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Analysis of Numerical Errors

Adrian Peralta-Alva and Manuel S. Santos

⇤

This paper provides a general framework for the quantitative analysis of
stochastic dynamic models. We review convergence properties of some
numerical algorithms and available methods to bound approximation er-
rors. We then address convergence and accuracy properties of the sim-
ulated moments. Our purpose is to provide an asymptotic theory for
the computation, simulation-based estimation, and testing of dynamic
economies. The theoretical analysis is complemented with several illus-
trative examples. We study both optimal and non-optimal economies.
Optimal economies generate smooth laws of motion defining Markov equi-
libria, and can be approximated by recursive methods with contractive
properties. Non-optimal economies, however, lack existence of contin-
uous Markov equilibria, and need to be computed by other algorithms
with weaker approximation properties.
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1 Introduction

Numerical methods are essential to assess the predictions of nonlinear economic mod-
els. Indeed, a vast majority of models lack analytical solutions, and hence researchers
must rely on numerical algorithms—which contain approximation errors. At the
heart of modern quantitative analysis is the presumption that the numerical method
mimics well the original model statistics. In practice, however, matters are not so
simple and there are many situations in which researchers are unable to control for
undesirable propagating effects of numerical errors.

In static economies it is usually easy to bound the size of the error. But in
infinite-horizon models we have to realize that numerical errors may cumulate in
unexpected ways. Cumulative errors can be bounded in models where equilibria
may be approximated by a contraction operator. But if the contraction property is
missing then the most that one can hope for is to establish asymptotic properties of
the numerical solution as we refine the approximation. Numerical errors may bias
stationary solutions and the simulated moments, and hence parameter estimates
from simulation-based estimation.

Model simulation is mechanically performed in macroeconomics and other disci-
plines, but there is much to be learned about laws of large numbers that can justify
the convergence of the simulated moments, and the propagating effects of numerical
errors in these simulations.

Simulation-based estimation must also cope with changes in parameter values
affecting the dynamics of the system. Indeed, the estimation process encompasses a
continuum of invariant distributions indexed by a vector of parameters. Therefore,
simulation-based estimation needs fast and accurate algorithms that can sample the
parameter space. Asymptotic properties of these estimators such as consistency and
normality are much harder to establish than in traditional data-based estimation in
which there is a unique stochastic distribution given by the data generating process.

This chapter is intended to survey theoretical work on convergence properties of
numerical algorithms and the accuracy of simulations. More specifically, we shall
review the established literature with an eye towards a better understanding of the
following issues: (i) Convergence properties of numerical algorithms and accuracy
tests that can bound the size of approximation errors, (ii) Accuracy properties of
the simulated moments from numerical algorithms and laws of large numbers that
can justify model simulation, and (iii) Calibration and simulation-based estimation.

We study these issues along with a few illustrative examples. We focus on a large
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class of dynamic general equilibrium models of wide application in economics and
finance. We break the analysis into optimal and non-optimal economies. Optimal
economies satisfy the welfare theorems. Hence, equilibria can be computed by as-
sociated optimization problems, and under regular conditions these equilibria admit
Markovian representations defined by continuous (or differentiable) policy functions.
Non-optimal economies may lack existence of Markov equilibria — or such equilib-
ria may not be continuous. One could certainly restore the Markovian property by
expanding the state space, but the non-continuity of the equilibrium still remains.
These technical problems limit the application of standard algorithms which assume
continuous or differentiable approximation rules. Differentiability properties of the
solution are instrumental to characterize the dynamics of the system and to estab-
lish error bounds. We here put together several results for the computation and
simulation of upper semicontinuous correspondences. The idea is to build reliable
algorithms and laws of large numbers that can be applied to economies with market
frictions and heterogeneous agents as commonly observed in many macroeconomic
models.

Section 2 lays out an analytical setting conformed by several equilibrium condi-
tions that include feasibility constraints and first-order conditions. This simplified
framework is appropriate for computation. We then consider three illustrative ex-
amples: A growth model with taxes, a consumption-based asset-pricing model, and
an overlapping generations economy. We show how these economies can readily be
mapped into our general framework of analysis.

Our main theoretical results are presented in Sections 3 and 4. Each section starts
with a review of some numerical solution methods, and then goes into the analysis of
associated computational errors and convergence of the simulated statistics. Section
3 deals with models with continuous Markov equilibria. There is a vast literature on
the computation of these equilibria, and here we only deal with the bare essentials.
We nevertheless provide a more comprehensive study of the associated error from
numerical approximations. Some regularity conditions, such as differentiability or
contraction properties, may validate error bounds. Accuracy of the simulated mo-
ments and consistency properties of simulation-based estimators are also discussed.

Section 4 is devoted to non-optimal economies. For this family of models, Markov
equilibria on the natural state space may fail to exist, and standard computational
methods – which iterate over continuous functions – may produce inaccurate solu-
tions. We discuss a reliable algorithm based on the iteration over candidate equi-
librium correspondences. The algorithm has good convergence and approximation
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properties, and its fixed point contains a Markovian correspondence that generates
all competitive equilibria. Hence, competitive equilibria still admit a recursive rep-
resentation. But this representation may only be obtained in an enlarged state space
(which includes the shadow values of asset holdings), and may not be continuous.
The non-continuity of the equilibrium solution precludes application of standard
laws of large numbers. This is problematic because we need an asymptotic theory
to justify the simulation, and estimation of macroeconomic models. We discuss an
extended version of the law of large numbers which entails that the sample moments
from numerical approximations must approach those of some invariant distribution
of the model as the error in the approximated equilibrium correspondence vanishes.

Section 5 presents several numerical experiments. We first study a standard
business cycle problem. This optimal planning problem becomes handy to assess
the accuracy of the computed solutions using the Euler equation residuals. We then
introduce some non-optimal economies in which simple Markov equilibria fail to exist:
An overlapping generations economy and an asset-pricing model with endogenous
constraints. These examples make clear that standard solution methods would result
in substantial computational errors that may drastically change the ergodic sets and
corresponding equilibrium dynamics. These examples are then computed by our
reliable algorithm introduced in Section 4. This algorithm can also be applied to some
other models of interest with heterogeneous agents such as a production economy
with taxes and individual rationality constraints, and a consumption-based asset
pricing model with collateral requirements. There are cases in which the solution of
this robust algorithm approaches a continuous policy function, and hence we have
numerical evidence of existence of a unique equilibrium. Uniqueness of equilibrium
guarantees existence and continuity of a simple Markov equilibrium—which simplifies
the computation and simulation of the model. Uniqueness of equilibrium is hard to
check using standard numerical methods.

We conclude in Section 6 with further comments and suggestions.

2 Stochastic Dynamic Economies

Our objective is to study quantitative properties of stochastic sequences {s
t

(z

t

)}
t�0

that emerge as equilibria of our model economies. These equilibrium sequences
arise from the solution of nonlinear equation systems, the intertemporal optimization
behavior of individual agents, as well as the economy’s aggregate constraints, and the
exogenously given sequence of shocks {zt}. Our framework of analysis encompasses
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both competitive and non-competitive economies, with or without a government
sector, and incomplete financial markets.

Time is discrete, t = 0, 1, 2 · · · , and z

t

= (z0, z1, ..., zt) is a history of shocks up to
period t, which is governed by a time invariant Markov process. For convenience, let
us decompose the economic variables of interest as s

t

(z

t

) = (x

t

(z

t

) , y

t

(z

t

)) . Vector
x

t

represents predetermined variables, such as capital stocks and portfolio holdings.
Future values of these variables will be determined endogenously by current and
future actions. Vector y

t

denotes all other current endogenous variables such as
consumption, investment, asset prices, interest rates, and so on. For convenience,
sometimes vector s may include the shock z.

The dynamics of state vector x will be captured by a system of nonlinear equa-
tions:

' (x

t+1, xt

, y

t

, z

t

) = 0. (1)

Function ' may incorporate technological constraints and individual budget constraints.
Likewise, present and future values of vector y are linked by the non-linear system:

� (x

t

, y

t

, z

t

, E

t

[x

t+1, yt+1, zt+1]) = 0, (2)

where E
t

[·] is the expectations operator conditional on information at time t. Condi-
tions describing function � may correspond to individual optimality conditions (such
as Euler equations), short-sales and liquidity requirements, endogenous borrowing
constraints, individual rationality constraints, and market clearing conditions.

We now present three different examples to illustrate that standard macro models
can readily be mapped into this framework.

2.1 A growth model with taxes

The economy is made up of a representative household and a single firm. The
exogenously given stochastic process z

t

is an index of total factor productivity. For
given sequences of interest rates, r

t

, wages, w
t

, profits redistributed by the firm, ⇡
t

,
government lump-sum transfers, T

t

, and tax functions, ⌧
t

, the household solves the
following optimization problem:
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maxE0

1
X

t=0

�

t

[log(c

t

) + �log(1� l

t

)]

s.t.

⇡

t

+ (r

t

+ (1� �)) k

t

+ w

t

l

t

� ⌧

h

t

+ T

t

� (c

t

+ k

t+1) = 0, (3)

k0 given, 0 < � < 1,

c

t

� 0, k
t+1 � 0 for all zt, and t � 0.

Here, c
t

denotes consumption, l
t

denotes the amount of labor supplied, k
t

denotes
holdings of physical capital. Parameter � is the discount factor and � is the capital
depreciation rate. Taxes

�

⌧

h

t

 

may be non-linear functions of income variables (such
as capital or labor income) and of the aggregate capital stock K

t

. Households take
the sequences of tax functions as given—contingent upon the history of realizations
z

t

.

For a given sequence of technology shocks {z
t

} , factor prices and output taxes
n

r

t

, w

t

, ⌧

f

t

o

, the representative firm seeks to maximize one-period profits by selecting
the optimal amount of capital and labor

⇡

t

= max

K

t

,L

t

z

t

⇣

1� ⌧

f

t

⌘

f (K

t

, L

t

)� r

t

K

t

� w

t

L

t

.

All tax revenues are rebated back to the representative household as lump-sum
transfers T

t

.

