Chapter 10

Analysis of Statically Indeterminate Structures Force Method of Analysis

Methods of Analysis

Two different Methods are available

Force method

- known as consistent deformation, unit load method, flexibility method, or the superposition equations method.
- The primary unknowns in this way of analysis are forces
- Displacement method
 - Known as stiffness matrix method
 - The primary unknowns are displacements

	Unknowns	Equations Used for Solution	Coefficients of the Unknowns
Force Method	Forces	Compatibility and Force Displacement	Flexibility Coefficients
Displacement Method	Displacements	Equilibrium and Force Displacement	Stiffness Coefficients

Methods of Analysis

Force method of analysis

The deflection or slope at any point on a structure as a result of a number of forces, including the reactions, is equal to the algebraic sum of the deflections or slopes at this particular point as a result of these loads acting individually

General Procedure

- Indeterminate to the first degree
- 1 Compatibility equation is needed
- Choosing one of the support reaction as a redundant
- The structure become statically determinate & stable
- Downward displacement $\Delta_{\rm B}$ at B calculated (load action)
- $f_{\rm BB}$ upward deflection per unit force at B
- Compatibility equation

 $\mathbf{0} = \Delta_{\mathsf{B}} + \mathsf{B}_{\mathsf{y}} f_{\mathsf{B}\mathsf{B}}$

- Reaction B_y known
- Now the structure is statically determinate

General Procedure

- Indeterminate to the first degree
- 1 Compatibility equation is needed
- Choosing M_A at A as a redundant
- The structure become statically determinate & stable
- Rotation θ_{A} at A caused by load P is determined
- α_{AA} rotation caused by unit couple moment applied at A
- Compatibility equation

$$0 = \theta_A + M_A \alpha_{AA}$$

- Moment M_A known
- Now the structure is statically determinate

General Procedure

- Indeterminate to the 2nd degree
- 2 Compatibility equations needed
- Redundant reaction B & C
- Displacement $\Delta_{\rm B} \& \Delta_{\rm C}$ caused by load P₁ & P₂ are determined

General Procedure

- $f_{\rm BB}$ & $f_{\rm BC}$ Deflection per unit force at B are determined
- $f_{\rm CC} \& f_{\rm CB}$ Deflection per unit force at C are determined
- Compatibility equations

 $0 = \Delta_{\rm B} + B_{\rm y} f_{\rm BB} + C_{\rm y} f_{\rm BC}$ $0 = \Delta_{\rm C} + B_{\rm y} f_{\rm CB} + C_{\rm y} f_{\rm CC}$

- Reactions at B & C are known
- Statically determinate structure

Maxwell's Theorem

• The displacement of a point B on a structure due to a unit load acting at a point A is equal to the displacement of point A when the unit load is acting at point B the is

$f_{\rm BC}=f_{\rm CB}$

 The rotation of a point B on a structure due to a unit moment acting at a point A is equal to the rotation of point A when the unit moment is acting at point B the is

 $\alpha_{\rm BC} = \alpha_{\rm CB}$

- Procedure for Analysis
 - Determine the degree of statically indeterminacy
 - Identify the redundants, whether it's a force or a moment, that would be treated as unknown in order to form the structure statically determinate & stable
 - Calculate the displacements of the determinate structure at the points where the redundants have been removed
 - Calculate the displacements at these same points in the determinate structure due to the unit force or moment of each redundants individually
 - Workout the compatibility equation at each point where there is a redundant & solve for the unknown redundants
 - Knowing the value of the redundants, use equilibrium to determine the remaining reactions

Beam Deflections and Slopes $v = \frac{P}{6EI} (x^3 - 3Lx^2)$ atx = L $v_{max} = -\frac{PL^3}{3EI}$ $\theta_{max} = -\frac{PL^2}{2EI}$ Positive (+) $v = \theta$

v

$$v = \frac{M_0}{2EI} x^2$$

$$atx = L$$

$$v_{\rm max} = \frac{M_0 L^2}{2EI}$$

$$\theta_{\rm max} = \frac{M_0 L}{EI}$$

Beam Deflections and Slopes

$$v = -\frac{w}{24EI} \left(x^4 - 4Lx^3 + 6L^2x^2 \right)$$

$$dtx = L$$

$$v_{max} = -\frac{wL^4}{8EI}$$

$$\theta_{max} = -\frac{wL^3}{6EI}$$

$$v = \frac{P}{48EI} \left(4x^{3} - 3L^{2}x \right), \quad 0 \le x \le \frac{L}{2}$$

at $x = \frac{L}{2}$ $v_{\text{max}} = -\frac{PL^{3}}{48EI}$
at $x = 0 \text{ or } \frac{L}{2}$ $\theta_{\text{max}} = \pm \frac{PL^{2}}{16EI}$

