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Abstract

The spectral analysis of the Schrödinger operator on cubic lattice type graphs is devel-
oped. Similarly to the quantum mechanical tight-binding approximation, using the well
known concept of the Dirichlet-to-Neumann map asymptotic formulae for localized nega-
tive spectral bands of the Schrödinger operator on a periodic metric graph are established.
The results are illustrated by numerical calculations.

1 Introduction

The main goal of this paper is to develop the spectral analysis of the Schrödinger op-
erator on cubic lattice type graphs [8]. Similarly to the quantum mechanical tight-
binding approximation we will get asymptotic formulae for localized spectral bands of
the Schrödinger operator on a periodic graph. It is known that the tight-binding method
gives the natural approximation for well-localized energy bands of the solid [1]. On the
other hand, the corresponding one-dimensional lattice may serve as an approximation for
the solid body [11].

Our consideration consists of the following three steps. First, in Section 2 we deal with
star-like connected graph Γ∞ of N infinite rays and some compact part Γ0. We suppose
that our self-adjoint operator has a simple isolated eigenvalue E0.

Then for an even N in Section 5 a periodical graph Γ̃T (and an operator L̃T on it)
will be constructed by the use of a cell-graph ΓT , where ΓT looks like Γ∞ with finite
intervals [0, T/2] instead of the rays. Due to the Floquet-Bloch theory the spectrum of
the operator has a band structure in a regular case [11]. A natural parameter (quasi-
momentum) p ∈ RN/2 appears as a result of reducing of the periodical problem on the
fundamental subgraph ΓT . We obtain a dispersion equation Φ(E, p) = 0 from which
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one may get the energy E = E(p) as a many-valued function of the quasi-momentum p.
Using the dispersion equation we will prove that in a fixed neighborhood of E0 for any
rather big T there is precisely one isolated spectral band. For T → +∞ the band shrinks
to the point E0. A similar result on the line was obtained earlier [19].

Finally an asymptotic formula for the energy band, as T goes to infinity, will be
proven in Section 6. The main results are formulated using the well known concept of
the Dirichlet-to-Neumann map (Sections 3 and 4). For completeness we discuss the case
T = 0 in the last section 7. Some numerical calculations one can find in Appendices B
and C.

The first author (V.O.) is very grateful to the Mathematical Department of the Uni-
versity of Auckland for the hospitality. The authors would like to thank the referees for
their careful reading and valuable comments.

2 Schrödinger operator on the non-periodic graph

Let us consider the one-dimensional Schrödinger operator L on a star-like connected graph
Γ∞ constructed of a compact part Γ0 represented as a finite set of oriented edges and a
finite number N of semi-infinite rays R+: 0 ≤ x < ∞, joined at nodes.1) Then any
function u from the domain D(L) of the operator L

u ∈ D(L) ⊂ L2(Γ∞) = L2(Γ0)⊕
N⊕

j=1

L2(R+)

has the following representation u := {uj, j = 0, 1, ..., N} with u0 ∈ W 2,2(Γ0) ⊂ L2(Γ0)
and uj ∈ W 2,2(R+) ⊂ L2(R+), j ≥ 1. As usual, for any u and v from L2(Γ∞) we define
a scalar product by the following formula

〈u, v〉 = 〈u, v〉L2(Γ∞) := 〈u0, v0〉L2(Γ0) +
N∑

j=1

〈uj, vj〉L2(R+).

The operator L acts on u ∈ D(L) as

Lu = v, v := {vj, j = 0, 1, ..., N} ∈ L2(Γ∞),

v0 = l0u0 := −u′′0 + qu0, and vj = −u′′j , j ≥ 1,

where q is a real bounded measurable potential on Γ0.
We suppose that some self-adjoint boundary conditions γ connect the boundary values

of each wave function u ∈ D(L) at the incident edges and rays (see for instance [4, 7, 2]),

i.e., at any node ν ∈ Γ∞ the vector of values ~ψν of the wave function u and the vector of
values ~ψ′ν of its derivatives in the direction from ν are subjected to a selfadjoint condition

γ : A~ψν +B~ψ′ν = 0, ν ∈ Γ∞, (1)

1Some of the rays may have a common point at the origin.
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where the square matrices A = A(ν) and B = B(ν) are such that AB∗ = BA∗ and
AA∗ +BB∗ > 0 (see [7], Lemma 2.2).

Note that the operator A−iB is invertible because of the equation (A−iB)(A∗+iB∗) =
AA∗ +BB∗ > 0 and one may rewrite the condition (1) in the following form

(I + U)~ψν + i(I − U)~ψ′ν = 0, (2)

where I is the unit matrix and U = U(ν) := (A− iB)−1(A+ iB) is a unitary matrix, i.e.,
UU∗ = I.

Thus, the operator L = L(γ) is selfadjoint, i.e., L = L∗,

〈Lu, v〉 = 〈u, Lv〉, with {u, v} ⊂ D(L), (3)

and its continuous spectrum fills the positive half-axis (cf. [2], Theorem 2.4). Moreover, it
follows from Krein’s resolvent formula that the spectrum σ(L) of the operator L contains
at most a finite number of negative eigenvalues of a finite multiplicity. Therefore, the
operator L is bounded from below.

2.1 Example

Consider a ”ring” 0 ≤ x ≤ 4 with the periodical boundary conditions u0(0) = u0(4) and
u′0(+0) = u′0(4− 0). We assume that four semi-infinite rays [0, +∞) are attached to the
ring at vertices {1, 2, 3, 4} ⊂ [0, 4] with the same selfadjoint boundary condition at each
node on wave functions (cf. [2]): for a given β ∈ C

u0(j − 0) = u0(j + 0) = u0(j),

uj(0) = βu0(j),

u′0(j + 0)− u′0(j − 0) + βu′j(+0) = 0,

(4)

with 1 ≤ j ≤ 4 and 4 + 0 = +0 convention. So, Γ0 = ∪0≤j≤3[j, j + 1]. If we represent the
conditions (4) in the form (1) 1 −1 0

0 β −1
0 0 0

 u0(j − 0)
u0(j + 0)
uj(0)

+

 0 0 0
0 0 0

1 1 β

 −u′0(j − 0)
u′0(j + 0)
u′j(0)

 =

 0
0
0

 (5)

then the matrix AB∗ = 0 is hermitian and rank(A, B)= 3 for any β ∈ C. The latter is
equivalent to the condition AA∗ + BB∗ > 0. In this case the representation (2) is much
more complicated then (5), because

U :=
−1

2 + |β|2

 −|β|2 2 2β

2 −|β|2 2β
2β 2β |β|2 − 2

 . (6)
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Thus, the operator L = L(β) is a selfadjoint operator and due to selfadjointness of the
matrix U in (6) we have

〈L(β)u, u〉 ≥
∫

Γ0

q|u0|2dx, u ∈ D(L(β)). (7)

Choosing β = 1 we receive ”zero-current” condition, but choosing β = 0 or β = ∞ we
get that the ring is decoupled from the rays. That is the operator L(0) is the orthogonal
sum of four identical selfadjoint operators −d2/dx2 on the rays with Dirichlet boundary
conditions uj(0) = 0, j = 1, 2, 3, 4, and of the selfadjoint operator −d2/dx2 + q(x) with
periodical boundary conditions on the ring [0, 4], 0 = 4.

In the case β = ∞ the operator L(∞) is the orthogonal sum of four identical self-
adjoint operators −d2/dx2 on the rays with Neumann boundary conditions u′j(0) = 0,
j = 1, 2, 3, 4, and of four selfadjoint operators −d2/dx2 + q(j + x), j = 0, 1, 2, 3, on the
interval x ∈ [0, 1] with Dirichlet boundary conditions f(0) = f(1) = 0.

For the sake of simplicity we set q(x) = −a2, 0 < a = const, so that for any finite
complex number β and any positive number a the operator L = L(β; a) has a negative
eigenvalue (see below). For instance, the number −a2 is the eigenvalue of the operator
L(0; a) with the eigenfunction u = {u0 ≡ 1, uj ≡ 0, j ≥ 1} ∈ L2(Γ∞).

3 Restrictions on the ring

In this section we will consider restrictions L0 and L1 of the operator L on sets

D0 = D(L0) := {u ∈ D(L) : uj(0) = 0, j = 1, 2, . . . , N}

and
D1 = D(L1) := {u ∈ D(L) : u′j(0) = 0, j = 1, 2, . . . , N}.

We are going to prove that a part lD (or lN ) of the operator L0 (or L1) on the ring Γ0,
Γ0 6= ∅, will be a selfadjoint operator in L2(Γ0) with the domain

D(lD/N ) := {f ∈ W 2,2(Γ0) : there is F ∈ D0/1 with F0 = f}.