For a given sequence of tax functions {⌧
t

} and transfers {T
t

}, a competitive

equilibrium for this economy is conformed by stochastic sequences of factor prices
and profits {r

t

, w

t

, ⇡

t

}, and sequences of consumption, capital and labor allocations
{c

t

, k

t

, l

t

, K

t

, L

t

}, such that: (i) {c
t

, k

t

, l

t

} solve the above optimization problem of the
household; and {K

t

, L

t

} maximizes one-period profits for the firm; (ii) The supplies
of capital and labor are equal to the quantities demanded: k

t

(z

t

) = K

t

(z

t

), and
l

t

(z

t

) = L

t

(z

t

) for all zt and t � 0; (iii) Consumption and investment allocations are
feasible

z

t

f(k

t

, 1� l

t

) + (1� �)k

t

� (c

t

+ k

t+1) = 0, for all zt and t � 0. (4)

Getting back to our general framework, we observe that capital is the only predeter-
mined endogenous variable: x

t

= k

t

, while consumption and hours worked are the
endogenous variables y

t

= (c

t

, l

t

). Function ' is thus given by (4). The intertemporal
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equilibrium conditions amount to

1

c(z

t

)

� �E

t

8

<

:

[1� � + z

t+1(1� ⌧

f

t

)f

K

t+1(z
t

)� @⌧

h

t+1

@k

t+1
]

c(z

t+1
)

9

=

;

= 0. (5)

(1� ⌧

f

t

)f

L

t+1(z
t

)� @⌧

h

t

@l

t

� �

c(z

t

)

1� l(z

t

)

= 0. (6)

Therefore, � is defined by equations systems (5-6) over constraint (3).

2.2 An asset pricing model with financial frictions

The economy is populated by a finite number of agents, i = 1, 2, · · · , I. At each node
z

t, there exist spot markets for the consumption good and a fixed set j = 1, 2, · · · , J
of securities. For convenience we assume that the supply of each security is equal
to unity. Among these securities, we may include a one-period real bond which
is a promise to one unit of the consumption good at all successor nodes z

t+1|zt.
Our general stylized framework above can embed several financial frictions such as
incomplete markets, collateral requirements, and short-sale constraints.

Each agent i maximizes the intertemporal objective

E

" 1
X

t=0

�

�

i

�

t

u

i

�

c

i

t

�

#

, (7)

where �

i 2 (0, 1), and u

i is strictly increasing, strictly concave, and continuously
differentiable with derivative (u

i

)

0
(0) = 1. At each node z

t the agent receives
e

i

(z

t

) > 0 units of the consumption good contingent on the present realization z

t

.
Securities are specified by the current vector of prices, q

t

(z

t

) = (· · · , qj
t

(z

t

), · · · ), and
the vectors of dividends d(zr) = (· · · , dj(zr), · · · ) promised to deliver at future infor-
mation sets z

r|zt for r > t. The vector of security prices q

t

(z

t

) is non-negative, and
the vector of dividends d

t

(z

t

) is positive and depends only on the current realization
of the vector of shocks z

t

.
For a given price process (q

t

(z

t

))

t�0 , each agent i can choose desired quantities
of consumption and security holdings (c

i

t

(z

t

) , ✓

i

t+1 (z
t

))

t�0 subject to the following
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sequence of budget constraints

c

i

t

�

z

t

�

+ ✓

i

t+1(z
t

) · q
t

�

z

t

�

� (8)

[e

i

(z

t

) + ✓

i

t

�

z

t�1
�

·
�

q

t

�

z

t

�

+ d (z

t

)

�

] = 0

0  ✓

i

t+1

�

z

t

�

, ✓

i

0 given, (9)

for all zt. Note that (9) imposes non-negative holdings of all securities. Let �

i

(z

t

)

be the associated vector of multipliers to this non-negativity constraint.
A competitive equilibrium for this economy is a collection of vectors (c

t

(z

t

) ,

✓

t+1 (z
t

) , p

t

(z

t

), q

t

(z

t

))

t�0 such that: (i) Each agent i maximizes the objective (7)
subject to constraints(8)-(9), and (ii) Markets clear:

J

X

j

d

j

(z

t

) +

I

X

i

e

i

t

�

z

t

�

�
I

X

i

c

i

t

�

z

t

�

= 0 , (10)

I

X

i

✓

ji

t+1

�

z

t

�

� 1 = 0, (11)

for j = 1, · · · , J, all zt.
It is not hard to see that this model can be mapped into our analytical framework.

Again, the vector of exogenous shocks {z
t

} defines sequences of endowments and
dividends, {e

t

(z

t

), d

t

(z

t

)} . Without loss of generality, we have assumed that the space
of asset holdings is given by ⇥ =

n

✓ 2 R

JI

+ :

P

I

i=1 ✓
ji

= 1 for all j
o

. Asset holdings
✓ are the predetermined variables corresponding to vector x

t

, whereas consumption
c and asset prices q are the current endogenous variables corresponding to vector y

t

.
Function ' is simply given by the vector of individual budget constraints (8-9).

Function � is defined by the first-order conditions for intertemporal utility maxi-
mization over the equilibrium conditions for the aggregate good and financial mar-
kets (10-11). Observe that all constraints hold with equality as we introduce the
associated vectors of multipliers for the non-negativity constraints.

2.3 An overlapping generations economy

We study a version of the economy analyzed by Kubler and Polemarchakis (2004).
The economy is subject to an exogenously given sequence of shocks {z

t

} , with z

t

2 Z

for all t = 1, · · · . At each date, I new individuals appear in the economy and stay
present for N + 1 periods. Thus, agents are distinguished by their individual type
i 2 I, and the specific date-event in which they initiate their life span z

⌧

= (z0, ..., z⌧ ).
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There are L goods, and each individual receives a positive stochastic endowment
e

i,z

⌧

(z

⌧+a

) 2 RL

+ at every node z

⌧+a while present in the economy. Endowments
are assumed to be Markovian—defined by the type of the agent, i, age, a, and the
current realization of the shock, z

t

. Preferences over stochastic consumption streams
c are represented by an expected utility function

U

i,z

⌧

= E

z

⌧

N

X

a=0

u

i,a,z

(c

i,z

⌧

(z

⌧+a

)). (12)

Again, we impose a Markovian structure on preferences—assumed to depend on i,
a, and the current realized value z.

At each date-event z

t agents can trade one-period bonds that pay one unit of
numeraire good 1 regardless of the state of the world next period. These bonds are
always in zero net supply, and q

b

(z

t

) is the price of a bond that trades at date-event
z

t

. An infinitely-lived Lucas tree may also be available from time zero. The tree
produces a random stream of dividends d(z

t

) of consumption good 1. Then, qs(zt)
is the market value of the tree, and ✓

b,i,z

⌧

, ✓

s,i,z

⌧ the holdings of bonds and shares of
the tree for agent (i, z

⌧

) . Shares cannot be sold short.
Each individual consumer (i, z⌧ ) faces the following budget constraints for periods

⌧  t  ⌧ +N + 1,

p(z

t

)c

i,z

⌧

(z

t

) + q

s

(z

t

)[✓

s,i,z

⌧

(z

t+1
)� ✓

s,i,z

⌧

(z

t

)] + q

b

(z

t

)✓

b,i,z

⌧

(z

t+1
)�

[p(z

t

)e

i,z

⌧

(z

t

) + ✓

b,i,z

⌧

(z

t

) + ✓

s,i,z

⌧

(z

t

)d(z

t

)] = 0, (13)

0  ✓

s,i,z

⌧

(z

t+1
) (14)

0  ✓

b,i,z

⌧

(z

⌧+N+2
) (15)

Note that (14) insures that share holdings must be non-negative, whereas (15) insures
that debts must be honored in the terminal period.
As before, a competitive equilibrium for this economy is conformed by sequences
of prices, (qb(zt),qs(zt), p(zt)), consumption allocations, (c(zt+a

)) and asset holdings
(✓

b,i,z

⌧

, ✓

s,i,z

⌧

) for all agents over their corresponding ages, such that: (i) Each agent
maximizes her expected utility subject to individual budget constraints, (ii) The
goods markets clear: Consumption allocations add up to the aggregate endowment
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at all possible date-events, and (iii) Financial markets clear: Bond holdings add up
to zero and share holdings add up to one.

Of course, our purpose now is to clarify how to map this model into the analytical
framework developed before. The vector of exogenous shocks is {zt} , which defines
the endowment and dividend processes

�

d(z

t

), e

i,z

⌧

(z

t

)

 

. As predetermined variables
we have x(z

t

) =

�

✓

b,i,z

⌧

(z

t

), ✓

s,i,z

⌧

(z

t

)

 

; that is, the portfolio holdings for all agents
(i, z

⌧

) alive at every date-event z

t. And as current endogenous variables we have
y(z

t

) =

�

c

i,z

⌧

(z

t

), q

b

(z

t

), q

s

(z

t

)

 

the consumption allocations and the prices of both
the bond and the Lucas tree for every date-event z

t.
For the sake of the presentation, let’s consider a version of the model with one

consumption good and two agents that live for two periods. Function ' is simply
given by the vector of individual budget constraints (13). Function � is defined by:
(i) The individual optimality conditions for bonds

u

i,a,z

c

�

c

i,z

⌧

(z

t

)

�

q

b

(z

t

)� E

⇥

u

i,a,z

c

�

c

i,z

⌧

(z

t+1
)

�⇤

= 0; (16)

(ii) If the Lucas tree is available, the Euler equation

u

i,a,z

c

�

c

i,z

⌧

(z

t

)

�

q

s

(z

t

)� E

⇥

u

i,a,z

c

�

c

i,z

⌧

(z

t+1
)

� �

q

s

(z

t+1
) + d(z

t+1
)

�⇤

� �

i,z

⌧

(z

t+1
) = 0,

(17)
where � is the multiplier on the short-sales constraint (14), and (iii) Market clearing
conditions. It is clear that many other constraints may be brought up into the
analysis, such as a collateral restriction along the lines of Kubler and Schmedders
(2003) that set up a limit for negative holdings of the bond based on the value of the
holdings of the tree.

3 Numerical Solution of Simple Markov Equilibria

For the above models, fairly general conditions guarantee the existence of stochastic
equilibrium sequences. But even if the economy has a Markovian structure (i.e., the
stochastic process driving the exogenous shocks and conditions (1) and (2) over the
constraints are Markovian), equilibrium sequences may depend on the full history of
shocks. Equilibria with this type of path dependence are not amenable to numerical
or statistical methods.

Hence, most quantitative research has focused on models where one can find
continuous functions g

x

, g

y such that the sequences
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(x

t+1, yt+1) = (g

x

(x

t

, z

t

), g

y

(x

t

, z

t

)) (18)

generate a competitive equilibrium. Following Krueger and Kubler (2008), a com-
petitive equilibrium that can be generated by equilibrium functions of the form (18)
will be called a simple Markov equilibrium.

For frictionless economies the second welfare theorem applies—equilibrium allo-
cations can be characterized as solutions to a planner’s problem. Using dynamic
programming arguments, well established conditions on primitives insure existence
of a simple Markov equilibrium [cf., Stokey, Lucas and Prescott (1989)]. Matters
are more complicated in models with real distortions such as taxes, or with financial
frictions such as incomplete markets and collateral constraints. Section 4 details the
issues involved. In this section we will review some results on accuracy of numerical
methods for simple Markov equilibria. First, we discuss some of the algorithms avail-
able to approximate equilibrium function g. Then, we study methods to determine
the accuracy of such approximations. Finally, we discuss how the approximation
error in the policy function may propagate over the simulated moments affecting the
estimation of parameter values.

