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Abstract

We address the inverse problem for scattering of acoustic waves due to an
inhomogeneous medium. We derive and analyze the Hessian in both Holder
and Sobolev spaces. Using an integral equation approach based on Newton
potential theory and compact embeddings in Holder and Sobolev spaces, we
show that the Hessian can be decomposed into two components, both of which
are shown to be compact operators. Numerical examples are presented to
validate our theoretical results. The implication of the compactness of the
Hessian is that for small data noise and model error, the discrete Hessian
can be approximated by a low-rank matrix. This in turn enables fast solution
of an appropriately regularized inverse problem, as well as Gaussian-based
quantification of uncertainty in the estimated inhomogeneity.

(Some figures may appear in colour only in the online journal)

1. Introduction

A feature of many ill-posed inverse problems is that the Hessian operator of the data misfit
functional is a compact operator with rapidly decaying eigenvalues. This is a manifestation of
the typically sparse observations, which are informative about a limited number of modes of
the infinite-dimensional field we seek to infer. The Hessian operator (and its finite-dimensional
discretization) plays an important role in the analysis and solution of the inverse problem. In
particular, the spectrum of the Hessian at the solution of the inverse problem determines the
degree of ill-posedness and provides insight into the construction of appropriate regularization
strategies. This has been observed, analyzed and exploited in several applications including
shape optimization [1, 2] and inverse wave propagation [3-5], to name a few.
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Moreover, the solution of the inverse problem by the gold standard iterative method—
Newton’s method—requires ‘inversion’ of the Hessian at each iteration. Compactness of
the Hessian of the data misfit functional accompanied by sufficiently fast eigenvalue decay
permits a low-rank approximation, which in turn facilitates rapid inversion or preconditioning
of the regularized Hessian [3, 6]. Alternatively, the solution of the linear system arising at
each Newton iteration by a conjugate gradient method can be very fast if the data misfit
Hessian is compact with rapidly decaying eigenvalues and the conjugate gradient iteration is
preconditioned by the regularization operator [7]. Finally, under a Gaussian approximation
to the Bayesian solution of the inverse problem, the covariance of the posterior probability
distribution is given by the inverse of the Hessian of the negative log-likelihood function.
For Gaussian data noise and model error, this Hessian is given by an appropriately weighted
Hessian of the data misfit operator, see, e.g., [8]. Here again, exploiting the low-rank character
of the data misfit component of the Hessian is critical for rapidly approximating its inverse
and hence the uncertainty in the inverse solution [4, 5, 9, 10].

In all of the cases described above, compactness of the data misfit Hessian is a critical
feature that enables fast solution of the inverse problem, scalability of solvers to high
dimensions and estimation of uncertainty in the solution. With this motivation, here, we
analyze the Hessian operator for inverse medium acoustic scattering problems and study its
compactness. Our analysis is based on an integral equation formulation of the Helmholtz
equation, adjoint methods, and compact embeddings in Holder and Sobolev spaces. These
tools allow us to analyze the shape Hessian in detail.

The remainder of this paper is organized as follows. Section 2 briefly derives and
formulates forward and inverse acoustic scattering problems due to bounded inhomogeneity.
We then derive the Hessian for the inverse problem in section 3. Section 4 justifies the Hessian
derivation by studying the well posedness of the (incremental) forward and (incremental)
adjoint equations, and the regularity of their solutions. Next, we analyze the Hessian in Holder
spaces in section 5, and then, we extend the analysis to Sobolev spaces in section 6. In order
to validate our theoretical developments, we provide numerical examples in section 7. Finally,
the conclusions of this paper are presented in section 8.

2. Forward and inverse medium problems for acoustic scattering

In this section, we briefly discuss forward acoustic scattering problems due to bounded
inhomogeneity and the corresponding inverse problems. Since both forward and inverse
medium problems can be found elsewhere [ 11], our attention is to introduce necessary notations
that will be used in our later derivations and analysis starting from section 3.