- Determine the reaction at B
 - Indeterminate to the 1st degree thus one additional equation needed
 - Lets take B as a redundant
 - Determine the deflection at point B in the absence of support B. Using the moment-area method

$$\Delta_B = \frac{1}{EI} \left[300 \times \frac{6}{2} \cdot \left(\frac{2}{3} 6 + 6 \right) \right]$$
$$\Delta_B = \frac{9000 kN \cdot m^3}{EI} \downarrow$$

 Determine the deflection caused by the unit load at point B

Α

1×12=

12m

$$f_{BB} = \frac{1}{EI} \left(12 \times \frac{12}{2} \times \frac{2}{3} \times 12 \right)$$
$$f_{BB} = \frac{576m^3}{EI} \uparrow$$

Compatibility equation

$$0 = \Delta_{\rm B} + B_{\rm y} f_{\rm BB}$$

$$0 = -\frac{9000}{EI} + B_{y} \frac{576}{EI}$$

 $B_v = 15.6 kN$

 $M(kN \cdot m)$ The reaction at B is known now so the structure is statically determinate & equilibrium equations can be applied to get the rest of the unknowns -112

JBB

B.M.D

В

- Determine the moment at A
 - Indeterminate to the 1st degree thus one additional equation needed
 - Lets take M_A as a redundant
 - Determine the slope θ_A at point A ignoring the fixation at A. Using the moment-area method

The moment at A is known now so the structure is statically determinate

Draw the shear and moment diagrams for the beam shown in Fig. 10–10*a*. The support at *B* settles 1.5 in. Take $E = 29(10^3)$ ksi, I = 750 in⁴.

Compatibility Equation. With reference to point B in Fig. 10–10b, using units of ft, we require

$$(+\downarrow) \qquad \qquad \frac{1.5}{12} = \Delta_B + B_y f_{BB} \tag{1}$$

$$\downarrow + \Sigma M_{B'} = 0; \qquad -M_{B'} + \frac{1440}{EI}(8) - \frac{1800}{EI}(24) = 0$$
$$M_{B'} = -\frac{31\ 680}{EI} = \frac{31\ 680}{EI} \frac{1}{5} \gamma$$

Verify the calculations in Fig. 10–10*d* for calculating f_{BB} . Note that $\downarrow + \Sigma M_{B'} = 0;$ $-m_{B'} + \frac{144}{EI}(8) - \frac{144}{EI}(24) = 0$ $m_{B'} = -\frac{2304}{EI} = \frac{2304}{EI} \sqrt{20 \text{ k}}$ $m_{B'} = -\frac{2304}{EI} = \frac{2304}{EI} \sqrt{20 \text{ k}}$ $m_{B'} = -\frac{2304}{EI} = \frac{2304}{EI} \sqrt{20 \text{ k}}$

Substituting these results into Eq. (1), we have

$$\frac{1.5}{12} = \frac{31\,680}{EI} + B_y \left(\frac{2304}{EI}\right)$$

Expressing the units of E and I in terms of k and ft, we have

$$\left(\frac{1.5}{12}\text{ft}\right)$$
[29(10³) k/in²((12)² in²/ft²)][750 in⁴(ft⁴/(12)⁴ in⁴)]

$$B_y = -5.56 \,\mathrm{k}$$

Equilibrium Equations. The negative sign indicates that \mathbf{B}_y acts *upward* on the beam. From the free-body diagram shown in Fig. 10–10*e* we have

 $\downarrow + \Sigma M_A = 0; \qquad -20(12) + 5.56(24) + C_y(48) = 0$ $C_y = 2.22 k$ $+ \uparrow \Sigma F_y = 0; \qquad A_y - 20 + 5.56 + 2.22 = 0$ $A_y = 12.22 k$

Using these results, verify the shear and moment diagrams shown in Fig. 10-10f.

