend on the

specifications of the variance matrices Σε and Σξ. When both variance matrices are of full rank, the

dynamic interactions between the time series can alternatively represented by

yt = Λξµ
†
t + Λεε

†
t , µ†t+1 = µ†t + ξ†t , ε†t ∼ NID(0,Dε), ξ†t ∼ NID(0,Dξ), (20)

where the various terms are defined implicitly by relating the terms in (19) with those in (20) via

µt = Λξµ
†
t , εt = Λεε

†
t , Σε = ΛεDεΛ′ε, Σξ = ΛξDξΛ′ξ,

where Dε and Dξ are p × p variance matrices. Since we have assumed full rank variance matrices,

it is also true that µ†t = Λ−1ξ µt and, similarly, ε†t = Λ−1ε εt. The representation (20) shows in a more

transparent, direct way how the time series relate to each other. The loading matrix Λξ typically

determines the long-term movements or dynamics between the variables whereas the loading matrix

Λε links the contemporaneous shocks in the time series.

The matrices Λx and Dx can be regarded as the result of the variance matrix decomposition of Σx,

for x = ε, ξ. The variance decomposition Σx = ΛxDxΛ′x is not unique, for x = ε, ξ. Since the number

of coefficients in Σx is 1
2p(p + 1), all elements in the p × p matrices Λx and Dx cannot be identified

in the model. An appropriate set of identification restrictions are obtained by assuming that Λx is a

lower (or upper) triangular matrix with unit values on the diagonal and that Dx is a diagonal matrix

consisting of positive values. The restrictions imply the Cholesky decomposition of Σx. For given

values of Λx and Dx, the trend can still be transformed without affecting the model for yt itself. For

all orthonormal p × p matrices B and C, such that B′B = Ip and C ′C = Ip, we can reformulate the

model as

yt = Λ∗ξµ
∗
t + Λ∗εε

∗
t , µ∗t+1 = µ∗t + ξ∗t , ε∗t ∼ NID(0, CDεC ′), ξ∗t ∼ NID(0, BDξB′), (21)

where

Λ∗ξ = ΛξB
′, µ∗t = Bµ†t , Λ∗ε = ΛεC

′, ε∗t = Cε†t ,

for t = 1, . . . , n. The transformations based on B and C can be exploited to obtain a loading structure

that suits an economic interpretation. We emphasize that the statistical dynamic properties of yt are

the same for all model specifications (19), (20) and (21).

4.2 Common trends and cycles

When the variance matrix of the trend disturbance Σξ has not full rank, the multivariate local level

model (19) implies a common trend component for yt. In other words, when rank(Σξ) = r < p, the

underlying trends of the p time series in yt depend on a smaller set of r common trends. In terms of the

model representation (20), the dimensions of the matrices Λξ and Dξ are p× r and r× r, respectively.

Hence, the trend vector µ†t represents the common trends and has dimension r × 1. Since the time

series in yt can all have different locations. The locations of r time series can be determined by the r

trends in µ†t . The locations of the remaining p− r time series in yt are then adjusted by the constant
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vector µ̄ in

yt = µ̄+ Λξµ
†
t + εt, µ†t+1 = µ†t + ξ†t , (22)

where µ̄ consists of r zero and p − r non-zero values. Common trends in a model allows interesting

economic relations and are related to the concept of cointegration, see Stock and Watson (1988) and

Anderson and Vahid (2011, this volume) where common cycles and trends are studied using vector

autoregressive models.

Common dynamics can also be introduced for other unobserved components in the model. In

particular, common drifts and common cycles are of interest in economic time series. The basic

formulation of a model with common trends and cycles is given by

yt = µ̄+ Λξµ
†
t + Λκψ

†
t + εt, (23)

where µ†t is the rµ × 1 vector of common trends and vector ψ†t contains the rψ common cycles. The

loading matrices Λξ and Λκ have dimensions p × rµ and p × rψ, respectively. We can adopt one of

the cycle specifications discussed in Section 2.3 and generalize these to multivariate processes. For

example, a multivariate version of the ARMA process (10) can be considered, see Shumway and Stoffer

(2006, Chapter 5.7). The multivariate version of the cycle process (11) is known as the similar cycle

since the discount factor ϕψ and the cycle frequency λc are common to all individual cycles, see the

discussion in Harvey and Koopman (1997). We define the similar cycle process for ψ†t in (23) by(
ψ†t+1

ψ+
t+1

)
= ϕψ

{[
cosλc sinλc
− sinλc cosλc

]
⊗ Irψ

}(
ψ†t
ψ+
t

)
+

(
κ†t
κ+t

)
, (24)

where the auxiliary cycle vector ψ+
t has dimension rψ × 1, the discount factor ϕψ and cycle frequency