The scattering of time harmonic incident wave due to bounded inhomogeneity can be
shown to be governed by the following Helmholtz equation [11]:

VU + kK*nU = (1 — n)K*U, inRY, (la)
U

lim A9 D2 (= —jkU ) =0, r=|x|, (1b)

r—00 or

where U is the incident wave that satisfies the Helmholtz equation V2U™ + kU = 0, k > 0
is the wave number, n > 0 is the refractive index, which is assumed to be 1 for the free space,
d € {2, 3} is the dimension of the background space, 2 = —1,and U is the scattered field. The
radiation condition (1) is assumed to be valid uniformly in all directions ﬁ, with x denoting
the vector of spatial coordinates. In the rest of the paper, the inhomogeneity is assumed to be
bounded, i.e. there exists some sufficiently large a > 0, such that n(x) = 1 V||x|| > a. In other

words, ¢ = 1 — n has compact support in R?.
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For the forward problem, 7 is given and we solve the forward equations (1a) and (1b) for
the scattered field U. For the inverse problem, on the other hand, given observation data U obs
over some compact subset QO « R4, we are asked to infer the distribution of the refractive
index n. One way to solve the inverse problem is to cast it into the following PDE-constrained
optimization problem:

min J = / K(x)|U — U°™®?dS, )
q R4

subject to the forward equations (1a) and (1b). Here, K(x) denotes the observation operator
whose support is Q°%. In order to cover several interesting observation operators, Q°% is
allowed to be quite general in this paper. In particular, it could be a closed subset in RY or a
relative closed subset of a manifold in R¢. For example, in R3, Q° could be a closed arc, or
a closed curved, or a closed subset of a two-dimensional manifold, or some two-dimensional
manifold. For convenience, we identify

1C<p=f KwdSZ:/ @ (y) dy.
]Rd Qubs

We also permit pointwise observation in our analysis, i.e. Q% = {X
we identify

obs

Nobs . .
¥ }1—1’ and in this case,

N()bb

Ko = Ad KpdQ = Z(p(xj?bs). 3)

j=1

3. Derivation of the Hessian

In this section, we derive the gradient and Hessian using a reduced space approach, and the
justification for our derivations is provided in section 4. We begin with a useful observation on
the radiation condition. Since the radiation condition (15) is valid uniformly in all directions
ﬁ, we rewrite the radiation condition as
& — kU = — (1-d)/2
oy ikU = ¢(r) = o(r )
where r is the radius of a sufficiently large circle I'.

It can be seen that the cost functional (2) is real valued, while the constraints (1a)—(1b)
are complex valued. Consequently, the usual Lagrangian approach will not make sense and
care must be taken. Following Kreutz-Delgado [12], we define the Lagrangian as

. U
L=J +/ VU + k*nU — k(1 — n)U™]dQ2 +/ i, (a_ —ikU — <p> ds
R4 . r

— J— —ic av e
x/ ul VU + k*nU — K*(1 — n)U ]dsz+/ U, (——ﬂcU—a) ds,
RY oo ar

where the overline, when acting on forward and adjoint states (and their variations), denotes
the complex conjugate.

Taking the first variation of the Lagrangian with respect to u and u, in the directions # and
i, and arguing that the variations & and #, are arbitrary yield the forward equations (1a) and
(1D).

Now taking the first variation of the Lagrangian with respect to U in the direction U and
arguing that the variation U is arbitrary yield the following adjoint equations:

V2u+ Knu = —K(U — U°™), inR?, (4a)

3
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d
lim d-D/2 <—” —i—iku) —0,  r=Ixl, (4b)
r—00 ar
and
u=—u on I.

If we eliminate u,, the Lagrangian now becomes

i aU
L=J +/ u[V2U + kK*nU — (1 — n)U*1dQ — / i (a_ — kU — (p> ds
R4 . r

r

— — —ic I A—
X / ulV*U + k*nU — K*(1 — n)U ]dQ—/ u<a——ikU—¢) ds. (5)
R4 oo

The gradient of the cost function acting in the direction 7 is simply the variation of the
Lagrangian with respect to ¢ in the direction 7:

DI (g: h) = —k> / [@(U + U) + u(@ + T*))hdS. (6)
R4

For the sake of convenience in deriving the Hessian, the forward and adjoint equations are best

expressed in the weak form. As a direct consequence of the above variational calculus steps,

the forward equation in the weak form reads
- . = BU . A
S(q,U) = / a[V2U + K*nU — K> (1 — n)U1dQ2 — / 7 (a_ — kU — go) ds=0 V.
Rd T r
(N