3.1 Numerical approximations of equilibrium functions

We can think of two major families of algorithms approximating simple Markov
equilibria. The first group approximates directly the equilibrium functions (1-2) using
the Euler equations and constraints [A variation of this method is Marcet’s original
parameterized expectations algorithm that indirectly gets the equilibrium function
via an approximation of the expectations function below, e.g., see Christiano and
Fisher (2000)]. These numerical algorithms may use local approximation techniques
(perturbation methods), or global approximation techniques (projection methods).
Projection methods require finding the fixed point of an equations system which
may be highly non-linear. Hence, projection methods offer no guarantee of global
convergence and uniqueness of the solution.

Another family of algorithms is based on dynamic programming (DP). The DP
algorithms are reliable and have desirable convergence properties. However, their
computational complexity increases quite rapidly with the dimension of the state
space, especially because maximizations must be performed at each iteration. In
addition, DP methods cannot be extended to models with distortions where the
welfare theorems do not apply. For instance, in the above examples in Section 2,
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for most formulations, the growth model with taxes, the asset pricing model with
various added frictions, and the overlapping generations economy cannot be solved
directly by DP methods. In all these economies, an equilibrium solution cannot be
characterized by a social planning problem.

3.1.1 Methods based on the Euler equations

Simple Markov equilibria are characterized by continuous functions gx(x, z), gy(x, z)
that satisfy

' (g

x

(x, z), x, g

y

(x, z), z

t

) = 0 (19)

�

�

x, g

y

(x, z)

t

, z, E

z

0|z [g
x

(x, z), g

y

(g

x

(x, z), z

0
), z

0
]

�

= 0, (20)

for all (x, z). Of course, in the absence of an analytical solution the system must be
solved by numerical approximations.

As mentioned above, two basic approaches are typically used to obtain approxi-
mate functions bgx, bgy. Perturbation methods—pioneered by Judd and Guu (1997)—
take a Taylor approximation around a point with known solution or quite close to the
exact solution. This point typically corresponds to the deterministic steady state of
the model, that is, an equilibrium where z

t

= z

⇤
, x

t

= x

⇤
, y

t

= y

⇤ for all t. Projection
methods—developed by Judd (1992)—aim instead at more global approximations.
First, a finite-dimensional space of functions is chosen that can approximate arbi-
trarily well continuous mappings. Common finite-dimensional spaces include finite
elements (tent maps, splines, polynomials defined in small neighborhoods), or global
bases such as polynomials or other functions defined over the whole domain X. Let
bg

x

⇠

x

n

, bg

y

⇠

y

n

be elements of this finite-dimensional space evaluated at the nodal points
⇠

x

n

, ⇠

y

n

defining these functions. Nodal values bgx
⇠

x

n

, bg

y

⇠

y

n

are obtained as solutions of non-
linear systems conformed by equations (19-20) evaluated at some pre-determined
points of the state space X. It is assumed that this non-linear system has a well
defined solution—albeit in most cases existence of the solution is hard to show. Rules
for the optimal placement of such pre-determined points exist for some functional
basis; e.g., Chebyshev polynomials that have some regular orthogonality properties
could be evaluated at the Chebyshev nodes in the hope of minimizing oscillations.
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3.1.2 Dynamic programming

For economies satisfying the conditions of the second welfare theorem, equilibria can
be computed by an optimization problem over a social welfare function subject to
aggregate feasibility constraints. Then, one can find prices that support the plan-
ner’s allocation as a competitive equilibrium with transfer payments. A competitive
equilibrium is attained when these transfers are equal to zero. Therefore, we need to
search for the appropriate individual weights in the social welfare function in order
to make these transfers equal to zero.

Matters are simplified by the principle of optimality: The planner’s intertemporal
optimization problem can be summarized by a value function V satisfying Bellman’s
functional equation

V (x, z) = sup

x

0
,y

F (x, x

0
, y, z) + �E

z

0|zV (x

0
, z

0
) (21)

s.t. (x

0
, y

0
) 2 �(x, z).

Here, 0 < � < 1 is the intertemporal discount factor, F is the one-period return
function, and �(x, z) is a correspondence that captures the feasibility constraints of
the economy. Note that our vectors x and y now refer to allocations only, while
in previous decentralized models these vectors may include prices, taxes, or other
variables outside the planning problem.

Value function V is therefore a fixed point of Bellman’s equation (21). Under
mild regularity conditions [cf., Stokey, Lucas and Prescott (1989)] it is easy to show
that this fixed point can be approximated by the following operator. Let V be the
space of bounded functions. Then, operator T : V !V is defined as

TW (x, z) = sup

x

0
,y

F (x, x

0
, y, z) + �E

z

0|zW (x

0
, z

0
) (22)

s.t. (x

0
, y

0
) 2 �(x, z).

Operator T is actually a contraction with modulus �. It follows that V is a unique
solution of the functional equation (21), and can be found as the limit of the sequence
recursively defined by V

n+1 = TV

n

for an arbitrarily given initial function V0. This
iterating procedure is called the method of successive approximations, and operator
T is called the DP operator.

By the contraction property of the DP operator, it is possible to construct reliable
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numerical algorithms discretizing (22). For instance, Santos and Vigo-Aguiar (1998)
establish error bounds for a numerical DP algorithm preserving the contraction prop-
erty. The analysis starts with a set of piecewise-linear functions defined over state
space X on a discrete set of nodal points with grid size h. Then, a discretized ver-
sion T

h of operator T is obtained by solving the optimization problem (22) at each
nodal point—with piecewise-linear interpolation over all other functional values for
V (x

0
, z

0
). For piecewise-linear interpolation, operator T

h is also a contraction map-
ping. Hence, given any grid size h, and any initial value function V0 the sequence of
functions V h

n+1 = T

h

V

h

n

under repeated application of operator T h are guaranteed to
converge to a unique solution V

⇤,h. Moreover, the contraction property of operator
T

h can help bound the distance between such limit V

⇤,h, and the N -th application
of this operator, V h

N+1. Finally, it is important to remark that this approximation
scheme will converge to the true solution of the model as the grid size h goes to
zero; that is, V ⇤,h will be sufficiently close to the original value function V for some
small h—as a matter of fact convergence is of order h2. Of course, once a numerical
value function V

h has been secured it is easy to obtain good approximations for our
equilibrium functions bgx, bgy from operator T

h

V

h

N+1.

What slows down the DP algorithm is the maximization process at each itera-
tion. Hence, functional interpolation—as opposed to discrete functions just defined
over a set of nodal points—facilitates the use of some fast maximization routines.
Splines and high-order polynomials may also be operative but these approximations
may damage the concavity of the computed functions; moreover, for some interpo-
lations there is no guarantee that the discretized operator is a contraction. There
are other procedures to speed up the maximization process. Santos and Vigo-Aguiar
(1998) use a multigrid method which can be efficiently implemented by an analysis
of the approximation errors. Another popular method is policy iteration—contrary
to popular belief this latter algorithm turns out to be quite slow for very fine grids
[Santos and Rust (2004)].

3.2 Accuracy

As already pointed out, the quantitative analysis of non-linear models primarily relies
on numerical approximations bg. Then, care must be exercised so that numerical
equilibrium function bg is close enough to the actual decision rule g; more precisely,
we need to insure that ||g� bg||  ", where ||.|| is a norm relevant for the problem at
hand, and " is a tolerance estimate.
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We now present various results for bounding the error in numerical approxima-
tions. Error bounds for optimal decision rules are available for some computational
algorithms such as the above DP algorithm. It should be noted that these error
bounds are not good enough for most quantitative exercises in which the object of
interest is the time series properties of the simulated moments. Error bounds for
optimal decision rules quantify the period-by-period bias introduced by a numeri-
cal approximation. This error, however, may grow in long simulations. A simple
example below illustrates this point where the error of the simulated statistics gets
large even when the error of the decision rule can be made arbitrarily small. Hence,
the last part of this section considers some of the regularity conditions required for
desirable asymptotic properties of the statistics from numerical simulations.

3.2.1 Accuracy of equilibrium functions

Suppose that we come up with a pair of numerical approximations bgx, bgy. Is there a
way of assessing the magnitude of the approximation error without actual knowledge
of the solution of the model: g

x

, g

y?
To develop intuition on key ideas behind existing accuracy tests, let us define the

Euler equation residuals for functions bgx, bgy as

' (bg

x

(x, z), x, bg

y

(x, z), z

t

) = EE

'

(bg

x

, bg

y

) (23)

�

�

x, bg

y

(x, z)

t

, z, E

z

0|z [bg
x

(x, z), bg

y

(bg

x

(x, z), z

0
), z

0
]

�

= EE

�
(bg

x

, bg

y

). (24)

Note that an exact solution of the model will have Euler equation residuals equal
to zero at all possible values of the state (x, z). Hence, “small” Euler equation
residuals should indicate that the approximation error is also “small”. The relevant
question, of course, is what we mean by “small”. Furthermore, we are circumventing
other technical issues since first-order conditions may not be enough to characterize
optimal solutions.

Den Haan and Marcet (1994) appeal to statistical techniques and propose testing
for orthogonality of the Euler equation residuals over current and past information as
a measure of accuracy. Since orthogonal Euler equation residuals may occur in spite
of large deviations from the optimal policy, Judd (1992) suggests to evaluate the
size of the Euler equation residuals over the whole state space as a test for accuracy.
Moreover, for strongly concave infinite-horizon optimization problems Santos (2000)
demonstrates that the approximation error of the policy function is of the same order
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of magnitude as the size of the Euler equation residuals, and the constants involved
in these error bounds can be related to model primitives.

These theoretical error bounds are based on worse-case scenarios and hence they
are usually not optimal for applied work. In some cases, researchers may want to
assess numerically the approximation errors in the hope of getting more operative
estimates [cf. Santos (2000)]. Besides, for some algorithms it is possible to derive
error bounds from their approximation procedures. This is the case of the DP al-
gorithm [Santos and Vigo-Aguiar (1998)] and in some models with quadratic-linear
approximations [Schmitt-Grohe and Uribe (2004)].