- Neglect the axial load
- The end moments at A&B will be considered as redundants
- From Table inside the front cover

$$\theta_A = \frac{1}{EI}(375)$$

$$\theta_{B} = \frac{1}{EI}(291.7)$$

Determine the reaction at the support for the beam shown, EI is Constant. *Choose the internal moment at Internal support as the redundant*

redundant M_B applied

The slopes and angular flexibility coefficients can be determined from the table on the inside front cover, that is,

$$\theta'_{B} = \frac{wL^{3}}{24EI} = \frac{120(12)^{3}}{24EI} = \frac{8640 \text{ lb} \cdot \text{ft}^{2}}{EI}$$
$$\theta''_{B} = \frac{PL^{2}}{16EI} = \frac{500(10)^{2}}{16EI} = \frac{3125 \text{ lb} \cdot \text{ft}^{2}}{EI}$$
$$\alpha'_{BB} = \frac{ML}{3EI} = \frac{1(12)}{3EI} = \frac{4 \text{ ft}}{EI}$$
$$\alpha''_{BB} = \frac{ML}{3EI} = \frac{1(10)}{3EI} = \frac{3.33 \text{ ft}}{EI}$$

Thus

$$\frac{8640 \operatorname{lb} \cdot \operatorname{ft}^2}{EI} + \frac{3125 \operatorname{lb} \cdot \operatorname{ft}^2}{EI} + M_B \left(\frac{4 \operatorname{ft}}{EI} + \frac{3.33 \operatorname{ft}}{EI}\right) = 0$$
$$M_B = -1604 \operatorname{lb} \cdot \operatorname{ft}$$

Determine the support reactions on the frame shown EI is Constant.

Ans.

For f_{BB} we require application of a real unit load and a virtual unit load acting at *B*, Fig. 10–13*d*. Thus,

$$f_{BB} = \int_{0}^{L} \frac{mm}{EI} dx = \int_{0}^{5} \frac{(0.8x_{1})^{2} dx_{1}}{EI} + \int_{0}^{4} \frac{(1x_{2})^{2} dx_{2}}{EI} dx_{2}$$
$$= \frac{26.7}{EI} + \frac{21.3}{EI} = \frac{48.0}{EI}$$

Substituting the data into Eq. (1) and solving yields

$$0 = \frac{166.7}{EI} + B_x \left(\frac{48.0}{EI}\right) \qquad B_x = -3.47 \text{ kN}$$

 $\stackrel{\pm}{\to} \Sigma F_x = 0; \qquad A_x - 3.47 = 0 A_x = 3.47 \text{ kN} \quad Ans.$ $\downarrow + \Sigma M_A = 0; -40(2.5) + B_y(5) - 3.47(4) = 0 B_y = 22.8 \text{ kN} \quad Ans.$ $+ \uparrow \Sigma F_y = 0; \qquad A_y - 40 + 22.8 = 0 A_y = 17.2 \text{ kN} \quad Ans.$

Example (Additional)

The frame, shown in the photo is used to support the bridge deck. Assuming EI is constant, a drawing of it along with the dimensions and loading is shown. Determine the support reactions.

Compatibility Equation. Reference to point A in Fig. 10-12b requires

$$(\stackrel{+}{\rightarrow}) \qquad 0 = \Delta_A + A_x f_{AA} \tag{1}$$

$$\Delta_A = \int_0^L \frac{Mm}{EI} dx = 2 \int_0^5 \frac{(0)(1x_1)dx_1}{EI} + 2 \int_0^5 \frac{(200x_2)(-5)dx_2}{EI} + 2 \int_0^5 \frac{(1000 + 200x_3 - 20x_3^2)(-5)dx_3}{EI}$$

$$25000 \quad 66\,666.7 \qquad 91\,666.7$$

$$= 0 - \frac{23000}{EI} - \frac{60000.7}{EI} = -\frac{91000.7}{EI}$$

$$f_{AA} = \int_0^L \frac{mm}{EI} dx = 2 \int_0^5 \frac{(1x_1)^2 dx_1}{EI} + 2 \int_0^5 (5)^2 dx_2 + 2 \int_0^5 (5)^2 dx_3$$
$$= \frac{583.33}{EI}$$

Substituting the results into Eq. (1) and solving yields

Determine the moment at the fixed support A for the frame shown EI is Constant.

Compatibility Equation.Reference to point A in Fig. 10–14b requires(7+) $0 = \theta_A + M_A \alpha_{AA}$ (1)

As in the preceding example, θ_A and α_{AA} will be computed using the method of virtual work. The frame's x coordinates and internal moments are shown in Fig. 10–14c and 10–14d.