Similarly, the adjoint equation in the weak form is given by
- /0 ~
A(q,U,u) = / UlVZu + knu+ KU — U°®)]1dQ — / U (a_u +iku> ds=0 VU.
R4 r
()

Next, the (reduced) Hessian acting in the directions 7 and 7 is obtained by simply taking
the first variation of the gradient D7 (¢, n) with respect to ¢, U and u in the directions 7, U
and u:
D*J(q; A, i) = —k* / U + U + a0 +T") + a0 + ul1idS. 9)

R4

As mentioned at the beginning of this section, the reduced space approach is employed, and
hence, the variations U and & cannot be arbitrary. In fact, they are only admissible if the forward
and adjoint equations are satisfied. As a direct consequence, the first variations of S (¢, U) and
A (g, U, u) must vanish, i.e. U is the solution of the following incremental forward equation:

00

/Rl AV2U + K*nU — KPaU + U)]1d2 — / i (%—IZ — ikU) ds=0 Vi, (10)
y Iy
and e is the solution of the following incremental adjoint equation:
/d O[V2i + Knii — Kiiu + KU]dSQ — / 0 (% 4 ikﬁ) ds=0 VO. (11)
Cinsequently, the corresponding strong forro:l of the incremental forward equation is
V2U + k*nU = K*i(U + U), inRY, (12a)
lim rd=n7 (%—If - ikU) =0, r=|xl, (12b)
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and that of the incremental adjoint equation reads

V2i + K*nit = K*iu — KU, inR?, (13a)
.

lim @172 <—” + i/az) —0, r=|x|. (13b)

r—00 or

Next, we need to convert the Hessian in (9) into a form that is convenient for our later
analysis. The first step is to replace 7 by 7 and choose & = #(77) in the incremental forward
equation (10). In the second step, we take U=0 (n) in the incremental adjoint equation (11).
The last step is to subtract the resulting incremental forward equation from the complex
conjugate of the resulting incremental adjoint equation. After some simple integration by parts
and cancellations, we obtain

f Kan(R) (U + U*) dQ = / KuanU () dQ — / KU @0 () dQ.  (14)
Rd R R4
Combining (9) and (14) gives the desired form of the Hessian as

D2 (g i, i) = / KIO ()T () + U ()0 (7)] dQ
Rd

Hi(g:A,i1)

— {kz / (@0 (7) + ull (7)1 A + K2 / @0 (R) + ul ()] dQ} . (15)
R4 R4

Ha (g3, 7)

4. Regularity of the forward and adjoint solutions

In this section, we are going to justify what we have done in section 3 by studying the well
posedness of the forward and adjoint equations and the regularity of their solutions. For
sufficiently smooth inhomogeneity, the solutions turn out to be classical by using an integral
equation method, as we shall show.

First, we introduce the following standard volume potentials (also known as Newton
potentials) [13, 11]:

wx) = T(x) = /R om e dy, xR, (16)

where @ is the fundamental solution of the (incremental) forward equation(s) defined as
“HY (x—y) N=2
4

PEY) =) iklx-yl

- =3,
4 [Ix =yl

or the fundamental solution of the (incremental) adjoint solution(s):
i,
_ZHO x—y) N=2

d(x,y) = o iklx—yl
N =3.

4 Ix =yl
Next, we denote by C™*(R?) the space of m-times differentiable functions whose mth
derivative is Holder continuous with the exponent « in R?, and by Cy* (R?) a subspace
of C™%(R%) consisting of functions with compact support. The following mapping properties
of the volume potential are important in what follows.
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Lemma 1. Ler ¢ € Cy(RY) N C™*(RY), where o € (0,1] and m € N U {0}. Then,
w e C"2Y(Q), and lwlleniza gy < ¢ l@llone gy, where supp (9) C 2 C R?. Furthermore,
it holds that T is compact in CPP(Q) form+a < p+ B8 <m+2+o.