The logic underlying numerical estimation of error bounds from the Euler equa-
tion residuals goes as follows [Santos (2000)]. We start with a model under a fixed
set of parameter values. Then, Euler equation residuals are computed for several
numerical equilibrium functions. We need sufficient variability in these approxima-
tions in order to obtain good and robust estimates. This variability is obtained by
considering various approximation spaces or by changing the grid size. Let bg

acc

be
the approximation with the lowest Euler equation residuals, which would be our best
candidate for the true policy function. Then, for each available numerical approxi-
mation bg we compute the approximation constant

M

NUM

bg =

k bg � bg

acc

k
k EE(bg)k . (25)

Here, k ·k is the max norm in the space of functions. From the available theory [cf.
Santos (2000)], the approximation error of the policy function is of the same order
of magnitude as that of the Euler equation residuals. Then, the values of MNUM

bg

should have bounded variability (unless the approximation bg is of the same order
of magnitude as bg

acc

). Indeed in many cases M

NUM

bg hovers around certain values.
Hence, any upper bound M

NUM for these values would be a conservative estimate
for this approximation constant. It follows that the resulting assessed value, MNUM ,
can be used to estimate an error bound for our candidate solution:

kg � bg

acc

k  M

NUM kEE(bg

acc

)k . (26)

Note that in this last equation we contemplate the error between our best policy
function bg

acc

and the true policy function g.
Therefore, worst-case error bounds are directly obtained from constants given by

the theoretical analysis. These bounds are usually very conservative. The numerical

15



estimation of these bounds is presented here as a heuristic procedure to calculate the
actual value of the bounding constant. From the available theory we know that the
error of the equilibrium function is of the same order of magnitude as the size of the
Euler equation residuals. That is, the following error bound holds:

kg � bgk  M

NUM kEE(bg)k . (27)

We thus obtain an estimate M

NUM for constant M from various comparisons of
approximated equilibrium functions.

3.2.2 Accuracy of the simulated moments

Researchers usually focus on long-run properties of equilibrium time series. The
common belief is that equilibrium orbits will stabilize and converge to a station-
ary distribution. Stationary distributions are simply the stochastic counterparts of
steady states in deterministic models. Computation of the moments of an invariant
distribution for a non-linear model is usually a rather complicated task—even for an-
alytical equilibrium functions. Hence, laws of large numbers are invoked to compute
the moments of an invariant distribution from the sample moments.

The above one-period approximation error (27) is just a first step to control
the cumulative error of numerical simulations. Following Santos and Peralta-Alva
(2005), our goal now is to present some regularity conditions so that the error from
the simulated statistics converges to zero as the approximated equilibrium function
approaches the exact equilibrium function. The following example illustrates that
certain convergence properties may not always hold.

Example: The state space S is a discrete set with three possible states, s1, s2, s3.
Transition probability P is defined by the following Markov matrix

⇧ =

2

6

4

1 0 0

0 1/2 1/2

0 1/2 1/2

3

7

5

.

Each row i specifies the probability of moving from state s

i

to any state in S, so
that an element ⇡

ij

corresponds to the value P (s

i

, {s
j

}), for i, j = 1, 2, 3. Note that
⇧

n

= ⇧ for all n � 1. Hence, p = (1, 0, 0), and p = (0, 1/2, 1/2) are invariant
probabilities under ⇧, and {s1} and {s2, s3} are the ergodic sets. All other invariant
distributions are convex combinations of these two probabilities.
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Let us now perturb ⇧ slightly so that the new stochastic matrix is the following

b

⇧ =

2

6

4

1� 2↵ ↵ ↵

0 1/2 1/2

0 1/2 1/2

3

7

5

for 0 < ↵ < 1/2.

As n ! 1, the sequence of stochastic matrices {b⇧n} converges to

2

6

4

0 1/2 1/2

0 1/2 1/2

0 1/2 1/2

3

7

5

.

Hence, p = (0, 1/2, 1/2) is the only possible long-run distribution for the system.
Moreover, {s1} is a transient state, and {s2, s3} is the only ergodic set. Consequently,
a small perturbation on a transition probability P may lead to a pronounced change
in its invariant distributions. Indeed, small errors may propagate over time and alter
the existing ergodic sets.

Santos and Peralta-Alva (2005) show that certain continuity properties of the
policy function suffice to establish some generalized laws of large numbers for nu-
merical simulations. To provide a formal statement of their results, we need to lay
down some standard concepts and terminology.

For ease of presentation, we restrict attention to exogenous stochastic shocks of
the form

z

t+1 =  (zt, "t+1)

where " is an iid shock. The distribution of this shock " is denoted by probability
measure Q on a measurable space (E,E). Then, as it is standard in the literature [cf.
Stokey, Lucas and Prescott (1989)] we define a new probability space comprising all
infinite sequences ! = ("1, "2, · · · ). Let ⌦ = E

1 be the countably infinite cartesian
product of copies of E. Let F be the �-field in E

1 generated by the collection of all
cylinders A1 ⇥ A2 ⇥ · · · ⇥ A

n

⇥ E ⇥ E ⇥ E ⇥ · · · where A

i

2 E for i = 1, · · · , n. A
probability measure � can be constructed over the finite-dimensional sets as

�{! : "1 2 A1, "2 2 A2, · · · , "n 2 A

n

} =

n

Y

i=1

Q(A

i

).

Measure � has a unique extension on F. Hence, the triple (⌦,F,�) denotes a prob-
ability space. Now, for every initial value s0 and sequence of shocks ! = {"

t

}, let
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{x
t

(s0,!), yt(s0,!)} be the sample paths generated by the policy functions gx, gy, so
that s

t+1(s0,!) = (x

t+1(s0,!), yt+1(s0,!)) = (g

x

(x

t

(s0,!), "t+1), g
y

(x

t

(s0,!), "t+1))

for all t � 1.

Let bs

jt

(s0,!) be the sample path generated from an approximate policy func-
tion bg

j

. Averaging over these sample paths we get sequences of simulated statistics
{ 1
T

P

T

t=1 f(bsjt(s0,!))} as defined by some function f . Let E(f) =

´
f(s)µ

⇤
(ds) be

the expected value under an invariant distribution µ

⇤ of the original equilibrium
function g. Santos and Peralta-Alva (2005) establish the following result:

Theorem 1 Assume that the sequence of approximated equilibrium functions {bg
j

}
converges in the sup norm to equilibrium function g. Assume that g is a continuous
mapping over a compact domain, and contains a unique invariant distribution µ

⇤.
Then, for every ⌘ > 0 there are constants J and T

j

(!) such that for all j � J and
T � T

j

(!),

| 1
T

T

X

t=1

f(s

jt

(bs0,!))� E(f)| < ⌘

for all s0 and �-almost all !.

Therefore, for a sufficiently good numerical approximation bg
j

and for a sufficiently
large T the series { 1

T

P

T

t=1 f(bsjt(s0,!))} is close (almost surely) to the expected value
E(f) =

´
f(s)µ

⇤
(ds) of the invariant distribution µ

⇤ of the original equilibrium
function g.

Note that this theorem does not require uniqueness of the invariant distribution
for each numerical policy function. This requirement would be rather restrictive:
Numerical approximations may contain multiple steady states. For instance, con-
sider a polynomial approximation of the policy function. As is well understood, the
fluctuating behavior of polynomials may give raise to several ergodic sets. But ac-
cording to the theorem, these multiple distributions from these approximations will
eventually be close to the unique invariant distribution of the model. Moreover, if the
model has multiple invariant distributions, then there is an extension of Theorem 1
in which the simulated statics of computed policy functions bg

j

become close to those
of some invariant distribution of the model for j large enough [see op. cit.].

The existence of a invariant distribution is guaranteed under the so called Feller
property [cf. Stokey, Lucas and Prescott (1989)]. The Feller property is satisfied if
equilibrium function g is a continuous mapping on a compact domain or if the domain
is made up of a finite number of points. (These latter stochastic processes are called
Markov chains.) There are several extensions of these results to non-continuous
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mappings and non-compact domains [cf. Futia (1982), Hopenhayn and Prescott
(1992), and Stenflo (2001)]. These papers also establish conditions for uniqueness
of the invariant distribution under mixing or contractive conditions. The following
contraction property is taken from Stenflo (2001):

CONDITION C: There exists a constant 0 < � < 1 such that
´
kg(s, ")� g(s

0
, ")kQ(d") 

� ks� s

0k for all pairs s, s

0.

Condition C may arise naturally in growth models [Schenk-Hoppe and Schmalfuss
(2001)], in learning models [Ellison and Fudenberg (1993)], and in certain types of
stochastic games [Sanghvi and Sobel (1976)].

Using Condition C, the following bounds for the approximation error of the sim-
ulated moments are established in Santos and Peralta-Alva (2005). A real-valued
function f on S is called Lipschitz with constant L > 0 if |f(s)� f(s

0
)|  L ks� s

0k
for all pairs s and s

0.

Theorem 2 Let f be a Lipschitz function with constant L. Let d(g, bg)  � for some
� > 0. Assume that g satisfies Condition C. Then, for every ⌘ > 0 there exists a
function b

T (!) such that for all T � b

T (!),

| 1
T

T

X

t=1

f(bs

t

(s0,!))� E(f)|  L�

1� �

+ ⌘ (28)

for all s0 and �-almost all !.

Again, this is another application of the contraction property, which becomes
instrumental to establish error bounds.

3.3 Calibration, estimation and testing

As in other applied sciences, economic theories build upon the analysis of highly
stylized models. The estimation and testing of these models can be quite challenging,
and the literature is still in a process of early development in which various technical
problems need to be overcome. Indeed, it should be stressed that there are important
classes of models for which we still lack a good sense of the type of conditions under
which simulation-based methods may yield estimators that achieve consistency and
asymptotic normality. Moreover, computation of these estimators may turn out to
be a quite complex task.
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A basic tenet of simulation-based estimation is that parameters are often specified
as the by-product of some simplifying assumptions with no close empirical counter-
parts. These parameter values will affect the equilibrium dynamics which can be
highly non-linear; besides, statistical inference usually requires certain regularity
conditions. Hence, as a first step in the process of estimation it seems reasonable
to characterize the invariant probability measures or steady-state solutions, which
commonly determine the long-run behavior of a model. But because of lack of infor-
mation about the domain and form of these invariant probabilities, the model must
be simulated to compute the moments and other useful statistics of these distribu-
tions.

Therefore, the process of estimation may entail the simulation of a parameterized
family of models. Relatively fast algorithms are thus needed in order to sample the
parameter space. Classical properties of these estimators such as consistency and
asymptotic normality will depend on various conditions of the equilibrium functions.
The study of these asymptotic properties requires methods of analysis of probability
theory in its interface with dynamical systems.

Our purpose here is to discuss some available methods for model estimation
and testing. To make further progress in this discussion, let us rewrite (18) in the
following form

x

t+1 = g(✓, x

t

, z

t

, "

t+1) (29)

z

t+1 =  (✓2, zt, "t+1), (30)

where ✓ = (✓1, ✓2) is a vector of parameters, and t = 0, 1, 2, · · · . Functions g and  
may represent the exact solution of a dynamic model or some numerical approxima-
tion. One should realize that the assumptions underlying these functions may be of
a different economic significance, since g governs the law of motion of the vector of
endogenous variables x, and  represents the evolution of the exogenous process z.
Observe that the vector of parameters ✓2 characterizing the evolution of the exoge-
nous state variables z may influence the law of motion of the endogenous variables x,
but this endogenous process may also be influenced by some additional parameters
✓1 which may stem from utility and production functions.