For θ_A we require application of the real loads, Fig. 10–14*c*, and a virtual unit couple moment at *A*, Fig. 10–14*d*. Thus,

$$\theta_A = \sum \int_0^L \frac{Mm_\theta \, dx}{EI}$$

$$= \int_0^8 \frac{(29.17x_1)(1 - 0.0833x_1) \, dx_1}{EI}$$

$$+ \int_0^5 \frac{(296.7x_2 - 50x_2^2)(0.0667x_2) \, dx_2}{EI}$$

$$= \frac{518.5}{EI} + \frac{303.2}{EI} = \frac{821.8}{EI}$$

$$\alpha_{AA} = \sum \int_{0}^{L} \frac{m_{\theta} m_{\theta}}{EI} dx$$

$$= \int_{0}^{8} \frac{(1 - 0.0833x_{1})^{2} dx_{1}}{EI} + \int_{0}^{5} \frac{(0.0667x_{2})^{2} dx_{2}}{EI}$$

$$= \frac{3.85}{EI} + \frac{0.185}{EI} = \frac{4.04}{EI}$$

$$m_{1} = 1 - 0.0833$$

Substituting these results into Eq. (1) and solving yields

$$0 = \frac{821.8}{EI} + M_A \left(\frac{4.04}{EI}\right) \qquad M_A = -204 \text{ lb} \cdot \text{ft} \qquad Ans.$$

Force Method of Analysis: Truss Example8

Determine the force in member AC.

Assume EA is the same for all the members

Force Method of Analysis: Truss

 $\Delta_{AC} = \sum \frac{nNL}{\Lambda E}$ $= 2 \left| \frac{(-0.8)(400)(8)}{AE} \right| + \frac{(-0.6)(0)(6)}{AE} + \frac{(-0.6)(300)(6)}{AE}$ $+\frac{(1)(-500)(10)}{AE}+\frac{(1)(0)(10)}{AE}$ $=-\frac{11\,200}{AE}$ $f_{AC AC} = \sum \frac{n^2 L}{AE}$ $= 2\left[\frac{(-0.8)^2(8)}{AE}\right] + 2\left[\frac{(-0.6)^2(6)}{AE}\right] + 2\left[\frac{(1)^210}{AE}\right]$ $=\frac{34.56}{AE}$

+400

400 lb

Substituting the data into Eq. (1) and solving yields

$$0 = -\frac{11\ 200}{AE} + \frac{34.56}{AE}F_{AC}$$

$$F_{AC} = 324\ \text{lb}\ (\text{T})$$

 Determine the force in each member if the turnbuckle on member AC is used to shorten the member by 0.5in. Each member has a cross-section area of 0.2 in² & E=29(10⁶)psi

redundant \mathbf{F}_{AC} applied

$$f_{AC\ AC} = \frac{34.56}{AE}$$

Assuming the amount by which the bar is shortened is positive, the compatibility equation for the bar is therefore

$$0.5 \text{ in.} = 0 + \frac{34.56}{AE} F_{AC}$$

Realizing that $f_{AC \ AC}$ is a measure of displacement per unit force, we have

$$0.5 \text{ in.} = 0 + \frac{34.56 \text{ ft}(12 \text{ in./ft})}{(0.2 \text{ in}^2)[29(10^6) \text{ lb/in}^2]} F_{AC}$$

Thus,

$$F_{AC} = 6993 \, \text{lb} = 6.99 \, \text{k} \, (\text{T})$$
 Ans

Since no external forces act on the truss, the external reactions are zero. Therefore, using F_{AC} and analyzing the truss by the method of joints yields the results shown in Fig. 10–16c.

The beam shown is supported by a pin at A and two pin-connected bar at B. Determine the force in member BD. Take $E=29(10^3)$, I=800 in⁴ for the beam and A=3 in² for each bar.