Proof. We proceed by induction. The cases m = 0, 1 are proved and discussed in [13, 11].
Since differentiation and integration can be interchanged [13, 11], the partial derivative in the
x; direction reads

D,,w(x)

/ e(Y)Dy; @ (x,y) dQ2 = — / e(y)D,,® (x,y) dy
R4 Q

—fBQQ(x, y)w(y)n,-ds+/g<l>(x, ¥) Dy, ¢(y) dy, (17)

0
where n; denotes the jth component of the normal vector of d€2, and we have used the fact that
D, ®(x,y) = —D,,®(x,y) and ¢(y) = 0 on 9. Since Dy ¢(y) € Co(RY) N C™ 1 (RY),
we conclude, by the induction hypothesis, that D, w(x) € C"the(Q). This implies
w(x) € C"2Y(Q).
The second assertion is readily proved by the induction hypothesis

||ijw ||Clll+l.u(Q) <C HDx

and the definition of Holder norms [14, 11]. The third assertion is trivial due to the compact
embeddings in Holder spaces [14]. |

P I ol (@)

In order to use lemma 1 and the Riesz—Fredholm theory [15, 16] to study the well
posedness of the forward and adjoint equations, we first recall the following Green formula
[11]foru e C2H(Q)NC(Q) :

B] 9P
u(x):/ I:(D_M—u—i| ds—/ O (VZu + ku) dS,
9 y Q

where n denotes the unit outward normal vector of 9€2. Denote
Tlglo(x) = K f D, Vg dy, x€ 9,
Q

and [ as the identity operator. We now have the following integral representations for the
forward and the adjoint equations.

Theorem 1. Let Q@ C R, and q, 71 € Cy"* (), where a € (0, 11 and m € NU{0}. In addition,
let p and B satisfym +a < p+ B < m+ 2 + «. The forward, incremental forward, adjoint
and incremental adjoint equations are well posed in the sense that they are equivalent to the
following Lippmann—Schwinger-type integral equations.
(i) The forward integral equation
I+ TlghU (x) = =T [qlU* (x) (18)
has a unique solution U in CPP () and the solution depends continuously on the data.
(ii) The incremental forward integral equation
(I + TlgDU(x) = T[AI(U + U)(x) (19)

has a unique solution U in CP () and the solution depends continuously on the data.
(iii) The adjoint integral equation

(I + Tlghu(x) = / O (x, KU — U™)(y) dy 20)

Qobs
has a unique solution in C"™* (2) and the solution depends continuously on the data.
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(iv) The incremental adjoint integral equation

(I +TlgD) u(x) = T[n]u(x) +/ o (x, y)KU (y) dy 2D
Qobs

has a unique solution in C™% (Q2) and the solution depends continuously on the data.

Proof. The equivalence for the forward equation can be found in [11, 17] for the case
g € Cy(R?). The generalization to the case ¢ € C;"*(R) is straightforward. By the same
token, we have the equivalence for other equations. This suggests that we need to study only
the well posedness of the integral equations.

By lemma 1, 7 is compact in C?#(Q), and T [¢q]U (x) € CP#(R2) due to the analyticity
of the incident wave U, The Riesz—Fredholm theory [15] therefore applies, and the forward
integral equation has a unique solution in C”# (). Moreover, (I + T[¢])~! is bounded, i.e.
the solution depends continuously on 7 [¢]U (x) in the C”*#-norm. The proof for incremental
forward solution (19) follows the same line by observing that the right-hand side of (19)
belongs to C”# () from lemma 1.

As for the adjoint equation, owing to ° N supp(q) = ¥ and the analyticity of ®(x,y),
the right-hand side of (20) is certainly a function in CP#() (in fact it is analytic in
R? \ supp(2°™*)), and again the Riesz—Fredholm theory gives the desired results. Finally,
for the incremental adjoint integral equation, observe that the first term on the right-hand side
of (21) belongs to C”#(R2) and the second term is analytic on . As a result, the right-hand
side of equation (21) is a function in CP# (). The conclusions are now readily verified by the
Riesz—Fredholm theory. ]

We are now in the position to justify our derivations of gradient and Hessian in section 3.

Theorem 2. Let Q© C R? be a bounded domain. Assume that g, n and i belong to CG (R2). Then,
the cost functional (2) is twice continuously Fréchet differentiable, and hence, the gradient (6)
and Hessian (15) are well defined.