For a given notion of distance the estimation problem may be defined as follows:
Find a parameter vector ✓

0
= (✓

0
1, ✓

0
2) such that a selected set of model predictions

are closest to those of the data generating process. An estimator is thus a rule that
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yields a sequence of candidate solutions b✓
t

from finite samples of model simulations
and data. It is generally agreed that a reasonable estimator should possess the
following consistency property: As sampling errors vanish the sequence of estimated
values b

✓

t

should converge to the optimal solution ✓

0. Further, we would like the
estimator to satisfy asymptotic normality so that it is possible to derive approximate
confidence intervals and address questions of efficiency.

Data-based estimators are usually quite effective, since they may involve low
computational cost. For instance, standard non-linear least squares (e.g., Jennrich,
1969) and other generalized estimators (cf., Newey and McFadden, 1994) may be
applied whenever functions g and  have analytical representations. Similarly, from
functions g and  one can compute the likelihood function that posits a probability
law for the process (x

t

, z

t

) with explicit dependence on the parameter vector ✓. In
general, data-based estimation methods can be applied for closed-form representa-
tions of the dynamic process of state variables and vector of parameters. This is
particularly restrictive for the law of motion of the endogenous state variables: Only
under rather especial circumstances one obtains a closed-form representation for the
solution of a non-linear dynamic model g.

Since a change in ✓ may feed into the dynamics of the system in rather com-
plex ways, traditional (data-based) estimators may be of limited applicability for
non-linear dynamic models. Indeed, these estimators do not take into account the
effects of parameter changes in the equilibrium dynamics, and hence they can only
be applied to full-fledged, structural dynamic models under fairly specific conditions.
In traditional estimation there is only a unique distribution generated by the data
process, and such distribution is not influenced by the vector of parameters. For a
simulation-based estimator, however, the following major analytical difficulty arises:
Each vector of parameters is manifested in a different dynamical system. Hence,
proofs of consistency of the estimator would have to cope with a continuous family
of invariant distributions defined over the parameter space.

An alternative route to the estimation of non-linear dynamic models is via the Eu-
ler equations (e.g., see Hansen and Singleton, 1982) where the vector of parameters is
determined by a set of orthogonality conditions conforming the first-order conditions
or Euler equations of the optimization problem. A main advantage of this approach
is that one does not need to model the shock process or to know the functional de-
pendence of the law of motion of the state variables on the vector of parameters,
since the objective is to find the best fit for the Euler equations over available data
samples, within the admissible region of parameter values. The estimation of the
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Euler equations can then be carried out by standard non-linear least squares or by
some other generalized estimator [Hansen (1982)]. However, model estimation via the
Euler equations under traditional statistical methods is not always feasible. These
methods are only valid for convex optimization problems with interior solutions in
which technically the decision variables outnumber the parameters; moreover, the
objective and feasibility constraints of the optimization problem must satisfy certain
strict separability conditions along with the process of exogenous shocks. Sometimes
the model may feature some latent variables or some private information which is
not observed by the econometrician (e.g., shocks to preferences); lack of knowledge
about these components of the model may preclude the specification of the Euler
equations [e.g. Duffie and Singleton (1993)]. An even more fundamental limitation
is that the estimation is confined to orthogonality conditions generated by the Eu-
ler equations, whereas it may be of more economic relevance to estimate or test a
model along some other dimensions such as those including certain moments of the
invariant distributions or the process of convergence to such stationary solutions.

3.3.1 Calibration

Faced with these complex analytical problems, the economics literature has come
up with many simplifying approaches for model estimation. Starting with the real
business cycle literature [e.g., Cooley and Prescott (1995)], parameter values are
often determined from independent evidence or from other parts of the theory not
related to the basic facts selected for testing. This is loosely referred as model
calibration. Christiano and Eichembaum (1992) is a good example of this approach.
They consider a business cycle model, and pin down parameter values from various
steady-state conditions. Hence, the model is evaluated according to business cycle
predictions, and it is calibrated to replicate empirical properties of balanced growth
paths. Actually, Christiano and Eichembaum (1992) are able to provide standard
errors for their estimates, and hence their analysis goes beyond most calibration
exercises.

3.3.2 Simulation-based estimation

The aforementioned limitations of traditional estimation methods for non-linear sys-
tems along with advances in computing have fostered the more recent use of es-
timation and testing based upon simulations of the model. Estimation by model
simulation offers more flexibility to evaluate the behavior of the model by computing
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statistics of its invariant distributions that can be compared with their data coun-
terparts. But this greater flexibility inherent in simulation-based estimators entails
a major computational cost: Extensive model simulations may be needed to sample
the entire parameter space. Relatively little is known about the family of models in
which simulation-based estimators would have good asymptotic properties such as
consistency and normality. These properties would seem a minimal requirement for
a rigorous application of estimation methods under the rather complex and delicate
techniques of numerical simulation in which approximation errors may propagate in
unexpected ways.

To fix ideas, we will focus on a simulated moments estimator (SME) put forward
by Lee and Ingram (1991). This estimation method allows the researcher to assess
the behavior of the model along various dimensions. Indeed, the conditions charac-
terizing the estimation process may involve some moments of the models invariant
distributions or some other features of the dynamics on which the desired vector of
parameters must be selected.

Several elements conform the SME. First, one specifies a target function or func-
tion of interest which typically would characterize a selected set of moments of the
invariant distribution of the model and those of the data generating process. Second,
a notion of distance is defined between the selected statistics of the model and its
data counterparts. The minimum distance between these statistics is attained at
some vector of parameters ✓

0
= (✓

0
1, ✓

0
2). Then, the estimation method yields a se-

quence of candidate solutions b✓
t

over increasing finite samples of models simulations
and data so as to approximate the true value ✓

0.
(a) The target function (or function of interest) f : S ! Rp is assumed to be

continuous. This function may represent p moments of an invariant distribution µ

✓

under ✓ defined as E
✓

(f) =

´
f(s)µ

✓

(ds) for s = (x, z). The expected value of f over
the invariant distribution of the data generating process will be denoted by E(f

dg

).
(b) The distance function G : Rp ! Rp is assumed to be continuous. The

minimum distance is attained at a vector of parameter values

✓

0
= arg inf G(E

✓

(f), E(f

dg

)) (31)

A typical specification of the distance function G is the following quadratic form:

G(E

✓

(f), E(f

dg

)) = (E

✓

(f), E(f

dg

)) ·W · (E
✓

(f), E(f

dg

)), (32)

where W is a positive definite p⇥p matrix. Under certain standard assumptions (cf.,
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Santos and Peralta-Alva 2005, Theorem 3.2) one can show there exists an optimal
solution ✓

0. Moreover, for the analysis below there is no restriction of generality to
consider that ✓0 is unique.

(c) An estimation rule characterized by a sequence of distance functions {G
T

}
N�1

and choices for the horizon {⌧
T

}
T�1 of the model’s simulations. This rule yields a

sequence of estimated values {b✓
T

}
T�1 from associated optimization problems with

finite samples of model’s simulations and data. The estimated value b

✓

T

(s0,!, s̃) is
obtained as

b

✓

T

(s0,!, s̃) = arg inf

✓2⇥
G

T

(

1

⌧

T

(!, s̃)
⌃

⌧

T

(!,̃s)
t=1 f(s

t

(s0,!, ✓)),
1

T

⌃

T

t=1f(s̃t),!, s̃). (33)

We assume that the sequence of continuous functions {G
T

(·, ·,!, s̃)}
T�1 converges

uniformly to function G(·, ·) for ˜

�-almost all (!, s̃), and the sequence of functions
{⌧

T

(!, s̃)}
T�1 goes to 1 for ˜�-almost all (!, s̃). Note that both functions G

T

(·, ·,!, s̃)
and ⌧

N

(!, s̃) are allowed to depend on ! and s̃, and ˜

� is a measure defined over !

and s̃. These functions will usually depend on all information available up to time
T. The rule ⌧

T

reflects that the length of model’s simulations may be different from
that of data samples.

It should be stressed that problem (31) is defined over population characteristics
of the model and of the data generating process, whereas problem (33) is defined
over statistics of finite simulations and data.
Definition: The SME is a sequence of measurable functions {b✓

T

(s0,!, s̃)}T�1 such
that each function b

✓

T

satisfies (33) for all s0 and ˜

�-almost all (!, s̃).
By the measurable selection theorem [Crauel (2002)] there exists a sequence of

measurable functions {b✓
T

}
T�1. See Duffie and Singleton (1993) and Santos (2010)

for asymptotic properties of this estimator. Sometimes vector ✓2 could be estimated
independently, and hence we could then try to get an SME estimate of ✓1. This
mixed procedure can still recover consistency and it may save on computational cost.
Consistency of the estimator can also be established for numerical approximations:
The SME would converge to the true value ✓

0 as the approximation error goes to
zero.

Another route to estimation is via the likelihood function. The existence of
such functions imposes certain regularity conditions on the dynamics of the model
which are sometimes hard to check. Fernandez-Villaverde and Rubio-Ramirez (2007)
propose computation of the likelihood function by a particle filter. Numerical errors
of the computed solution will also affect the likelihood function and the estimated
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parameter values [see Fernandez-Villaverde, Rubio-Ramirez and Santos (2006)].

4 Recursive Methods for Non-optimal Economies

We now get into the more complex issue of numerical simulation of non-optimal
economies. In general, these models cannot be computed by associated global opti-
mization problems—ruling out the application of numerical DP algorithms as well
as the derivation of error bounds for strongly concave optimization problems. This
leaves the field open for algorithms based on approximating the Euler equations
such as perturbation and projection methods. These approximation methods, how-
ever, search for smooth equilibrium functions; as already pointed out, existence of
continuous Markov equilibria cannot be insured under regularity assumptions. The
existence problem is a technical issue which is mostly ignored in the applied liter-
ature. See Hellwig (1983) and Kydland and Prescott (1980) for early discussions
on non-existence of simple Markov equilibrium, and Abreu, Pierce and Stacchetti
(1990) for a related approach to repeated games.

As it is clear from these early contributions, simple Markov equilibrium may only
fail to exist in the presence of multiple equilibria. Then, to insure uniqueness of
equilibrium the literature has considered a stronger related condition: Monotonicity
of equilibrium. This monotonicity condition means that if the values of our pre-
determined state variables are increased today, then the resulting equilibrium path
must always reflect higher values for these variables in the future. Monotonicity is
hard to verify in models with heterogeneous agents with constraints that occasionally
bind, or in models with incomplete financial markets, or with distorting taxes and
externalities.

