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Abstract-we present and study the stability and convergence, and order of convergence of 
a numerical scheme used in geophysics, namely, the stochastic version of a deterministic “implicit 
leapfrog” scheme which has been developed for the approximation of the socalled barotropic vorticity 
model. Two other schemes which might be useful in the context of geophysical applications are also 
introduced and discussed. @ 2003 Elsevier Ltd. All rights reserved. 
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1. INTRODUCTION 

Much effort has been invested in studying numerical schemes for stochastic differential equations 
of the form 

dU, = u(Ut) dt + b(Ut) dW,, (1.1) 

where U, E I@, a is a function from Rd into itself, W is a Wiener process on Iw”, and b is a 
function from I@ into !Pxm. 

For the so-called weak approximation of (1.1)) in which the approximation of the expectation 
of functions of U is considered, extensive work is due, for example, to Talay and his collaborators, 
work relying on probabilistic methods more involved than those used in this article (see, e.g., [l-3] 
and the references therein). 

The question of strong approximation of (l.l), in which the approximation of sample paths 
of U is desired, has also been much studied. See, for example, the paper by Mil’shtein [4] for a 
scheme of order O(At), and that by Riimelin [5] f or an investigation of Runge-Kutta schemes. 

The authors are very grateful to C. Penland for bringing these issues to their attention and they acknowledge 
very useful discussions with her and with P. Sardeshmukh. We are also indebted to A. Debuasche for several 
improvements on an earlier draft, and to S. Faure, who provided the numerical simulations of Section 6. 
This work was supported in part by a grant from the National Science Foundation, NSF-DMS 0074334 and by 
the Research Fund of Indiana University. 
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Especially, see the text by Kloeden and Platen [6], and the companion volume by Kloeden, Platen 
and Schurz [7], which are a systematic investigation of numerical schemes for (1.1) in both the 
sense of It6 and of Stratonovich, the two stochastic calculi which are in applications by far the 
most useful. Their methods are analytic and are applicable to proving the convergence of a wide 
range of numerical schemes, and they derive a very general scheme [6, formula (12.6.2)] which, 
for various choices of parameters, includes stochastic analogues of such deterministic schemes as 
the explicit and implicit Euler schemes, the Crank-Nicholson scheme, and the leapfrog scheme. 

In the geophysics community, an enormous amount of work has been spent in developing large, 
complex numerical models of the oceans and atmosphere. The questions therefore arise: is it 
possible to add stochastic numerical noise to these already existing models in such a way that it 
is known to what the scheme converges (e.g., to the It6 or Stratonovich solution of some stochastic 
differential equation), to what order they may be expected to converge, etc.? While we certainly 
do not answer these complex questions here, we consider a simple “implicit leapfrog” scheme for 
a barotropic model (supplied to us by C. Penland and P. Sardeshmukh), and demonstrate one 
way of adding stochastic noise to it so that these questions can be answered for the resulting 
stochastic scheme (Section 3). 

We also examine the derivatives of a and b which occur naturally in the above schemes, and 
which can prove to be troublesome in certain applications in which these functions, especially b, 
are given by physical parametrizations (i.e., by “tables”) and not by analytic expressions. We con- 
sider how these derivatives can be replaced by finite differences derived from space-discretization 
while still maintaining the existing rate of convergence (Section 4). 

Last, we propose a stochastic analogue for the deterministic Adams-Bashforth scheme, using 
methods similar to those of [6], as an attempt to produce alternate schemes which are higher 
order in time (Section 5). 

2. PRELIMINARY RESULTS 

We consider a stochastic differential equation 

dUt = a(t, &) dt + b(t, ut) dW,, (2.1) 

for U = (~1,. . . , Ed) E Rd, where a : lR+ x lRd --t ll@, b : Iw+ x lRd -+ Rdxm, and W is a Wiener 
process in iw” adapted to a filtration {&}t>c. 

We then have the ItS formula, which states that, if F : lR+ x ll@ --t Iw’, then Ft = F(t, Ut) 
satisfies the stochastic differential equation 

here we use the Einstein convention for repeated indices. 
We use the following notations from [6]. A multi-index is a row vector a = (ji, j2, . . . , je) (each 

ji E {O,l, . . ) m}) of length e = e(a) E (0, 1, . . }. We define n(o) to be the number of entries 
of a which are 0. For adapted, right-continuous functions f, and stopping times p, r such that 
0 5 p 5 r 5 T a.s., we define (where (Y- is (I with its final component removed) 

f CT)7 if C(o) = 0, 

Ia[f(.)],,7 = s; ~~-[f(~>lW ds, if C(a) 2 1, AT(~) = 0, 
s,’ la-[f(.)]p,s dW?(a’), if e(a) 2 1, jqa) # 0. 