Proof. First, observe that we have used Gateaux derivatives to derive the gradient and Hessian
in section 3. Now it is evident that both D.7 (¢; i) and D*7 (g; i, i) are linear and continuous
with respect to 7 (and #) since U, u, U and ii belong to C>2(Q) by theorem 1. Moreover,
continuous dependence on g of U from theorem 1 implies the continuous dependence on
g of u, U and @, which in turn implies the continuity of D7 (¢; ) and D*J (g; i, /1) with
respect to g. Hence, a classical result on sufficiency for the Fréchet derivative [18] ends the
proof. ]

5. Analysis of the Hessian in Holder spaces

In this section, we study the behavior of the Hessian at a fixed refractive distribution , i.e.
g =1—n e C"* (). Unlike the shape Hessian that is only compact at the optimal solution
as we have analyzed in the first part of this work [19], the Hessian of the inverse medium
scattering problem turns out to be compact for all ¢ as we shall show. For concreteness, we
restricted ourselves to two exemplary cases of the observation operator, namely the observation
is everywhere on a compact subset 2°® having non-trivial r-dimensional Lesbegue measure
for some 1 < r < d (we call this case as continuous observation) and pointwise observation

Qobs — {X(])_bs }]]V;bls
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From theorem 1, observe that the incremental forward solution U can be identified as the
following operator composition:

U:C () 3 iim UG) = U+ Tlg) ™' THRIU + U*) € CPF(Q),
which is compact since it is the composition of the continuous operator (I + 7 [¢])~" (owing
to the Riesz—Fredholm theory) and the compact operator 7 [71] (U +U ic) (due to lemma 1). As

aresult, U(n) . is still a compact operator since restricting to 2°° is a continuous operation.
0bs

If the observation is continuous, the Gauss—Newton part of the Hessian, namely
‘Hi(n; i, 1), can now be rewritten as

Hi(q; i, i) = 2RU R), U ) 2w = 2RO*U (), 1) 125

where the real operator X extracts the real part of its argument and (-)* denotes the adjoint
operator. In this form, , (n) is evidently compact due to the compactness of U ()] gobs.

If, on the other hand, the observation is pointwise, then the evaluation of U (n) at x?b* can
be written as

U i) (™) = (=kq®;, U () 120) + (Pi®;, U + U) 120
= (K O;(U+U*) —U*(KqP)), D)
= (‘I’j, ﬁ)LZ(Q),

where ®; = <I>(x_‘]?b5, y)and ¥; = K>®;(U+U™)—U* (k*q®;). In this case, the Gauss—Newton
part H (n; i, i1) reads

Nobs
Hilg:h i) =27 | | DWW, A :
J e /e

which shows that the dimension of the range of H;(g) is at most N°*. Consequently, H; (¢)
is a compact operator. We summarize the above result on the compactness of H;(g) in the
following theorem, which is valid for both continuous and pointwise observation cases.

Theorem 3. H,(q), as a continuous bilinear form on ng(Rd) x Gy (RY), is a compact
operator.

The analysis of H;(q) is somewhat easier as we shall now show.
Theorem 4. H;,(q), as a continuous bilinear form on Cg"“(Rd) x Gy (RY), is a compact

operator.

Proof. Rewrite H,(g; 71, 1) as
Halg; 7i; R) = 2> R / (@0 ()i + aU (7)Al dQ = 2K RO * @) + aU (1), #)12(q)-
Q

We conclude that H; (¢g) is compact by the following three observations. First, the incremental
forward solution U can be identified as a compact operator in Cy"* (£2) as discussed above.
Second, multiplication by u € C;"* () is a continuous operation (see, e.g., [19]). Third, the
sum of two compact operators is again compact. (|

We close this section by observing that the full Hessian is the difference of two compact
operators, and it is therefore compact as well.

8
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6. Analysis of the Hessian in Sobolev spaces

Similar to the first part of our work [19], we shall extend the analysis in Holder spaces to
Sobolev spaces. A result similar to that of lemma 1 is now stated.

Lemma 2. Assume that ¢ is bounded and integrable, Q@ C R? is a bounded domain and
supp(¢) C Q. Then, T defined in (16) maps H™ () continuously to H" 2 () form € NU{0}.