First, note that for any u and v from D(L) by partial integration we obtain

〈Lu, v〉 = 〈l0u0, v0〉L2(Γ0) +
N∑

j=1

∫ ∞

0

(−u′′j )vj dx

= 〈l0u0, v0〉L2(Γ0) +
N∑

j=1

(
u′j(+0)vj(0) +

∫ ∞

0

u′jv
′
j dx

)
.

On the other hand

〈u, Lv〉 = 〈u0, l0v0〉L2(Γ0) +
N∑

j=1

∫ ∞

0

uj(−v′′j ) dx
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= 〈u0, l0v0〉L2(Γ0) +
N∑

j=1

(
uj(0)v′j(+0) +

∫ ∞

0

u′jv
′
j dx

)
.

So, by (3) we get

〈l0u0, v0〉L2(Γ0) − 〈u0, l0v0〉L2(Γ0) =
N∑

j=1

(uj(0)v′j(+0)− u′j(+0)vj(0)), {u, v} ⊂ D(L). (8)

Now, we note that if the conditions γ such that for any u and v from the domain of
the operator L

N∑
j=1

(uj(0)v′j(+0)− u′j(+0)vj(0)) = 0,

then the operator L is an orthogonal sum of an internal selfadjoint part (on the ring Γ0)
and some external selfadjoint one (on the union of the rays). Thus, in the case restrictions
of the domain of the external operator do not change the domain of the internal selfadjoint
part of the operator L. So, without loss of generality we may assume that for any j ≥ 1
there are such u and v from D(L) that uj(0) = 1 and v′j(+0) = 1.

By (8) we have that lD and lN are symmetric operators. To describe the domain D(l∗D)
(or D(l∗N )) of the adjoint operator l∗D (l∗N ) we need to find such functions g ∈ L2(Γ0) that
the functional: f → 〈l0f, g〉L2(Γ0) is bounded on the set D(lD) (or D(lN )). It is clear that
g ∈ W 2,2(Γ0) and that any function g inherits the conditions γ in the sense that there is
an extension G ∈ D(L) with G0 = g (see Appendix A for details). So, the domain D(l∗D)
is a subset of the restriction of the set D(L) on the graph Γ0.

Now, one may use the equation (8) to check the selfadjointness of the operators lD
and lN . Let f , g ∈ D(l∗D) (or f , g ∈ D(l∗N )), then

〈l∗D/Nf, g〉L2(Γ0) − 〈f, l∗D/N g〉L2(Γ0) =
N∑

j=1

(Fj(0)G′j(+0)− F ′j(+0)Gj(0)),

where F, G ∈ D(L), F0 = f , and G0 = g. If in addition f ∈ D(lD) (or f ∈ D(lN )) then
we have

0 = 〈lDf, g〉L2(Γ0) − 〈f, l∗Dg〉L2(Γ0) = −
N∑

j=1

F ′j(+0)Gj(0)

(or
∑N

j=1 Fj(0)G′j(+0) = 0). It is immediate from this identity that if the boundary
conditions γ does not contain a condition which looks like u′s(+0) = 0 (or us(0) = 0) for
some index s, 1 ≤ s ≤ N , then for each g ∈ D(l∗D) (g ∈ D(l∗N )) and any G ∈ D(L) with
G0 = g we have Gj(0) = 0 (or G′j(+0) = 0) for every j, 1 ≤ j ≤ N . So, lD = l∗D and
lN = l∗N .
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3.1 Example

The cases β = 0, ∞ have been considered in Section 2.1. Let β be a finite complex number,
β 6= 0. According to the conditions (4) the additional condition uj(0) = 0 implies u0(j) =
0. Therefore, the domain D(lD) of the operator lD = lD(β) is a set of such functions
f(x) on the interval [0, 4] that f(j) = 0, j = 0, 1, 2, 3, 4, and f(j + x) ∈ W 2,2([0, 1]),
j = 0, 1, 2, 3, x ∈ [0, 1]. On the other hand if u′j(+0) = 0 then u′0(j + 0) = u′0(j − 0).
Thus, for the domain of the operator lN = lN (β) we have

D(lN ) = {f ∈ W 2,2([0, 4]), f(0) = f(4), f ′(+0) = f ′(4− 0)}. (9)

Finally, we note that the operator lD is an orthogonal sum of four selfadjoint operators
with Dirichlet boundary conditions, similar to the case β = ∞, and the operator lN is a
selfadjoint operator with periodical boundary conditions, as in the case β = 0.

4 Dirichlet-to-Neumann map

Instead of explicit describing the compact part Γ0 ⊂ Γ∞ and the boundary conditions
γ it is convenient to use an analytic matrix-valued function Λ(z), z ∈ C, known as
Dirichlet-to-Neumann map (see [21, 20]).

We suppose that for given graph Γ∞ and boundary conditions γ and for a fixed complex
number z the condition l0u0 = zu0 implies u0 ≡ 0 for any u ∈ D(L) with uj(0) = 0,
j = 1, 2, ..., N . Then for any u = {uj, j ≥ 0} ∈ D(L) with l0u0 = zu0 we may define a
linear transformation Λ(z): CN → CN such that

~u′ = Λ(z)~u, (10)

where

~u :=


u1(0)
u2(0)

...
uN(0)

 and ~u′ :=


u′1(+0)
u′2(+0)

...
u′N(+0)

 .

It is natural to call the inverse transformation Λ−1(z) as Neumann-to-Dirichlet map.
The matrix-valued function Λ(z) contains all information we need about the compact

graph Γ0, the boundary conditions, and the operator l0 on L2(Γ0).
It is clear that Λ(z) is an analytic function on C\R+ with a discrete set of singularities

on the negative part of the real axis. For instance, in the case Γ0 = ∅ selfadjoint boundary
conditions of the form (2) leads to the representation

Λ = i(I − U)−1(I + U), det(I − U) 6= 0, (11)

and Λ does not depend on z.
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Now, let u ∈ D(L) with l0u0 = zu0, Γ0 6= ∅. Then by (8) for any z ∈ C we get

2i=z‖u0‖2
L2(Γ0) = 〈l0u0, u0〉L2(Γ0) − 〈u0, l0u0〉L2(Γ0) =

N∑
j=1

(uj(0)u′j(+0)− u′j(+0)uj(0))

= 〈~u, ~u′〉CN − 〈~u′, ~u〉CN = 〈~u, Λ(z)~u〉CN − 〈Λ(z)~u, ~u〉CN = −2i=〈Λ(z)~u, ~u〉CN .

Hence, for any u ∈ D(L) with l0u0 = zu0 we have

=〈Λ~u, ~u〉CN = −=z‖u0‖2
L2(Γ0). (12)

It means that the matrix Λ(z) 6≡const, Λ(z) is invertible if =z 6= 0, and Λ(ξ) is a hermitian
matrix on the real axis, ξ ∈ R. If ξ is such a real number that Λ(ξ) exists then Λ(ξ+ z) is
a regular function on some disk |z| < r with r > 0 and by (12) we get 0 > =Λ(ξ + iy) =
Λ′(ξ)y + o(y) as y → +0. Thus,

Λ′(ξ) ≤ 0. (13)

For a given ξ ∈ R the transformation Λ(ξ) exists iff ξ is not a point of the spectrum
σ(lD) of the selfadjoint operator lD in L2(Γ0) which has been considered above. On the
other hand Λ−1(ξ) exists iff ξ does not belong to the spectrum σ(lN ) of the selfadjoint
operator lN . Moreover, these matrices are analytic functions on the set C\(σ(lD)∪σ(lN ))
and the set σ(lD) ∩ σ(lN ) is a set of their common singularities. One might expect that
for some number ξ ∈ σ(lD) ∩ σ(lN ) the corresponding proper subspaces of the operators
lD and lN have a nontrivial common element (see Section 4.2 below). It means that for
such ξ there is a localized eigenfunction of the operator L with a support on Γ0. Thus,
let us introduce the following notation

σ0 = σ0(L) := {ξ ∈ σ(lD) ∩ σ(lN ) : the corresponding proper subspaces of
the operators lD and lN have a nontrivial common element}. (14)

It is clear that the set σ0 may be empty. For instance, let us consider the operator L
on the graph Γ := (−∞, 0]∪ [0, 1]∪ [1, +∞) with q ≡ 0 and smooth boundary conditions,
i.e., u(−0) = u(+0), u(1 − 0) = u(1 + 0), u′(−0) = u′(+0), and u′(1 − 0) = u′(1 + 0).
Then σ(lN ) = {π2n2 : n = 0, 1, 2, ...} with eigenfunctions cos πnx and σ(lD) = σ(lN )\{0}
with eigenfunctions sinπnx.

4.1 Discrete spectrum

We now look at negative eigenvalues of the operator L. Let us denote by IN the unit
matrix on CN . The following result follows from the definitions given above (cf. [2, 18]).