Indeed, most well known cases of monotone dynamics have been confined to
one-dimensional models. For instance, Coleman (1991), Greenwood and Huffman
(1995) and Datta, Mirman and Reffett (2002) consider versions of the one-sector
neoclassical growth model and establish existence of a simple Markov equilibrium by
an Euler iteration method. This iterative method guarantees uniform convergence,
but it does not display the contraction property as the DP algorithm. It is unclear
how this approach may be extended to other models, and several examples have
been found of non-existence of continuous simple Markov equilibria [cf. Kubler and
Schmedders (2002), Kubler and Polemarchakis (2004) and Santos (2002)].

Therefore, for non-optimal economies a recursive representation of equilibria may
only be possible when conditioning over an expanded set of state variables. Follow-
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ing Duffie et al. (1994), the existence of a Markov equilibrium in a generalized space
of variables is proved in Kubler and Schmedders (2003) for an asset pricing model
with collateral constraints. Feng et al. (2012) extend these existence results to other
economies, and define a Markov equilibrium as a solution over an expanded state of
variables that includes the shadow values of investment. The addition of the shadow
values of investment as state variables facilitates computation of the numerical so-
lution. This formulation was originally proposed by Kydland and Prescott (1980),
and later used in Marcet and Marimon (1998) for recursive contracts, and in Phe-
lan and Stacchetti (2001) for a competitive economy with a representative agent.
The main insight of Feng et al. (2012) is to develop a reliable and computable al-
gorithm for the numerical simulation of competitive economies with heterogeneous
agents and market frictions including endogenous borrowing constraints, and study
its approximation properties. Before advancing to the study of the theoretical issues
involved, we begin with a few examples to illustrate some of the pitfalls found in the
computation of non-optimal economies.

4.1 Problems in the simulation of non-optimal economies

The following examples make clear that a continuous Markov equilibrium on the
minimal state space may fail to exist. Hence, application of standard numerical al-
gorithms may actually result in serious quantitative biases. Therefore, other families
of algorithms are needed for the numerical approximation of non-optimal economies.

4.1.1 A growth model with taxes

Consider the following parameterization for the growth model with taxes of Section
2:

f(K,L) = K

1/3, � = 0.95, � = 1,� = 0.

Assume that income taxes are only imposed on households capital income. More
specifically, this form of taxation is determined by the following piecewise linear
schedule:

⌧

h

(K) =

8

>

<

>

:

0.10 if K  0.160002

0.05� 10(K � 0.165002) if 0.160002  K  0.170002

0 if K � 0.170002.
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Santos (2002, Prop. 3.4) shows that a continuous Markov equilibrium fails to exist.
For this specification of the model, there are three steady states: The middle steady
state is unstable and has two complex eigenvalues while the other two steady states
are saddle-path stable; see Figure 1. Standard algorithms approximating the Euler
equation would solve for a continuous policy function of the form

k

t+1 = g(k

t

, ⇠),

where g belongs to a finite dimensional space of continuous functions as defined by a
vector of parameters ⇠. We obtain an estimate for ⇠ by forming a discrete system of
Euler equations over as many grid points k

i as the dimensionality of the parameter
space:

u

0
(k

i

, g(k

i

, ⇠)) = �u

0
(g(k

i

, ⇠), g(g(k

i

, ⇠), ⇠)) ·
⇥

f

0
(g(k

i

, ⇠))(1� ⌧(g(k

i

, ⇠)))

⇤

.

We assume that g(k

i

, ⇠) belongs to the class of piecewise linear functions, and em-
ploy a uniform grid of 5000 points over the domain k 2 [0.14..0.19]. The resulting
approximation, together with a highly accurate solution (in this case the shooting
algorithm can be implemented) are illustrated in Figure 1.

This approximation of the Euler equation over piecewise continuous functions
converged up to computer precision in only 3 iterations. This fast convergence is ac-
tually deceptive because as pointed out above no continuous policy function does ex-
ist. Indeed, the dynamic behavior implied by the continuous function approximation
is quite different from the true one. As a matter of fact, the numerical approximation
displays four more steady states, and changes substantially the basins of attraction
of the original steady states (see Figure 1).

A further test of the fixed-point solution of this algorithm based on the Euler
equation residuals produced mixed results (see Figure 2). First, the average Euler
equation residual over the domain of feasible capitals is fairly small, i.e. it is equal to
0.0073. Second, the maximum Euler equation residual is slightly more pronounced
in a small area near the unstable steady state. But even in that area, the error
is not extremely large: In three tiny intervals the Euler equation residuals are just
around 0.06. Therefore, from these computational tests a researcher may be led to
conclude that the putative continuous solution should mimic well the true equilibrium
dynamics.
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4.1.2 An overlapping generations economy

Consider the following specification for the overlapping generations economy pre-
sented in Section 2. There are two perishable commodities, and two types of agents
that live for two periods. There is no Lucas tree. In the first period of life of
each agent, endowments are stochastic and depend only on the current state z

t

,
while in the second period they are deterministic. In particular, e

1,zt

1 (z

t

) = 10.4,
e

2,zt

1 (z

t

) = 2.6 if z
t

= z1, and e

1,zt

1 (z

t

) = 8.6313, e2,z
t

1 (z

t

) = 4.3687 if z
t

= z2, while
e

1,zt
(z

t+1
) = (12, 1) and e

2,zt
(z

t+1
) = (1, 12) .

The utility function of an agent of type 1 is given by
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while that of agent of type 2 is given by
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For this model, it is easy to show that a competitive equilibrium exists. Practi-
tioners are, however, interested competitive equilibria that have a recursive structure
on the space of shocks and wealth distributions. Specifically, standard computational
methods search for a Markovian equilibrium on the natural state space. Hence, let us
consider that there exists a continuous function f such that equilibrium allocations
can be characterized by:

(✓

b,1,zt
(z

t+1
), q

b

(z

t

), p(z

t

), (c

i,z

⌧

j

)

i=1,2,j=1,2,⌧=t,t+1) = f

⇣

✓

b,1,zt
(z

t

), z

t

⌘

.

Kubler and Polemarchakis (2004) show that such a representation does not exist for
this economy. Specifically, the unique equilibrium of this economy is described by:

1. ✓

b,1
(z

t

) = 0 at all zt.

2. Given node z

t�1 with z

t�1 = z1, we have that for all successors of z

t�1
,

namely z

t

= z

t�1
(z1) and z

t

= z

t�1
(z2) :

⇣

c

1,zt�1

1 (z

t

) , c

1,zt�1

2 (z

t

)

⌘

= (10.4, 2.6),
⇣

c

2,zt�1

1 (z

t

) , c

2,zt�1

2 (z

t

)

⌘

= (2.6, 10.4), and p = 1.
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3. Given node z

t�1 with z

t�1 = z2, we have that for all successors of z

t�1
,

namely z

t

= z

t�1
(z1) and z

t

= z

t�1
(z2) :

⇣

c

1,zt�1

1 (z

t

) , c

1,zt�1

2 (z

t

)

⌘

= (8.4, 1.4),
⇣

c

1,zt�1

1 (z

t

) , c

1,zt�1

2 (z

t

)

⌘

= (4.6, 11.6) , and p = 7.9.

Observe that knowledge of the current shock and wealth distribution are not enough
to characterize consumption of the old.

As in our previous example, and in spite of knowing that a recursive equilibrium
on the natural state space does not exist, we applied the projection method to obtain
a numerical approximation to function f. We employed a grid of 100 equally spaced
points under piecewise-linear interpolation, and assumed ✓ 2 [�0.2, 0.2]. Based on
this approach, we ended up with an approximated policy function with Euler equation
residuals of order 10

�5 (on average). We again find that the time series properties
of the approximated policy may be substantially different from equilibrium. As a
first illustration of this consider Figures 3 and 4, which summarize portfolio holdings
and the relative price of good two, respectively. In equilibrium bond holdings should
equal zero, while the approximate policy yields positive values. Similarly, the relative
price of good 2 should equal either 1 or 7.9, depending on the shock, while it takes
a continuum of values ranging from 6.5 to 9 in the approximate policy. To further
illustrate the differences between approximate and exact solutions, Table 1 reports
simulated sample for the exact and approximate solutions over the same sequence of
shocks in a sample path of 10,000 periods.

meantrue(✓) meanf (✓) meantrue(p) meanf (p)
0.0 0.2 4.4 7.3

Table 1: Simulated moments – f refers to the approximate policy f .

In summary, for non-optimal economies standard solution methods may introduce
substantial biases into our quantitative predictions.

4.2 Numerical solution of non-optimal economies

Feng et. al. (2012) develop a numerical algorithm for approximating equilibrium
solutions of non-optimal economies. A recursive representation for equilibria is es-
tablished on a state space conformed by the standard variables, (x, z), and the vector
of shadow values of the marginal return to investment for all assets and all agents, m.

This algorithm is guaranteed to converge and has desirable asymptotic properties.
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4.2.1 The theoretical algorithm

A fundamental element of this approach is operator B. An iterative procedure based
on this operator converges to the equilibrium correspondence V

⇤
(x, z) . This equi-

librium correspondence is defined as the set of possible equilibrium values for m,

given (x, z) . As illustrated presently, once the equilibrium correspondence has been
secured, we can provide a recursive representation of equilibria on the enlarged state
(x, z,m).

Let z be any initial node, and z+ be the set of immediate successor states. Pick
any correspondence V : X ⇥ Z ! M, where M is the set of possible shadow values
of investment. Then, for each (x, z) , we define operator B (V ) (x, z) as the set of
all values m with the property that there are current endogenous variables y, and
vectors x+(z+) and m+ (z+) 2 V (x+, z+) for each of the successors of z, denoted by
z+, that satisfy the temporary equilibrium conditions

�(x, y, z, E [m+ (z+)]) = 0

' (x+, x, y, z) = 0.

The following result is proved in Feng et al. (2012):

Theorem 3 (convergence) Let V0 be a compact-valued correspondence such that
V0 � V

⇤
. Let V

n

= B (V

n�1) , n � 1. Then, V
n

! V

⇤ as n ! 1. Moreover, V

⇤

is the largest fixed point of operator B; that is, if V = B(V ), then V ⇢ V

⇤
.