Proof. We proceed by induction. The case m = 0 has already been proved in [11]. Now
assume that the assertion holds for m — 1, and we need to show that it also holds for m.
Since boundedness and integrability of ¢ enable integration and differentiation interchange
[20], (17) holds. By the induction hypothesis, Dy w(x) € H"(Q), and this implies
w(x) = Te(x) € H"2(Q). ]

By compact embeddings in Sobolev spaces [21, 22], one can see that 7 is compact in
H*(Q2) form < s < m+ 2. This fact is used to prove the following compactness of the Hessian
in Sobolev spaces.

Theorem 5. Let g be bounded, integrable, and q € H™ (2), where 2 is a bounded domain,
and supp(q) C 2 C RY. Then, the Hessian, H(q) = H,(q) — Ha(q), is a compact operator
in H" (2).

Proof. The proof follows the same line as in section 5 by using lemma 2, and hence
omitted. ]

7. Numerical results

In this section, we numerically compute the eigenvalues of the shape Hessian (9) to validate our
theoretical developments in sections 5 and 6. For the purpose of demonstration, it is sufficient
to consider two-dimensional problems for which we can use an efficient coupled finite-element
and boundary integral equation approach. The detailed description of our coupling strategy is
now presented.

7.1. Forward scattering problem

We decompose the forward problem into two sub-problems, namely, the interior sub-problem
given by

V2U™ + 12U = (1 — n)k*U, inQ, (22a)

on

+ikU™ =, onds, (22b)

and the exterior sub-problem given by

V2US + k*nU™ =0, inRY\Q, (23a)
ex
+ikU™* =, ond, (23b)
n
3U€X
lim #4172 <a_ - ikUe") =0, (23¢)
r—>00 r
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where ¥ is the unknown coupling function. It is easy to show that the weak formulation of the
interior problem (22) reads

/ VU™ . VudQ —k2/ nU™y d§2+ik/ Uy ds:ikf Yv ds—kZ/ qUvdQ (24
Q Q a0 a0 Q
and that the boundary integral equation formulation of the exterior problem (23) reads

(I — D —ikS)U™ = -8y, (25)
with the representation

€xX X a¢ (X’ y) .
Umx)= [ U™ (y) “on +ik® (x,y) [ ds(y) — | P X, y) ¥ (y)ds(y),
aQ n a0

and with S and D as the following standard surface single- and double-layer potentials [11]:

Sp(x) = 2/Q P(x,y)p(y)ds(y), xe9dL,
a

dd(x,y)
Do(x) = Zf ————p(y)ds(y), xe€0Q.
s on(y)

The interior and exterior solutions are matched by satisfying the following continuity condition
at the interface 9€2:

U™ =U, ondQ, (26)
which, together with (22) and (23), implies the continuity in the normal derivative:

9 Uin Ux

on  9n

Inspired by the coupling approach in [23], we choose to use the finite-element method (FEM)
for solving the interior problem (24), while we solve the exterior boundary integral equation
(25) using the Nystrom method [11, 19]. Now, the nature of the coupling is implicit, i.e. in
order to solve for U™ and U®*, the availability of i is required. On the other hand, in order to
solve (26) for v/, one has to supply U™™ and U*. Moreover, matching the finite-element and
Nystrom methods may not be trivial since the finite-element solution is defined variationally,
while the Nystrom solution is pointwise in nature. We adopt a simple decoupling approach
due to Kirsch and Monk [23] in which i is represented by trigonometric polynomials of
order M:

, ondf.

M—1
v= > a, ¢;=¢", 1e[0,2n].
j=—M
With this representation, one can solve the interior and exterior problems independently for
each basis function ¢;. Then, the unknown coefficients «; can be solved for by employing a
Galerkin projection on (26):

U™ —UMg;ds=0, j=-M,....M—1,
a0
where 5]- denotes the complex conjugate of ¢;.

In this paper, we use the Nystrom quadrature for all line integrals along d€2. This implies
that one has to interpolate the FEM solution at the Nystrom points. To avoid this extra
interpolation problem, we generate the FEM mesh such that all the mesh vertices on 92
coincide with the Nystrom points. We therefore simply read off the FEM nodal solutions for
the Nystrom quadrature.