Theorem 1. Let σ0(L) be as in (14) and let E0 be a negative number such that E0 6∈
σ(lD) ∩ σ(lN ) \ σ0(L). Then E0 is an eigenvalue of the operator L if and only if at least
one of the following assertions holds:

• E0 ∈ σ0(L),
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• E0 6∈ σ(lD) and det(
√
|E0|IN + Λ(E0)) = 0,

• E0 6∈ σ(lN ) and det(IN +
√
|E0|Λ−1(E0)) = 0.

The multiplicity of the eigenvalue E0 of the operator L, E0 6∈ σ(lD) ∩ σ(lN ), coincides
with the multiplicity of the eigenvalue −

√
|E0| of the matrix Λ(E0) (or −1/

√
|E0| of the

matrix Λ−1(E0)).

Proof. First, let E0 be a negative eigenvalue of the operator L with an eigenfunction F .
It means that there is such a vector ~c ∈ CN that

Fj(x) = cje
−x
√
|E0|, F ′j(x) = −

√
|E0|cje−x

√
|E0|, ~F = ~c, and ~F ′ = −

√
|E0|~c.

If ~c = 0 then F0 6≡ 0, l0F0 = E0F0, and Fj ≡ 0, j ≥ 1. Thus, E0 ∈ σ0. If ~c 6= 0

and E0 6∈ σ(lD) (or E0 6∈ σ(lN )) then ~F ′ = Λ(E0)~F (or Λ−1(E0)~F
′ = ~F ). Therefore the

homogeneous equation

(
√
|E0|IN + Λ(E0))~x = 0 (or (IN +

√
|E0|Λ−1(E0))~x = 0), ~x ∈ CN , (15)

has a non-trivial solution ~x = ~c.
Conversely, if E0 ∈ σ0 then there is such a function F ∈ D(L) that F0 6≡ 0, l0F0 =

E0F0, and Fj ≡ 0, j ≥ 1. Hence, LF = E0F and E0 is an eigenvalue of the operator L
with the eigenfunction F .

Now, let E0 6∈ σ(lD) and let ~c ∈ CN be a solution of the corresponding homoge-
neous equation (15). Matching numbers of numerical unknowns and linear homogeneous
equations shows that the following boundary value problem:{

find a solution f ∈ W 2,2(Γ0) of the equation l0f = E0f such that

there is F ∈ D(L) with F0 = f and ~F = ~c
(16)

has a solution for any ~c ∈ CN because the solution should be unique since E0 does not
belong to the spectrum of the operator lD. Finally, the function F will be an eigenfunction
of the operator L if we choose Fj(x) = cj exp(−x

√
|E0|), j ≥ 1.

To compare the multiplicities we note that a finite set of functions {F (α)} ⊂ D(L) is

linearly independent iff the corresponding vectors ~F (α) ∈ CN are linearly independent.
The arguments just used may be applied also when E0 6∈ σ(lN ). This concludes the

proof of the theorem.

It has been mentioned above that in such a case the operator L has a finite number
of negative eigenvalues of finite multiplicity. Further we will deal with one fixed negative
eigenvalue E0 6∈ σ0. We assume that E0 is a simple eigenvalue with an eigenfunction
F ∈ D(L).

Remark 1. We notice that the graph Γ0 can be replaced by a bounded domain Ω in R3

[13], in R2 [10], or Γ0 = ∅ (see [7, 11, 12]). Then the operator extension scheme is
used to attach a finite number of semi-infinite rays at contact points of the boundary ∂Ω.
Finally, we define the matrix Λ(z) in a similar way and Theorem 1 gives us description
of the negative part of the spectrum of the corresponding operator. Moreover, Theorem 1
is valid in a non-selfadjoint case with E0 ∈ C \ [0, ∞) (cf. [12]).
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4.2 Example

It is clear that for each z the matrices Λ(z) = Λ(z; β, a) and Λ−1(z) = Λ−1(z; β, a) are
meaningless if β = 0 or β = ∞ (see Section 2.1). On the other hand if β 6= 0, l0u0 = ξu0,
and uj(0) = 0 for any j then u0(j) = 0 and u0 ≡ 0 if ξ is not an eigenvalue of the Sturm-
Liouville problem: −y′′ − a2y = zy, y(0) = y(1) = 0. Thus Λ(z) exists iff β 6= 0 and
z 6∈ σ(lD) = {(πn)2− a2, n = 1, 2, ...}. In the same way we get that in the case β 6= 0 the
transformation Λ−1(z) exists iff z 6∈ σ(lN ) = {(πn/2)2−a2, n = 0, 1, 2, ...}, where σ(lN ) is
the spectrum of the following periodic problem on the ring: −y′′ − a2y = zy, y(0) = y(4)
and y′(+0) = y′(4 − 0). Note that σ(lD) ⊂ σ(lN ). Moreover, for any natural number
n ≥ 1 the function u0(x) = sin πnx on the interval [0, 4] is a common eigenfunction of
both operators lD and lN . Hence

σ0 = σ0(L(β; a)) = σ(lD) = σ(lD) ∩ σ(lN ) = {(πn)2 − a2 : n = 1, 2, ...}. (17)

It is not difficult to check (see Appendix B for details) that

Λ−1(z) = |β|2g(z) (18)

with the matrix
g(z) := {G(j, s ; z)}4

j,s=1,

where

G(x, t ; z) := −cos
√
a2 + z(2− |x− t|)

2
√
a2 + z sin 2

√
a2 + z

(19)

is the Green function of the operator lN with periodical conditions (see (9)) on the ring.
We now look at negative eigenvalues of the operator L(β; a), which, according to the

estimation (7), lie in the interval [−a2, 0). By Theorem 1 any negative number from
σ0 belongs to the spectrum of the operator L = L(β; a). On the other hand a negative
number E0 6= (πn/2)2−a2, n = 1, 2, . . . , is an eigenvalue of the operator L iff the number
1 is an eigenvalue of the matrix √

|E0||β|2

k sin 2k
A(k)

where k :=
√
a2 + E0 ∈ (0, a) and

A(k) :=
1

2


cos 2k cos k 1 cos k
cos k cos 2k cos k 1

1 cos k cos 2k cos k
cos k 1 cos k cos 2k

 .

The eigenvalues µ(k) of the matrix A(k) are µ± := cos k(cos k ± 1), µ0 := − sin2 k. We
note that µ+ 6= µ− and µ± are simple, but the multiplicity of µ0 is equal to 2.

Finally, we will consider only the lowest eigenvalue E0 = E0(β; a) < 0 of the operator
L(β; a) which corresponds to E0(0; a) = −a2. This eigenvalue exists for any a > 0
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and β ∈ C and it is a solution of the following transcendental equation in the interval
ξ ∈ (−a2, 0):

|β|2
√
−ξ√

a2 + ξ sin 2
√
a2 + ξ

µ+(
√
a2 + ξ) = 1,

or

tan

√
a2 + ξ

2
=

|β|2
√
−ξ

2
√
a2 + ξ

. (20)

It is clear that E0(β; a) = (−a2 + |β|2a)(1 + o(1)), as β → 0. The corresponding solution
of the equation (15), that is xj = 1, 1 ≤ j ≤ 4, generates an eigenfunction F ∈ D(L), i.e.,

LF = E0F , so that Fj(0) = xj = 1, j ≥ 1, or just ~F = ~x = (1, 1, 1, 1)t.

5 Dispersion equation for the Schrödinger operator

on the periodic graph

Here we want to consider the Schrödinger operator L̃T on a periodic graph Γ̃T constructed
by using a cell-graph ΓT where the latter looks like Γ∞ with finite intervals [0, T/2] instead
of the rays [0, +∞) and with an even number of the rays, i.e., we have 2N instead of N .

We assume a ”cubic” placement of the cells in RN with smooth connection of the
intervals [0, T/2] at common points T/2. It means that the problem is reduced to the
spectral analysis of the family of operators on the fundamental subgraph ΓT with the
same selfadjoint conditions γ and quasiperiodical conditions at the boundary vertices,
which correspond to the point T/2 on each interval [0, T/2]. Due to the Floquet-Bloch
theory the spectrum of the operator L̃T has a band structure in a regular case (see [11]
for details).