λc remain scalars and ⊗ is the Kronecker matrix product operator. The rψ× 1 disturbance vectors κ†t
and κ+t together with the initial conditions for the cycle vectors are given by(

κ†t
κ+t

)
∼ NID(0, I2 ⊗Dκ),

(
ψ†1
ψ+
1

)
∼ NID

(
0,

1

1− ϕ2
ψ

I2 ⊗Dκ

)
,

and the cyclical disturbance series κ†t and κ+t are serially independent and mutually independent. It

follows for the cycle component ψt = Λκψ
†
t in (23) that

E(ψt) = 0, Var(ψt) = ΛκDκΛ′κ,

for t = 1, . . . , n. The individual cycle processes in ψ†t are mutually independent of each other while

those in ψt are correlated with each other.

In the decomposition model (23) for yt with trend and cycle components, only time series with

coincident cycles are viable candidates to be included in the model for yt. It can be of economic

interest to investigate whether leads or lags of economic variables are appropriate for its inclusion in

yt. For this purpose, the model can be modified to allow the base cycle ψt to be shifted for each

time series. The phase shift mechanism proposed by Rünstler (2004) allows the cycle process ψt to be

shifted ν time periods to the right (when scalar ν > 0) or to the left (when ν < 0) by considering

cos(νλc)ψt + sin(νλc)ψ
+
t , t = 1, . . . , n.
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The shift ν is measured in real-time so that νλc is measured in radians and due to the periodicity

of trigonometric functions the parameter space of ν is restricted within the range −1
2π < νλc <

1
2π.

Individual cycles in ψt can be shifted differently by having different ν values. For the ith equation of

(23), we may have

yit = µ̄i + Λξ,iµ
†
t + cos(νiλc)Λκ,iψ

†
t + sin(νiλc)Λκ,iψ

+
t + εit,

where zit is the ith element of zt for z = y, ε, µ̄i is the ith element of µ̄ and Λx,i is the ith row of Λx for

x = ξ, κ with i = 1, . . . , p. For identification purposes, we assume that a specific equation j contains

the contemporaneous base cycle with νj = 0. The remaining p − 1 νi’s can be determined uniquely

and their corresponding cycles then shift with respect to the base cycle Λκ,jψ
†
t . More discussions on

shifted cycles together with an empirical illustration for constructing a business cycle from a panel of

macroeconomic time series are provided in Azevedo, Koopman, and Rua (2006).

4.3 State space representation and parameter estimation

The unobserved components time series models discussed here can be represented in state space form

including their multivariate versions. The multivariate trend and cycle decomposition model with

common components and possibly with shifted cycles remains linear with respect to the time-varying

unobserved components and can therefore be represented in state space form. Kalman filter and related

methods discussed in Section 3 are applicable to multivariate time series models. The methodology

of estimation and forecasting remains as for the univariate model. However, the dimensions for both

the state vector αt and the parameter vector θ are typically larger and computations are more time-

consuming. It is therefore important that all necessary computations are implemented in a numerically

stable and efficient manner; see the discussions in Koopman, Shephard, and Doornik (1999, 2008).

5 A time series analysis of commodity prices in Babylonia

In Figure 1 six monthly time series of commodity prices for Barley, Dates, Mustard, Cress, Sesame

and Wool in Babylonia between 385 – 61 BC. The series length is for 3,888 observations but we only

have 530 prices available. The vast majority of the data is therefore missing. The data is transformed

in logs in the graphs and for all analyses. In the earlier years of our sample, less data is available

while in the later years more prices are observed. Some common features in the evolution of the

log-prices emerge. For all commodities, the prices are increasing in the years towards 300 BC while

in the following years upto 150 BC the prices are slowly falling. In the last century of our sample, say

from 150 BC, the prices are increasing for most commodities. All time series are subject to outliers;

some of them can be identified with specific historical events.

5.1 Univariate decompositions

In our first set of analyses, we aim to decompose the dynamic features of the time series in level, cycle,

seasonal and irregular processes. It provides an insight into the major properties of the monthly time

series. The unobserved components time series model that we consider is given by

yt = µt + ψt + γt + εt,
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Figure 1: Monthly Commodity Prices in Babylonia
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Monthly time series of commodity prices (in logs) for Barley, Dates, Mustard, Cress, Sesame and Wool in Babylonia
between 385 – 61 BC. The x-axis displays a year BC as a negative number.

where yt is an univariate time series of monthly commodity prices and where we treat the level

component µt as the random walk process (2), the cycle ψt as the trigonometric cycle process (11),

the seasonal γt as the sum of time-varying seasonal trigonometric terms (8) and the irregular εt as

Gaussian white noise. The model is framed in state space and the Kalman filter plays a central role

in the analysis. Hence the treatment of missing values is straightforward and we can carry out the

analysis in a standard fashion.