Theorem 3 provides the theoretical foundations for computing equilibria for non-
optimal economies. Specifically, this result states that operator B can be applied
to any initial guess (correspondence) of possible values V0 (x, z) � V

⇤
(x, z) and

iterate until a desirable level of convergence to V

⇤ is attained. From operator B :

graph(V

⇤
) ! graph(V

⇤
) we can select a measurable policy function y = g

y

(x, z,m),
and a transition function m+ (z+) = g

m

(x, z,m; z+), for all z+ 2 Z. These functions
may not be continuous but the state space has been adequately chosen so that
they yield a Markovian characterization of a dynamic equilibrium in the enlarged
state space (x, z,m). An important advantage of this approach is that if multiple
equilibria exist then all of them can be computed. If the equilibrium is always unique,
then B : graph(V

⇤
) ! graph(V

⇤
) defines a continuous law of motion or Markovian

equilibrium over state variables (x, z).
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4.2.2 Numerical implementation

We first partition the state space into a finite set of simplices {Xj} with non-empty
interior and maximum diameter h. Over this partition define a family of step corre-
spondences (defined as correspondences that take constant set values over each X

j).
To obtain a computer representation of a step correspondence, the image must be
discretized. We can employ an outer approximation in which each set-value is defined
by N elements. Using these two discretizations we obtain a computable approxima-
tion of operator B, which we denote by B

h,N . By a suitable selection of an initial
condition V0 and of these outer approximations, the sequence {V h,N

n+1 } defined recur-
sively as V

h,N

n+1 = B

h,N

V

h,N

n

converges to a limit point V

⇤,h,N
, which must contain

the equilibrium correspondence V

⇤
. Again, if the equilibrium is always unique then

these approximate solutions would converge uniformly to the continuous Markovian
equilibrium law of motion. The following result is proved in Feng et al. (2012):

Theorem 4 (accuracy) For given h, N, and initial condition V0 ◆ V

⇤, consider the
recursive sequence {V h,N

n+1 } defined as V

h,N

n+1 = B

h,N

V

h,N

n

. Then, (i) V

h,N

n

◆ V

⇤ for
all n; (ii) V

h,N

n

! V

⇤,h,N uniformly as n ! 1; and (iii) V ⇤,h,N ! V

⇤ as h ! 0

and N ! 1.

4.3 Simulated statistics

To assess model predictions, analysts usually calculate moments of the simulated
paths from a numerical approximation. The idea is that the simulated moments
should approach those obtained from the original model. As discussed in Section 3, if
the optimal policy is a continuous function, or if certain monotonicity conditions hold,
it is possible to establish desirable convergence properties of the simulated moments.
For non-optimal economies, continuity or monotonicity of Markov equilibria do not
come out so naturally. In those models the equilibrium law of motion is described by
an expectations correspondence conformed by feasibility and short-run equilibrium
conditions. Hence, for an initial vector of state variables there could be multiple
continuation equilibrium paths, and coordination over these multiple equilibria may
be required.

More precisely, for non-optimal models the dynamics may by characterized by

s

n+1 2 ⌥(sn, "n+1), n = 0, 1, 2, · · · ,

where ⌥ : S ⇥ E ! S is an upper semicontinuous correspondence (instead of a
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continuous function as in the previous section) over a compact domain. By the
measurable selection theorem [e.g., Crauel (2002) and Hildenbrand (1974)] there
exists a sequence of measurable mappings {b⌥

j

}, b⌥
j

: S⇥E ! S, such that ⌥(s, ") =
cl{b⌥

j

(s, ")} for all (s, ") and all j (cl denoting closure). Let us pick a measurable
selection b

⌥ 2 ⌥. Then, we can define a transition probability Pb⌥(s, A) by

Pb⌥(s, A) = ⌫({"|b⌥(s, ") 2 A}). (2.2)

Note that Pb⌥(s, ·) is a probability measure for each s 2 S, and Pb⌥(·, A) is a measur-
able function for each A in S.

Finally, given an initial probability µ0 on S, the evolution of future probabili-
ties, {µ

n

}, can be specified by the following operator T

⇤
b⌥ that takes the space of

probabilities on S into itself

µ

n+1(A) = (T

⇤
b⌥µn

)(A) =

ˆ
Pb⌥(s, A)µn

(ds),

for all A in S and n � 0. An invariant probability measure or invariant distribution
µ

⇤ is a fixed point of operator T

⇤
b⌥, i.e., µ⇤

= T

⇤
b⌥µ

⇤. Measure µ

⇤ is called ergodic if
µ

⇤
(A) = 0 or µ

⇤
(A) = 1 for every invariant set A under transition probability Pb⌥.

To guarantee existence of an ergodic measure some researchers have resorted to
a discretization of the state space [Ericson and Pakes (1995)]. Discrete state spaces
are quite convenient to compute the set of invariant measures, but these spaces
become awkward for the characterization of optimal solutions and the calibration
and estimation of the model. If the state takes a continuum of values then there are
two basic ways to establish existence of an invariant measure [e.g., Crauel (2002)]:
(i) Via the Markov-Kakutani fixed-point theorem: An upper semicontinuous convex-
valued correspondence in a compact set has a fixed point; and (ii) Via a Krylov-
Bogolyubov type argument: The invariant measure is constructed by an iterative
process as limit of a sequence of empirical probability measures or time means. Blume
(1982) and Duffie et al. (1994) follow (i), and are required to randomize over the
existing equilibria to build a convex-valued correspondence. Randomizing over the
equilibrium correspondence may result in an undesirable expansion of the equilibrium
set.

Recent work by Peralta-Alva and Santos (2012) follows (ii) and dispenses with
randomizations. They also validate a generalized law of large numbers that guaran-
tees convergence of the simulated moments to the population moments of some sta-
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tionary equilibrium. These results apply naturally to approximate solutions. Hence,
the simulated moments from a numerical solution approach asymptotically some
invariant distribution of the numerical approximation. Finally, combining these ar-
guments with some convergence results, they establish some accuracy properties for
the simulated moments as the approximation error goes to zero. We summarize these
results as follows:

(i) Existence of an invariant distribution for the original model : Transition
correspondence P⌥(s, ·) has an invariant probability µ

⇤
; this invariant distribution is

constructed as a limit of a sequence of empirical measures using a Krylov-Bogolyubov
type argument. This iterative process is extended to stochastic dynamical systems
described by correspondences, and it works when the space of measures is compact
and the equilibrium correspondence is upper semicontinuous.

(ii) Simulation of the computed equilibrium laws of motion y = g

y,h,N

n

(x, z,m),
and m+ (z+) = g

m,h,N

n

(x, z,m; z+). There are tight upper USM and lower LSM

bounds such that with probability one the corresponding moments from simulated
paths (x

t

(z

t

), y

t

(z

t

))

1
t=0 of these approximate functions stay within the prescribed

bounds. More precisely, let s = (x, y,m) and f : S ! R+ be a function of in-
terest. Let

⇣

P

T

t=0 f(st)

⌘

/T represent a simulated moment or some other statistic.

Then, with probability one, every limit point of
⇣

P

T

t=0 f(st)

⌘

/T must be within the
corresponding bounds LSM and USM .

(iii) Accuracy of the simulated moments: For every ✏ > 0 we can consider a
sufficiently good discretized operator Bh,N and equilibrium correspondence V h,N

n

such
that for every simulated path (s

t

, z

t

)

1
t=0 there are equilibrium invariant distributions

µ

⇤
, µ

0⇤ satisfying
´
f(s)dµ

⇤ � ✏ 
⇣

P

T

t=0 f(st)

⌘

/T 
´
f(s)dµ

0⇤
+ ✏ almost surely.

Of course, the model has a unique invariant distribution µ

⇤ then µ

0⇤
= µ

⇤ and the
above expression reads as

´
f(s)dµ

⇤ � ✏ 
⇣

P

T

t=0 f(st)

⌘

/T 
´
f(s)dµ

⇤
+ ✏.

The primitive elements in (i� iii) are the Markovian equilibrium functions which
are obtained from the original equilibrium correspondences without performing ar-
bitrary randomizations.

5 Numerical Experiments

In this section we consider some further examples to illustrate the workings of some
algorithms and the accuracy of numerical approximations. There is a vast literature
devoted to the construction of algorithms computing simple Markov equilibria. We
will show how the approximation error can be estimated from the Euler equation
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residuals. We also consider certain specifications for our model economies with mul-
tiple Markov equilibria — or where a Markov equilibrium is not known to exist.
In these latter cases the application of algorithms searching for continuous policy
functions may lead to rather unsatisfactory results.

5.1 Accuracy for models with simple Markov equilibria

We now consider a specification for the growth model of Section 2 with no taxation.
We allow for a CES Bernoulli utility function:

E0

1
X

t=0

�

t

(c

✓

t

(1� l

t

)

1�✓

)

1��

1� �

.

The production technology will be assumed Cobb-Douglas so that total output is
thus given by e

z

t

K

↵

t

L

1�↵

t

. In our computations the shock process is set so as to
approximate an underlying continuum law of motion z

t

= ⇢z

t�1 + ✏

t

, with ✏

t

⇠
N(0, �

2
✏

).

Aruoba et al. (2006) provide a thorough examination of the properties of alterna-
tive approximation schemes for the solution of this model. We follow their approach
and study the accuracy of approximations employing their basic parameterizations.
Let us start with their benchmark case:

� = 0.9896, ✓ = 0.357,↵ = 0.4, � = 0.0196, ⇢ = 0.95, � = 2.0, �

✏

= 0.007.

Once we have secured the best possible numerical approximation g

acc

, we can
provide estimates for the approximation error as described in Section 3. The key
element of this approach requires values for

M

NUM

bg =

||bg � g

acc

||
||EE(bg)|| ,

where bg is any other coarser numerical approximation, and EE(bg) is the maximum
Euler residual under policy bg.

We follow Aruoba et al. (2006) and derive numerical approximations for the
model under various approximations, including the policy with the smallest Euler
equation residuals (g

acc

), under the DP approximation, and other faster methods (to
obtain alternative bg) such as linear approximations, perturbations (of orders 2 and
5) and projections. We take the highest value for MNUM

bg over all approximations as
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our estimate M

NUM for the constant required in the error estimates of Section 3:

||g � g

acc

|| = M

NUM ||EE(g

acc

)||.

Our accuracy estimates for the baseline specification of the model and for some
alternative parameterizations are summarized in Table 2 below. All errors are es-
timated for an interval of the deterministic steady state comprising ±30% of the
steady-state value.

Parameterization M

NUM ||EE(g

acc

)||
Baseline 52.3 3.32⇥ 10

�7

� = 50, �

✏

= 0.035 40.5 4.42⇥ 10

�6

� = 0.95 20.1 2.89⇥ 10

�7

Table 2: Accuracy estimates. Parameterizations are only indicated for deviations
from baseline values.

Hence, Aruoba et al. (2006) provide Euler equation residuals of the order of 10�7
.

Our exercise shows that these residuals translate into approximation errors for the
policy function of the order of 10�5

, since the constants M involved in these error
estimates are always below 100.