We also define the operators 

d d 1 Lo = - + ak--.- + -bkJblJ a2 a 
at auk 2 auk @ul’ 

pi = @i-.-m 
auk ’ 

(2.3) 

(2.4) 
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and, if f E Ch(R+ x Rd,R), where h 2 e(o) + n(o), we set 

fa = { fjl f- 
if e(o) = 0, 

if e(o) 2 1. OL’ . 
(2.5) 

Here ---a! is cr with its first component removed. 
We note that if f (t, u) E U, then fco, = a, fcj) = bj, etc. In what follows, unless explicitly 

stated otherwise, we will assume that f is this identity function. 
A set, A, of multi-indices is said to be a hierarchical set if A # 0, supcreA~(o) < 00, and 

-CX E A whenever o E d-(v). We then define the remainder set B(d) of A by a(d) = (CX ] (Y $ A 
and --Q: E A}. We can now provide a stochastic Taylor expansion for U satisfying (2.1): if 
f : lRf x lRd + R, then, provided the derivatives and integrals exist, 

f (7, UT) = c LY[fcxh UP)lP,T + c Lc[fa(., U.)lP,7, (2.6) 
LISA &B(A) 

where A is some hierarchical set. 
Now, for y = 0.5,1.0,1.5,. . . , we set 

27 or f!(o) = n(o) = y + + . 

We call the stochastic Taylor expansion with A = d, the expansion to order y. 

(2.7) 

3. A STOCHASTIC “IMPLICIT LEAPFROG” SCHEME 

The barotropic vorticity model supplied to us by C. Penland and P. Sardeshmukh of the 
National Oceanic and Atmospheric Administration in Boulder, Colorado (see [8]), takes the form 

a< - = -v . (WC) + s - 7-t - KV41$, 
at (3.1) 

where C = V211, + f = E + f and v = R x 04. Here, C is the total vorticity, u is the velocity 
vector, f is the Coriolis term, S is a (deterministic) forcing, T and K are constants, and < is the 
local vorticity. 

The numerical scheme they provided for this uses spherical harmonics, and, writing F for 
-V . (UC), the equation becomes 

(3.2) 

Then the scheme has two steps. First, a leapfrog step: 

tr(t + At) = <,“(t - At) + 2At[F,“(t) + S;(t)], (3.3) 

followed by an implicit step: 

i;(t + At) 
‘,“(t + At) = 1 + 2At [r + K [(n(n + 1))/a2]“] ’ 

(3.4) 

If we simplify notation and write al for F + S and as for -r[ - KV~[, we see that this is just 
an “implicit leapfrog” scheme 

E(t + At) = Y(t - At) + 2Atai(t, Y(t)), 

Y(t + At) = F(t + At) + 2Atas(t + At, Y(t + At)), 
(3.5) 
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for the equation 
duct) = [al@, U(t)) + ~z(GU@))l&. 

Therefore, we consider a stochastic differential equation of the form 

(3.6) 

dU, = (q(t, Ut) + ua(t, Ut)) dt + b(t, Ut) dW,. (3.7) 

Note that we have simply added a general diffusion term to the deterministic differential equa- 
tion (3.6). 

We will consider the scheme 

F n+2 =Y, +2al(t,+l,Y,+l)At+M,(Y,) +Mn+l(Yn+d, 

K+2 = 5L+2 +‘Jaz(t,+z,Y,+z)At, 
(3.8) 

where 
M,,(Y) = b(tn, y)Awn + bb’(tn, Y)~(I,I),,. W-0 

THEOREM 3.1. Suppose that the coefficient functions fa satisfy 

If&,x) - fa(t,Y)I I Klx - YI, (3.10) 

for all Q E dl.0, t E [O,T], and z,y E I@; 

fern E es2 and fa E %, (3.11) 

for all cx E Al.0 U B(dl.0); and 
Ifa(t,xc)l I KC1 + I4L (3.12) 

for all CY E Al.0 U f3(dl.o), t E [O,T], and x E Rd. Choose At 5 1 and set N = T/At, and 
define t, = nAt for n = 1, . . . , N. Suppose that some appropriate numerical scheme is used to 
generate Yl such that IE[IUt, - Yl12 ( Fol1i2 5 CAt. Then, 

1 
l/2 

E o;wJN I% - K12 I ro < CAt. (3.13) 
-- 

4. SPACE DISCRETIZATION 

It sometimes happens in applications that the functions a and b may only be known empirically 
(i.e., in tables) rather than analytically. In such cases, analytic derivatives of these functions can 
be difficult to obtain. It is, therefore, useful to replace these derivatives by discrete approxima- 
tions. As a first example, consider this modification of Mil’shtein’s scheme 

where ee is the vector (0,. . ,0, l,O, . . . , 0) with 1 in the eth position, and we have chosen Ax > 0. 
We have also suppressed the dependence of a and b on time to simplify notation. 