Let p = (p1, p2, ..., pN) be a vector from the cube [0, 2π)N ⊂ RN and let DT be a
restriction of the space D(L) on the graph ΓT , T > 0. We will consider the family of
operators Lp,T with domains D(Lp,T ) ⊂ DT and the following additional quasiperiodical
conditions:

u2s(T/2) = eipsu2s−1(T/2), u′2s(T/2− 0) = −eipsu′2s−1(T/2− 0), s = 1, 2, ..., N. (21)

with a fixed quasi-momentum p ∈ [0, 2π)N . Then the spectrum σ(L̃T ) of the operator
L̃T has this following representation

σ(L̃T ) =
⋃

p∈[0, 2π)N

σ(Lp,T ), (22)

where σ(Lp,T ) is the spectrum of the operator Lp,T . Usually the description of the band
spectrum of a periodic operator is based on the analysis of the dispersion equation which
allows us to express the energy as a multi-valued function of the quasi-momentum p on
the cube [0, 2π)N . The second and third statements of Theorem 2(i), see below, give us
the desired dispersion equations.
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To the graph ΓT \ Γ0 constructed of 2N intervals [0, T/2] connected in pairs by con-
ditions (21) there corresponds a Dirichlet-to-Neumann map Λp,T = Λp,T (z), satisfying

−~u′ = Λp,T~u (cf. (10)), for any uj ∈ W 2,2([0, T/2]) with −u′′j = zuj, 1 ≤ j ≤ 2N . Clearly,
the 2N × 2N matrix Λp,T has diagonal structure with 2 × 2 blocks λps,T , 1 ≤ s ≤ N ,
on the principal diagonal. Note that λp,T = m−1λ0,Tm where m = m(p) := diag[eip, 1],
p ∈ R. Then one can calculate the matrix λ0,T using the general solution of the equation
f ′′ + zf = 0 on the interval [0, T ]. Finally, for a given p ∈ [0, 2π) and z ∈ C with
=
√
z ≥ 0, we get

λp,T (z) =

√
z

sin
√
zT

(
cos

√
zT −e−ip

−eip cos
√
zT

)
and

Λp,T (z) =
N∑

s=1

λps,T (z)Ps, (23)

where Ps is the corresponding orthogonal projections in C2N onto two-dimension sub-
spaces. We remark that λp,T (z) and λ−1

p,T (z) are meromorphic matrix-valued functions on
C with the set

σ0,T := {(πn/T )2 : n = 1, 2, ...} (24)

of all of common singularities. At the same time detλp,T (z) ≡ −z is a regular function
on C.

Choosing z = zn := (πn/T )2 ∈ σ0,T \(σ(lD)∩σ(lN )), we see that zn is the eigenvalue of

the operator Lp,T , i.e., Lp,Tu = znu and 0 6≡ u ∈ D(Lp,T ), iff Λ(zn)~u = ~u′ or Λ−1(zn)~u′ =
~u. In this case we have the following representation of the eigenfunction u on the intervals
(x ∈ [0, T/2])

u2s−1(x) = as cos
πn

T
x+ bs sin

πn

T
x,

u2s(x) = (−1)neips(as cos
πn

T
x− bs sin

πn

T
x), s = 1, 2, . . . N.

It means that(
u2s−1(0)
u2s(0)

)
= as

(
1

(−1)neips

)
and

(
u′2s−1(+0)
u′2s(+0)

)
= b′s

(
1

(−1)n+1eips

)
with b′s := (πnbs)/T . Now we note that C2N = H+ ⊕ H− where H± := span{e±s , s =
1, 2, . . . , N} and the vectors e±s := {(e±s )k}2N

k=1 are defined to mean

(e±s )k = 0, if k 6∈ {2s− 1, 2s}, (e±s )2s−1 = 1, and (e±s )2s = ±eips . (25)

Thus, if u is an eigenfunction of the operator Lp,T with the eigenvalue zn then ~u ∈ H(−1)n

and ~u′ ∈ H(−1)n+1 . Hence, we have proved the second part of this following

Theorem 2. Assume p ∈ [0, 2π)N and T > 0. Let σ0(L) and σ0,T be as in (14) and (24)
respectively.

i) If E is a real number such that E 6∈ σ0,T and E 6∈ (σ(lD) ∩ σ(lN )) \ σ0(L), then E
is an eigenvalue of the operator Lp,T if and only if at least one of the following assertions
holds:
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• E ∈ σ0(L),

• E 6∈ σ(lD) and det(Λp,T (E) + Λ(E)) = 0,

• E 6∈ σ(lN ) and det(Λp,T (E)Λ−1(E) + I2N) = 0.

ii) Pick a positive integer n so that E := (πn/T )2 6∈ σ(lD) ∩ σ(lN ). Then E is an
eigenvalue of the operator Lp,T if and only if at least one of the following holds

• E 6∈ σ(lD) and for the even/odd n, det{〈Λ(E)e
+/−
s , e

+/−
t 〉C2N}N

s,t=1 = 0,

• E 6∈ σ(lN ) and for the odd/even n, det{〈Λ−1(E)e
+/−
s , e

+/−
t 〉C2N}N

s,t=1 = 0

with e±s from (25).

Proof. The arguments used in the proof of Theorem 1 may also be applied here.

Remark 2. First, we observe that the cubic configuration of the periodical graph L̃T

means that its translation group has N generators. But if we split the set of indexes of the
boundary conditions (21) on M subsets, 1 ≤M < N , and assume that for each subset all
components ps are the same then we get a periodic graph with the group of translations
which has only M generators (the case M = 1 see in [3]).

Further, we notice that in the general case of the graph Γ0 and the boundary conditions
γ, by reindexing intervals [0, T/2] of the graph L̃T and by using (21), we get (2N − 1)!!
different operators Lp,T for any fixed p and T > 0.

Finally, one may put Ts, which depends on s, instead of T in (21).
Suitable reformulations of Theorem 2 are obvious.
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5.1 Example

Due to symmetry of the boundary conditions (4) and the ring one may construct only

two different 2-periodical operators. The first operator L̃(1)
T = L̃(1)

T (β; a) corresponds to

the pairs of indexes (1, 2)(3, 4) (figure 1a) and the second one L̃(2)
T = L̃(2)

T (β; a) does to
(1, 3)(2, 4) (figure 1b, cf. [9]).

Figure 1. The periodical graphs from the example.

By Theorem 2 because σ0 = σ(lD) ∩ σ(lN ) we have got a complete description of the

sets σ(L̃(j)
T ), j = 1, 2 (see Appendix C for details).

6 Asymptotics of localized spectral bands

In this section we establish an asymptotic formula of a localized band of the spectrum
of the periodic operator L̃T as T → +∞, the band which associated with a simple
eigenvalue E0 < 0 of the operator L such that Λ(E0) (or Λ−1(E0)) exists. The following
simple decomposition of the matrix Λp,T will get us started (cf. [18]),

Λp,T (−k2) = k

(
I2N − 1

sinh kT

N∑
s=1

(
0 e−ips

eips 0

)
Ps +

e−kT

sinh kT
I2N

)
. (26)

Thus Λp,T (−k2) → kI2N as T → +∞, for <k > 0. On the other hand by Theorem 1

we have (
√
|E0|I2N + Λ(E0))~F = 0 where F ∈ D(L) is the corresponding eigenfunction

of the operator L. Hence, one can expect that for any large T in a neighborhood of the
point E0 there is only one solution z = Ep,T of the equation det(Λp,T (z) + Λ(z)) = 0 and
that Ep,T → E0 as T → +∞. Then the second addend in (26) will give us an asymptotic
description of the isolated spectral band

b(E0, T ) :=
⋃

p∈[0, 2π]N

Ep,T

of the operator L̃T . From this we have the following

13



Theorem 3. Let E0 < 0 be a simple eigenvalue of the operator L such that Λ(E0) exists
and let F = {Fj, j = 0, 1, ..., 2N} be the corresponding eigenfunction, i.e., LF = E0F .
Denote by d0, d0 ≤ |E0|, the distance from E0 to the set (σ(L) ∪ σ(lD)) \ {E0}, i.e.,

d0 := dist(E0, (σ(L) ∪ σ(lD)) \ {E0}).

Then
i) for any number r ∈ (0, d0) there is a positive constant Tr such that for any T > Tr

and p ∈ [0, 2π]N the closed disk Dr := {z ∈ C : |z − E0| ≤ r} contains only one point
Ep,T of the negative spectrum of the operator Lp,T ;

ii) if T tends to infinity then the following asymptotic formula is valid

Ep,T = E0 +
8E0e

−T
√
|E0|(1 + o(1))

‖~F‖2
C2N − 2

√
|E0|〈Λ′(E0)~F , ~F 〉C2N

<
N∑

s=1

eipsF2s−1(0)F2s(0) (27)

uniformly on p ∈ [0, 2π]N with Λ′(E0) := (d/dz) Λ(z)|z=E0
and ~F = (F1(0), F2(0), . . . , F2N(0))t.

Proof. i) To prove the first part of the theorem we note that for a given positive r ∈ (0, d0)
the regular matrix valued function

A(z) :=
√
−zI2N + Λ(z)

with <
√
−z ≥ 0 has no zeros on Dr but z = E0 with the eigenvector ~F , i.e., A(E0)~F = 0.

Therefore
αr := max

|z−E0|=r
‖A−1(z)‖C2N <∞.