Since the coupled finite-element and boundary integral approach—together with its
discretization—for the adjoint, incremental forward, incremental adjoint problems is similar,
we will present only the sub-problems and the continuity condition at the interface in the next
three subsections.

10
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7.2. Adjoint scattering problem

Similar to the forward scattering problem, the interior sub-problem for the adjoint equation
reads
V2" + K™ =0, inQ,

8uin o
+iku™ =, ondL,
n

while the exterior problem reads
V2™ + Pnu®™ = —K(U — U), inR?\ Q,

ouc* )
+ iku®™ =, ondQ,
n
8 X
lim F@-1/2 (L + ikue"> —0.
r—00 or

The interior and exterior solutions are matched by satisfying the following continuity condition
at the interface 92:

" =u®, ondQ,

7.3. Incremental forward scattering problem

For the incremental forward problem, we choose the interior sub-problem as
VU™ 4+ kPnU™ = —ak> (U + U™), in L,

r7in

- +ikU™ =, onas,

and the exterior sub-problem as
VU™ +K*nU™ =0, inR?\ Q,

r7ex

+ikU™ =, ondS,

on
af]ex B
lim 41/ <— - ikUe") =0.
r—00 or

The interior and exterior solutions are matched by satisfying the following continuity condition
at the interface 9€2:

U™ =0, ondQ.

7.4. Incremental adjoint scattering problem

Similar to the adjoint scattering problem, the interior sub-problem reads
V2" + i = —ik*u, in<Q,

alzin :7,.~in
+iku" =, onad<,
n

while the exterior problem reads
V2™ + Kni™ = —KU, inRY\ Q,
aﬁex
on

lim r@=D72 <_3,;ex + ikﬂex> =0.
or

r—00

+1kad™ =, ondg,
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The interior and exterior solutions are matched by satisfying the following continuity condition
at the interface 02:

" =u%, ondQ,

For numerical results, a second-order FEM on an unstructured triangular mesh is used for
the interior sub-problem, and a Nystrém method with 240 equally distributed (in #) points
is used for the exterior sub-problem. The wave number is chosen to be k = 10, while the
number of trigonometric polynomials is 60 by taking M = 30. For brevity, only results for
pointwise observation are presented since those for continuous observation are similar. The
observational data U° is synthesized at N°® = 31 points equally distributed in the interval
y € [—10, 10] and at x = b = —10, unless otherwise stated. For the sake of convenience, the
following simple inhomogeneity [23] is used:
l+c(1—-r?% r<1

n(r) = ) . r= x|, 27)

WV

where c is some scalar constant, in particular, we choose ¢ = 0.5 for the synthesization. As
a result, we can choose €2 as the unit circle. Finally, the incident wave is assumed to be of
the form U = e**. Our goal is to numerically show that the Hessian is compact for any
bounded inhomogeneity n. However, for convenience, we choose n of the form (27), and in
particular, we choose to study the discrete Hessian at various values of ¢. Numerically, we are
able to examine the necessary condition for the Hessian operator to be compact (and hence
the ill-posedness of the inverse problem), namely the convergence to zero of the Hessian
eigenvalues. However, even in this case, it is impossible to study all the eigenvalues since they
are countably infinite. We will therefore resort to investigating a small dominant part of the
spectrum, from which we draw conclusions. In the rest of this section, we ‘measure’ the degree
of ill-posedness by the magnitude of eigenvalues. For example, given two ill-posed inverse
problems, i.e. the Hessian eigenvalues decay to zero, we say one problem is more ill-posed
than another if the eigenvalues of the former are smaller than those of the latter at the same
indices.

A second-order triangular mesh with 2738 elements and 5597 nodes is generated, which
permits us to represent the refractive index as

where &, are the nodal finite-element basis functions. The continuous optimization variable n
has been cast into 5597 discrete nodal unknowns #,,, and hence, the Hessian is a 5597 x 5597
matrix. The real and imaginary parts of the forward and adjoint solutions at ¢ = 1 are shown
in figure 1.