(c)

$$\Delta_{BD} = \int_0^L \frac{Mm}{EI} dx + \sum \frac{nNL}{AE} = \int_0^{10} \frac{(6.67x - 0.0667x^3)(0) dx}{EI} + \frac{(-15.40)(-0.816)(6/\cos 30^\circ)(12)}{AE} + \frac{(0)(1)(6/\cos 45^\circ)(12)}{AE}$$
$$= 0 + \frac{1045.1}{3[29(10^3)]} + 0 = 0.0120 \text{ in.}$$

For $f_{BD BD}$ we require application of a real unit load and a virtual unit load at the cut ends of member BD, Fig. 10–17d. Thus,

$$f_{BD\,BD} = \int_0^L \frac{m^2 \, dx}{EI} + \sum \frac{n^2 L}{AE} = \int_0^{10} \frac{(0)^2 \, dx}{EI} + \frac{(-0.816)^2 (6/\cos 30^\circ)(12)}{AE} + \frac{(1)^2 (6/\cos 45^\circ)(12)}{AE} = \frac{157.2}{3[29(10^3)]} = 0.001807$$

Substituting the data into Eq. (1) yields

$$0 = \Delta_{BD} + F_{BD} f_{BD BD}$$

$$0 = 0.0120 + F_{BD} (0.001807)$$

$$F_{BD} = -6.65 \text{ k} = 6.65 \text{ k} (\text{C})$$

Ans.

The simply supported beam shown in the photo is to be designed to support a uniform load of 2 kN/m. Determine the force developed in member CE. Neglect the thickness of the beam and assume the truss members are pin connected to the beam. Also, neglect the effect of axial compression and shear in the beam. The cross-sectional area of each strut is 400 mm², and for the beam I=20(10⁶)mm⁴. Take E=200 GPa

Actual structure

 $0 = \Delta_{CE} + F_{CE} f_{CECE}$

 $0 = \Delta_{CE} + F_{CE} f_{CECE}$

 $0 = \Delta_{CE} + F_{CE} f_{CECE}$

$$\Delta_{CE} = \int_{0}^{L} \frac{Mm}{EI} dx + \sum \frac{nNL}{AE} = 2 \int_{0}^{2} \frac{(6x_{1} - x_{1}^{2})(-0.5x_{1})dx_{1}}{EI} + 2 \int_{2}^{3} \frac{(6x_{2} - x_{2}^{2})(-1)dx_{2}}{EI} + 2 \left(\frac{(1.118)(0)(\sqrt{5})}{AE}\right) + 2 \left(\frac{(-0.5)(0)(1)}{AE}\right) + \left(\frac{1(0)2}{AE}\right) = -\frac{12}{EI} - \frac{17.33}{EI} + 0 + 0 + 0 = \frac{-29.33(10^{3})}{200(10^{9})(20)(10^{-6})} = -7.333(10^{-3}) \,\mathrm{m}$$

$$f_{CECE} = \int_{0}^{L} \frac{m^{2} dx}{EI} + \sum \frac{n^{2} L}{AE} = 2 \int_{0}^{2} \frac{(-0.5x_{1})^{2} dx_{1}}{EI} + 2 \int_{2}^{3} \frac{(-1)^{2} dx_{2}}{EI} + 2 \left(\frac{(1.118)^{2}(\sqrt{5})}{AE}\right) + 2 \left(\frac{(-0.5)^{2}(1)}{AE}\right) + \left(\frac{(1)^{2}(2)}{AE}\right)$$
$$= \frac{1.3333}{EI} + \frac{2}{EI} + \frac{5.590}{AE} + \frac{0.5}{AE} + \frac{2}{AE}$$
$$= \frac{3.333(10^{3})}{200(10^{9})(20)(10^{-6})} + \frac{8.090(10^{3})}{400(10^{-6})(200(10^{9}))}$$
$$= 0.9345(10^{-3}) \,\mathrm{m/kN}$$

$$0 = \Delta_{CE} + F_{CE}J_{CECE}$$

$$0 = -7.333(10^{-3}) \text{ m} + F_{CE}(0.9345(10^{-3}) \text{ m/kN})$$

$$F_{CE} = 7.85 \text{ kN}$$

Symmetric Structures

Antisymmetric Structures

Transformation of Loading

Influence Lines for Statically Indeterminate Beams Reaction at A

Influence Lines for Statically Indeterminate Beams Reaction at A

$$A_{y} = \left(\frac{1}{f_{AA}}\right) f_{DA}$$

Scale Factor $1/f_{AA}$

Influence Lines for Statically Indeterminate Beams

Shear at E

Influence Lines for Statically Indeterminate Beams

Moment at E

Draw the influence line for the vertical reaction at A for the beam in Fig. 10–25a. EI is constant. Plot numerical values every 6 ft.