On the other hand the difference between A(z) and the regular matrix valued function

B(z) = B(z;p, T ) := Λp,T (z) + Λ(z)

is uniformly small on the disk Dr for any large T . Indeed, because of r < |E0|, by (26)
for any T > Tr with Tr such that exp(−2Tr

√
|E0 + r|) ≤ 1/2 we have the following

estimation

max
|z−E0|≤r

‖B(z)− A(z)‖C2N = max
|z−E0|≤r

‖Λp,T (z)−
√
−zI2N‖C2N

≤ 2
√
|E0| max

|z−E0|≤r

1 +
∣∣e−T

√
−z
∣∣

| sinhT
√
−z|

≤
8
√
|E0|e−T

√
|E0+r|

1− e−2T
√
|E0+r|

≤ 16
√
|E0|e−T

√
|E0+r|. (28)

The latter means that one may choose a positive number Tr so that for any T > Tr

max
|z−E0|=r

(‖B(z)− A(z)‖C2N‖A−1(z)‖C2N ) < 1.

Thus, by Rouché’s theorem [5] the regular matrix valued function B(z) has only one zero
z = Ep,T ∈ Dr for any T > Tr and this zero is simple as is E0. We note also that Ep,T is
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an eigenvalue of the selfadjoint operator Lp,T . Therefore, Ep,T is a real negative number.
Moreover,

lim
T→+∞

Ep,T = E0 (29)

because one may put r → 0 as T → +∞.
ii) Now, let Φ = Φ(p, T ) ∈ D(Lp,T ) be an eigenfunction of the operator Lp,T which

corresponds to the eigenvalue Ep,T ∈ Dr with T > Tr. Then, by Theorem 2 B(Ep,T )~Φ = 0.
Let us normalize Φ by the following condition of orthogonality in C2N

~f = ~f(p, T ) := ~Φ(p, T )− ~F ⊥ ~F .

Thus, there is a positive constant c0 independent of p and T (T > Tr) such that

‖A(E0)~f‖C2N ≥ c0‖~f‖C2N . (30)

Then,
‖B(Ep,T )~f‖C2N ≥ (c0 − ‖B(Ep,T )− A(E0)‖C2N ) ‖~f‖C2N

and by the definitions of ~f and ~F

‖B(Ep,T )~f‖C2N = ‖ −B(Ep,T )~F‖C2N ≤ ‖A(E0)−B(Ep,T )‖C2N‖~F‖C2N . (31)

The matrix Λ(z) is a regular function on a neighborhood of the close disk Dr. Hence, one
can choose a positive constant c1 = c1(r) such that

‖Λ(z)− Λ(E0)‖C2N ≤ c1|z − E0|, z ∈ Dr. (32)

¿From this, (29), and (31) we have the following estimation

‖~f‖C2N ≤ cf (|δ|+ e−T
√
|E0+r|)‖~F‖C2N (33)

with δ = δ(p, T ) := Ep,T − E0 and a constant cf independent of p and T , T > Tr.
Indeed, by (28) and (32) we get

‖B(Ep,T )− A(E0)‖C2N ≤
(
16
√
|E0|e−T

√
|E0+r| + ‖A(Ep,T )− A(E0)‖C2N

)
≤ 16

√
|E0|e−T

√
|E0+r| + |δ|/

√
|E0|+ c1|δ| ≤ c2

(
|δ|+ e−T

√
|E0+r|

)
→ 0,

as T tends to infinity.
To get the asymptotic formula of the band b(p, T ) we suggest one considers the identity

〈B(Ep,T )~Φ, ~F 〉C2N ≡ 0

which can be re-written by the following way

〈(B(Ep,T )− A(E0))~F , ~F 〉C2N + 〈(B(Ep,T )− Λ(E0))~f, ~F 〉C2N = 0. (34)
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Here we have used that ~f ⊥ ~F , A(E0)~F = 0, Λ(E0)~F = −
√
|E0|~F , and that the matrix

Λ(E0) is selfadjoint.
Next we need the Taylor’s formula

Λ(E0 + ζ) = Λ(E0) + ζΛ′(E0) + ζ2Λ1(ζ), |ζ| ≤ r,

about the point E0 with a uniformly bounded matrix function Λ1(ζ) on the disk Dr =
{|ζ| ≤ r}.

We see immediately from (26) that

B(Ep,T )− A(E0) = δΛ′(E0) + δ2Λ1(δ)−
δ√

|Ep,T |+
√
|E0|

I2N

−
2
√
|Ep,T |e−T

√
|Ep,T |

1− e−2T
√
|Ep,T |

(
N∑

s=1

(
0 e−ips

eips 0

)
Ps − e−T

√
|Ep,T |I2N

)
.

¿From this with Ep,T = E0 + δ we have

〈(B(E0 + δ)− A(E0))~F , ~F 〉C2N =
δ

2
√
|E0|

(2
√
|E0|〈Λ′(E0)~F , ~F 〉C2N − ‖~F‖2

C2N )

−4
√
|E0|e−T

√
|E0+δ|<

N∑
s=1

eipsF2s−1(0)F2s(0) + o(|δ|+ e−T
√
|E0+δ|)‖F‖2

C2N . (35)

On the other hand, since the number δ and the vector ~f are small (see (30) and (33)) and
~f ⊥ ~F , by (26) we have

|〈(B(E0 + δ)− Λ(E0))~f, ~F 〉C2N | = o(|δ|+ e−T
√
|E0+δ|)‖~F‖2

C2N (36)

as T → +∞.
Notice that by (13) Λ′(E0) ≤ 0, thus,

2
√
|E0|〈Λ′(E0)~F , ~F 〉C2N − ‖~F‖2

C2N < 0.

Therefore, the unique solution δ = δ(p, T ), |δ| ≤ r, of the equation

〈B(E0 + δ)~Φ, ~F 〉C2N ≡ 0

can be estimated as follow |δ| ≤ cδ exp(−T
√
|E0 + r|), T > Tr. It means that

lim
T→+∞

T δ(p, T ) = 0 (37)

uniformly with respect to p. So, one can put E0 instead of Ep,T = E0 + δ in the formulae
(35) and (36) because by (37) we have

e−T
√
|E0+δ| = e−T

√
|E0|(1 + o(1)), T → +∞. (38)

After that the asymptotic formula (27) follows from (34).
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We now make some comments.
1. Using the equations Λ′ = −Λ(Λ−1)′Λ and Λ(E0)~F = −

√
|E0|~F we get

〈Λ′(E0)~F , ~F 〉 = −〈(Λ−1)′(E0)Λ(E0)~F , Λ(E0)~F 〉 = E0〈(Λ−1)′(E0)~F , ~F 〉.

Therefore, one may rewrite the formula (27) via Neumann-to-Dirichlet map Λ−1(E0).
Moreover, for any r ∈ (0, d1) where d1 is the distance from E0 to the rest of spectrum,
i.e.,

d1 = dist (E0, σ(L) \ {E0}),

because of σ0(L) ⊂ σ(L) there is a positive number Tr such that for any T > Tr in the disk
Dr the operator L̃T has no spectral bands but b(E0, T ). Thus, if the negative spectrum
of the operator L consists of M simple eigenvalues then for every large T the periodical
operator L̃T has exactly M spectral bands.

2. Choosing in (27) suitable values of the parameters ps, s = 1, 2, ..., N , one may get
the following asymptotic formula of the width ∆ = ∆(E0, T ) of the band b(E0, T )

∆ =
16|E0|e−T

√
|E0|(1 + o(1))

‖~F‖2
C2N − 2

√
|E0|〈Λ′(E0)~F , ~F 〉C2N

N∑
s=1

|F2s−1(0)F2s(0)|, T → +∞. (39)

Small functions o(1) in (38) as well as in (27) and (39) have an order Te−T
√
|E0|. Hence,

in the case
N∑

s=1

|F2s−1(0)F2s(0)| = 0

we have only got an estimate of the width

∆ = O(T e−2T
√
|E0|).

3. The main focus of interest at this paper is a multi-dimensional behavior of one-
dimensional structures. Therefore we have considered only the simplest operator on joints.
The suitable asymptotic formulae with q 6= 0 and N = 1 have been proved in [14], [15],
and [16].

4. Finally we remark that the proof of Theorem 3 can be extended to a non-selfadjoint
operator L with E0 = ζ2 ∈ C, =ζ ≥ 0 (see [12] for N=1). In this case we need to start

with the identity 〈B(Ep,T )~Φ, ~F ∗〉C2N ≡ 0, where ~F ∗ is a unique solution, up to a constant,

of the conjugate equation (ζI2N + Λ∗(ζ2))~F ∗ = 0.