5.2 Simulation of non-optimal economies

5.2.1 An overlapping generations model

We now rewrite the OLG economy of Section 2 along the lines of the classical mon-
etary models of Benhabib and Day (1982) and Grandmont (1985). This version of
the model is useful for illustrative purposes because it can be solved with arbitrary
accuracy. Hence, we can compare the true solution of the model with alternative
numerical approximations. The model is deterministic. There are two agents that
live for two periods (except for the initially old agent, who only lives for one period).
Each individual receives an endowment e1 of the perishable good when young and
e2 when old. There is a single asset, money, that pays zero dividends at each given
period. The initial old agent is endowed with the existing money supply M. Let P

t

be the price level at time t. An agent born in period t solves:

maxu (c1t) + �v (c2t+1)
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subject to

c1t +
M

t

P

t

= e1,

c2t+1 = e2 +
M

t

P

t+1
.

Equilibria can be characterized by the following first-order condition:

1

P

t

u

0
✓

e1 �
M

P

t

◆

=

1

P

t+1
�v

0
✓

e2 +
M

P

t+1

◆

.

Let b

t

= M/P

t

be real money balances at t. Then,

b

t

u

0
(e1 � b

t

) = b

t+1�v
0
(e2 + b

t+1) .

It follows that all competitive equilibria can be generated by an offer curve in the
(b

t

, b

t+1) space. A simple recursive equilibrium would be described by a function
b

t+1 = g (b

t

) . We focus on the following parameterization:

u (c) = c

0.45
, v (c) = �1

7

c

�7
, � = 0.8, M = 1, e1 = 2, e2 = 2

6/7 � 2

1/7
.

In this case, the offer curve is backward bending (see Figure 5). Hence, the equi-
librium correspondence is multi-valued. Therefore, standard methods – based on
the computation of a continuous equilibrium function b

t+1 = g (b

t

) – may portray a
partial view of the equilibrium dynamics. There is a unique stationary solution at
about b⇤ = 0.4181, which is the point of crossing of the offer curve with the 45-degree
line.
Comparison with other computational algorithms

A common practice in OLG models is to search for an equilibrium guess function
b

0
= bg(b), and then iterate over the temporary equilibrium conditions. We applied

this procedure to our model. Depending on the initial guess, we find that either the
upper or the lower arm of the offer curve would emerge as a fixed point. This strong
dependence on initial conditions is a rather undesirable feature of this computational
method. In particular, if we only consider the lower arm of the actual equilibrium cor-
respondence then all competitive equilibria converge to autarchy. Indeed, the unique
absorbing steady state associated with the lower arm of the equilibrium correspon-
dence involves zero monetary holdings. Hence, even in the deterministic version,
we need a global approximation of the equilibrium correspondence to analyze the
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various predictions of the model. As shown in Figure 6, the approximate equilibrium
correspondence has a cyclical equilibrium in which real money holdings oscillate be-
tween 0.8529 and 0.0953. It is also known that the model has a three-period cycle.
But if we iterate over the upper arm of the offer curve, we find that money holdings
converge monotonically to M̄

p

= 0.4181 (as illustrated by the dashed lines of Figure
6). As a matter of fact, the upper arm is monotonic, and can at most have cycles of
period two, whereas the model generates equilibrium cycles of various periodicities.

In conclusion, for OLG economies, standard computational methods based on
iteration of continuous functions do not guarantee convergence to an equilibrium
solution, and may miss some important properties of the equilibrium dynamics. In
these economies it seems pertinent to compute the set of all sequential competitive
equilibria. It is certainly an easy task to compute this simple model by the algorithm
of Section 4 of Feng et al. (2012). We presently illustrate the workings of this reliable
algorithm in a stochastic economy with two types of agents.

5.2.2 Asset pricing models with market frictions

An important family of macroeconomic models incorporates financial frictions in the
form of sequentially incomplete markets, borrowing constraints, transactions costs,
cash-in-advance constraints, and margin and collateral requirements. Fairly general
conditions rule out the existence of financial bubbles in these economies; hence,
equilibrium asset prices are determined by the expected value of future dividends
[Santos and Woodford (1997)]. There is, however, no reliable algorithm for the
numerical approximation and simulation of these economies. Here, we illustrate
the workings of our algorithm in the economy of Kehoe and Levine (2001). These
authors provide a characterization of steady-state equilibria for an economy with
idiosyncratic risk under exogenous and endogenous borrowing constraints.

The basic economic environment stems from the asset pricing model of Section
2. There are two possible values for the endowment, high, e

h

, or low, e

l

. There
is no aggregate risk: One household gets the high endowment whilst the other one
gets the low endowment at every date. There is only one asset, a Lucas tree with
a constant dividend, d. Households maximize expected utility (7) subject to the
sequence of budget constraints (8). We now consider an important departure from
the basic model of Section 2: endogenous credit limits. More specifically, allocations
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(and the implied borrowing) must satisfy the participation constraint

E

z

t

1
X

⌧=t

�

⌧

u

i

�

c

i

⌧

�

� V

i,aut

(z

t

), for all i and z

t

. (34)

Here, V i,aut

(z

t

) denotes the expected discounted value of making consumption equal
to the endowment from period t onwards. This is the payoff of defaulting on credit
obligations. The algorithm of Section 4 can be readily modified to accommodate this
type of constraints. It simply requires iterating simultaneously on pairs of candidate
shadow values of investment and values for participation (the lifetime utility of never
defaulting). This operator is monotone (in the set inclusion sense) and thus the
approximation results of Section 4 still hold [see Feng, et al. (2012)].
The equilibrium correspondence

Note that market clearing for shares requires ✓

1
= 1 � ✓

2. Hence, in the sequel
we let ✓ be the share holdings of household 1, and e

s

be the endowment of household
1, for s = l, h. Then, the equilibrium correspondence V

⇤
(✓, e

s

) is a map from the
space of possible values for share holdings and endowments for agent 1 into the set
of possible equilibrium shadow values of investment for each agent (m

1
,m

2
).

The FOCs of the household’s problem are
qDu

i

(e

i

+ ✓

i

(d+ q)� ✓

i · q) = �

i

�

i

⇡[e

i

+|ei]mi

+.

Asset holdings and prices are state contingent and thus both ✓, q are vectors in R2
.

Observe that �

i � 1 is a ratio of multipliers corresponding to the participation con-
straints. That is, �i

=

1+µ

i+µ

i

+

1+µ

i

, where µ

i � 0 is a multiplier associated with today’s
participation constraint, and µ

i

+ � 0 is a multiplier associated with tomorrow’s par-
ticipation constraint at state ei+|ei. Therefore, �i

> 1 only if tomorrow’s participation
constraint is binding.
Computational algorithm

We start with a correspondence V0 such that V0(✓, es) ◆ V

⇤
(✓, e

s

) for all (✓, e
s

)

with s = l, h. It is easy to come up with the initial candidate V0, since the low
endowment e

l

is a lower bound for consumption, and the marginal utility of con-
sumption can be used to bound asset prices as discounted values of dividends. It is
also straightforward to derive bounds for the value of participation P0.

Iterations of operator B result in new candidate values for the shadow values of
investment, and new candidate values for participation. Specifically, given (✓, e

s

),
(m

1
,m

2
) 2 V

n

(✓, e

s

), and (p

1
, p

2
) 2 P

n

(✓, e

s

,m

1
,m

2
) we have that (m

1
,m

2
) 2

V

n+1(✓, es), and (p

1
, p

2
) 2 P

n+1(✓, es,m
1
,m

2
) iff we can find portfolio holdings for
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next period, ✓+, a bond price q, multipliers (�1
,�

2
), continuation shadow values of in-

vestment (m1
+,m

2
+) 2 V

n

(✓+, es+), and continuation utilities (p1+, p2+) 2 P

n

(✓+, es+ ,m
1
+,m

2
+)

such that the individual’s intertemporal optimality conditions are satisfied, and are
consistent with the definition of promised utilities and with participation constraints

p

i

= u(c

i

) + �Ep

i

+

p

i � V

i,aut

(e

s

).

Our algorithm can then be used to generate a sequence of approximations to the
equilibrium correspondence via the recursion (V

n+1, Pn+1) = B(V

n

, P

n

).
Table 3 reports sample statistics for equilibrium time series. In this table, q refers

to the price of a state uncontingent share.

Model mean(q) std(q) mean(c1) stdev(c1)
Endogenous constraint 1.07 0.00 17.00 4.52

Table 3: Simulated moments – mean and standard deviation (stdev).

Perfect risk sharing would require constant consumption across states. The en-
dogenous participation constraint prevents perfect risk sharing and so consumption
displays some volatility. Since the unique equilibrium is a symmetric stochastic
steady state and the agent with the good shock (who is unconstrained) determines
the price of the asset, the price of a state uncontingent share is constant. As is well
understood, however, the volatility of the pricing kernel of this economy is higher
than that of a complete markets economy but we do not report state contingent
prices.

6 Concluding Remarks

In this paper we present a systematic approach for the numerical simulation of dy-
namic economic models. There is a fairly complete theory for the simulation of
optimal economies, and a variety of algorithms are available for the computation of
these economies. The dynamic programming (DP) algorithm guarantees convergence
to the true solution, and the approximation error can be bounded. There are other
algorithms for which a numerical solution is not known to exist — or convergence
to the numerical solution cannot be guaranteed. These algorithms are usually much
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faster than the DP algorithm, and easier to implement. We have presented an ac-
curacy test based on the Euler equation residuals which is particularly relevant for
non-reliable algorithms. This test can estimate the accuracy of the computed solu-
tion from a plot of the residuals without further reference to the particular algorithm
computing the solution.

Of course, in dynamic models the one-period error estimated by the Euler equa-
tion residuals may cumulate over time. We then develop some approximation prop-
erties for the simulated moments and the consistency of the simulation-based estima-
tors. Error bounds and asymptotic normality of these estimators may require further
differentiability properties of the invariant distributions of the original model.

For non-optimal economies, a continuous Markov equilibrium may not exist.
Hence, algorithms searching for a continuous policy function are usually not ade-
quate. Indeed, we discussed some examples is which standard algorithms produced
misleading results. We analyzed a reliable algorithm based on the computation of
correspondences rather than functions. We also studied some convergence properties
of the numerical solutions. Still, for non-optimal economies there are many open is-
sues such as bounding approximation errors and the estimation of parameter values
by simulation-based estimators.

We have focused on the theoretical foundations of numerical simulation rather
than on a thorough description of the type of economic models to which this theory
can be applied. There are certain models that clearly fall outside the scope of our
applications – even though the theoretical results presented here may still offer some
useful insights. For instance, see Algan et al. (2010) for algorithms related to the
computation of models with a continuum of agents of the type of Krusell and Smith
(1998), and Ericson and Pakes (1995) for the computation of a model of an industry.
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Figure 1: Exact and numerical solution.

Figure 2: Euler equation residuals of the numerical solution.
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Figure 3: Numerical policy function of bond holdings.

Figure 4: Numerical approximation of the relative price.
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Figure 5: Offer curve.
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Figure 6: Equilibrium dynamics.
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