For B', since no moment exists on the conjugate beam at B', Fig. 10-25d, then

$$\Delta_B = M_{B'} = 0$$

For *D*′, Fig. 10–25*e*:

$$\Sigma M_{D'} = 0;$$
 $\Delta_D = M_{D'} = \frac{162}{EI}(6) - \frac{1}{2} \left(\frac{6}{EI}\right)(6)(2) = \frac{936}{EI}$

For C', Fig. 10–25f:

$$\Sigma M_{C'} = 0;$$
 $\Delta_C = M_{C'} = \frac{162}{EI}(12) - \frac{1}{2}\left(\frac{12}{EI}\right)(12)(4) = \frac{1656}{EI}$

For A', Fig. 10–27d:

$$\Delta_A = M_{A'} = \frac{1944}{EI}$$

Since a vertical 1-k load acting at A on the beam in Fig. 10–25*a* will cause a vertical reaction at A of 1 k, the displacement at A, $\Delta_A = 1944/EI$, should correspond to a numerical value of 1 for the influence-line ordinate at A. Thus, dividing the other computed displacements by this factor, we obtain

x	A_y
Α	1
С	0.852
D	0.481
В	0

A plot of these values yields the influence line shown in Fig. 10-25g.

Draw the influence line for the shear at D for the beam in Fig. 10–26a. EI is constant. Plot numerical values every 9 ft.

Since there is a *discontinuity* of moment at D', the internal moment just to the left and right of D' will be computed. Just to the left of D', Fig. 10–26*f*, we have

$$\Sigma M_{D'_L} = 0;$$
 $\Delta_{D_L} = M_{D'_L} = \frac{40.5}{EI}(3) - \frac{270}{EI}(9) = -\frac{2308.5}{EI}$

Just to the right of D', Fig. 10–26g, we have

$$\Sigma M_{D'_R} = 0;$$
 $\Delta_{D_R} = M_{D'_R} = \frac{40.5}{EI}(3) - \frac{270}{EI}(9) + \frac{3888}{EI} = \frac{1579.5}{EI}$

From Fig. 10–26e,

$$\Delta_A=M_{A'}=0\qquad \Delta_B=M_{B'}=0\qquad \Delta_C=M_{C'}=0$$

For point E, Fig. 10–26b, using the method of sections at the corresponding point E' on the conjugate beam, Fig. 10–26h, we have

$$\Sigma M_{E'} = 0;$$
 $\Delta_E = M_{E'} = \frac{40.5}{EI}(3) - \frac{54}{EI}(9) = -\frac{364.5}{EI}$

The ordinates of the influence line are obtained by dividing each of the above values by the scale factor $M_{D'} = 3888/EI$. We have

x	V_D
Α	0
D_L	-0.594
D_R	0.406
В	0
Ε	-0.0938
C	0

A plot of these values yields the influence line shown in Fig. 10–26i.

Draw the influence line for the moment at D for the beam in Fig. 10–27a. *EI* is constant. Plot numerical values every 9 ft.

For point D', Fig. 10–27e:

$$\Sigma M_{D'} = 0;$$
 $\Delta_D = M_{D'} = \frac{4.5}{EI}(3) + \frac{18}{EI}(9) = \frac{175.5}{EI}$

For point *E*′, Fig. 10–27*f*:

$$\Sigma M_{E'} = 0;$$
 $\Delta_E = M_{E'} = \frac{4.5}{EI}(3) - \frac{6}{EI}(9) = -\frac{40.5}{EI}$

The angular displacement α_{DD} at D of the "real beam" in Fig. 10–27c is defined by the reaction at D' on the conjugate beam. This factor, $D'_y = 48/EI$, is divided into the above values to give the ordinates of the influence line, that is,

x	M_D
Α	0
D	3.656
В	0
E	-0.844
C	0

A plot of these values yields the influence line shown in Fig. 10-27g.

Live Load Pattern in Continuous Beams

Support Reactions

Influence Line for positive reaction at support 1

Load pattern for maximum positive reaction at support 1

Support Negative Moment

 M_2^-

Influence line for negative moment at support 2

Load pattern for maximum negative moment at support 2

Span Positive Moment

Influence line for positive moment at 7

Load pattern for maximum positive moment at 7

Internal Shear

Load pattern for maximum positive shear at 7

Live Load Pattern for Three Span Beam