6.1 Example

In Section 4.2 the lowest eigenvalue E0 = E0(β, a) < 0 of the operator L(β, a) has been
found. It is simple and is a solution of the equation (20). For instance, if we choose β = 1
and a = 4 then E0(1, 4) = −13.24.
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For any β and a the corresponding eigenfunction F has the components Fj with
Fj(0) = 1, j = 1, 2, 3, 4. Therefore,

‖~F‖2
C2N = 4, <

2∑
s=1

eipsF2s−1(0)F2s(0) = cos p1 + cos p2, and

g(z) := 〈Λ(z)~F , ~F 〉C2N = −8
√
a2 + z

|β|2
tan

√
a2 + z

2

with Λ(z) from Appendix B. Using the identity

g′(z) := 〈Λ′(z)~F , ~F 〉C2N ,

together with the equation (20), that is,

tan

√
a2 + E0

2
=
|β|2
√
|E0|

2
√
a2 + E0

,

we have the following asymptotic formula of the band b(E0, T ) of the periodical operators

L̃(1)
T (β; a) and L̃(2)

T (β; a)

E(p1, p2), T (β, a) = E0 +
8E0|β|2(a2 + E0)e

−T
√
|E0|(1 + o(1))

4|β|2a2 + |E0|3/2|β|4 + 4|E0|1/2(a2 + E0)
(cos p1 + cos p2) (40)

as T goes to infinity. Of course, using Λ−1 one has got the same result.

7 The case T = 0

In Section 6 we established results on the behavior of negative spectral bands of the
periodic operator L̃T as T → ∞. Here we will show how one can construct a periodic
operator which is in a certain sense a limit of the operator L̃T as T → 0.

Taking the limit, we obtain a new periodic graph Γ̃0 which is an infinite periodic set
of replicas of the compact graph Γ0 connected to each other. Then the first question is:
What are new boundary conditions at common points?

It just seems the natural thing to restrict the operator L̃T by imposing additional
selfadjoint boundary conditions

f(0) = f(T ) and f ′(+0) = f ′(T − 0) (41)

on each interval [0, T ] which connects two cells in the graph L̃T . Indeed, if an interval
[0, T ] is small then for a component f of each wavefunction on the interval we have
equations f(0) = f(T )(1+o(1)) and f ′(+0) = f ′(T −0)(1+o(1)). The suitable procedure
of restrictions is discussed in Appendix A and it will be illustrated by the following
example.
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7.1 Example

Let us test the conditions (41) for the operators L̃(j)
0 , j = 1, 2 (see Sec. 5.1). At any

node we have the boundary conditions (4) (β 6= 0, ∞). Now we assume that on each
interval [0, T ] we have the conditions (41). One may eliminate all components f which
correspond to the intervals. So, we get new graphs and operators with vertices of four
edges and ”zero-current” boundary conditions. The latter in particular means that the
conditions are independent of the parameter β. Moreover, straightforward calculations
show that all gaps of the spectrum of the operators L̃(j)

0 , j = 1, 2, are degenerate. Indeed,
the corresponding dispersion equations are

8 cos2
√
a2 + E − 4(cos p+ cos q) cos

√
a2 + E + cos(p− q)− 1 = 0

and

2 cos
√
a2 + E + cos

p+ q

2
+ cos

p− q

2
= 0.

It should be notice that the same equations are derived from the dispersion equation (64)
and (65) taking limit with T → 0. The latter confirms that the conditions (41) might be
correct for the limit operator in the general case.
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8 Appendix A

Here we give two alternative proofs (finite-dimensional and an abstract one) of the self-
adjointness of the operators lD and lN (see Section 3). We start with an observation that
if we remove only one semi-infinite channel R+ then we will still get a selfadjoint operator.
After that the self-adjointness of the operator lD follows by induction on numbers of closed
channels.

Let Γ′ be Γ∞ without the ray RN = R+ which corresponds to the last component uN

of a function u ∈ L2(Γ∞). So, for f ∈ L2(Γ′) we have the representation f = {fj, j =
0, 1, ..., N − 1} with f0 ∈ L2(Γ0) and fj ∈ L2(R+), j ≥ 1. One may consider L2(Γ′) as a
restriction of L2(Γ∞) on Γ′ and we say that any function f ∈ L2(Γ′) is a trace of some
function F ∈ L2(Γ∞) in the sense that F

∣∣
Γ′

= f .

Now, let L′ be a part of the operator L on the domain

D(L′) := {f ∈ W 2,2(Γ′) : there is F ∈ D(L) with F
∣∣
Γ′

= f and FN(0) = 0} (42)

and the operator L′ acts on f ∈ D(L′) as

L′f := (LF )
∣∣
Γ′

with F from (42). We have to emphasize that F in (42) is subjected to the selfadjoint
conditions γ.

It follows from the localization property of the operators l0 and −d2/dx2 that the
operator L′ is well-defined. On the other hand the set C∞0 (Γ′) of smooth functions with
compact support of each component is a subset of the domain D(L′). Thus, the operator
L′ is densely defined on L2(Γ′). Moreover, just as in Sec. 3, the operator L′ is a symmetric
operator because of the self-adjointness of the operator L.

To prove self-adjointness of the operator L′, we only need to consider boundary con-
ditions on the functions f from D(L′) at a vertex n′ ∈ Γ′ which is the trace of the node

n ∈ Γ∞ common with the removed ray RN . Let us denote by ~f ∈ Cm and ~f ′ ∈ Cm the
boundary values of the function f ∈ D(L′) at the point n′. According to the representa-
tion (2) the self-adjointness of the boundary conditions γ at the node n means that there
is a unique unitary matrix U = {ust}m+1

s, t=1 such that for any F ∈ D(L) we have

(Im+1 + U)~F + i(Im+1 − U)~F ′ = 0, (43)

where ~F and ~F ′ are the corresponding boundary values of the function F at the point n.
In our case one may put

F =

(
f
FN

)
and rewrite (43) as

(Im+1 + U)

(
~f
a

)
+ i(Im+1 − U)

(
~f ′

b

)
= 0, (44)
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where {a, b} ⊂ C, a := FN(0), and b := F ′N(+0). We note that the general solution of
the equation (44) has the following representation

~f
a
~f ′

b

 =

(
i(Im+1 − U∗)
Im+1 + U∗

)
~c, ~c ∈ Cm+1. (45)

Therefore the condition f ∈ D(L′) implies a = 0 or ~c is orthogonal to the last column
~r := {δs, m+1 − us, m+1}m+1

s=1 of the matrix I − U .
The simplest case ~r = 0 corresponds to the equations us, m+1 = δs, m+1, s = 1, 2, ...,m+

1. It means that U = U ′⊕ 1 on Cm ⊕C with a unitary matrix U ′. Therefore L = L′⊕ l0
on L2(Γ∞) = L2(Γ′)⊕L2(RN) where l0 := −d2/dx2 with Dirichlet boundary condition at
the origin. Thus, a priori, we have the desired condition a = 0 and the operators L′ and
l0 are selfadjoint.

Similarly, the case U = U ′ ⊕ (−1) leads to the selfadjoint decomposition L = L′ ⊕ lπ

with Neumann boundary condition b = F ′N(+0) = 0 at the origin on the ray RN . If in
addition we put a = FN(0) = 0 then the domain of the operator L′ does not change, but
the corresponding restriction of the operator lπ on the subspace a = 0 is not selfadjoint.

If us, m+1 = eiθδs, m+1, s = 1, 2, ...,m + 1, θ ∈ (0, π) ∪ (π, 2π) then we have the mixed
boundary condition

a cos(θ/2) + b sin(θ/2) = 0

at the origin on the ray RN and again we get the orthogonal sum of selfadjoint operators
L = L′ ⊕ lθ.

Now let us consider the general case.

Lemma 1. The operator L′ is a selfadjoint operator. Let um+1, m+1 6= 1 and let

F =

(
f
FN

)
∈ D(L).

Then f ∈ D(L′) if and only if the function f is subjected to the selfadjoint boundary
conditions

(Im + U ′)~f + i(Im − U ′)~f ′ = 0 (46)

at the vertex n′ ∈ Γ′, where

U ′ = {u′st}m
s, t=1 :=

{
ust +

us, m+1um+1, t

1− um+1, m+1

}m

s, t=1

(47)

is a unitary matrix.

Proof. The case ~r = 0 has been considered above. Thus we suppose that um+1, m+1 6= 1
and put κ := 1/(1− um+1, m+1).
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First we assume that f ∈ D(L′), i.e., there is such a function FN ∈ W 2,2(RN) on the
ray that FN(0) = 0 and (

f
FN

)
∈ D(L).

The latter means that

(Im+1 + U)

(
~ξ
0

)
+ i(Im+1 − U)

(
~η

F ′N(+0)

)
= 0,

where ~ξ = {ξt}m+1
t=1 := ~f and ~η = {ηt}m+1

t=1 := ~f ′. Next, one may eliminate F ′N(+0) from
the previous equation. Note that the last line (s = m+ 1) of the equation is

m∑
t=1

um+1, tξt − i

m∑
t=1

um+1, tηt + i(1− um+1, m+1)F
′
N(+0) = 0.