The resulting decomposition for all six time series are displayed in Figure 2. We only present

the estimated level (or trend) and the cycle components for each monthly price series. The seasonal

component has only be estimated significantly for the Barley prices but it is found that these seasonal

effects are not varying over time. We have kept the seasonal component inside the model for Barley

but for all other series we have removed the seasonal component γt from the model specification. The

estimated irregular components are not displayed. In some series the irregular is estimated to have a

very small variance and in other series it only has captured some outliers in the series. The estimated

cycle component is of key interest and we find that this effect clearly takes out movements in the

time series that last for a small number of years. We may want to interpret these dynamic features

as economic cyclical effects in commodity prices.

When we take a closer look at the estimated levels and cycles, we can identify some common

movements. In particular the evolution of the level effect in the series appear to be common across

Dates, Mustard, Cress and Sesame while Barley and Wool appear to be subject to somewhat different

dynamics. The estimated cycle component also present some common features among the different

commodities but they are less strong and convincing. The cycle for Wool is certainly somewhat
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different. In order to investigate the commonalities in the price series more accurately, we consider

a multivariate analysis next for Barley, Dates, Mustard, Cress and Sesame. We exclude Wool in the

multivariate analysis.

Figure 2: Univariate Decompositions of Commodity Prices in Babylonia
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The lefthandside graphs present the estimated level (or trend) components for the monthly time series of commodity
prices (in logs) for Barley, Dates, Mustard, Cress, Sesame and Wool in Babylonia between 385 – 61 BC. The righthandside
graphs present the estimated cycle components. The x-axis displayes a year BC as a negative number.

5.2 Multivariate decomposition

In the multivariate analysis, we simultaneously decompose the dynamic features in the time series of

Barley, Dates, Mustard, Cress and Sesame. We include the components for level, cycle and irregular

while for Barley we include fixed seasonal dummies to capture the significant seasonal effects in Barley.

In this joint analysis of the series we may provide an insight into the common properties of the monthly

time series. The multivariate unobserved components time series model that we consider is then given

by

yt = µt + ψt + εt,

where yt is the 5×1 vector of monthly commodity prices for Barley, Dates, Mustard, Cress and Sesame,

while we treat the level component µt as the multivariate random walk process in (19), the cycle vector

ψt as the similar cycle process (24) and the irregular εt as the vector of Gaussian white noise processes.

The model is framed in state space and the Kalman filter is adapted to this multivariate setting as

discussed in Section 4.3. The treatment of missing values remains straightforward and our analysis

remains to rely on standard state space methods.

After a first analysis based on our multivariate decomposition, it has become very clear that
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the estimated variance matrix of the level component µt, that is Ση, has a rank close to one. The

four smallest eigenvalues of this variance matrix are very close to zero in comparison to the largest

eigenvalue. Hence we have changed the decomposition model towards a model with only a single

common level in its specification; see the discussion in Section 4.2. The results of the analysis based

on this model are discussed below.

The common features in the level component appear most strongly for Barley, Dates and Cress al-

though the common level captures the main movement in all commodity prices. The cycle components

do not appear to share many commonalities. In other words, the deviations from the time-varying

level component are mostly adjusting differently in the shorter term. However, a strong and persis-

ten negative correlation appears in the estimated cycle components for the price series of Barley and

Dates. This is an interesting finding as it suggests that in Babylonia Barley and Dates have been food

substitutes in a much stronger way than they are for Mustard, Cress and Sesame.

Figure 3: Multivariate Decompositions of Commodity Prices in Babylonia
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The lefthandside graphs present the estimated elements of the vector level component for the monthly time series of
commodity prices (in logs) for Barley, Dates, Mustard, Cress and Sesame in Babylonia between 385 – 61 BC. The
righthandside graphs present the estimated elements of the vector cycle component. The x-axis displayes a year BC as
a negative number.

6 Conclusion

We have reviewed time series analyses based on unobserved components time series models, both in

univariate and multivariate versions. The methodology is general and enables the handling of messy

features in time series. An empirical analysis is presented for a set of historical time series from

Babylonia. The six time series consist of monthly commodity prices, in logs. In the vast majority of
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months, the prices have not been available. The Kalman filter can handle such missing observations

as part of the analysis when it needs to treat both univariate and multivariate models. We may

conclude that a time series analysis based on unobserved components is effective in identifying the

main dynamic features in the commodity prices for Barley, Dates, Mustard, Cress and Sesame in

Babylonia between 385 – 61 BC.
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