We then have the following theorem. 

THEOREM 4.1. Suppose that a and b have the regularity required for Mil’shtein’s scheme to 
converge to the solution U to order At. Then, 

(4.2) 

Note that if we want to maintain the order of convergence of Mil’shtein’s scheme, we need that 
Ax = O(At1i2). 
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5. A STOCHASTIC ADAMS-BASHFORTH SCHEME 

The following is a stochastic version of a scheme which is very effective and commonly used 
in computational fluid dynamics. The deterministic Adams-Bashforth scheme for the ordinary 
differential equation 4’ = F(4) takes the form 

4 n-i-1 = 4n + $13F(4,) - F(&-I)]. (5.1) 

This scheme is order At2 in the deterministic case. 
We consider the following stochastic Adams-Bashforth (SAB) scheme: 

Y n+2 = Y,+I + $(t,,l, %+I) - ;&,Yn) 1 At - ;AtA,(t,, Y,) + B,(t,, Y,), (54 
in which 

A,(t,z) = Lja(t,z)AFVj + Lj’Lj2a(t,x)l~jl,j,), (5.3) 
where the random intervals are from time t, to &+I, and 

&(t, x) = bj(t, x)AWj + Lob”@, z)I~,,~) + L~a(t,x)l~j,o~ 

+ L%qt,Z)l~jl,jZ) + L”Lj’bj2(t,s)l~o,j,,j,) 

+ Lj’L”~(t,Z)I~j1,0,j2) + LjlLj2a(t,z)l~j,,j,,0) 

+ L31Lj2~3(t,Z)l~jlrj2,j3) + Lj’Lj2Lj3~(t)2)I~jl,jZ,j3,j4)’ 

(5.4) 

where the random intervals are those from time t, to tn+2 minus those from time t, to tn+l. 
We then have the following theorem. 

THEOREM 5.1. Suppose that the coefficient functions fa satisfy 

I.fa(t,xC) - fcY(C Y)I I 0 - YL (5.5) 

for all (Y E d2.0, t E [O,T], and s,y E IL@; 

f--a E c1>2 and fa E 3-10, (5.6) 

for all (Y E dz.0 U I3(dz.c); and 

Ifa(t,‘C)I 5 KC1 + 14L (5.7) 

for all cx E AZ.0 U B(dz.o), t E [O,T], and x E Rd. Choose At 5 1 and set N = T/At, and 
define t, = nAt for n = 1,. . . , N. Suppose that some appropriate numerical scheme is used to 
generate Yr such that lE[jU,, - Yl12 I .Fo]~/~ I CAt2. Then, 

I u2 
SUP IU& -K12 130 < CAt2. 

O<n<N 
(5.3) 

6. NUMERICAL SIMULATION 

The object of this section is to test numerically the accuracy of the scheme of Section 5 and 
compare it to the theoretical result above (i.e., O(At2) accuracy) and to the accuracy of the Euler 
and Mil’shtein schemes (respectively, O(At1i2) and O(At)). All the numerical results below are 
consistent with the theoretical ones. 
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Figure 1. Results obtained with the stochastic equations (6.1) and (6.2). 
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We consider the following equations: 

dXt = ;a2Xt dt + ad=dW,, 

with a: = 1 and Xe = 10, and 

dXt = p2 sinh X, cosh2 Xt dt + ,B cash’ Xt dWt , 

with p = l/10 and Xo = l/2. These have the exact solutions 

Xt = cosh(al/l/‘t + arccosh Xc) 

(6.1) 

(6.2) 

(6.3) 

and 
Xt = arctanh(PWt + tanh Xc), (6.4) 

respectively. These can be easily verified using Ito’s formula and are just two of many possible 
examples listed in [6]. 

We computed approximate solutions Y, using the Euler and Mil’shtein schemes and the SAB 
scheme from Section 3. Then we computed the following error: 

e= IE 
d( 

sup IX, -Yn12 . 
O<n<N > 

To obtain the mean value needed, we used 500 trajectories. 
In the figures, the order of each scheme is given by the slope of the corresponding line. So we 

can see that the orders are l/2 for Euler, 1 for Mil’shtein, and 2 for the SAB of Section 3. 
Note that for the SAB scheme, the stochastic integral I (s,i,i) (which is difficult to generate) was 

approximated by a normal law. The results tend to show that this does not affect the accuracy 
(at least in these two cases). We will try to improve this point, which seems to raise interesting 
probabilistic questions, as already mentioned in the Introduction. 
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