Thus,

F ′N(+0) = κ
m∑

t=1

um+1, t(iξt + ηt)

and for s = 1, 2, ...,m we get

m∑
t=1

(δst + ust)ξt + i
m∑

t=1

(δst − ust)ηt + κus, m+1

m∑
t=1

um+1, t(ξt − iηt) = 0,

or
m∑

t=1

(δst + ust + κus, m+1um+1, t)ξt + i
m∑

t=1

(δst − ust − κus, m+1um+1, t)ηt = 0.

The latter coincides with the conditions (46).
Conversely, let f ∈ W 2,2(Γ′) and let f satisfies the conditions (46). One may choose

any function FN ∈ W 2,2(RN) such that FN(0) = 0 and

F ′N(+0) = κ
m∑

t=1

um+1, t(iξt + ηt),

where ~ξ = ~f and ~η = ~f ′. Then

F :=

(
f
FN

)
∈ D(L).

Therefore f ∈ D(L′).
To prove unitarity of the matrix U ′ on Cm, i.e.,

m∑
j=1

u′sju
′
tj = δst, s, t = 1, 2, . . . ,m, (48)
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we will use the unitarity of the original matrix U on Cm+1, that is
m+1∑
j=1

usjutj = δst, s, t = 1, 2, ...,m+ 1.

One may rewrite the last equations as

S(s, t) = δst − us, m+1ut, m+1, s, t = 1, 2, ...,m+ 1, (49)

where

S(s, t) :=
m∑

j=1

usjutj.

We know that
u′st = ust + κus, m+1um+1, t.

Thus, the left hand side L of the equation (48) is equal to

L = S(s, t)+κus, m+1S(m+1, t)+κut, m+1S(s, m+1)+ |κ|2us, m+1ut, m+1S(m+1, m+1).

By (49) we have

δst − L = us, m+1ut, m+1 + κus, m+1ut, m+1um+1, m+1 + κus, m+1ut, m+1um+1, m+1

+|κ|2us, m+1ut, m+1(|um+1, m+1|2 − 1) = us, m+1ut, m+1{1 + κum+1, m+1 + κum+1, m+1

+|κ|2(|um+1, m+1|2 − 1)} = us, m+1ut, m+1(|1 + κum+1, m+1|2 − |κ|2) = 0

with the last equality due to the equation κ = 1 + κum+1, m+1. This concludes the proof
of the lemma.

Now the self-adjointness of the operator lD follows by induction on numbers of removed
rays. Next we will show that similarly we get the self-adjointness of the operator lN .

Remark 3. For any unitary matrix U = {ust}m+1
s, t=1 the matrix

U ′θ :=

{
ust +

us, m+1um+1, t

eiθ − um+1, m+1

}m

s, t=1

, θ ∈ [0, 2π), um+1, m+1 6= eiθ, (50)

is unitary because one may multiply the last column/row of the matrix U by any number
e−iθ, θ ∈ R, and the new matrix will be unitary and by Lemma 1 we have that U ′0 = U ′ is
a unitary matrix. Moreover, in the same way as in Lemma 1 for each θ ∈ [0, 2π) we get
the coincidence of the following two sets

{f ∈ W 2,2(Γ′) : ∃F ∈ D(L) with F
∣∣
Γ′

= f and FN(0) cos(θ/2) + F ′N(+0) sin(θ/2) = 0}

= {f ∈ W 2,2(Γ′) : (I + U ′θ)
~f + i(I − U ′θ)

~f ′ = 0} if θ ∈ [0, 2π), um+1, m+1 6= eiθ.

The case um+1, m+1 = eiθ has been considered above.

According to Remark we get the self-adjointness of the operator lN which corresponds
to θ = π.

Example. By (50) for the matrix U in (6) we get

U ′0 =

(
1 0
0 1

)
and U ′π =

(
0 −1

−1 0

)
.
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8.1 Reducing of a unitary operator

Let U be a unitary operator on Hilbert space H = H1 ⊕ H2 and let V be a unitary
operator on H2. Let x, y ∈ H1 and ξ, η ∈ H2. We denote the unit operators on Hj by Ij,
j = 1, 2. Then I := I1 ⊕ I2 is the unit operator on H. According to the decomposition
H = H1 ⊕H2 the operator U has the following representation

U =

(
U11 U12

U21 U22

)
(51)

where U11 is an operator on H1. We suppose that the operator V − U22 is invertible on
H2 and TV := (V − U22)

−1 is a bounded operator.

Lemma 2. The operator
U ′V := U11 + U12TVU21 (52)

is unitary.

Proof. . First we will show that U ′V (U ′V )∗ = I1. The condition UU∗ = I for U reads

U11U
∗
11 = I1 − U12U

∗
12,

U21U
∗
11 = −U22U

∗
12,

U11U
∗
21 = −U12U

∗
22,

U21U
∗
21 = I2 − U22U

∗
22.

Using each of these equations we get

U ′V (U ′V )∗ = (U11 + U12(V − U22)
−1U21)(U

∗
11 + U∗21(V

∗ − U∗22)
−1U12∗)

= U11U
∗
11 + U12TVU21U

∗
11 + U11U

∗
21T

∗
VU

∗
12 + U12TVU21U

∗
21T

∗
VU

∗
12

= I1 −U12U
∗
12 −U12T

∗
VU22U

∗
12 −U12U

∗
22T

∗
VU

∗
12 +U12TV (I2 −U22)U

∗
22T

∗
VU

∗
12 = I1 −U12J1U

∗
12

where
J1 := I2 + TVU22 + U∗22T

∗
V − TV (I2 − U22)U

∗
22T

∗
V = TV J2T

∗
V

with

J2 := (V −U22)(V
∗−U∗22) +U22(V

∗−U∗22) + (V −U22)U
∗
22− I2 +U22U

∗
22 = V V ∗− I2 = 0.

Here the last equality follows from unitarity of V .
In the same way one may check that the second condition (U ′V )∗U ′V = I1 is a con-

sequence of the relations U∗U = I and V ∗V = I2. This concludes the proof of the
lemma.
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8.1.1 Reducing of boundary conditions

According to the theory of spaces of boundary values (see [6, 17]) any selfadjoint condition
on a Hilbert space H of boundary values is determined by a unitary operator U as

(I + U)f + i(I − U)g = 0, f, g ∈ H. (53)

We suppose that H = H1 ⊕H2. Then for any f, g ∈ H we have

f =

(
x
ξ

)
, g =

(
y
η

)
, x, y ∈ H1, ξ, η ∈ H2.

Let us consider some process of closing one of the channels by switching an additional
boundary conditions

(I2 + V )ξ + i(I2 − V )η = 0. (54)

We will show that restriction of an original operator on H1 is subjected to the following
selfadjoint boundary conditions

(I1 + U ′V )x+ i(I1 − U ′V )y = 0 (55)

with the unitary operator U ′V from Lemma 2. We need the following

Lemma 3. Any solution of the system(
x
ξ

)
+ U

(
y
η

)
= 0, (56)

ξ + V η = 0, (57)

has the following representation
x = −U ′V y,
ξ = −V (V − U22)

−1U21y,

η = (V − U22)
−1U21y.

(58)

Proof. . One may rewrite the equation (56) as{
x+ U11y + U12η = 0,
ξ + U21y + U22η = 0.

Then subtracting the equation (57) from the second line we get

η = (V − U22)
−1U21y.

Finally by (56) and (57) we have

ξ = −V (V − U22)
−1U21y

and
x = −U ′V y

with the unitary operator U ′V := U11 + U12(V − U22)
−1U21 as in Lemma 2.
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Theorem 4. The representation (55) is true.

Proof. . First, we rewrite (53) and (54) in the form (56) and (57), i.e.,(
x+ iy
ξ + iη

)
+ U

(
ix+ y
iξ + η

)
= 0,

ξ + iη + V (iξ + η) = 0.

Then by lemma 2 we have x+ iy = −U ′V (ix+ y) which corresponds to (55).
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9 Appendix B

In this appendix we will describe Dirichlet-to-Neumann map Λ(z) and the negative spec-
trum of the Schrödinger operator L(β; a) on the star-like graph from our example (see
Section 2.1).

First we note that the function G(x, t; z) in (19) is the Green function of the operator
lN on the ring (x, t) ∈ [0, 4]2 because

1) G(0, 0; z) = G(4, 0; z);

2) −G′′xx − a2G ≡ zG, t = 0, x ∈ (0, 4);

3) G′x(+0, 0; z)−G′x(4− 0, 0; z) = −1;

with z 6∈ σ(lN ). Therefore, any solution of the equation

−u′′0 − a2u0 = zu0

on the union of intervals x ∈
⋃4

j=1(j − 1, j), which is continuous on [0, 4], can be repre-
sented as

u0(x) :=
4∑

s=1

αsG(x, s; z).