Away from the optimal solution, i.e. at ¢ = 0.5, the Hessian may not be (semi-) positive
definite, and for this reason, we will present only the eigenvalue magnitudes. Figure 2 shows
the first 1000 eigenvalues that are largest in magnitudes for ¢ = {1, 0.4, 0.499, 0.5}. As can
be seen, the eigenvalues decay exponentially at the optimal inhomogeneity, but the decay rate
is rather slow otherwise. Moreover, closer to the optimal inhomogeneity, the eigenvalue is
smaller for a same index, indicating the increasing ill-posedness of the inverse problem as the
optimal solution is approached. Note that at the optimal solution, the full Hessian collapses to
the Gauss—Newton part, i.e. H;, since H, = 0.

Next, we keep ¢ = 1 fixed, but allow the wave number k to change. Figure 3 shows the
first 1000 eigenvalues that are largest in magnitudes for k = {10, 5, 1, 0.1}. It can be observed
that as the wave number decreases, so do the Hessian eigenvalues. This is expected since

12
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Figure 1. Real and imaginary parts of the forward and adjoint solutions for n given in (27) with
c=1.

intuitively the larger the wave number, the easier the detection of the inhomogeneity, and
hence, the problem is less ill-posed. As can also be seen, the asymptotic decay rate seems to
be similar for all cases.

We now keep ¢ = 1 and k = 10 fixed, but let the observation radius b vary. We present in
figure 4 the first 1000 eigenvalues that are largest in magnitudes for » = {1, 10, 100, 10 000}.
As the observations are taken further away from the inhomogeneity region, the Hessian
eigenvalues are smaller. Again, for all cases, the eigenvalues decay to zero, indicating the
compactness of the Hessian operator. The result suggests that observations should be carried
out as close as possible to the inhomogeneity for the inverse problem to be less ill-posed.

In order to study the affect of observations on the ill-posedness of the inverse problem,
we fix c = 1, k = 10 and b = —10, and let N°* points be equally distributed in the interval
y € [—100, 100]. Figure 5 shows the first 1000 eigenvalues that are largest in magnitudes for
N = {1, 51, 101, 1001}. One can observe that as more observation points are added, the
inverse problem is less ill-posed since the eigenvalues increase. That is, as more information

13
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Figure 2. Magnitudes of the first 1000 eigenvalues of the Hessian at n (¢ = {1, 0.4, 0.499, 0.5})
given in (27).
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Figure 3. Magnitudes of the first 1000 eigenvalues of the Hessian for k = {10, 5, 1, 0.1}.

about the inhomogeneity is available, the problem of reconstructing it is more well posed,
agreeing with our assumption.

Finally, we study the dependence on mesh refinement of the Gauss—Newton Hessian
dominant spectrum. Figure 6 shows the first 100 dominant eigenvalues for three different
mesh sizes & = {0.1, 0.05, 0.025}. As can be observed, the dominant part of the spectrum is
numerically independent of the mesh size. This result is consistent with the numerical results
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Figure 4. Magnitudes of the first 1000 eigenvalues of the Hessian for b = {1, 10, 100, 10 000}.
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Figure 5. Magnitudes of the first 1000 eigenvalues of the Hessian for NObs — {1,51, 101, 1001}.

in the first part of our work [19] in which we numerically show that the Gauss—Newton Hessian
dominant spectrum is independent of the mesh size regardless of the shape.

8. Conclusions

We have analyzed the Hessian stemming from the inverse problem of scattering of acoustic
waves due to bounded inhomogeneity. Unlike our companion paper on inverse shape scattering
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Figure 6. The first 100 dominant eigenvalues of the Hessian for 2 = {0.1, 0.05, 0.025} with
c=0.5.

problems [19] for which only the Gauss—Newton Hessian is compact, the full Hessian operator
has been shown to be compact for inverse medium scattering problems. Our analysis starts
with a study on the smoothness of the scattering solution based on the Newton potential theory
and the Riesz—Fredholm framework. Then, together with compact embeddings in Holder and
Sobolev spaces, we are able to prove the compactness of the Hessian operator in both Holder-
and Sobolev-space settings, and for both two and three dimensions. Our theoretical results
have been validated numerically in several scenarios. Our future work also includes application
of the Hessian knowledge and the decaying eigenvalues in constructing effective algorithms
for inverse medium scattering of acoustic waves.
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