Hence by the second part of the boundary conditions (4) we have

uj(0) = βu0(j) = β
4∑

s=1

αsG(j, s; z)

and
u′0(j + 0)− u′0(j − 0) = −αj = −βu′j(+0).

It means that the following correspondence holds (cf. (18))

uj(0) = |β|2
4∑

s=1

G(j, s; z)u′s(+0).

Thus we have got the following expressions

Λ−1(z) = − |β|2

2κ sin 2κ


cos 2κ cosκ 1 cosκ
cosκ cos 2κ cosκ 1

1 cosκ cos 2κ cosκ
cosκ 1 cosκ cos 2κ


or

Λ(z) = − κ

|β|2 sinκ


−2 cosκ 1 0 1

1 −2 cosκ 1 0
0 1 −2 cosκ 1
1 0 1 −2 cosκ

 (59)
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and

det Λ(z) = −16κ4

|β|8
cot2 κ,

with κ = κ(z) :=
√
a2 + z, =κ ≥ 0. It is clear that ΛΛ−1 ≡ I4.

By Theorem 1 the negative spectrum of the operator L(β; a) consists of the set

σ−0 := {(πn)2 − a2 < 0, n = 1, 2, ...}

and of all negative solutions of the equation

det(
√
−ξI4 + Λ(ξ)) = 0, ξ < 0. (60)

The eigenvalues of the matrix

M(c) :=


c 1 0 1
1 c 1 0
0 1 c 1
1 0 1 c


are c and c± 2 and

Λ(z) = − 1

|β|2

{
(κ/ sinκ)M(−2 cosκ) if z 6= −a2,
M(−2) if z = −a2.

The number −a2 is not a solution of (60) because

det(aI4 + Λ(−a2)) = a(a+ 4/|β|2)(a+ 2/|β|2)2 > 0.

Therefore the equation (60) is equivalent to a set of the following equations (−a2 < ξ < 0):

tan
√
a2 + ξ = −2

√
a2 + ξ

|β|2
√
−ξ

, (61)

tan

√
a2 + ξ

2
= −2

√
a2 + ξ

|β|2
√
−ξ

, (62)

tan

√
a2 + ξ

2
=

|β|2
√
−ξ

2
√
a2 + ξ

. (63)

We note that the equation (63) coincides with (20).
The equations (61) and (62) have solutions on the interval (−a2, 0) iff a > π/2 and

a > π respectively. On the other hand the last one (63) is solvable for any a > 0. For
example, if we put β = 1 and a = 4 then the negative spectrum of the operator L(1; 4)
consists of four points. The number π2 − 16 ≈ −6.13 represents the set σ−0 and the
numbers −11.09, −2.97, and −13.24 are the unique negative solutions of the equations
(61)-(63) respectively (see Fig 2). It is clear that all sets of solutions of the equations
(61)-(63) and the set σ−0 are mutually disjoint.
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Figure 2a. The unique solution of the equation (61) is ξ = −11.09.

We will now describe eigenfunctions of the negative spectrum of the operator L. First,
as it has been mentioned above, the function, which is equal to sin πnx on the compact part
[0, 4] and vanishes on the rays, is an eigenfunction for any integer n ≥ 1. Straightforward
calculations show that the corresponding eigenvalue π2n2 − a2 is simple.

Let ξ0 < 0 be a solution of the equation (60). Then the eigenfunction u(x) = u(x; ξ0)
has the following representation (j=1, 2, 3, 4)

uj(x) = cje
−
√
|ξ0|x,

u0(x) = −β
√
|ξ0|

4∑
s=1

G(x, s; ξ0)cs,

where the vector ~c = {cs}4
s=1 is an eigenvector of the matrix M(−2 cos

√
a2 + ξ0) which

is (1, 0,−1, 0) or (0, 1, 0,−1) for the equation (61), (1,−1, 1,−1) in the case (62), and
(1, 1, 1, 1) if ξ0 is a solution of (63).
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Figure 2b. The unique solution of the equation (62) is ξ = −2.97.

Figure 2c. The unique solution of the equation (63) is ξ = −13.24.
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10 Appendix C

We will now show how to describe the spectrum of the periodical operators from the
example of Section 5.1 using Theorem 2.

Let us first note that the spectrum of the operator L̃(1)
T or L̃(2)

T , which is situated
on the interval [−a2, +∞) because of (7), has the band structure with the exception of
points of the set σ0 = {(πn)2 − a2 : n = 1, 2, ...} in (17), which are eigenvalues of infinite
multiplicity.

By the definition (23) for the matrix Λ(p, q),T (E) with 0 ≤ p, q ≤ 2π and E 6∈ σ0,T =
{(πn/T )2 : n = 1, 2, ...} we have

Λ(p, q),T (E) :=

√
E

sin
√
ET


cos

√
ET −e−ip 0 0

−eip cos
√
ET 0 0

0 0 cos
√
ET −e−iq

0 0 −eiq cos
√
ET

 .

On the other hand the matrix Λ(E) is defined by (59) with κ =
√
a2 + E and E 6∈ σ0.

Thus, according to Theorem 2 continuous spectra of the operators L̃(1)
T and L̃(2)

T coincide
with sets

σ
(1)
c, T = σc(L̃(1)

T ) :=
⋃

p, q∈[0, 2π]

{E : det(Λ(p, q),T (E) + Λ(E)) = 0}

and
σ

(2)
c, T = σc(L̃(2)

T ) :=
⋃

p, q∈[0, 2π]

{E : det(Λ(p, q),T (E) + JΛ(E)J) = 0}

respectively, where

J :=


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 .

Put |β| = 1. If we exclude singular points then straightforward calculations show that
the dispersion equations det(Λ(p, q),T (E) + Λ(E)) = 0 and det(Λ(p, q),T (E) + JΛ(E)J) = 0
are respectively equivalent to

Fj(E, p, q; a, T ) = 0, j = 1, 2,

where
F1 := A1(cos p+ cos q) +B1 cos(p− q) + C1 (64)

and
F2 := A2(cos p+ cos q) +B2 cos p cos q + C2 (65)

with
A1 := 2((ES2

κ − 4c2κ)ST − 4SκcκcT ); B1 := 2Sκ; C1 := 2Sκ(8c
2
κ − 1)

+8cT cκST (4c2κ − 2− ES2
κ) + SκS

2
T (E2S2

κ + 4E − 8c2κ(2κ
2 + 3E));
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A2 := 4(2cκST + cTSκ); B2 := 4Sκ; C2 := 2Sκ − C1;

κ :=
√
a2 + E; cκ := cosκ; Sκ :=

sinκ

κ
; cT := cos

√
ET ST :=

sin
√
ET√
E

.

We note that Fj are entire functions with respect to E, p, q, a and T . It is straightforward
to show that the asymptotic formula (40) follows from equations (64) and (65) with β = 1.

Now we will choose a = 4 and T = 1. Then the dispersion equations Fj(E, p, q; 4, 1) =

0 define many-sheeted functions E = Ej(p, q) ∈ σ
(j)
c, 1 with the domain (p, q) ∈ [0, 2π]2,

j = 1, 2. Using the Maple function implicitplot3d which computes 3d-plot of an implic-
itly defined surface, E = E(p, q), we will get a numerical description of the continuous
spectrum of the periodical operators. Numerical results for Ej with T = 1 plotted in Fig.
3a and Fig. 3b if 0 < E ≤ 30 and in Fig. 4 - 5 if −16 ≤ E < 0. Figures 4 and 5 show the
localization of the negative spectrum. Figures 4c and 5c illustrate the difference between
the spectral bands which corresponds to a non simple eigenvalue. For the small period
T = 0.1 the surface E2(p, q) is painted on Figure 6.

Notice that using the dispersion equation (65) it is amazing to observe how the pictures
of Fig. 5 pass into Fig. 6, et cetera, as T goes from 1 to 0.1 and then down to zero. As
follows from the results of Section 7.1 each point of the interval [−16, 0) belongs to the
negative spectrum if T = 0. But the main surprising thing is that the energy surfaces
E = Ej(p, q), j=1, 2, become nonsmooth with various singularities.

Figure 3: A projection of the surfaces a) E = E1(p, q) on the plane p=q and b)
E = E2(x, y) where x = cos p and y = cos q on the plane x = y with T = 1 and
0 < E ≤ 30.
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Figure 4: The surface z = −E1(p, q) with T = 1.
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Figure 5: The surface z = −E2(p, q) with T = 1.
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Figure 6: A projection of the surface z = −E2(p, q) with T = 0.1 and 0 < z ≤ 16 on
the plane p = q.
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